
California State University, San Bernardino California State University, San Bernardino 

CSUSB ScholarWorks CSUSB ScholarWorks 

Theses Digitization Project John M. Pfau Library 

2002 

Spider III: A multi-agent-based distributed computing system Spider III: A multi-agent-based distributed computing system 

Jianhua Ruan 

Han-Shen Yuh 

Koping Wang 

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project 

 Part of the Digital Communications and Networking Commons 

Recommended Citation Recommended Citation 
Ruan, Jianhua; Yuh, Han-Shen; and Wang, Koping, "Spider III: A multi-agent-based distributed computing 
system" (2002). Theses Digitization Project. 2249. 
https://scholarworks.lib.csusb.edu/etd-project/2249 

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has 
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. 
For more information, please contact scholarworks@csusb.edu. 

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2249&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2249?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2249&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


SPIDER III: A MULTI-AGENT-BASED

DISTRIBUTED COMPUTING SYSTEM

A Project

Presented to the ■

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Jianhua Ruan

June 2002



SPIDER III: A MULTI-AGENT-BASED

DISTRIBUTED COMPUTING SYSTEM

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by ''A
Jianhua Ruan



ABSTRACT

This project, Spider III, proposes an architecture and

protocol of a multi-agent-based Internet distributed

computing system, which provides a convenient development

and execution environment for transparent task

distribution, load balancing, and fault tolerance. This

project presents the design and implementation of a

prototype using the Aglets software development kit (ASDK

2.0). The prototype implemented all the core agents, the

task distribution protocol, and a set of application

programming interfaces, including a simple Task/Slave

pattern. A graphical user interface was developed to

provide better visual and operational convenience. To

validate our design and to test the system performance, a

distributed matrix multiplication algorithm was programmed

on Spider. Its execution time and distribution efficiency

were compared with PVM and sequential programs. The results

showed that the Spider system succeeded to utilize

resources across multiple LANs and multiple host

architectures, and that for appropriately large matrix size

the Spider system has better overall performance over the ■

PVM and sequential programs.

iii



ACKNOWLEDGMENTS

Without the support and help of my friends, my

colleagues, and my family, this work would not have been

possible.

First of all, I own special thanks to my advisor, Dr.

Arturo I Concepcion, who is a constant flow of valuable

advice. He was always ready to discuss new ideas and to

provide very important feedback on all issues and problems

that I encountered during my work.

I also thank all my colleagues in the Spider team,

especially Rodelyn Samson for fruitful discussion during

the initiation of the architecture. Special thanks to

Chunyan Ma who proof-read some of the documentation.

Most importantly, I thank my family for all their

love, support, and encouragement. My parents and my sister

supported me throughout my studies in many ways.

Finally, I want to thank all friends that helped me

during my staying at CSUSB. Zhuo, Xiwei, Li, Hao and Yan

have always treated me as a family, and offered me numerous

helps during the stressful time of my life.

The support of the National Science Foundation under

the award 9810708 is gratefully acknowledged.

iv



TABLE OF CONTENTS

ABSTRACT.................................   iii

ACKNOWLEDGMENTS......................... ,.................... iv

LIST OF TABLES............................................  ix

LIST OF FIGURES..................................   X

CHAPTER.ONE: INTRODUCTION

1.1 Background.......................................... ■. 1

1.2 Purpose of the Project............................. 2

1.3 Limitations of the Project............ ........... 3

1.4 Organization of the Documentation ................ 4

Chapter Two: Software Requirements Specification

2.1 Introduction ......................................... 5

2.1.1 Scope........................................; . 5

2.1.2 Overview..................................... 6

2.2 Overall Description ................................ 7

2.2.1 Product Perspective .......... .......... :.. 9

2.2.2 Product Functions...........   15

2.2.3 User Characteristics.................... ■. . 19

2.2.4 Constraints.................................. 19

2.2.5 Assumptions and Dependencies ............. 19

2.3 Specific Requirements .............................. 20

2.3.1 External Interface Requirements ......... 20

■ 2.3.2 Functional Requirements ................... 24

v



2.3.3 Performance. Requirements ................... 2 5

2.3.4 Software System Attributes ...............  25

CHAPTER THREE: DESIGN OF THE SPIDER III SYSTEM

3.1 System Design........................................ 27

3.1.1 Core Agents in the Spider System........  27

3.1.2 The Task Distribution Protocol........... 3 0

3.1.3 Load Balancing.............................. 33

3.1.4 Fault Tolerance................... ,........ 34

3.2 Architecture......................................... 3 6

3.2.1 Package edu.csusb.spider.system .........  39

3.2.2 Package edu.csusb.spider.finder .........  41

3.2.3 Package edu.csusb.spider.launcher ....... 42

3.2.4 Package edu.csusb.spider.misc ............ 44

3.2.5 Package edu.csusb.spider.pattern ........ 45

3.2.6 Package edu.csusb.spider.group ........... 46

3.3 Detailed Design..................................... 47

3.3.1 Synchronizer................   48

3.3.2 Registry.....................................  5 0

3.3.3 Multicaster............................  51

3.3.4 UsageMonitor.........................  51

3.3.5 SystemVerifier.............................. 52

CHAPTER FOUR: SPIDER USER APIS......................... .....' 54

4.1 Task Creation..................... ........ . 56

4.2 Message Passing..................................... 56

vi



4.3 Group Functions ..................... ................  58.

4.4 Asynchronous Tasks . . . .'............................. 58

4.5 Program Examples .................................... 59

CHAPTER FIVE: SYSTEM TESTING AND PERFORMANCE ANALYSIS

5.1 Testing Environments . ............................. 61

5.2 Testing Methods.....................................  61

5.3 Testing Results.....................................  62

5.4 Performance Analysis ...............................  66

5.4.1 Execution Costs............................. 66

5.4.2 Synchronization Costs............   68

CHAPTER SIX: MAINTENANCE MANUAL

6.1 Obtaining a Copy.................................... 71

6.2 Directory Organization ............................. 71

6.3 System Requirements................................  72

6.4 Installation................................  72

6.5 Configuration........................................ 73

6.6 Running the Spider System.........................  73

6.6.1 Startup Options............................. 74

6.6.2 Commands of Spiderd Console ...............  74

6.6.3 Tools of Xspider Interface ................ 76

6.7 Developing Applications on Spider III ............ 77

6.7.1 Writing Source Program Using
Spider APIs .................................. 77

vii



5.7.2 Compilation and Deployment ................ 79

6.7.3 Running the Application..................  79

CHAPTER SEVEN: CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Conclusions.......................................... 81

7.2 Future Directions ................................... 84

APPENDIX A: GLOSSARY .......................................... 87

BIBLIOGRAPHY .................................................... 90

viii



LIST OF TABLES

Table 5.1. Performance of Distributed Matrix
Multiplication ................................... 64

ix



LIST OF FIGURES

Figure 2.1. Deployment Diagram for Spider III............ 12

Figure 2.2. Spider III System Functionalities ............  16

Figure 2.3. Spider III Graphical User
Interface Main Frame .........................  21

Figure 2.4. Load Task Dialog ............................... 22

Figure 3.1. Components of Spider Host .................... 29

Figure 3.2. An Example of How an Application is
Distributed to the Spider System ............  32

Figure 3.3. Overview of the Spider III Class Diagram ... 38

Figure 3.4. Class Diagram of the Package
edu.csusb.spider.system .......................40

Figure 3.5. Class Diagram of the Package
edu.csusb.spider.finder ....................... 42

Figure 3.6. Class Diagram of the Package
edu.csusb.spider.launcher .................... 44

Figure 3.7. Class Diagram of the Package
edu. csusb. spider .misc ......................... 46

Figure 3.8. Class Diagram of the Package
edu . csusb. spi der. group ........................ 47

Figure 3.9. Pseudo Code of Synchronizer................... 49

Figure 3.10. Pseudo Code of Registry .......................  50

Figure 3.11. Pseudo Code of Multicaster .................... 51

Figure 3.12. Pseudo Code of UsageMonitor ..................  52

Figure 3.13. Pseudo Code of SystemVerifier ...............  53

Figure 4.1. Task Interface ..................................55

x



Figure 4.2. Program Example......... .................... .. . . 60

Figure 5.1. Sample Screen of Running the Distributed
Matrix Multiplication Program ................. 62

Figure 5.2. Comparisons Between Performance of
Spider and PVM ...................................65

Figure 6.1. Xspider User'Interface ........................ 76

Figure 6.2. HelloWorld.java ................... 78

Figure 6.3. Output of HelloWorld.java .................... 80

xi



CHAPTER ONE

INTRODUCTION

1.1 Background

Spider is an on going distributed computing project in

the Department of Computer Science, California State

University San Bernardino (CSUSB). It was first proposed as

an object-oriented distributed system by Han-Sheng Yuh in

his Master's thesis in 1997 [2]. And it has been thereafter

further developed by Roping Wang in his Master's Project

[3], where he made large contribution and implemented the

Spider II system. Spider I & II systems are developed using

C++, that runs on Unix or Unix-like platform.

Spider I system consists of four major components:

Task Manager, Registry Server, Object Server Broker, and

Object-Servers. Task Manager keeps track of all task

activities. Registry Server auto-detect Object-Servers and

send the list of available servers to the Task Manager. An

Object Server Broker is the node where a user initiates her

tasks. It connects to the Task Manager to get available

computers and distribute task to other Object Servers. An

Object Server is a computer that is requested to join in

the distributed computation: Mirrors for both Task Manager

1



and Registry Server were introduced in the Spider II

system. A failure of the task manager or registry server

will activate its mirror and all further communication is

then redirected to the mirror.

However, Spider I & II systems, as well as most other

traditional distributed computing system, such as PVM and

MPI [15], have several limitations. First, it does not allow

heterogeneous host architecture and operating system to join

in the computation. Although PVM allows different

architectures to coexist in the system, it does require

applications to be compiled for each type of architecture

separately. Second, before starting a distributed

application, executable files have to be manually

transferred to destination hosts in advance if a network

file system is not in use, which significantly reduces

efficiency. Third, the user-of the system needs to have

remote login permission to the destination host in order to

perform computation, which opens serious security breach,

especially for computers connected to the Internet.

1.2 Purpose of the Project

This project, Spider III, attempts to propose and

implement a distributed computing environment for developing

2



and executing large scale distributed applications. It will

provide partial solutions to the problems of traditional

distributed computing systems discussed above, using agent-

oriented programming model.

In.the Spider III system, system functions, such as

monitoring hosts, managing tasks, and inter-process

communication, are carried out by agents. User tasks are

also done by agents, which carry'algorithms and data and

are capable of migrating to remote hosts to execute, either

due to response to commands explicitly issued by users, or

implicitly decided by the system. The Spider III system

will be able to utilize free CPU cycles of any computer on

the Internet, given that a daemon is running on the

physical node. The execution will not be limited by the

number of nodes in the network, the type of host

architecture, and the operating system running on each

individual node.

1.3 Limitations of the Project

This project will not handle security mechanisms of

the system. Thus, in this project we assume that the owner

of each node is willing to install and run the program as a

daemon process. The security mechanism is another project

3



and is beyond the scope of this project. However, this

project does provide a minimum level of security:- all

remote tasks, except the system agents, will not be able to

directly operate on any files.

1.4 Organization of the Documentation

The remaining sections of this documentation will be

organized as follows: Chapter 2 describes the software

requirement specification. Chapter 3 provides a detailed

description .of the system architecture and design. Chapter

4 introduces the Spider III user APIs and provides a sample

program of programming on Spider. Chapter 5 is the system

test and analysis. Chapter 6 is the maintenance manual.

Finally, Chapter 7 concludes the project and lists

suggestions for future developments.

4



CHAPTER TWO

SOFTWARE REQUIREMENTS

SPECIFICATION

2.1 Introduction

This software requirement specification is for the

Spider III - an agent-based Internet Virtual Machine -

project. This will be the master's project of Jianhua Ruan

for the requirement of Master of Science Degree in the

Department of Computer Science, CSUSB.

2.1.1 Scope

Spider is an on going distributed computing project in

Department of Computer Science, California State University

San Bernardino (CSUSB). It was first proposed as an object-

oriented distributed system by Han-Sheng Yuh in his

Master's thesis in 1997 [2]. And it has been thereafter

further developed by Roping Wang in his Master's Project,

where he made large contributions and implemented the

Spider II system [3].

This project is based on the Spider II system.

However, a new computational model is conceived, and the

system will be implemented in agent-based approach. Thus it

5



'i

is named Spider III to be differentiated from previous

versions.

In the Spider III system, system functions, such as

monitoring hosts, managing tasks, and inter-process

communication, are carried out by agents. User tasks are

also done by agents, for which users implement their own

algorithms. User agents can migrate to another node, either

due to response to commands explicitly issued by users, or

implicitly decided by the system. • Spider III system is

proposed as the Internet computing■system thus it is able

to scale to very large number of nodes. Because of the

unpredicted properties of the Internet, Spider III system

possess the ability to handle heterogeneous architecture

and operating system, and must provide good fault

tolerance.

2.1.2 Overview

The rest of the software requirement specification

organizes as follows. Section 2 of this chapter follows the

guidelines of Std 830-1998 IEEE recommended Practice of

Software Requirements Specifications [1]. This section

provides product perspective, a summary of product

functions, a description of the characteristics of the

expected users, a listing of development constrains, a list

6



of assumptions and dependencies. Section 3. of this chapter

presents the specific requirements. This section presents

external interface requirements, functional requirements,

performance requirements, design constraints, and software

system attributes. Functional requirements are organized by

objects and comply with the template of Std 830-1998 IEEE

Appendix A.4.

2.2 Overall Description

Spider is the name of the distributed computing system

developed in the Department of Computer Science, California

State University, San Bernardino. The first version of

Spider system (Spider I) was designed and developed by Han

Sheng Yuh in his Master's thesis in 1997. Spider I is

developed using C++, to be run on Unix or Unix-like

platform. It was tested on SGI Indigo workstations and Irix

operating system. RPC (remote procedure call) and BSD

socket interface were used for implementation. TCP and UDP

protocols are employed to suit for the different needs in

implementation.

The second version of the Spider system is developed

by Koping Wang in 1999. The Spider II system optimized

performance by reducing the communication protocol

7



complexity and incorporating load-balancing service. It

also stabilized the multi-tasking operations and achieved

fault tolerance by having mirrors for both Task Manager and

Registry Server. Ease of adding new services is another

improvement. Spider II runs on top of the Unix or Linux

operating system. Wang implemented the following

distributed computing services: distributed quick sort,

distributed prime number search, and distributed matrix

multiplication to run on Spider II system. A paper about

Spider II has been cited and published in PDCS (Parallel-

and Distributed Computing System) 2000.

Spider I & II systems consist of four major

components: Task Manager, Registry Server, Object Server

Broker and Object-Servers. Task Manager keeps track of all

task activities. Registry Server auto-detect Object-Servers

and send the list of available servers to the Task Manager.

An Object Server Broker is the node where user initiates

her task. It connects with Task Manager to get available

computers and distribute tasks to other Object Servers. An

Object Server is a computer that is requested to join in

the distributed computation.

Besides the components in Spider I system,' Spider II

system introduced mirrors for both Task Manager and

8



Registry Server, because of their important roles in the

distributed computing. A failure of the task manager or

registry server will activate its mirror and all further

communication is then redirected to the mirror.

2.2.1 Product Perspective

The Spider III system will be agent-based, and will be

implemented using Java 2. To avoid developing agent

architecture from scratch, the Spider III system uses

Aglets 2.0 as agent architecture. The Spider III system

will provide Java GUI based user interface. The software

interface requirement is that it must have Java 1.2 or

greater runtime environment or version installed, the

communication interface requires support for TCP and UDP

protocols. The operation requirements are that a user must

be able to initiate a task from wherever a Spider system is

installed, including mobile devices where network

connections are temporary.

2.2.1.1 System Interfaces. In the Spider system, a

user task will be conducted in the following steps,

(1) User initiates a task via the user interface and an

agent that is.going to. execute is loaded into the

Agent Server;

9



(2) Agent Server requests local resource manager, for

available computation resources;

(3) Agent is marshaled and dispatched to remote host;

(4) Agent is unpacked and starts execution at remote

host. It may communicate with agents at other

remote hosts if necessary;

(5) Agent finishes its task and return to its origin

host, present result to user.

Alternative 1: user disconnects after initiates a task

(5a) Agent finishes its task, and then it is

serialized to be stored on file system

(5b) When its owner connects to the system again, the

agent is activated and returned to its original

host, present result to user.

Alternative 2: user aborts a task before it finishes, or

unexpected error happens

(5c) Original host request the agent server about

location of subagent belongs to this task, send

message to let remote host kill those subagents.

The resource manager of the Spider system contains a

mobile agent, which migrates continuously from node to node

to collect information about available computation

resources. The agent manager contains information about all

10



agent initiated from the local host, including their status

and their location.

Figure 2.1 is the deployment diagram that shows the

physical layout of components on hardware nodes.

2.2.1.2 User Interfaces. User interfaces for Spider

III will be designed in Java Frames (stand alone Java

applications). The following features will be incorporated

to produce a more descriptive representation of the

interface.

2.2.1.2.1 Main Frame . The first interface after a user

starts the system is. the' main frame,'which provides access

to all functions of the Spider III system. It contains a

menu bar, a toolbar and four view areas:■task view,

communication view, agent view and network view

respectively.

11



Figure 2.1. Deployment Diagram for Spider III

2.2.1.2.2 Menu Bar. The menu bar on the top of the

main frame provides an access to the functions of the

Spider III system. There are five menus provided: nodes,

tasks, view, control and help, each has their own submenus.

12



Nodes - this menu is used for management of nodes. It

contains submenu Node Manager, click on which shall prompt

the nodes manager frame.

Tasks - this menu provides functions of task

management. It includes four submenus: load, start,

dispatch and stop, whose functions are load a task into the

system, start a task, send a task to be run remotely, or

stop a task, respectively.

View - from the view menu a user can open several

other frames to view the system. The Network submenu gives

information about machines that are currently utilized by

the Spider III system. The Agents submenu shows progress of

all agents running on the system. The Event submenu

displays agent events.

System - users can change the settings of the system,

such as auto connection upon startup, type of network

(permanent connection vs. temporary connection), default

machine to connect, etc. Another function that could be

performed through control menu is disconnect, which is

generally used by mobile users or other low speed network

users to disconnect' from the system after submitting a task

to nodes in high speed backbone network.

13



Help - includes software version information,

supporting site, and FAQs.

2.2.1.2.3 Toolbar. Corresponding to each menu item,

there is a control in the toolbar for convenience.

2.2.1.3 Hardware Interfaces. Essentially all hardware

interfaces will be provided by the operating system.

2.2.1.4 Software Interfaces. Software interfaces are

provided in Java 1.3 APIs and ASKD 2.0 APIs. Java is a

trademark of Sun Microsystems and ASDK is under IBM public

license.

2.2.1.5 Communication Interfaces. The communication

interfaces are provided by the underlying Agent Server,

which is Aglet in this implementation. It supports both

synchronous and asynchronous message, and supports

acknowledge-type replies. It uses the Agent Transfer

Protocol (ATP) as the mechanism for transferring the

serialized data of an agent to its destination, tracking

and managing agents.

2.2.1.6 Memory Constraints. At least 32 megabytes of

physical RAM is required to run graphical based Java

application. 48 megabytes or more are recommended to run

large programs for adequate performance.

14



2.2.1.7 Operations. Users need to install Spider III

on their own machines. User initiates their task by

interaction to the GUI of the Spider III system. To spawn

more nodes automatically, IP addresses of a list of

available machines should be stored in the configuration

file. Users can also manually add machines into the system

during the run time. The task that a user is going to

initiate should have resided on the local machine, or he

could provide the URL of the code base for a remote task.

2.2.2 Product Functions

Figure 2.2 shows Use Case diagram that graphically

depicts the users and principal functions of the Spider III

system.

15



View agent status

Application Dexebper/Tester

View task status

View Event Logs

Figure 2.2. Spider III System 
Functionalities

16



2.2.2.1 Connect and Disconnect. User can connect and

disconnect to the system dynamically.

2.2.2.2 Nodes Addition And Removal. The Spider III

System is responsible to collect machines and add them into

the system. It can be done automatically at startup time by

providing a list of IP addresses, or manually at system run

time. A node can also be removed from the system. The

Spider III system will provide APIs to application

developer so that nodes can be dynamically added or removed

during task run time.

2.2.2.3 Task Load, Start, and Dispatch. An agent needs

to be loaded into the system before execution. When the

Start command is issued, the Spider III system begins to

initiate task of the agent. If the Dispatch command is

issued, the Spider III system will attempt to find a remote

node to run this agent, rather than run it locally. The

Spider III system provides APIs so that an application

developer can write code to spawn a number of slave agents

from the master agent. The Spider III system will

automatically allocate these slave agents to available

nodes in the system. • ■

2.2.2.4 Run a Demo'Application. The system shall. ■ ’5
provide several demo applications, including distributed

17 .



matrix multiplication and other program samples to demo, how

to use the Spider III APIs.

2.2.2.5 Disposal. The user may choose to abort an

unfinished task, no matter it is running locally or

remotely. If it is running remotely, the underlying Spider

III system will send a message to the agent server where

the agent resides, and kill the agent.

2.2.2.6 Use Spider APIs. The Spider III system shall

provide a set of APIs that users can use to easily develop

their own applications to be run on the Spider III system.

2.2.2.7 View Task Status. The task status viewer shows

all tasks information initiated from the local computer,

such as task ID, when the task is initiated, how many

machines■are involved, and how many agents have been

dispatched on behalf of this task.

2.2.2.8 View System Agents. The agent status viewer

shows all system agents running on the computer.

Information displayed includes agent name, ID, and status

(active, inactive).

2.2.2.9 View Network Status. The network status viewer

shows the machines that are involved in the system.

2.2.2.10 View Event Logs. This function opens up

another window to display event logs, such as system

18



startup, nodes addition or removal,, agent creation, agent

dispatching, and agent returning.

2.2.3 User Characteristics

The following capabilities are assumed for the various

users:

2.2.3.1 Application User. A Spider III application

user needs to know how to interact with GUI components such

as menus and buttons. They should be able to follow the

manual written in plain English.

2.2.3.2 Application Developer. An application

developer of Spider III should know programming in Java

language and should be- familiar with the concepts of

distributed computing. It is, also assumed that they

understand the agent-oriented programming model.

2.2.4 Constraints

The Spider III system has the following constraints:

After a running agent migrates to another node, it cannot

restart from where it stops. Generally it will run from the

beginning, unless an application developer explicitly

programming it to be restarted from another entry point.

2.2.5 Assumptions and Dependencies

The Spider III system shall be developed using Aglets

Software Development Kit 2.0 (ASDK 2.0) and Java

19



Development Kit.1.3. It may not be compatible with.previous

and later versions of Spider and ASDK.

2.3 Specific Requirements

This section of the SRS contains all the software

requirements to a level of detail sufficient to enable

designers to design the Spider system in conformance with

the requirements of this Specification Requirement

document. This level of sophistication will also enable

testers to generate tests for the system, to verify that it

meets the requirements. Every stated requirement will be

externally perceivable by users through the usage of sample

screen dumps. The requirements include a description of

every input, every output, and all functions performed by

the system to generate output in response to input.

2.3.1 External Interface Requirements

2.3.1.1 Main Frame. After a user starts the system,

they shall see the main frame (see Figure 2.3), from which

they interact with the system.

2.3.1.2 Menu Items.

System - contains submenus connect, disconnect, and

exit.

20



System Nodes Tasks View Help 
jconnect'lfload ^start'jdispatchj&ip (options/Node Manager J

Task View Agent View

Network view Event View

■ . »■ , • ■; t. ■ i- •

Figure 2.3. Spider III Graphical 
User Interface Main Frame

Connect - when this menu is selected, the local

computer tries to connect to other computers where

Spider III system is installed and tries to dispatch

the resource manager mobile agent to search for

available computers. When the resource manager

arrives other computers, it exchanges information

with the resource manager on those computers.

21



• Disconnect - the node disconnects from the system,

so that it will' discontinue accepting any agents

from other computers, including the one dispatched

from it.

• Exit - close the application after disconnected from

the system. . '

Tasks. - contains submenu load,’ start, dispatch and

stop. :

• Load - selecting this,menu item prompts the Load

Task dialog. A Java class will be loaded into the.

system (see Figure. 2.4) .

• Start - initiates,a task. ' -

IBBIBlBlIIl ispider.examples.DQuickSort |

■■!■ ! ■ ■ ■ iH-l |localhost- |'

S I 1 • . .1 Add to List

spider.examples.DQuickSort ' ' k

spider.examples.DMatrixMultiplicatiori

spider.examples.DPrimeNumberSearch

Load Caned

Figure 2.4. Load Task Dialog

22



• Dispatch - sends a task to be run on remote machine

• Stop - aborts a running task.

View - contains submenu task, agent, network, and

events.

• Task - displays the task view area.

• Agent - displays the system agents view area.

• Network - displays the network view area.

• Events - displays the contents of the event log

f ile.

Help - contains submenu about, FAQs and contact.

• About - prompts the About dialog.

• FAQs - loads the FAQ page.

• Contact - prompts the Contact dialog.

2.3.1.3 Toolbar. The toolbar provides most functions

of menus described above. It contains the following

buttons: connect/disconnect, load, start, dispatch, stop,

options, add, and remove. Clicking on a button has the same

effect as selecting a menu item with the same text.

2.3.1.4 View Areas

Task View - provides information about each local

task.

23



Agent View - shows name and status of all system

agents running on the current node.

Network View - displays all nodes available to the

current system and their utilizations.

Event View - provides log information of the system.

2.3.1.5 Dialogs And Frames. Dialogs are provided to

view or control the behavior of the Spider III system.

Load Task - appears when the submenu "load" of the

menu "tasks" are selected. It provides the user an

opportunity to input the file name of the task, which

should be a Java .class or .jar file.

About- provides version information about the

software.

Contact - provides contact information about the

author.

2.3.2 Functional Requirements

2.3.2.1 Add Nodes. A list of nodes can be provided in

the configuration file, so that they can be automatically

included into the system when the system starts up. Users

can also input the address of a node to add it into the

system after the system is started.

2.3.2.2 Connect. There should be at least one node

available in its configuration file before a computer can

24



connect to the system. Otherwise the user .is prompted with

a dialog to ask for input.

2.3.2.3 Disconnect. The system should have been

connected to the system before it is disconnected.

2.3.2.4 Load and Start/Dispatch a Task. A task that

can be loaded into the system must be a Java class. It may

exists as a .class or a .jar file. Furthermore, the class

should have extended the Task class. Correct classpath is

needed to locate a class file. URL is also needed if the

class file resides on a remote machine.

2.3.3 Performance Requirements

The Spider III system supports multi-user and multi

task. Each user has her own terminal. Each user can submit

multiple tasks simultaneously.

2.3.4 Software System Attributes

2.3.4.1 Reliability. The system should handle nodes

failure and disconnection smoothly. The system should not

crash frequently.

2.3.4.2 Security. The system's security mechanism is

inherited from the underlying Agent framework. More

advanced security is beyond the scope of this project.

2.3.4.3 Maintainability. All classes designed for the

Spider III system shall be put in different packages from

25



those of the underlying agent framework. The Spider III

system should avoid modifying the underlying agent

framework as much as possible, and modifications should be

documented in both the source code and a separate document

clearly.

2.3.4.4 Portability. The Spider III system should be

platform-independent.' It should be able to be run in any

system that has Java 1.2 or greater installed.

26



CHAPTER THREE

DESIGN OF THE SPIDER

III SYSTEM

The Spider architecture uses mobile agents as the

basic components for the transparent distribution of

computations, and uses static and mobile agents to manage

resource sharing, load balancing, and fault tolerance. The

Spider system provides a foundation for users to develop

distributed applications through high-level API and

services without knowing the underlying system architecture

and protocols.

3.1 System Design

3.1.1 Core Agents in the Spider System

The Spider system consists of server nodes, worker

nodes, and a Finder. A worker node is a place that provides

an environment for executing local as well as migrated

tasks. A server is a node where all worker nodes in that

subnet are registered. Any node, generally the first

started node, can be the server node. The roles of server

node and worker node are exchangeable, which means that a

server node could become a worker node if it is heavily

loaded, and a worker node can become a server node after

27



the server node crashes, this will be discussed in later

sections. On the other hand, all server nodes are required

to register in a Finder, so that servers can communicate

with each other across WANs. A task submitted from any

location can take advantage of computational power in other

domain of networks. The Finder is simply an RMI object

registered at any host which all servers know how to

communicate with.

Figure 3.1 presents the standard Spider host

components to be installed on both worker nodes and server

nodes in the network. It consists of three layers: agent

execution environment, system agents, and user agents. The

agent execution environment is made up of Java runtime 
(*'

environment and ah agent framework, which provides the

mechanisms of loading, 'dispatching, retracting, and

executing agents on behalf of the user and supports

communication between different agents. The system agent

layer consists of a number of agents that are responsible

for managing the system, including Synchronizer,

UsageMonitor, Registry, Multicaster and SystemVerifier.

Note that only Synchronizer and UsageMonitor agents in this

layer are loaded at the system startup time. Other

components are started or reactivated as needed dependent

28



over its task. This mechanism will be discussed in. later

section. The Synchronizer agent is also running on both

worker node and server node for the purpose of fault

tolerance. For a worker node it detects whether a server is

available and for a server node, to detect whether there

are multiple servers that co-exist in a local area network.

Server components include Multicaster, Registry, and

SystemVerifier. The Registry is located on a server to

store addresses and usages of worker nodes and waits to

provide service to worker nodes that request for task

distribution. The Registry also communicates with the

Finder so that changes in the local subnet can be updated

at the Finder and that tasks initiated in a subnet can

request resources from the WANs. The Multicaster and

SystemVerifier work together with the Synchronizer to

ensure that system failures can be detected and recovered.

3.1.2 The Task Distribution Protocol

Both worker nodes and server nodes provide the

environment for executing locally as well as visiting

agents, so a task can be initiated from either place.

Figure 3.2 illustrates an example on how an application is

distributed to the Spider system. .

•30



1. User initiates a master task in a node through the

Task Viewer. This task is executed locally without

consulting the server;

2. The master task sends a request to the Registry agent

for available worker nodes by remote inter-agent

communication or dispatching a messenger agent to the

server;

3 . The Registry replies with a list of addresses of

available worker nodes;

3'. If there are not enough workers, the Registry talks

with the Finder and gets the location of other servers

on the WAN. A list of addresses of available servers

is also appended to the message to be sent back to the

master task;

4. The master task spawns a subtask for each worker node;

4'.If the Registry also replies with a list of server

addresses, the master task talks with Registry agents

on those servers to get more worker nodes

5. Subtasks are migrated to worker nodes;

6. A TaskID is returned to the master task for each

spawned subtask. TaskIDs can be broadcasted to

subtasks so that each subtask knows about each other.

31



Each subtask runs on its own host and can. communicate

with each other given that the TaskID is known.

7. Each subtask finishes its execution, sends the results

back to the master task, and then dies. The master

task collects the results from all subtasks and then

dies.

Figure 3.2. An Example of How an Application is 
Distributed to the Spider System

32



3.1.3 Load Balancing' .

Load balancing'in each subnet is achieved by adapting

the cyclic allocation mechanism used by PVM [12], with the

addition of considering CPU utilization level as well as

number of tasks. The Registry maintains the number of tasks

running on each worker node and its CPU idle time. When a

master task requests for spawning subtasks, it sends a

message to the registry and gets a reply of a list of

available worker nodes. A worker node will be considered

available only when its CPU idle time satisfies a threshold

value. Available worker nodes are further ordered according

to the number of tasks running on that node. For nodes with

the same number of tasks, are ordered by CPU idle time.

Servers are informed of each other across WANs from the

Finder.

The load balancing of the worker nodes in different

WANs, however, is more difficult to achieve because there

is no global order of all worker nodes. One possible

solution is to register the loading level of each subnet in

the Finder. For example, the average number of tasks

running on each worker node could be used. When the

Registry receives a request and the work loads in the local

subnet is heavier (i.e., average number of tasks is larger)

33



than tha.t of some other subnets, then the request will be

forwarded to a Registry where the workload is lighter.

The Spider system does not provide dynamic load

balancing. A task migrated to a worker node cannot be

migrated again. This is due to the fact that the Java

Virtual Machine on which most agent frameworks run does not

support capturing the state of a thread, which would be a

prerequisite for capturing and transferring execution

state.

3.1.4 Fault Tolerance

System failure includes nodes failure and network

failure. Nodes failure can be detected but is not

distinguishable from network failure. We assume that nodes

only suffer from crashes, which is a recovery failure. This

type of failure causes the node to halt and loses its

internal volatile state [16]. Also assume that networks are

fully connected, i.e., any node can talk to each other

directly. Detection and recovery of server failure is

achieved with the cooperation of the Multicaster and the

Synchronizer. The Multicaster multicasts the address of the

server using multicast sockets. The Synchronizer checks

multicast message to detect whether one or more servers are

available. If a worker node does not receive multicast

34



message for a certain number of times, it. considers that

the server node has crashed and will promote itself to be a

server node by starting appropriate agents. If two or more

worker nodes promote themselves at the same time, they will

detect each other and will demote themselves to worker

nodes immediately. Each worker node waits a random amount

of time before promoting itself, making it less likely for

two worker nodes to promote themselves simultaneously. Once

a new server is selected, all worker nodes will register in

the Registry. Note that the information stored in Registry

is only the address and usage of each worker node so it can

be fully restored after a new server is selected.

Furthermore, the SystemVerifier on the server

periodically checks that all registered nodes as well as

the Finder are actually alive. A worker node is removed

from the Registry after being unreachable for a certain

number of times. Note that a faulty worker node can also be

detected when a task attempts to migrate to that node. In

that case, the Registry will also need to be notified, thus

reducing the frequency of running the SystemVerifier, which

is costly.

Similar to the SystemVerifier, the Finder uses a

verifier thread to check whether all registered servers are

35



working properly. Besides, a newly selected server node can

notify the Finder that the old server has been replaced. A

communication failure with a Registry is also a hint that

the server has already crashed.

Because Java Virtual Machine does not allow capturing

execution state, there is no way to completely restore a

failed task, i.e., it is impossible to provide failure

recovery for tasks. However, it is feasible and reasonable

to let the task register a TaskFailed event listener. The

master task will be notified when a subtask fails and the

programmer can specify what actions to take upon failure

for example, to abort all subtasks including the master

task, or to restart the failed task.

3.2 Architecture

The software components are organized by packages

according to functions. The UML diagram in Figure 3.3 shows

the overview of packages and classes in the Spider III

system. To ensure a unique name, core packages of the

Spider system are prefixed by edu.csusb.spider. Directly

under this package are classes Task, TaskID, Message,

Interface MessageListener, as well as a set of Exception

classes which all inherit the SpiderException class. Also,

36



this package includes six sub-packages: misc, pattern,

finder, launcher, group and■system. Task, TaskID and

Message class provide user APIs to develop distributed

applications and will be discussed in detail in Chapter

Four. System is the most important package in the Spider

system. It contains all the system agents that we have

discussed in previous sections and is essential for

distributed applications to be run efficiently and

transparently. The group package contains classes that

implemented the group functionalities of Task. The launcher

package contains classes that are used to start up and

control the agent server. The Finder package contains

classes that compose the Finder. The pattern package

provides pre-defined programming paradigms to assist

application development. Currently the only available

pattern is the master-slave pattern but more patterns could

be developed and added to this package. Finally other

classes used by the Spider system are organized in the misc

package. We now discuss the architecture of each package in

the following sections.

37



Figure 3.3. Overview of the Spider III Class Diagram



3.2.1 Package edu.csusb.spider.system

Figure 3.4 is a view of the edu.csusb.spider.system

package. The SystemAgent is an abstract class that extends

Aglet. It serves as the common parent class of all the

other system agents that are used in the Spider, and doe's

not possess any attributes and methods. The class Registry,

Multicaster, SystemVerifier, UsageMonitor and Synchronizer

represents the SystemAgent discussed before. Two other

SystemAgents are not discussed in section 3.1: Tester and

TaskManager. The Tester is created by SystemVerifier to

test whether a worker node is still alive. The TaskManager

is created when the first task is spawned and is destroyed

when all tasks finish their jobs. The TaskManager is

designed to provide services to local tasks. With a

TaskManager running locally, the packet size to be

transferred over network is reduced when migrating a user-

defined task. The TaskManager provides services to Tasks

through the handleMessage() method. Furthermore, the

TaskManager caches the list of available hosts. When a task

requests to spawn subtasks, the TaskManager first checks

whether a local copy of host URLs are available and valid.

If yes, then subtasks are spawned immediately, otherwise

39



Hashtabl'
TaskTable

•instance:TaskTable
-TaskTable
+ae t Instance :TaskTaJ
♦addTask:vo id 
+removeTask:void 
+addChild:void 
+addChildren:void 
♦kill:void

0. /

TaskManagar

o

-1 as kTab1e:Ta skTab1e 
hosts:Vector 
index tint 
timestamp:long 
-logger:Logger

♦onCreat ion:void 
♦onDisposing:void 
♦handleMessage:boole 
-spawn:Object 
-spawn:TaskiD 
-spawn:Vector 
-getAvailableHosts:v 
♦spawn:TaskID 
-isValid:boolean 
-getMoreHosts:void

j'ava. io. Serializ 
MessageManager

waitingQueue:List 
messageQueue:List 
aglet:Aglet 
MAX MESSAGES: int

UsageMonitor Multicaster

I java.io.Serializ 
TaskTableEntry

♦TaskTableEntry 
♦TaskTableEntry 
+addChild:void 
♦addChiIdren:vo 
♦removeChild:vo 
master:TaskID 
chi Idren: Vec to: 
timestamp:long

Synchronizer
-mSocket:MulticastSc 
-mAddress:InetAddrei 
-_message:String 
-timeoutCount:int 
-wait_timer:int 
-max_retry:int 
-timer:Timer 
-logger:Logger
♦onCreation:void 
♦onDisposing:void 
♦run:void 
#synchronize:void 
-register:void 
-unregister:void 
-demote:void 
-promote:void

regi s t ry:Ag1e t Proxy 
needsupdate:boolean 
timer:Timer 
interval:int 
usage:int
host:String 
fail:int 
-logger:Logger

♦onCreation:void 
♦onDisposing:void 
+handleMessage:boole 
-getUsagerint 
#updateUsage:void

-multicaster:Multicast 
-address:InetAddress 
-primary:String 
-port:int
timer:Timer
-logger:Logger
♦onCreation:void 
♦onDisposing:void 
♦run:void 
♦multicast:void 
♦handleMessage:boolear

♦MessageManager 
+recieveMessage:Mes 
#doWait:void 
♦handleMessage:bool 
-addMessage:void 
WaitingQueueEntry

7T

workers:Hashtable 
-logger:Logger

♦onCreation:void
♦onDisposing:void
♦handleMe s sage:boo1e an 
#update:void 
SprovideService:void 
ftlistAvailable:Vector 
-registerFinder:void 
-updateGlobalRegistry:void 
-unregisterFinder:void 
-getGlobalRegistry:GlobalR 
-unsetGlobalRegistry:void

mastersAgletPrc
♦onCreation:voi

java 'io. Serial iz 

Comparable 
RegistryEntry

♦RegistryEntry 
♦RegistryEntry 
♦RegistryEntry 
♦RegistryEntry 
♦addTask:void 
♦removeTask:vo 
♦available:boo 
♦failzboolean 
♦compareTo:int

SystemVerifier Properties
-msgm:Me s sageManager
-registry:AgletProxy
-interval:int
-timeout:int
-locraer:Looger

-instance:Propertie
-properties:Hashtab
-isServer:boolean
-host:String
♦qetlnstance:ProDer

♦onCreation:void
♦onDisposing:void
+run:void
ifcheckNodes: void
-checkGlobalRegistry : \
♦handleMessage:boolear
-wait ForMe s s ageFrom:v<

-Properties
♦setProperty:void
♦getProperty:Object
♦removePropertv:Obi
♦setServer:void
♦isServer:boolean
+setHost:void
♦qetHost:String

address:Strin 
usage:int ' 
taskCount:int 
dead:boolean

I

Figure 3.4. Class Diagram of the Package edu.csusb.spider.system



the TaskManager sends a message to the Registry, to request

for a list of hosts to spawn subtasks. A TaskTable is a

singleton hash table, whose key is TaskID and value is

TaskTableEntry. A TaskTableEntry stores parent TaskID and

child TaskIDs of a task. The MessageManager manages the

message queue and waiting queue of a task. The

RegistryEntry stores URL, usage and taskCount of a host and

composes the value of the hash table workers in the

Registry. Properties is a singleton class that stores

variables that can be used by the system across multiple

agents.

3.2.2 Package edu.csusb.spider.finder

This package contains classes that compose the Finder.

The Finder is implemented in EMI. The UML diagram is

presented in Figure 3.5. GlobalRegistry defines interface

of the remote object and GlobalRegistryImpl is the

implementation of this interface. The GlobalRegistryImpl

contains a hash table whose key is host URL and value is

GloblalRegistryEntry. The Main registers an instance of

GlobalRegistryImpl to the RMI registry and starts a

ServerVerifier thread to check the validity of registered

servers.

41



Figure 3.5. Class Diagram of the Package 
edu.csusb.spider.finder

3.2.3 Package edu.csusb.spider.launcher

The package edu.csusb.spider.launcher provides the

mechanism of starting and controlling the Spider system.

The Main class sets up system properties and bootstraps the

Aglet server, on which a ContextListener is added to listen

to context event. The ContextAdapter is an abstract class

that implements most methods that are defined by the

42



ContextListener interface..The added () and removed () are

two abstract methods that needs to be overridden when a

class extends the ContextAdapter. Futhermore, if a

LoggingServer is also initiated, subclasses of

ContextAdapter can override the logEvent() method when

other means of logging is desired other than command line

display. CommandLine is a simple command line interpreter

for the Spider system. It starts a thread to accept user

input and listen to aglet context events. Viewer is a

graphical user interface for the Spider system. A window is

constructed using the MainWindow class, and user

interactions are passed back to the Viewer class by calling

the Viewer#command() methods. An Item extends TaskID, the

only function implemented by Item is to provide a string

representation of a task to be displayed on MainWindow. A

LoggerServer can be started with a ContextAdapter to

receive logging event. Basically the LoggerServer opens a

ServerSocket and waits for connection from a client, which

is generally a SocketAppender registered on a Logger. Once

a connection is accepted, a new LoggerHandler thread is

created, which in turns calls the logEvent methods of the

ContextAdapter object. The UML diagram of this package is

in Figure 3.6.

43



Main

+main:void

Runnable

CannuinHT .jne

+CommandLine 
#added:void 
+agletStateChanged:v 
command:void 
-kill:void 
-sysinfo:void 
-showHosts:void 
-enableMsg:void 
-enableDebug:void 
+contextStarted:void 
ps:void 
#removed:void 
-sysagent:void 
-spawn:void 
+run:void

ContextListen

ContextAdapter

#added:void

+agletActivated:void 
+agletArrived:void 
+agletCloned:void 
+agletCreated:void 
+agletDeactivated:void 
+agletDispatched:void 
+agletDisposed:void 
+agletResumed:void 
+agletReverted:void 
+agl etStat eChanged .-void 
+agletSuspended:void 
+contextShutdown:void 
tfremoved:void 
+showMessage:void 
+showMessage:void 
+showDocument:void 
+logEvent:void

0. .1

^1

<F

Thread
LoggerHandler

+LoggerHandle:
+run:void
+handle:void

Thread
LoggerServer

+LoggerServe 
+LoggerS erve 
+run:void

Viewer

JFrame
MairiWindow

updateTaskPane:vo: 
message:void 
message:void 
log:void 
+MainWindow 
-initGUI:void

O
<%■ .1

+Viewer 
#added:void 
+agletS tateChanged:v 
command:void 
+contextStarted:void 
#removed:void 
sysagent:void 
sysinfo:void 
showhosts:void 
spawn:void 
+logEvent:void

TaskID
Item

+Item
-t-toString: Stri:

I
I

0

Figure 3.6.
edu

Class Diagram of the Package 
csusb.spider.launcher

3.2.4 Package edu.csusb.spider.misc

This package provides utility classes for the Spider

system. Config parses an XML document and sets up system

properties. It is a singleton object so that it is.

44



generally only parsed once at the system.startup time,

unless it is desired to reset properties at runtime, in

which case the refresh() method should be called. Random

generates a random number inside a range. UserLogger is

created for application developers so that user messages

can be differentiated from system messages. Timer is a

thread that helps system set an alarm for a certain action

in the future or periodically. Use. of . the .Timer class

involves implementing the Action interface by providing the

act () method. The UML diagram of this package is in Figure

3.7.

3.2.5 Package edu.csusb.spider.pattern

This package is an extension of the Task class. It

provides useful programming paradigms that can be applied

directly to many applications. In this stage only

Master/Slave pattern are provided. Master class overrides

the spawn method to spawn a group of slave tasks and

provides a multicast!) method to send message to all

slaves. On the other hand, the Slave class overrides the

run method and provides a sendMasterMessage!) method to

send message back to master.

45



Config Random
-instance: Conficr 
-root:Element 
-logger: Logger 
-_f ileName: String 
-builder:String
+getlnt:int 
+getlnt:int 
+getString:String 
+getString:String 
-Config
+getlnstance:Conf
+ref resh-.void 
+setBuilder:void 
+getBuilder: Strin- 
-parse:void

-ran:~iava.util .Randc

trandom:int 
-t-random: int

Thread
Timer

.1

interval:long 
loop:boolean 
+Timer 
+Timer 
+run:void 
+stand:void 
action: Actio:

V
0 .<4

I
°--v

UserLogger
+logger:Loqgi

interfac
Action

+act:void

Figure 3.7. Class Diagram of the 
Package edu.csusb.spider.misc

3.2.6 Package edu.csusb.spider.group

This package helps to implement APIs for the group

functions in the Task class. The LocalGroupHandler is used

directly by a Task to perform group related functions. A

LocalGroupHandler on behalf of a migrated task creates a

GroupMessenger and dispatches it to the task origin when it

firsts join the group. Then a handler to a remote

GroupHandler is returned and stored in the

46



LocalGroupHanlder. After that all the. following group

function calls will utilize the same handler. See Figure

3.8 for the class diagram of this package.

Group
-groups:Hashtable 
-handler: AgletProxv 
-name:String 
-tids:Vector 
-barrierCount:int 
-barrierTotal:int 
-logger:Logger

-Group
+getHandler:AgletPro: 
+~join: int 
+leave:void 
+getRank:int 
+getTaskID:TaskID 
+getGroupSize:int 
+barrier:Vector 
+getAHTasks: Vector

<-

LocalGroupHandler
-handlers:Hashtable

+'ioinGroup: int 
+leaveGroup:void 
+getRank:int 
+getTaskID:TaskID 
+getGroupSize:int 
+sendBarrier:void 
+getAllTasks :Vector 
-isLocal:boolean

SystemAgenl
GroupHandler

+handleMessage:boole<

SystemAgenl
GroupMessenger

+handleMessage:boolec

<6

Figure 3.8. Class Diagram of the 
Package edu.csusb.spider.group

3.3 Detailed Design

This section contains the detailed design for the core

components.

47



3-3.1 Synchronizer.

Each node has a running synchronizer. Synchronizer

starts other components as needed dependent on whether it

is a server. The synchronizer on a node waits for multicast

message from a server. If a message from a different server

other than it knew is received, it either sends a register

message to that server if it is a worker, or demotes itself

to a worker if it is a server. If a worker does not receive

a multicast message after trying for a certain number of

times, then the worker node promotes itself to the server.

Part of the pseudo code is shown in Figure 3.9.

48



public class Synchronizer extends SystemAgent { 
boolean isServer = false;
String oldMessage =
public void onCreation() { // initiation

initialize multicast socket and properties
}
public void onDisposing() { // clean up

unregister from the registry; 
close multicast socket

}
public void run() { 

synchronize();
set up a Timer to do synchronizer every 100 milliseconds; 
start Timer;

}
public synchronizer() { 

int timeoutCount = 0;
wait for multicast message from server; 
if (timeout) {

timeoutCount++; 
if (timeoutCount >3) 

promote(); 
return;

}
if (isServer and message != self) { 

demote();
) else if (lisPrimary and message != oldMessage) { 

oldMessage = message; 
register();

)
}
public void demote() {

broadcast a message to all local system agents that the 
server is going to demote 

}
public void promote() {

create system agents: Registry, SystemVerifer, and 
Multicaster;

}
public void register() {

extract server URL and registry AgletID from received
message;

get AgletProxy from server URL and registry AgletID; 
store registry proxy into properties; 
send a start message to UsageMonitor;

}
public void unregister() {

send a message to registry that the host is going to
leave;

}

Figure 3.9. Pseudo Code of Synchronizer

49



3.3.2 Registry.

The agent Registry stores information of all hosts in

the same local area network and provides services by

message passing. Part of the pseudo code is shown in Figure

3.10.

public class Registry extends SystemAgent {
Hashtable workers;
public void handleMessage(Message msg) { 

if (msg.sameKind("update")) 
update node status; 

else if (msg.sameKind("unregister"))
workers.remove(msg.getArg("address")); 

else if (msg.sameKind("requestLAN"))
replies with available LAN worker nodes ordered by

usage
else if (msg.sameKind("request" ) )

replies with available LAN worker nodes ordered by 
usage and server nodes at other WANs

else if (msg.sameKind("listAll"))
replies with all nodes registered

else if (msg.sameKind("lock" ) ) 
label a node as locked

else if (msg.sameKind("release")) 
release the lock of a node

else if (msg.sameKind("fail"))
label a node as unavailable,-
if a node is unavailable for more than 3 times, 

remove from workers
else if (msg.sameKind("registerFinder"))

register server to the global registry
else if (msg.sameKind("unregisterFinder"))

unregister server from the global registry;
}

}

Figure 3.10. Pseudo Code of Registry

50



3.3.3 Multicaster

The agent Multicaster declares the server's existence

to its local network periodically. A server is selected in

each LAN by the Synchronizer. These servers in different

LANs consist of a server group. A server collects

information of worker nodes in its local network, and

updates the information to a global registry. The pseudo

code is shown in Figure 3.11.

public class Multicaster extends SystemAgent {
long interval = Config.getlnt("multicaster.interval"); 
public void onCreation(Object init) { // initialization

initialize multicast socket and interval;
}
public void run() {
pack host URL and registry AgletID into a datagram 

packet;
multicast packet;
set up a Timer to do multicast every interval 

millisecond;
start Timer;

Figure 3.11. Pseudo Code of Multicaster

3.3.4 UsageMonitor

This agent monitors local CPU usage and sends an

update message to registry if the value has been changed

ever since its last update. See Figure 3.12.

51



public class UsageMonitor extends SystemAgent { •
AgletProxy registry; 
boolean needsUpdate = true; 
int oldUsage = 0;
Timer timer;
long interval = Config.getlnt("UsageMonitor.interval"); 
Public void onCreation(Object init) {

Set up a timer to call updateUsage every interval 
milliseconds

}
public void handleMessage(Message mesg) { 

if (message kind is "start") { 
needsUpdate = true; 
updateUsage();
start the timer;

}
}
private updateUsage() {

if (registry != null) {
usage = local CPU idle time; 
if (oldUsage != usage || needsUpdate) { 

send a message to registry; 
oldUsage = usage; 
needsUpdate = false;

}
}

}

Figure 3.12. Pseudo Code of UsageMonitor

3.3.5 SystemVerifier

The SystemVerifier is an agent that is responsible for

checking whether a registered node is still alive. It

periodically dispatches a tester agent to a registered node

and waits for an acknowledge message. If an acknowledge

message is not received after a given amount of time, that

.52



node is labeled as unavailable in the registry. If a node

is unavailable for a given number of attempts

consecutively, it is removed from the Registry. At the

time, the SystemVerifier also validates that a Finder

exists. The pseudo code is presented in Figure 3.13.

same

public class SystemVerifier extends SystemAgent { 
protected AgletProxy registry;
long interval = Config.getlnt("SystemVerifer.interval");

public void run() {
while(Properties.isServer()) {

Set hosts = registry. sendMessage (new- Message ( "listAll" )' ) ; 
CheckNodes(hosts) ;
Check global registry;
Try to deactivate for interval milliseconds; 
if fail then try to sleep for interval milliseconds

}
}
checkNodes(hosts) {

for all host in hosts {
create a Tester agent;
dispatch Tester to host;
wait for acknowledge from Tester;
if timeout then send a host fail message to the

registry;
}

}
checkGlobalRegistry() {

lookup RMI object GlobalRegistry;
if succeed, send a registerFinder message to registry

Figure 3.13. Pseudo Code Of SystemVerifier

53



CHAPTER FOUR

SPIDER USER APIS

The programming interface provided by the Spider

system is intentionally similar to that of the widely used

PVM system, but with syntax and semantics enhancement

supported by Java and better matched to Java programming

styles. The central interface through which most Spider

applications interact with the system is the Task class,

which is an agent itself. It provides functions to control

the creation of additional tasks and to support

communication among tasks. Users develop their own

applications by extending the Task class. Users will need

to provide the doJob() function which will be executed

after a task is created. Users can also override the

onlnitO and the onExit() functions to define specific

behaviors during the task initialization or termination

period. The basic interface of Task is depicted in Listing

4.1.

54



public class Task {
// methods to be overridden 
void onlnit(Object arg); 
void onExit();
void doJob();

// identity-
public TaskID myTid();
public TaskID parentTidO;

// send messages
public void sendMessage(TaskID tid, Object mesg, String

tag) ;
public void multicast(Vector tids, Object mesg, String

tag) ;

// receive messages
public Message recieveMessage(TaskID tid, 
public Message recieveMessage(TaskID tid, 

long timeout);

String tag); 
String tag,

// create additional tasks

args)

public TaskID 
public TaskID 
public Vector 
public Vector

spawn(String 
spawn(String 
spawn(String 
spawn(String

className) 
className, 
className, 
className,

Object arg);
int count);
int count, Vector

// group functions
public 
public 
public 
public 
public 

String tag); 
public

int j oinGroup(String.groupName) ; 
void leaveGroup(String groupName);
TaskID getTid(String groupName, int rank);
int getGroupSize(String groupName);
void broadcast(String groupName, Object mesg,

void barrier(String groupName, int count);

// asynchronous tasks
public void addListener(Listener 1) ;

Figure 4.1. Task Interface

55



4.1 Task Creation.

The spawn () method provides the function to create

additional tasks. It takes a string parameter indicating

the name of a subtask class, which must also be a valid

subclass of the generic Task class. Optionally the initial

arguments and the number of tasks to be spawned can also be

specified. The initial arguments are passed to the onlnitO

method, which users can override to define the behavior

during task initialization. The underlying Spider system

decides which worker node is chosen to spawn a child task.

The ID of a newly spawned task is returned to the parent

task upon successful creation. Alternatively, a number of

same tasks can be started with a list of parameters, in

which case a vector of IDs are returned.

4.2 Message Passing

Message passing in the Spider system is performed by

calling the sendMessage() and recieveMessage () methods of

the Task class. Unlike in PVM, there is no separate

packing/unpacking operation needed for message passing. Any

object that implements the java.io.Serializable interface

can be used as the parameter to be sent to another task. To

send messages, a caller only needs to provide a valid task

56



ID, without knowing where the task is.physically running.

An optional tag can be provided to label the message. The

multicast () method broadcasts the message to all tasks

specified in the vector except itself. Both the

sendMessage() and the multicast() methods are asynchronous,

which means the sending tasks proceeds immediately after

the sending is initiated regardless whether it is received

or not. However, if the destination ID does not represent a

valid task, a TaskNotValid exception may be thrown. The

receiveMessage() method with no timeout parameter performs

blocking receive, while the method recieveMessage() method

with timeout parameter performs non-blocking receive. A

positive number of timeout blocks the receiving task until

the given number of milliseconds has past or the message

arrives, whichever comes first. If the timeout value is

zero, the method will immediately return no matter whether

the message has arrived. Optionally a task ID and a tag can

be provided to match with the coming message. The

successful receiveMessage() method returns a Message

object, whose contents can be extracted by calling the

getContent() method of the Message class. The sender and

the tag of the message can also be obtained by calling the

getSender() and getTag() methods.

57



4.3 Group Functions

The Spider APIs support creation of dynamic task

groups. A task can join or leave a group at any time. A

named group is created at the first time when a joinGroup()

method is called. JoinGroup!) returns the rank of the task

in the group. A task can'join multiple groups. The method

getTaskID() returns a task ID with a given group name and

the rank of that task in the group. The function

getGroupSize() returns the size of the group. The method

broadcast!) is similar to multicast but it uses the group

name as parameter rather than task ID's. Calling barrier!)

method causes the task blocked until count members of the

group has called the function. Similar to the barrier

function of PVM, a count is required because with dynamic

task groups the system cannot know how many members are in

a group [ 17] .

4.4 Asynchronous Tasks

To utilize the advantage of multi-thread programming

of Java language, the Spider APIs support asynchronous

tasks mechanisms, such as asynchronous message queues,

allowing asynchronous processing of requests. For example,

a MessageListener whose onMessageArrival() method being

58



overridden can be registered using the addListener.() method

so that a task can do its job while waiting for messages.

Furthermore, subTaskFailed() method of TaskStatusListener

allows the programmer to define the specific actions to

take when a subtask fails and the nodesAdded() method of

the SystemEventListener gives the programmer flexibility to

write programs that can adapt to the dynamically changing

system size. TaskStatusListener and SystemEventListener

were not implemented in the current implementation.

4.5 Program Examples

An example of an application illustrating Spider APIs

is shown in Listing 4.2. This application represents a

simple Master/Slave program pattern. The Master is first

started from the Task Viewer. It then spawns a set of slave

tasks with initial arguments, each of which starts

execution on a worker node in the system. The master task

then multicasts a message to all slave tasks for

processing. After that, the master task waits for all the

slave tasks to return the result and combines them. On the

other hand, the slave task is created by the master task

with an initial argument. It then waits for the data from

the master task. After processing, it sends the result back

59



to the master.. All tasks then die after finishing

execution.

/* file ExampleMaster.java */
package examples;
import edu.csusb.spider.*;

public class ExampleMaster extends Task { 
void doJob() {

Vector args = initArgs();
/* spawn N tasks */
Vector tids = spawn("examples.slave", N, args); 

multicast(tids, data, "data");
for (int i = 0; i < N; i++) {

Message msg = recieveMessage(null, "result", - 
1); //blocking recv

processResult(msg.getContent());
}
exit();

}
}

/* file ExampleSlave.java */
package examples;
import edu.csusb.spider.*;
public class ExampleSlave extends Task {

Object init;
void onlnit(Object arg) {

init = arg; // arg is passed from the master task
}
void doJob() {

Message msg = receiveMessage(parentTid(), "data", - 
1); // blocking receive

result = processData(msg.getContent()); 
sendMessage(parentTid(), result, "result"); 
exi t () ;

}
}

Figure 4.2. Program Example

60



CHAPTER FIVE

SYSTEM TESTING AND

PERFORMANCE ANALYSIS

In this section we evaluate the performance of the

Spider system. We compared the performance of Spider with

sequential program as well as PVM program when executing a

matrix multiplication program. We also gave a mathematical

analysis of the performance of the Spider system.

5.1 Testing Environments

All of the measurements were performed on 1 GHz AMD

Athlon systems running Red Hat Linux 7.2 with 256 MB of

memory, connected by a lOMB/sec Ethernet local network.

JRE1.3.0.1 was used to run the Spider system and PVM3.4 was

the system that we used for comparison.

5.2 Testing Methods

We implemented a distributed matrix multiplication

algorithm described by Fox et al. [19] in Spider and

compared to a sequential version of the program implemented

in Java. We also run the matrix multiplication program

provided in the PVM manual and compared its performance

with sequential C program. We run the program with

different problem sizes and record their execution time

61



separately. The problems range from 3 00 x 3 0.0 to 12 00 x

1200 matrix sizes.

5.3 Testing Results

Figure 5.1 shows the sample screen of running the

distributed matrix multiplication program.

JSt 3:jbh3 =• 1 ."cscixsusb .edu * defaul n x
File Edit View Window Help

a $ S i fife ® m £] I %

ij £1 Quick Connect, ha Profiles

> spawn examples.mmult.MmultMaster 250 2
> INFO - av hosts: [atp://jb359-2.csci.csusb.edu:4434/, atp://jb359
.csusb.edu:4434/, atp://j b35 9-12.csci.csusb.edu:4434/, atp://jb359-8 
susb.edu:4434/]
INFO - task 7b918effe9a31e60[exampl 
b359-2.csci.csusb.edu:4434/
INFO - task 13c557b93b6e204b[exampl 
b35 9-9.csci.csusb.edu:4434/
INFO - task Ieb0ba3573335d06[exampl 
b35 9-12.csci.csusb.edu:4434/
INFO - task 8864d45bddl0c031[exampl 
b35 9-8.csci.csusb.edu:4434/

mmult.MmultSlave] spawned at

mmult.MmultSlave] spawned at

mmult.MmultSlave] spawned at

mmult.MmultSlave] spawned at

-9.csci 
.csci.c

atp://j

atp://j

atp://j

atp://j

INFO
INFO
INFO
INFO
INFO
INFO

>
> I

task 8864d45bddl0c031finished 
task 13c557b93b6e204bfinished 
task leb0ba3573335d06finished 
task 7b918effe9a31e60finished 
all donel11 I 1 I1 ! 11I 1 1 1 I 1iI!I 
time costed for 500 * 500 data 2750

Sww

jWMl

d
kyOl

S3

3

Connected to jbh3-l.csci.csusb.edu 1SSH2-~aesl28-cbc - hrnac-rnd51 75x22 I .. pNUM •

Figure 5.1. Sample Screen of Running the Distributed 
Matrix Multiplication Program

The results are shown in Table 5.1 and Figure 5.2,

where speedup is defined to be the ratio of the execution

time of the sequential algorithm to the execution time of

62

l.csci.csusb.edu


the distributed algorithm, efficiency is the percentage of

the linear speedup and can be computed by the formula

efficiency = speedup / number of nodes, and single task

means sequential program. As we can see from Table 5.1 and

Figure 5.2B, for small problem size (say 300 x 300), Spider

system is slower than sequential program, while PVM system

showed better performance than the sequential program. It

is fairly reasonable when one considers that in Spider

system a migrating task needs to transfer not only its

data, but also its class definition. For medium problem

size (say 500 x 500 to 700 x 700), an approximately equal

speedup is achieved for. both Spider and PVM system when 4

PCs are used. However, in the Spider system, the efficiency

with large number of nodes is not as high as that with

small number of nodes used (see Figure 5.2C), i.e., using 9

nodes has only a slightly better speedup than using 4

nodes. Again this is due to the heavy overhead to transfer

multiple copies of Java bytecode to remote nodes. Finally,

for large problem size (say 900 x 900 to 1200 x 1200),. the

distributed algorithm has the best speedup in the Spider

system and the efficiency remains high with large number of

nodes used. The maximum efficiency of PVM is about 0.7 in

this experiment while efficiency of the Spider system is

63



0.9 (see Figure 5.2C). The last interesting fact that is

worth pointing out is that matrix-multiplication programs

implemented in Java are even faster than that implemented

in C, which were observed in both sequential programs and

distributed programs (see Figure 5.2A).

Table 5.1. Performance of Distributed Matrix Multiplication

Matrix
Size Tasks*

Spider PVM
Time 
(sec)

Speedup Efficiency Time
(sec)

Speedup Efficiency

300 x
300

1 1.2 1.0 1.00 1.3 1.0 1.00
4 1.5 0.8 0.20 0.6 2.2 0.55
9 1.5 0.8 0.09 0.5 2.6 0.29

500 x
500

1 5.8 1.0 1.00 6.8 1.0 1.00
4 2.8 2.1 0.52 2.4 2.8 0.70
9 2.6 2.2 0.24 1.4 4.9 0.54

700 x
700

1 17.9 1.0 1.00 20.2 1.0 1.00
4 6.9 2.6 0.65 7.5 2.7 0.68
9 4.2 4.3 0.48 3.6 5.6 0.62

900 x
900

1 42.3 1.0 1.00 45.6 1.0 1.00
4 12.5 3.3 0.82 17.4 2.6 0.65
9 7.4 5.7 0.63 9.1 5.0 0.56

1200 x 
1200

1 112.2 1.0 1.00 118.9 1.0 1.00
4 29.6 3.8 0.95 41.8 2.8 0.70
9 13.9 8.1 0.90 18.5 6.4 0.71

* Program with one task is in fact the sequential program, 
implemented in Java for Spider and in C for PVM.

64



—♦—— Java Seq
—»--Spider 4PC
-----A—— Spider 9PC
- —0- - --C Seq
- - - -Q- - --PVM 4PC

.-PVM 9PC

300 x 500 x 700 x 900 x 1200 x 300 500 700 900 1200
Matrix Size

B. Speedup

a
■g
(D0)
a

CO

9
875
5
43210

-----A—-Spider 4PC
-----0—-Spider 9PC

-PVM 4PC
-PVM 9PC

300 x 500 x 700 x 900 x 1200 x 300 500 700 900 1200
Matrix Size

C. Task Distribution Efficiency

300 500 700 900 1200
Matrix Size

Figure 5.2. Comparisons Between Performance 
of Spider and PVM

A. Comparison of execution time. B. Comparison of 
speedup. C. Comparison of distribution efficiency

65



5.4 Performance Analysis

In this section we perform the mathematical analysis

of the task execution cost and system synchronization cost

in terms of time, in order to discover bottleneck of the

performance and to .justify that system overhead is minimal

in our design.

5.4.1 Execution Costs

1. Task execution, assume n subtasks are spawned and

enough local resources are available

a. Initiate a task: the task manager sends a message

to the server, selects the available hosts

(negligible time), and returns.

tinit — 2tmsg

b. Spawn subtasks: there are a total of n identical

agents to migrate, but only one loading time is

necessary because of the class cache

tspawn — t]_Oad + 7Ttmig

c. Execute: assume each node takes the same length

of time texe for execution

d. Finish: subagents send result back and combine

results together

tfin — H tCOiribine

66



The total time for a task with n subtasks to be

finished is: -

ttotal = tinit + tspawn + texe + tfin

= tioad + 2tmSg + texe + £1 (tmig + tcombine)

Where tioad is the time to initiate an agent, tmig is

the time to migrate an agent, tcombine is the time

used to receive the result from a subtask and

combine with the final result and texe is the time

for one subtask to finish its execution.

2. If there is not enough resource available locally,

the registry has to contact the Finder and then the

worker nodes has to contact several other servers in

the wide area network to gather computing resource.

Assume the worker node has to contact a total of m

servers to gather enough computing resource. In this

case 2 * (m+1) messages are needed to be transmitted

instead of two.

Therefore:

Tinit = 2 (m+1) tmSg

ttotal = + tSpawn + texe +. tfin

— tioad + (2m+2) tmSg + texe + n (tmig + tCOmbine)

To gain possible performance improvement, we can see

that time spent on gathering resources and spawning new

67



tasks, as well as finishing the tasks, must be smaller than

the time saved from execution on one computer. Simply

assume that the execution time for a single-processor

computer would be n texe/ the following condition needs to

be satisfied in order to gain performance improvement

against sequential execution:

(n-1) texe > tioad + (2m+2) tmSg + n(tmig + tcombine)

Because tmsg is much less than tmig, tmig and tcombine, when n is

large and m is small, which means most computing resource

can be obtained from the local area network, approximately,

we have:

texe > (1/n) * tioa<3 + t mig + tCOmbine

Under this assumption, the performance of our agent-based

model is better than the non-distributed solution when the

execution time of a subagent is greater than the sum of the

average time to load an agent, the time to migrate an agent

to a remote host, and the time to combine the results of

two subagents.

5.4.2 Synchronization Costs

The total synchronization involves multicasting,

dispatching tester agent, and computing CPU usage. Suppose

that the frequencies' for such action are A, jl and V

68



respectively. Also suppose that .the probability fpr a

worker node to update usage to server-is p.

1. Synchronization cost for server

a. Multicast its own existence to both LAN

tdeclare — tsend

b. Check aliveness of nodes in the local area

network. This involves migrating the Tester agent

and receiving the reply. Assume there are n nodes

totally.

Tcheck — n * (tmigrate + treceiVe)

c. Accept worker nodes update

^update — n * p trecieve

2 . Synchronization cost for worker node

a. Detects presence of primary server

^-detect — trecieve

b. Compute its own CPU usage, and update the

registry with a probability p:

tupdate — tcompUte + p tsend

c. Accepts the Tester agent and confirms that it is

still alive.

t t tconfirm accept send

69



The total synchronization, cost of the server is thus

+ jin (tm^grate + treceive) + v p n trecieve and. the

synchronization cost of the worker is A.trecieve + Ji (taccept +

tsend) + v (tCOmpute p tsen^) , where trecieve and tsen^ is the cost

for sending and handling simple messages, tmigrate and ,taCcept

is the cost for migrating and receiving a mobile agent,

tcompute is the cost to compute local CPU usage.

Understandably tmigrate and taccept is much larger than trecieve

and tSend- Luckily in our protocol the frequency for server

to check nodes failure is rare, which means that ji value is

small. Considering this fact, we can see that the

synchronization cost for the server and worker are fairly

balanced and is acceptable.

70



CHAPTER SIX

MAINTENANCE MANUAL

6.1 Obtaining a Copy

You can get a copy of this software from

ftp://spider.ias.csusb.edu/pub/spider_3.tar.z, which

contains all the necessary Java classes and configuration

files. Source code and documentation are also included in

this file. After you downloaded the file, you need to

extract the tar file. Under a shell prompt, type:

tar xzf spider_3.tar.z

6.2 Directory Organization

Under the spider directory, there are six

subdirectories: bin, conf, docs, lib, public, and src.

bin: This directory contains executable files for

installation and server startup.

conf: This directory contains configuration files for

the Spider system.

docs: This directory contains documentation for the ■

Spider system.

lib: This directory contains all libraries required by

the Spider system and user applications, "classes"

subdirectory under lib contains classes developed for the

71

ftp://spider.ias.csusb.edu/pub/spider_3.tar.z


Spider system, namely the edu.csusb. spider package. Java

runtime environment is not included and should be installed

by the user separately.

public: This directory is where task class files that

the user wants the Spider system to execute will be

located.

src: This directory contains Spider source code.

6.3 System Requirements

Spider III has been tested on RedHat Linux6.x and

Linx7.x and Windows 98. We believe it should take no extra

efforts to be installed and run on other platform. The

system requires Java 1.3 or up to be installed. At least 32

MB of memory is required (64MB recommended).

6.4 Installation

An ant script is used to help in compiling and

installing the Spider system. Before running the script,

you need to set up the JDK_HOME environment to the

directory where your JDK is located, for example,

/share/java/jdkl.3.1. Some system such as win95 may also

require ANT_HOME environment variable to be setup. You can

set it to the home directory of your Spider installation.

After setting up the environment variable, change to the

72



bin directory and run the. command: ant install. To

recompile the source code, runs the command: ant compile.

Or simply type "ant" to install after compile. Note that

the installation will copy two files: .java.policy and

.keystore to your home directory.

6.5 Configuration

If you just want to use default configurations, you

can skip this section and go to section 6.6. However, in

case you want.to change the default settings, there are

three configuration files under the conf directory. The 

spider.xml file is an XML document contains configuration 

of various Spider components. Explanation of each property

is included within this file. The aglets.props file is for

the Aglets system. Generally a Spider system user should

not try to change this file. The log4j.props is the

property file for log4j logger. An experienced user can

figure out specific logging behavior, for example, to

enable debug information of some components to be saved to

a file or displayed on the console.

6.6 Running the Spider System

Change to the bin directory, run the command spiderd

to start up a command line based Spider host and xspider to

73



startup a Java GUI based Spider host. Those commands can be

run on any computer, and it will automatically detect

whether a server is available in the same LAN and add

itself into the virtual machine. If there is no server

available, the Spider host will become a server. The Finder

should be run on a computer whose address is specified in

the spider.xml configuration file.

6.6.1 Startup Options

Type spiderd -help or xspider -help, you can see a

list of startup options. Note that -nogui is the default

option of spiderd.

-f <file.props> Aglets properties file

port number (default 4434)

verbose output

-nogui omit AWT initialization

-daemon run as a daemon

-port <num>

-verbose

-help print this message '

6.6.2 Commands of Spiderd Console

After starting spiderd, wait for the server to

startup, pressing "enter" to see the prompt ">", you can

type "help" to see a list of commands acceptable by the

spiderd console.

> help

74



help Display this message.

shutdown

reboot

msg on|off

debug on|off

spawn <task> [param list]

clearcache

Task.

sysinfo

hosts

ps

server.

kill <taskID>

sysagent

>

Shutdown the server.

Reboot the server.

Message printing on/off.

Debug message on/off.

Spawn a new task.

clear the memory cache of

display system info.

display available hosts.

List all tasks in the

Kill a task.

Dispaly system agents.

75



Spider Viewer

Figure 6.1. Xspider User Interface

6.6.3 Tools of Xspider Interface

The buttons Spawn, Kill, Hosts, Syslnfo, SysAgent,

Shutdown, Reboot, and Clear Cache has the same meaning as

in the command line Spider console. There are three display

areas in the Spider viewer window. The upper left panel

displays the current running tasks, including their task ID

and the class name. The upper right panel is the user

76



message area, where tracing statements of a user defined

task is shown. When a user clicks on a button, such as

Syslnfo and SysAgent, the information will be displayed on

this area. The lower display area- is for system logging.

User can choose to show different levels of information to

be shown, for example, debug, info or error only, by

editing the log4j.props under the conf directory.

6.7 Developing Applications on Spider III

6.7.1 Writing Source Program Using Spider APIs

The Spider system provides a set of APIs for

programmers. we use a simple example to show how to develop

an application using Spider APIs. The source code in Figure

6.2 demonstrates a master task creates several slave tasks

and communicates with them. The HelloWorld class extends

the generic Task class, and overrides the onlnit() and the

doJob() methods. The onlnit() method tests whether the task

is a parent task. If yes, then it parses command line

arguments to initiate n. In the doJob() method, if it is a

parent task, it first spawns n subtasks (line 29) and then

starts a loop to receive messages from those subtasks (line

31) and prints out; if it is a child task, it sends its

77



1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

package examples;

import edu.csusb.spider.Task; 
import edu.csusb.spider.TaskID; 
import edu.csusb.spider.Message;

public class HelloWorld extends Task { 
private int n = 1;

public void onlnit(Object init) {
if (getMasterf) == null) // I am the parent 
if (init != null) { // get the command line arguments 
String[] args = (Stringf]) init;
n = Integer.parselnt(args[0]);

}
}

public void doJob() {
if (getMaster() == null) { //I am the parent 
parentWork();

} else { // I am the child 
childWork();

}
exit();

}

void parentWork() throws Exception { ’ 
try {

spawn("examples.HelloWorld", n); // create n children 
for (int i = 0; i < n; i++) {

Message mesg = recieveMessage(null, null, -1); 
String[] info = (String[]) mesg.getContent(); 
System.out.println("Hello World from " + info[0]); 
System.out.println("os.arch = " + info(l]);
System.out.println("os.name = " + info[2]);

}
} catch (Exception e) {■}

}

void childWork() {
String [] info = new String[3]; 
info[0] = this.getHost(); 
info[l] = System.getProperty("os.arch"); 
info[2] = System.getProperty("os.name"); 
try {

this.sendMessage(parent, info, null);
} catch (edu.csusb.spider.TaskNotValid e) { }

}

Figure 6.2. HelloWorld.java

78



host URL and its operating system specific information to

the parent (line 46).

6.7.2 Compilation and Deployment

To compile a'source program, the user should add the

directory $SPIDER_HOME/lib/classes into his classpath,

where $SPIDER_HOME is the directory under which Spider is

installed. Compiled class files need to be put under the

directory $SPIDER_HOME/public, or any other directory

specified by the aglets.public.root property in the file

$SPIDER_HOME/conf/aglets.props. Alternatively, the user can

simply put his source programs under the directory

$SPIDER_HOME/src/examples and use ant script to compile and

deploy by typing in "ant examples".

6.7.3 Running the Application

After the source program is successfully compiled and

deployed, start the Spider console. Type in the command

"spawn examples.HelloWorld <n>" to start the HelloWorld

program. Figure 6.3 is what the output should look like.

79



3:jbh3-l.csci.csusb.edu r de"Si □

File Edit. View Window Help

'Qt |> I

£3 Quick-Connect £3 Profiles

( [jruan@jb359-8 jruan]$ spiderd 
> INFO - Spider host started

j INFO - waiting for server...........
[ INFO - server is atp://jb359-2.csci.csusb.edu:4434/

{ > spawn examples.HelloWorld 3
f > INFO - av hosts: [atp://jb359-2.csci. csusb . edu:4434/ 
[ .csusb.edu:4434/, atp://jb359-8.csci.csusb.edu:4434/]
[ INFO - spawn examples.HelloWorld at atp://jb359-2.csci
i, INFO - spawn examples.HelloWorld at atp://jb359-9.csci
(i INFO - spawn examples.HelloWorld at atp://jb359-8.csci
I- Hello World from jb35 9-2.csci.csusb.edu
| os.arch = i38 6
f os.name = Linux
<■ Hello World from jb35 9-8.csci.csusb.edu
!■ os. arch = i38 6 

os. name = Linux
/ Hello World from jb359-9.csci.csusb.edu
(i os. arch = i38 6
|; os. name = Linux

i> 1

atp://jb359-9.csci i

csusb
csusb
csusb

edu:4434/ 
edu:4434/ 
edu:4434/

[Connected to jbh3-l.cscLtsusb.edu Ig3^ ~ia^28;cbc,-hmac:md5i 75x22, ,0)1''fauMj

Figure 6.3. Output of HelloWorld.java

80

l.csci.csusb.edu
2.csci.csusb.edu
8.csci.csusb.edu
9.csci.csusb.edu
l.cscLtsusb.edu


CHAPTER SEVEN

CONCLUSIONS AND FUTURE

DIRECTIONS

7.1 Conclusions

The project, Spider III, presents architecture and

protocol of a multi-agent based Internet distributed

computing system, which provides a convenient development

and execution environment for transparent task

distribution, load balancing, and fault tolerance. This

project presents the design and implementation of a

prototype using the IBM Aglets software development kit

(ASDK 2.0). The prototype implemented all the core agents,

the task distribution protocol and a set of application

programming interfaces (APIs), including a simple

Task/Slave pattern. A graphical user interface is also

developed to provide better visual and operational

convenience.

The System supports transparent task distribution by

providing a set of APIs. Load balancing is achieved using

the adapted cyclic allocation mechanism, with the addition

of considering CPU utilization level as well as number of

tasks. Scalability is guaranteed by using two-level

81



registry services: all worker nodes in a LAN. register to

the server node in that LAN, and all servers in the WANs

register to the Finder. Server crash is tolerable because

the server is dynamically selected from all participating

nodes.

To validate the design and to test the system

performance, a distributed matrix,multiplication is

programmed on Spider and its execution time and distributed

efficiency were compared with PVM and sequential programs.

The results showed that although for small matrix size the

Spider is slower than sequential program and PVM, the

Spider system has better speedup and higher efficiency than

PVM for appropriately large matrix size. Furthermore, the

maximum efficiency of Spider (0.9) is significantly larger

than the maximum efficiency observed in PVM (0.7) . The

results also showed that the Spider system is able to

utilize CPU resources across multiple LANs and

heterogeneous operating systems and architectures.

We analyze the task execution cost and system

synchronization cost in terms of time, in order to discover

performance bottleneck. We found that when the execution

time of a subtask is greater than (1/n) * tioad + tmig + 

tcombine/ where tioad is the time to load an agent, tmig is the

82



time to migrate an agent to remote host and tcornbine is the

time to combine results of two agents together, our agent-

based model is better than sequential version. We also show

that the synchronization cost of the server is 4tsena + (in

(tmigrate + trecsive) + v.p n trecieve and the synchronization cost

of the Worker is A,trecieve + (I (taccept f tsend) + V (tCOmpute P

tsend) < where trecieve and tgend is the cost for sending and

handling simple messages, tmigrate and taccept is the cost for 

migrating and receiving a mobile agent, tcompute is the cost 

to compute local CPU usage. Generally tmigrate and taccept is

much larger than the other terms. In our protocol, we tried

to reduce synchronization cost by reducing the value of jl,

the frequency for a server to initiate checking nodes

failure. Considering this fact, we conclude that the

synchronization cost for server node and worker node are

fairly balanced and is acceptable.

In the implementation of the Spider III system, we

used object-oriented approach in designing and applied

agent-oriented programming paradigms. Each component is

programmed into an agent to separate different concerns.

User APIs were intentionally made similar to that of the

widely used PVM system to peduce learning efforts.

83



Furthermore, some advanced techniques are. used in the

implementation to provide flexibility and adaptability.

System configuration of Spider III is done through property

files and XML document, thus many of the system properties

can be changed at runtime. Log4j package is used for system

logging to enable/disable different levels of debug

information. Compilation and deployment are done through

ant scripts. Concurrent Version System (CVS) is used

throughout the development time for version controlling.

7.2 Future Directions

Being a software developed by one person, the Spider

system still has much to be improved. Furthermore, several

key problems need to be solved to make the software a

practical tool for use. Below are possible directions that

can be extended from the result of this project.

• More APIs such as asynchronous event handling and

client side 1-0 redirection can be implemented by later

developers. The current project only implemented a

minimum set of APIs. Asynchronous events handling

provides programmer the ability to receive

notification of events and take certain actions at the

same time when executing a task. This could let the

84



programmer automatically deal with.nodes failure or.

easily develop an application that can be adapted to

dynamically changing system environment. Besides the

master/slave programming pattern, other patterns of

distributed programming paradigms can be developed as

a part of the edu.csusb. spider .pattern package to

facilitate distributed application development.

Client-side 10 redirection gives the programmer

ability to display all message in one screen or file.

• Multi-hop task distribution are not explicitly

supproted in the current implementation, i.e., A task

migrated to a destination node cannot be migrated

again. Although it could be done by interweaving the

Aglets APIs and Spider APIs, a future improvement

should standardize the protocol and include multi-hop

task distribution as part of the Spider APIs.

• The current system startup is not so practical since

it involves actually logon to a remote computer to

start the server process. In the future the server

process should be made into a daemon process. Although

the current program can be run as a background

process, a management console has to be developed to

85



control the background process. One problem that

arises due to the lack of a control console on the

daemon process is that although the Spider system

supports multi-task and multi-user, two users might

start their own copies of the server process on the

machine where they intend to start the master task. A

future version should separate the control console

with the server process so that two different users

can actually utilize the only server process running

as a background service on the same computer.

• Finally, as a distributed computing system involves a

large number of workstations across multiple domains

owned by multiple organizations, security is no doubt

the biggest concern. Although in the current Spider

system, a basic level security is inherited from the

Aglets framework by limiting migrated tasks to access

local file systems, security breach still cannot be

ignored. More work should-'be focused on analyzing and

solving the security problem in the multi-agent

architecture.

86



APPENDIX A

GLOSSARY

87



Agent A software routine that waits in the

background and performs an action when a

specified event occurs. For example, agents

could transmit a summary file on the first

day of the month or monitor incoming data and

alert the user when a certain transaction has

Agent Server
arrived.

A component of an agent framework that

Aglet

provides basic services to agents, including

inter-agent communication, agent migration,

agent execution, agent security, etc.

An agent.is called aglet in the Aglets

Aglets
Software Development Kit

An autonomous and mobile Java agent

ASDK
framework developed by IBM.

Aglets Software Development Kit

ATP Agent Transfer Protocol

CSUSB California State University, San Bernardino

GUI Graphical User Interface

IEEE Institute of Electrical and Electronics

LAN
Engineers

Local Area Network

88



Mobile Agent

Mode

RMI
Spider

SRS
System Agent

URL
User Agent

WAM

A software module that moves from host to

host in a network

One of a group of machines that comprise a

distributed system.

Remote Method Invocation

A distributed virtual machine system

developed in Department of Computer Science,

CSUSB.

Software Requirement Specification

An agent that is used by the Spider system to

exert system functions, such as resource

manager.

Universal Resource Locator

An agent that is capable of executing user

tasks. Users can rewrite the algorithm to

achieve their own purposes.

Wide Area Network

89



BIBLIOGRAPHY

[1] IEEE std 830-1998 IEEE Recommended Practice for

Software Requirements Specification

[2] H.Yuh, Spider: An Overview of an Object-Oriented

Distributed Computing System. Master Thesis, Department

of Computer Science, California State University, San

Bernardino, 1997

[3] Koping Wang, Spider II: A Component-based Distributed

Computing System. Master Thesis, Department of Computer

Science, California State University, San Bernardino,

1997

[4] Colin G. Harrison, David M Chess, and Aaron

Kershenbaum. Mobile Agents: Are they a good idea?

Technical Report, IBM, March 1995. URL

http://www.research.ibm.com/massdist/mobag.ps

[5] Jim Farley. Java Distributed Computing, O'Reilly &

Associates, Inc, Sebastopol, CA, 1998. (ISBN 1-56592-

206-9)

[6] Rajkumar Buyya. High Performance Cluster Computing,

volume 2, Prentice Hall, Upper Saddle River, New

Jersey, 1999. (ISBN 0-13-013785-5)

[7] Aglets SDK Document, http://aglets.sourceforge.net

90

http://www.research.ibm.com/massdist/mobag.ps
http://aglets.sourceforge.net


[8] Joseph P. Bigus and Jennifer Bigus. Constructing

Intelligent Agent with Java, Wiley Computer Publishing,

1998. (ISBN 0-471-19135-3)

[9] Andres S. Tanenbaum. Distributed Operating Systems,

Prentice Hall, 1996, ISBN (7-302-02411-1)

[10] Markus Straber, Jochim Baumann and Markus Schwehm, An

Agent-Based Framework for the Transparent Distribution

of Computations, In: H. Arabnia (ed.), Proc. 1999 Int.

Conf, on Parallel and Distributed Processing Techniques

and Applications (PDPTA'99), Vol I, CSREA, 1999, pp.

376-382, also available in mole group homepage.

http://mole.informatik.uni-stuttgart.de/

[11] L. Dikken, et al. DynamicPVM: Dynamic load balancing on

parallel systems. In W. Gentzsch and U. Harms, editors,

High Performance Computing and Networking, pages 273--

277, Munich, Germany, April 1994. Springer Verlag, LNCS

797.

[12] Adam J. Ferrari. JPVM: Network parallel computing in

java. Technical Report CS-97-29, Department of Computer

Science, University of Virginia, December 1997, also

available in the JPVM Webpage,

http://www.cs.Virginia.edu/~aj f2j/ jpvm.html

91

http://mole.informatik.uni-stuttgart.de/
http://www.cs.Virginia.edu/%7Eaj


[13] Casas, J., et.al. Mpvm: A migration transparent version

of pvm. 1995, Computing Systems 8, 2 (Spring), 171—216

[14] Emin G. Sirer, et al. Design and implementation of a

distributed virtual machine for networked computers,

17th ACM Symposium on Operating System Principles

(SOSP'99), published as Operating Systems Review 34(5):

202-216, Dec. 1999

[15] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. PVM

and MPI: A comparison of features. Calculateurs

Paralleles, 8(2), 1996.

[16] M. K. Aguilera, W. Chen and S. Toueg. Failure

Detection and Consensus in The Crash-recovery Model,

Technical Report TR98-1676, Cornell University,

Computer Science Department.

[17] G. A. Geist et. al. PVM: Parallel Virtual Machine - A

User's Guide and Tutorial for Networked Parallel

Computing. MIT Press. 1994

[18] Martin Fowler. UML distilled: a brief guide to the

standard object modeling language, 2nd ed. Addison

Welsey Longman Inc., 1999. (ISBN 0-201-65783-X).

[19] G. C. Fox, S. W. Otto, and A. J. G. Hey. Matrix

Algorithms on A Hypercube I: Matrix Multiplication.

Parallel Computing, 4:17-31, 1987.

92


	Spider III: A multi-agent-based distributed computing system
	Recommended Citation

	Random

	Timer

	Group

	LocalGroupHandler

	GroupMessenger

	> I


	Matrix Size

	Matrix Size

	Matrix Size

	worker node to update usage to server-is p.


	i> 1


