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Abstract— In October 2016, the Special Interest Group on 
Theory of Characteristic Modes (TCM) initiated a coordinated 

effort to perform benchmarking work for characteristic mode 
(CM) analysis. The primary purpose is to help improve the 
reliability and capability of existing CM solvers and to provide 

the means for validating future tools. Significant progress has 
already been made in this joint activity. In particular, this paper 
describes several benchmark problems that were defined and 

analyzes some results from the cross-validations of different CM 
solvers using these problems. The results show that despite 
differences in the implementation details, good agreement is 

observed in the calculated eigenvalues and eigencurrents across 
the solvers. Finally, it is concluded that future work should focus 
on understanding the impact of common parameters and output 

settings to further reduce variability in the results.    

Index Terms— Characteristic modes, benchmark problems, 

electromagnetic modeling 

I.  INTRODUCTION 

The theory of characteristic modes (TCM) [1], [2] is 

becoming increasingly popular for analyzing electro-

magnetic radiation and scattering problems in the early stages 

of research and development. This is because it provides 

scientists and engineers a helpful tool to capture the physical 

mechanisms underlying these electromagnetic phenomena 

[3]-[8]. Moreover, in recent years, significant progress has 

been made in the development of characteristic mode (CM) 

solvers for internal research and commercial developments 

[6]. These tools have facilitated the extensive use of CM 

analysis (CMA) to assist in the design and implementation of 

many different antenna structures, e.g., [3]-[6]. 

Despite significant advances in CM research, there is little 

benchmarking information available for CMA. 

Electromagnetic numerical modeling code and technique 

standardization is an important topic to the electromagnetics 

community [9], as evidenced through numerous papers on a 

wide range of numerical modeling techniques (see [10] and 

references therein). CM benchmarking development is also 

critical for further advancing this field as it will provide a 

clear picture of the strengths and weaknesses of existing 

algorithm and spur new algorithm development. Extensive 

code validations, especially cross validations, are required to 

place confidence in the results that are produced by both in-

house and commercially available CMA software tools.  

   As a step forward, the performance of several state-of-the-

art commercial and in-house CMA tools were investigated in 

[11]. CM solutions for a perfectly electric conductor (PEC), 

i.e., a sphere, were computed and compared to the analytical 

solution. The results show that singularity treatment, 

quadrature rules, mesh size, and electrical size of the problem 

of interest may greatly influence the accuracy of the solved 

modes. To support CM benchmarking development, the 

Special Interest Group (SIG) on TCM [12] initiated 

benchmarking activities that aim to provide a suite of 

problems that test, not only accuracy, but also robustness of 

existing CM solvers in handling arbitrarily shaped problems 

with a variety of input parameters.  

In this paper, three benchmark problems are considered. 

To focus on the most common and accessible forms of CMA, 

only PEC problems are investigated. Mesh files are provided 

as input to the CM solvers to isolate the effect of different 

numerical schemes, rather than meshing strategies. With 

specific definitions for the impedance matrix calculations and 

solvers for the generalized eigenvalue equation, the following 

achievements were made through this joint work: a) A 

repository that includes numerical solutions of the three 

benchmark problems was developed, b) A suite of benchmark 

problems were cross-validated through collaborative efforts, 

c) A summary of the CMA results and their comparisons are 

provided in this paper. More details will be available on the 

TCM SIG website [12] after the EuCAP 2018 conference. 

II. CM BENCHMARK PROBLEMS 

The three defined CM benchmark problems represent a 

certain class of problems that were previously solved and 
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which are known to pose certain computational challenges. 

An indication of the accuracy of the CM computation can be 

obtained through comparing the numerical results of the 

independently developed CM solvers. To ensure that the 

requested parameter settings are sufficient to provide similar 

results, the robustness of these solvers is also studied through 

the independent use of the same solver (e.g., Altair FEKO) 

by more than one party. The verifications performed in this 

paper are based on consistency checks of the CMA results 

provided by 10 contributing parties.  

A. Benchmark Problem 1: Rectangular PEC Plate 

As shown in Fig. 1(a), the dimensions of the rectangular 

PEC plate are 0.1 × 0.04 m2. The frequency range of interest 

should at least cover the resonant frequencies of the first four 

modes. Hence, based on previous CMA, the frequency range 

of 1-5 GHz is chosen. A frequency step of 0.1 GHz is defined 

to balance computational burden and possible investigation 

of frequency variation in modal quantities. The provided 

mesh is obtained from Altair FEKO by setting the average 

mesh density to 0.004 m (λ0/15 @ 5 GHz). The number of 

triangles is 668. Unlike conventional scattering analysis, 

where a mesh density of λ0/10-λ0/8 is often sufficient, the 

finer mesh density here is to help model the more rapidly 

changing modal currents in high order modes. Apart from the 

eigenvalues, the required outputs are modal quantities of the 

dominant modes (i.e., modes with the smallest absolute 

eigenvalues), defined as: 

 Modal currents at 1.3 GHz and 2.8 GHz; 

 Modal far-fields in cut planes φ = 0° and 90°, at 1.3 GHz 

and 2.8 GHz. 

B. Benchmark Problem 2: Circular Disk 

The circular disk with radius 0.1 m is shown in Fig. 1(b). 

The mesh for this benchmark problem is obtained from Altair 

FEKO by setting the average mesh density to 0.0086 meter 

(λ0/10 @ 3.5 GHz). The number of triangles is 1186. The 

chosen frequency range for the CMA is 0.5-3.5 GHz (1.05 ≤ 

ka ≤ 7.33), with a frequency step of 0.05 GHz. The required 

outputs for the dominant modes are defined as: 

 Modal currents at 1.0 GHz and 1.5 GHz; 

 Modal far-fields in cut planes φ = 0° and 90°, at 1.0 GHz 

and 1.5 GHz. 

C. Benchmark Problem 3: PEC Sphere 

The PEC sphere with radius 0.2 m is shown in Fig. 1(c). 

The mesh for this benchmark problem is obtained from Altair 

FEKO by setting the average mesh density to 0.0167 meter 

(λ0/15 @ 1.2 GHz). The number of triangles is 4892. The 

frequency range for the CMA is 0.2-1.2 GHz (0.84 ≤ ka ≤ 

5.03), with a frequency step of 0.02 GHz. The required 

outputs of dominant modes are defined as: 

 Modal currents at 640 MHz and 900 MHz; 

 Modal far-fields in cut planes φ = 0° and 90°, at 0.64 

GHz and 0.9 GHz. 

  
(a) 

      
        (b)              (c) 

Fig. 1. Geometry of the benchmark problems. (a) Rectangular PEC plate; 

(b) PEC circular disk; (c) PEC sphere. 

Table I. A List of Contributing Parties (named after abbreviated  

affiliations of this papers’ co-authors) and CM Solver Properties 

Contributing 

Parties 

TCM Solver Code for Impedance 

Matrix Filling 

Solver for 

GEP 

Altair 

FEKO 

Altair FEKO Altair FEKO Altair FEKO 

BUAA In-house code Altair FEKO MATLAB 

eigs 

CTU In-house code AToM code[13] MATLAB 

eigs 

LUH In-house code Modified Makarov 
code 

MATLAB 
eigs 

LUND In-house code Makarov code IRAM in 

Matlab 

METU In-house code In-house method of 
moments (MoM) code 

MATLAB 
eigs 

NCSU In-house code In-house MoM code MATLAB 

eigs 

UNIPI Altair FEKO Altair FEKO Altair FEKO 

UESTC  In-house code A-UEST (Accurate 
Universal EM 

Simulation Tool) 

IRAM in 
ARPACK 

WIPL-D WIPL-D WIPL-D 3D MoM 
Solver 

LAPACK 
routines 

III. BENCHMARK RESULTS 

There are 10 contributing parties from both universities or 

companies in this work (see Table I). Both in-house and 

commercial CM solvers are represented. In order to provide 

with reliable benchmarking results through this collaborative 

work, the contributing parties are requested to solve the three 

benchmark problems with these parameter settings at this 

stage: 

 Types of basis functions: RWG basis function [14] 

 Quadrature rule for surface integration on triangle 

elements: Gauss quadrature 

 Number of Gauss quadrature points on each triangle 

element: 4 

 Singularity treatment: Duffy transformation [15] 

 Numerical solver for solving generalized eigenvalue 

equation (GEP): Implicitly Restarted Arnoldi Method 

(IRAM) in ARPACK[16] 



 Numerical precision for calculations: double precision 

However, some exceptions were made for several parties 

due to restrictions in their CM solvers, as described below: 

1) Because WIPL-D uses quadrilateral mesh in their 

solver, the provided meshes were not used in their analysis. 

The number of quadrilateral patches for the rectangular PEC 

plate, circular disk, and sphere is 9, 256, and 942, respectively. 

High-order basis function is applied in discretizing the 

Electric Field Integral Equation (EFIE). 

2) NCSU used a symmetric 9 × 9 uniform quadrature for 

integration on a triangle patch, and MATLAB routine eigs 

was employed for solving the GEP. Actually, the eigs routine 

is a wrapper of the ARPACK [16] for ease of implementation 

in MATLAB. 

3) METU also implemented MATLAB routine eigs for 

solving the GEP. The singular term in the free-space Green’s 

function is extracted using the method in [17] and the 

numerical integration on each triangle is taken using the 3-

order Gaussian quadrature as presented in [18]. 

Cross-validations were performed for the eigenvalues as 

well as for modal currents and far-fields. The agreement 

achieved in the eigenvalues is generally satisfactory, except 

for some discrepancies in high frequencies. The modal 

currents and far-fields provided by the 10 groups appear to be 

somewhat different, but this was attributed to different 

plotting formats (e.g., type of colormap). The modal current 

figures provided by LUH are shown in the following results, 

as they are well suited for illustrating the behavior of modal 

currents. The modal currents and far-fields provided by all 10 

contributing parties are available on the TCM SIG website 

[12]. 

A. Benchmark Problem 1: Rectangular PEC Plate 

Fig. 2 presents the eigenvalues of the first six modes 

obtained from the 10 independent contributing parties. It is 

noted that |λ| is used in the left panel of Fig. 2(a), instead of 

λ, when there are negative eigenvalues. The same plotting 

scheme is employed throughout this paper to clearly show the 

minor differences among the results from the 10 parties. In 

Figs. 2(a) and 2(b), the right panels give an enlarged view of 

the frequency range with relatively large discrepancies. As 

can be seen, the eigenvalues agree well with each other in the 

frequency range of 1.0-3.5 GHz for all of the six modes, 

whereas discrepancies (< 1 dB) appear in the range of 3.5-5.0 

GHz for the 1st mode. The discrepancies become large in 3.5-

5.0 GHz for the 2nd, 4th, and 5th modes. This is because the 

eigenvalues in the range of 3.5-5.0 GHz have very small 

absolute values. Therefore, the disagreement is mainly 

caused by the numerical errors in the impedance matrix 

calculation and the errors in solving the GEPs. Fig. 3 shows 

the modal currents of the dominant mode at 1.3 GHz and 2.8 

GHz (as provided by LUH), where yellow denotes maximum 

current and blue is the minimum current. It clearly shows a 

resonant behavior in the first two modes. 

 

      
(a) 1st mode 

  
(b) 2nd mode 

 
            (c) 3rd mode                                               (d) 4th mode 

  
             (e) 5th mode             (f) 6th mode 

Fig. 2. Comparison of the eigenvalues for the first 6 modes in problem 1. 

B. Benchmark Problem 2: Circular Disk 

Owing to the rotational symmetry of the circular disk, 

several modes have the exactly same eigenvalues but 

rotational symmetric modal currents and far-fields. Hence, 

modes with the same eigenvalues but rotational symmetric 

modal current distributions are considered as the same mode. 

Fig. 4 compares the eigenvalues of the first four modes 



obtained from the 10 contributing parties. As it can be seen, 

eigenvalues solved by the 10 parties are in good agreement in 

the frequency range of 0.5-1.5 GHz for the four modes.  

However, the values appear very different in the range of 

1.5-3.5 GHz, where the eigenvalues have very small absolute 

values (< 0.01). This differences are attributed to numerical 

errors affecting each step of the CMA. Fig. 5 gives the modal 

currents of the dominant mode at 1.0 GHz and 1.5 GHz (as 

provided by LUH). These are observed to be the modal 

currents of the first two modes and they are orthogonal to each 

other. 

 
(a) 

 
                                                           (b) 

Fig. 3. Dominant modal currents at (a) 1.3 GHz and (b) 2.8 GHz.   

 
(a) 1st mode 

 
(b) 2nd mode 

 
(c) 3rd mode 

 
(d) 4th mode 

Fig. 4. Comparison of the eigenvalues for the first 4 modes in problem 2. 

                           (a)                                                     (b)                 

Fig. 5. Dominant modal currents at (a) 1.0 GHz and (b) 1.5 GHz.   

C. Benchmark Problem 3: PEC Sphere 

As in problem 2, due to symmetry in the PEC sphere, 

there are several modes having the same eigenvalue but 

rotational symmetric modal currents and far-fields. Hence, 

modes with the same eigenvalues but rotational symmetric 

modal current distributions are considered as the same mode. 

In addition, it is found that the number of modes extracted in 

a CM solver for a single run will make the final eigenvalue 

plot look quite different. If the CMA strictly follows the 

recommendations given in the second call-for-contribution 

for this benchmark development [12], the first 12 modes at 

each frequency should be solved in a single run. The 

eigenvalues obtained in this way are shown in Fig. 6(a). 

Alternatively, if 20 or more modes were extracted (per 

frequency) in the CMA, the eigenvalues should be similar to 

those in Fig. 6(b). However, if the eigenvalues of Fig. 6(a) 

were superimposed on those of Fig. 6(b), the eigenvalues of 



a particular set of modes agree well across the whole 

frequency range. The modal currents of the dominant modes 

at 640 MHz and 900 MHz (as provided by LUH) are shown 

in Fig. 7. 

 
(a) 

 
(b) 

Fig. 6. Eigenvalues of benchmark problem 3. (a) Case 1: 12 modes 

solved; (b) Case 2: More than 12 modes solved. 

IV. CONCLUSIONS AND FUTHER WORK 

In this work, three CM benchmark problems and results 

from 10 contributing parties are presented. The provided 

meshes were used by all contributing parties except for 

WILP-D. However, mesh differences are not expected to be 

a major source of error as the three benchmark problems are 

all regular structures without any sharp edge. The complete 

CMA results for the three benchmark problems as produced 

by the 10 contributing parties are presented on the TCM SIG 

website [12] as a further reference. Although there are some 

discrepancies among the results, the eigenvalues and the 

modal currents from different parties generally agree well 

with one another. Nonetheless, further work should be carried 

out to provide more reliable benchmark results by enforcing 

more exact parameter settings for CMA. Readers are 

encouraged to respond to this paper and suggest additional 

problems that are suitable for benchmarking. We also 

encourage independent researchers to verify these results by 

performing direct comparisons. 

   

                       (a)                                                          (b) 

Fig. 7. Dominant modal currents at (a) 640 MHz and (b) 900 MHz.  
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