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ABSTRACT

The cranial anatomy of the basal captorhinid reptilei
Captorhinikos parvus (Reptilia, Captorhinidae), is

reinterpreted here based on analysis of a group of new

specimens recovered subsequent to it's original diagnosis

as well as further analysis of the original specimens

utilized in E.C. Olson's (1970) original characterization

of the species. Structural features inconsistent with the

generic description of Captorhinikos suggest the

redefinition of C. parvus as a new genus, Rhodotheratus

parvus.. Rhodotheratus is represented by: adult material

and characterized by it's small size when compared to most

other captorhinid species; possession of multiple rows of

non-ogival maxillary and mandibular marginal teeth; lack of 

a supratemporal bone; and the maxillary articulation with

palate contacting both palatine and vomer

Phylogenetic analyses of basal members and selected

derived members of the Captorhinidae support the

characterization of Rhodotheratus as a distinct taxon and

indicated that it is closely related to the South African

form Saurorictus.
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CHAPTER ONE

INTRODUCTION

Background

The development of the Amniota within terrestrial

vertebrates was marked by the emergence of an important

suite of adaptations. Collectively, these adaptations are

considered to be an example of a key adaptation (Martin and

Sumida, 1997). Amniota is traditionally defined by the

presence of an egg with extra-embryonic membranes that

facilitate its ability to withstand desiccation and

mechanical insult (Stewart, 1997). The evolution of

organisms that were reproductively independent from the

water allowed for more effective exploitation of the

terrestrial environment, and preceded a great radiation of

new forms (Martin and Sumida, 1997). In addition to the

developing embryo itself, an amniotic egg includes several 

extra-embryonic membranes, including, minimally, an amnion,

a chorion, and an allontois (Sumida, 1997). In some forms,

a shell membrane is also present. These traits most likely 

developed individually over an extended period of geologic

time.
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Evidence of soft tissue morphology, particularly

developmental features, is rare to nonexistent in the

fossil record. Fortunately, a suite of skeletal characters

accompanies this transition. Cranial features that are

currently considered unambiguous characters of the amniote

clade include: the loss of the intertemporal bone, the

presence of supraoccipital ossification, lack of contact

between a parietal lappet and the squamosal, the presence

of a single splenial in the lower jaw, and inclusion of the

frontal bone in the margin of the orbit (Sumida et al., 

1992; Laurin and Reisz, 1995, 1997). Table 1 provides a

complete listing of skeletal characteristics that are

currently considered to define the clade Amniota.

Some of the earliest organisms commonly accepted as

true amniotes include those belonging to the Synapsida (the

lineage ultimately leading to mammals), the poorly defined 

Parareptilia (currently including Paraeiasauroidea,

Millerosauroidea, and Procolophonia) (Gauthier et al. 1988;

Laurin and Reisz, 1995) within Reptilia, and the more

extensively studied "captorhinomorpha" within the

Eureptilia. Figure 1 summarizes a relationship among the 

taxa spanning the amphibian to amniote transition, as well

as some of the first radiations of basal amniotes.
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"Captorhinomorpha" is a paraphyletic grouping 

encompassing the Captorhinidae and the Protorothyrididae,

and most recent analyses (e.g. Lombard and Sumida, 1992;

Berman et al., 1997) suggest that Synapsida, Parareptilia,

Captorhinidae, and Protorothyrididae, plus Diapsida

describe a series of successively more derived amniote

clades. Given these possible relationships, the

Parareptilia and Captorhinidae represent the best

candidates for a model of basal reptilian structure.

Gauthier et al. (1988) and Berman et al. (2000) note that

members of the Parareptilia are only partially known.

Thus, the Captorhinidae emerge as a pivotal group in

understanding basal reptilian structure and relationships.

Reptilia is perhaps best known for the Diapsida, one

of the most diverse and persistent of vertebrate groups

(Heaton and Reisz, 1986; Dodick and Modesto, 1995; Laurin

and Reisz, 1995), including extant lizards and snakes,

dinosaurs, and their hierarchical subset, Aves.

Captorhinidae represents one of the earliest clearly

defined clades within the Reptilia. To date, captorhinid

remains have been recovered from Permian deposits (between 

290 - 250 million years before present) in Africa, India, 

Europe (the former Soviet Union), North America (the United

3



States) (Olson, 1962a; Dilkes and Reisz, 1986; Sumida,

1989; Ivachenko, 1990; Jalil and Dutuit, 1996; Gow, 2000),

and possibly Tasmania (Romer, 1973). Captorhinidae, 

believed to be the more primitive of the two

"captorhinomorph" families (Reisz and Baird, 1983; Ricqles

and Bolt, 1983; Heaton and Reisz, 1985; Sumida, 1990;

1997), includes 14 genera: Romeria*, Protocaptorhinus*,

Rhiodenticulatus*, Captorhinus*, Labidosaurus*, Riabininus,

Labidisaurikos*, Rothianiscus*, Captorhinikos*,

Hecatogomphius, Kahneria*, Moradisaurus, Acrodontia, and 

Saurorictus1 (Olson, 1962a; Ricqles, 1984; Dilkes and Reisz, 

1986; Ivachenko, 1990; Dodick and Modesto, 1995; Laurin and

Reisz, 1995; Jalil and Dutuit, 1996; Modesto and Smith,

2001).

1 * = Spe'cies for which fossil material has been found in North America
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Figure 1. Detailed cladogram showing the temporal

framework of the captorhinidae and related taxa. 1)

Batrachosauria; 2) Cotylosauria; 3) Amniota; 4) Sauropsida;

5) Eureptilia. Dev. = Devonian; Miss. = Mississippian;

Penn. = Pennsylvanian (After Lombard and Sumida, 1992).
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Overview of Cranial Anatomy 
in the Captorhinidae

Cranial anatomy in captorhinid reptiles has generally

been characterized as being "heavily and stoutly"

constructed, irrespective of taxon size. For this reason,

and because the skull yields a large number of systematic

characters, most published reports have focused on

interpretation of cranial material (Seltin, 1959; Heaton,

1979). Members of this group display a highly conserved

cranial design (Dilkes and Reisz, 1986; Olson, 1962b),

resulting in a diagnostic group of captorhinid cranial

characteristics. Such features include: a low, flat dorsal

surface profile forming nearly a 90 degree angle with the

posterior border of the skull; a posteroventrally angled 

premaxilla; lateral maxillary flexure, or "swelling" of the

cheek region; distinctively textured dermal bone surfaces

(possibly a characteristic for the diffusion of stress and

increasing the skull's resistance to fracture [Coldiron,

1974]); and the loss of the tabular bone (Ricqles and Bolt,

1983; Heaton and Reisz, 1985; Dodick and Modesto, 1995).

A frequently proposed evolutionary trend within the

family Captorhinidae is a general increase in overall (and

hence, skull) size in more derived members of the group.
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In most cases a concomitant increase in the number of

maxillary and mandibular tooth rows accompanies the

increase in skull size. This is accompanied by an increase

in "cheek-flaring." Reisz and Baird (1983), Ricqles and

Bolt (1983), and Dilkes and Reisz (1986), have suggested

that this was probably associated with the increase in

number of tooth rows as species within the family become

more derived. This hypothesis presumes that the increase

in tooth row number is a single, well-defined trend. Skull

size in captorhinids spans an order of magnitude, from

specimens assigned to Captorhinikos parvus, the primary

taxon considered in this review, with an average skull sizeI
of approximately 23 - 26 mm (Olson, 1970), to the largest,

I
Moradisaurus grandis, with an average skull length up to 45

cm (Taquet, 1969; Heaton and Reisz, 1980; Ricqles and Bolt,

1983). Labidosaurikos meachami with an average skull

length of 28 cm (Dodick and Modesto, 1995), 6 maxillary and

5 mandibular tooth rows, and Moradisaurus, with

approximately 12 tooth rows, provide excellent examples of

large'captorhinids with multiple tooth rows. Twelve tooth

rows in Moradisaurus are the most of all known captorhinid

species (DeRicqles and Bolt, 1983).
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The Genus Captorhinikos

Within the Captorhinidae, the genus Captorhinikos was 

originally erected by Olson (1954) to include two species;

C. valensis and C. chozaensis, named, respectively, for the

Lower Permian Vale and Choza Formations of north-central

Texas. Olson's (1954) cranial description of the genus is

as follows:

Lower jaw with four regular rows of bulbous,

sub-conical post-canine teeth. Outer and inner

rows not extending full length of post-canine

series and not overlapping so that there are but

three effective rows at any level. Enlarged

"canine" tooth above and below. Maxillary

dentition with five rows of bulbous, sub-conical

teeth, forming a crescentic tooth plate; teeth

increasing in size from anterior and posterior

ends of plate to center and rows most widely

spaces at center. Skull heart shaped in outline.

In his subsequent review of the family Captorhinidae,

Seltin (1959) noted fundamental differences between

Captorhinikos chozaensis and C. valensis and confirmed

their taxonomic validity and placement within the genus

(based only on similarities in the number of tooth rows and

8



general dental patterns). He made no changes to Olson's

diagnosis of the genus.

With the description of C. parvus by Olson (1970), a

third species was assigned to the genus Captorhinikos.

Information on the relative relationships of the more

derived "captorhinikomorphs" and the other members of the

family is extremely limited. Berman and Reisz (1986)

proposed a possible relationship for six basal genera

within the Captorhinidae (Romeria, Protocaptorhinus,

Rhiodenticulatus, Labidosaurus, and

Eocaptorhinus/Captorhinus) based upon a suite of shared

derived characters. However, the focus of their study was

on Rhiodenticulatus and basal members of the Captorhinidae;

the more derived genera, including Captorhinikos, were not

included in their analysis of relationships. Gaffney and

McKenna (1979) proposed a phylogenetic relationship that

encompassed the majority of the accepted members of the

Captorhinidae at the time of publication, but did not

describe the relationships between the more derived genera

making up the last branch of their cladogram, which lumped

together Kahneria, Hecatogomphius, Rothia, Moradisaurus, 

Labidosaurikos, and Captorhinikos. Ricqles (1984) proposed

at least one phylogenetic hypothesis for the position of

9



Captorhinikos within this group. However, Dodick and

Modesto (1995) now question the validity of its placement,

though they did not provide an alternative hypothesis.

Captorhinikos parvus was originally described by Olson

(1970) . Notably, certain elements of the specific diagnosis

contradict the generic diagnosis (see above) that Olson

provided twenty years earlier (Olson, 1954) .

A small, but mature captorhinid with a skull

length ranging from about 23 to 26 mm. Skull

broad, with maximum width about two-thirds that

of the skull length. Upper dentition with four

premaxillary teeth, 13 to 15 marginal maxillary

teeth. And two inner rows on maxillary, the outer

with five and inner with three■teeth

respectively. Premaxillary teeth long, but not

recurved. Second and third maxillary teeth

robust and long.

Lower jaw with second and third teeth

elongated. Fifth tooth inset slightly and

continuing as part of inner of two rows of teeth

in posterior part of tooth row. Labial row of

four or five teeth beginning back of level of

10



fifth tooth. Coronoid process of lower jaw

strong, and post-coronoid ramus long and slender.

Significant differences between the original generic

diagnosis and that of Captorhinikos parvus include: only-

three maxillary tooth rows (as opposed to five in the

original diagnosis), only two mandibular tooth rows (as

opposed to four), and a distinct caniniform region (as

opposed a single tooth with teeth increasing in size from

anterior and posterior ends of toothplate). C. parvus has

not been restudied since Olson's initial 1970 description.

In his initial description, Olson (1970) reviewed a body of

specimens, all of which were recovered from a locality in

the Hennessey Formation, Cleveland County, Oklahoma (Figure

2). The cranial material was so fragmentary that Olson

(1970) turned to the appendicular skeleton and the degree

of limb-bone ossification to support his contention that C.

parvus was a small adult. Subsequent to his initial

description, Olson collected additional specimens, which he

also ascribed to C. parvus, from what he initially

interpreted as another Hennessey Formation locality near

Norman, Oklahoma (Figure 2). These specimens, cataloged

11



Figure 2. Map of Oklahoma displaying the extent of 

exposure of the Hennessey Formation, an approximately S-

shaped, band running between the northern and southern

borders of Oklahoma (from Olson, 1967).
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into the UCLA vertebrate paleontology collection, were not

completely prepared or described before his death.

Significantly, these more recently collected specimens

include much more complete and better-preserved cranial

material than those originally available to Olson in 1970.

Geologic and Geographic 
Context

All of the specimens germane to this study (see

materials) were recovered from the Lower Permian Hennessey

Formation of Oklahoma. Hennessey Formation exposure

extends across central and southwestern Oklahoma (Figure

2). The Hennessey Formation is a complex unit consisting

primarily of red and multicolored shale and sandstone, with

small amounts of siltstone and mudstone. Most of the

specimens described here were recovered from the red shale

deposits (Olson, 1967).

The holotype of Captorhinikos parvus as well as all of

the specimens assigned to the species by Olson in his 

initial study (See Table 2 for a complete list of specimens

and descriptions) were recovered from a locality

approximately 1.5 miles southeast of the University of

Oklahoma at Norman (SW %, NW %, sec. 13, T. 8 N., R. 2 W),

in Cleveland County, Oklahoma, approximately 70 feet above

13



the base of the Hennessey Formation (Olson, 1970) .

Initially, it appeared that all of the more recently 

recovered specimens reviewed in this reinterpretation were 

recovered from a similar, but separate site also in the

region of Norman. Re-evaluation of the locality

information listed in Olson's 1967, 1970 and 1971 studies,

as well as Olson and Vaughn (1970), and comparison with the

locality information of the new specimens, however,

revealed that all of the specimens ascribed to C. parvus

originated from the same locality as those described in the

initial study.

Most of the published stratigraphic analyses of the

south-central and south-western United States focus on New

Mexico and north-central Texas (Hentz, 1988; 1989; Eberth

and Berman, 1993; Sumida et. al., 1996), resulting in a

reasonable consensus among paleontologists regarding the

correlations between the various Permo-Pennsylvanian rock

units within those states. Traditional methods of dividing

the terrestrial Lower Permian deposits of north-central

Texas have recently been revised by Hentz (1988) . Hook

(1989) has provided a useful key to the appropriate

formational nomenclature. Unfortunately, there is not such 

agreement regarding the rock formations of corresponding

14



age in Oklahoma. Perhaps surprisingly, even in the case of

Texas, there is little correlative data with Oklahoma

(Hook, 1989) . Although a detailed analysis of the

Hennessey Formation rock units of central Oklahoma is

beyond the scope of this study, their accurate temporal

assignment is, however, important. There have been several

attempts to correlate rock units in Oklahoma with the

better-known Texas rock units. Currently, the best

comparative studies of these regions are those of Olson

(1967), and Olson and Vaughn (1970). They suggested a

correlation between the Hennessey Formation exposures of

central and north-central Oklahoma and the upper portion of

Hook's (1989) "undivided" Clear Fork Group (formerly the

Choza Formation) of north-central Texas based on

similarities in rock units and fossil assemblages (Figure

3). Olson and Chudinov later (1991) reaffirmed this

correlation in a manuscript, which, unfortunately, remained

unpublished. If the correlation of the Hennessey Formation

with the upper section of the Clear Fork Groupis correct,

this establishes the Hennessey Formation as Middle Lower

Permian, Upper Leonardian in age (Jones and Hentz, 1988)

15



Figure 3. Correlations of the Lower Permian rock

formations and groups of North America (Adapted from Olson

and Vaughn, 1970; Jones and Hentz, 1988; Hook, 1989;

Sumida, et. al. , 1996).
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and an approximate date of 270-275 million years before

present.

By looking at the depositional characteristics of

sediments as well as faunal assemblages, Olson and others

(Olson and Vaughn, 1970; Olson, 1977; Olson and Mead, 1982)

determined the climatic patterns for the Clear Fork Group

of Texas and its equivalents in Oklahoma during the Permo-

Carboniferous time segment. This was a period of

transition in central North America. The climate was

moving from a non-seasonal one with high humidity and year- 

round rainfall to a drier one, characterized by a high

degree of seasonality with regard to rainfall. During this 

drier climate, lakes and other bodies of water were subject

to regular annual restrictions. Olson (1977) has noted a

shift in vertebrate faunal assemblages of Permo-

Carboniferous red bed communities concurrent with this

climatic shift. With the increasing seasonal aridity, 

conditions became less favorable for amphibians, which

needed regular moisture to avoid desiccation, instead

selecting for organisms that could withstand first

temporary, and finally permanent separation from the water.

Captorhinomorphs were some of the first organisms to

exploit these new conditions, and are common in sediments

17



of lakes and ponds in this region of alternating wet and

dry periods (Olson, 1977).
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CHAPTER TWO

METHODOLOGY

Materials

The following lists identify all of the specimens

attributed to Captorhinikos parvus Olson (to date) reviewed

in this study.

Previously undescribed specimens (16) :

UCLA-VP 2894 : (Partial) skull with lower

jaw.

UCLA-VP 2898 : Partial skull.

UCLA-VP 2900 : Badly crushed skull.

UCLA-VP 2908 : Skull.

UCLA-VP 2910 : Skull.

UCLA-VP 2912 : Skull.

UCLA-VP 2915 : Skull (with braincase).

UCLA-VP 2918 : Partial skull.

UCLA-VP 2922 : Partially crushed skull.

UCLA-VP 2933 : Partial skull with limb bone.

UCLA-VP 3023 : Three skulls; (a) crushed

skull, (b) partial skull, (c)

skull with partial lower jaw.
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UCLA-VP 3024: (a) and (b)Two skulls, both

(badly) crushed with lower

jaw.

UCLA-VP 3025: Partial crushed skull.

Specimens included in Olson's (1970) initial

characterization of C. parvus but which have been more

fully prepared, and re-examined as part of this study (7):

FMNH UR 1255: Skull (with braincase).

FMNH UR 1256: Skull (with braincase).

FMNH UR 1257: Partially crushed skull (with

braincase).

FMNH UR 1258 : Partial Skul1.

FMNH UR 1272 : Right lower jaw.

FMNH UR 1273 : Partial right lower jaw.

FMNH UR 1278 : Partial left lower jaw.

Methods

The vertebrate paleontology lab in the Department of

Biology at California State University San Bernardino

obtained the listed UCLA-VP (University of California at

Los Angeles, Vertebrate Paleontology) specimens assigned to

Captorhinikos parvus (see Materials) on extended loan from
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the UCLA vertebrate paleontology collection. FMNH (Field

Museum of Natural History, Chicago, IL) specimens

previously described by Olson (1970) were examined at the

Field Museum of Natural History in Chicago. Observed FMNH 

specimens were photographed for later interpretation and

study, and a limited selection of specimens (listed above)

were loaned to the CSUSB Vertebrate Paleontology lab for

further preparation and reanalysis.

Most of the more recently recovered specimens had

already been prepared, but not completely. Mechanical

preparation, consisting primarily of matrix removal and 

specimen stabilization, was performed on both groups of

specimens before they were described and illustrated. NIH

Image-J (Image J, 2002) image analysis software was 

utilized to make reliable measurements, considering the

extremely small size and delicate nature of all observed

specimens (Listed above). Illustration of specimens

conformed to common standards of paleontological

description: (1) Color, and black & white photography, as

well as surface scanning of the specimens using a flatbed

scanner; and (2) stippled, black and white, pen and ink

line drawings with the lighting from the upper left

position.
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Specimens assigned to Captorhinikos parvus are

amongst the smallest assigned to the Captorhinidae and yet, 

display multiple tooth rows. This represents a significant

deviation from the proposed trend of increased size 

accompanying increased numbers of tooth rows in the family.

Furthermore, Olson's (1970) own description of C. parvus' 

diagnostic characters is inconsistent with many of the 

features he used to characterize the genus to which he

assigned it. Thus, the validity of C. parvus' placement 

within Captorhinikos is called into question. Data from 

newly studied specimens, as well as information acquired 

through additional preparation of Olson's original 

specimens now allow a more thorough consideration of the

question of: cranial morphology of the species, degree of 

maturity represented by the specimens, and ultimately the 

phylogenetic disposition of the species. The last of these 

questions can only be assessed subsequent to the other two.

The morphological question is two-fold: (1) is

Captorhinikos parvus a distinct, valid taxon or a member of

a previously described taxon, and (2) has it been described

from adult or juvenile material? Three possible hypotheses

emerge: (1) C. parvus may be a valid adult taxon; (2) it

may be a distinct taxon, but one based on juvenile
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material; (3) it may be a juvenile representative of a

previously described taxOn. Features used to assess the

degree of maturity of observed specimens include: (1)

degree of cranial sutural interdigitation complexity

(decreased complexity implies juvenility; extreme

immaturity can be marked by incompletely closed sutures or

presence of fontanels) (Rieppel, 1992), (2) degree of

dermal sculpturing (less pronounced texture implies

juvenility), (3) relationship between orbit and skull size

(greater orbit size relative to overall skull size implies

juvenility), and (4) tooth row development morphology

(based upon criteria described by Ricqles and Bolt, 1983).

If Captorhinikos parvus is indeed a valid taxon,

careful anatomical analysis should assist in refining an

understanding of the interrelationships of it and other

members of the Captorhinidae. Phylogenetic analysis was

performed using PAUP* 4.0b (Swofford, 2002) to analyze a

data matrix (Table 4) of 43 morphological skull characters

(Albright et al., 2002). The anatomical descriptions that

form the basis of this data set are presented in chapter

three. Appendix B summarizes all characters and character

states used in this analysis.
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Using the morphological characters, the taxonomic 

validity of each of the captorhinid taxa were examined to

determine the phylogenetic relationship between them.

Cladistic methodology demands that any valid taxon be

diagnosable with one or more apomorphic (unique, derived)

characters or, lacking that, a unique combination of

primitive and derived characters. Phylogenetic

systematics, or "cladistics," states that the

interrelationships of taxa must be based not on overall

similarity, but on the presence of shared, derived

characters. In other words, shared primitive features

(symplesiomorphies) may give information about structure,

but not about relatedness or phylogenetic position. A

clear understanding of cladistic methodology is critical to

any study that could be important to understanding the

radiation or basal members of an important grouping. As

the Captorhinidae are important to the understanding of

basal Amniota, cladistic methodology was utilized

throughout this study.
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Abbreviations

Institutional abbreviations used in text: FMNH, Field

Museum of Natural History, Chicago, Illinois; CM, Carnegie

Museum of Natural History; UCLA-VP, University of

California at Los Angeles, Vertebrate Paleontology. From

1988-1990, the UCLA VP collections were subsumed into the

collections of the University of California Museum of

Paleontology (UCMP) and the Carnegie Museum of Natural

History (CM). The specimens in this study were acquired

immediately before that transfer, and therefore do not yet

have corresponding CM accession numbers.

Anatomical abbreviations used in figures: a, angular;

ant ridge, anterior ridge; ar, articular; bo,

basioccipital; br, basicranial recess (pterygoid); bs,

basisphenoid; c, coronoid cb, cornua branchalia; col,

columella (stapes); cult, pr., cultriform process

(parasphenoid); d, dentary; ect, ectopterygoid; eo,

exoccipital; f, frontal; ftpl, footplate (stapes); j,

jugal; 1, lacrimal; m, maxilla; max pr, maxillary process;

max fa, maxillary facet (palatine/vomer); n, nasal; o,

occipital; op, opisthotic; p, parietal; pa, prearticular;

pi, palatine; pas, parasphenoid; pf, postfrontal; pin for, 

pineal foramen; pm, premaxilla; po, postorbital; pp,

25



postparietal; pr, palatine ramus (pterygoid); prf,

prefrontal; pt, pterygoid; ptp, pterygoid process

(quadrate);q, quadrate; qj, quadratojugal; qr, quadrate

ramus (pterygoid); qu, quadratojugal; sa, surangular; sm,

septomaxilla; sp, splenial; sq, squamosal; s, stapes; st

for, stapedial foramen; tf, transverse flange (pterygoid)

v, vomer.
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CHAPTER THREE

SYSTEMATIC PALEONTOLOGY

Systematic Paleontology

Given that the morphology of the specimens examined

here and the phylogenetic analysis of those specimens

(discussed in chapter 4) warrant the description of a new

genus, the following the following formal characterization

is presented.

Reptilia - Laurenti, 1768

Eureptilia - Olson, 1947

1 Captorhinidae - Case, 1911

Rhodotheratus - New Genus, 2003

Rhodotheratus parvus - New Combination

Etymology

Rhodon - Greek, meaning rose (flower)

Therates - Greek, meaning to hunt. The dentitional

characteristics of Rhodotheratus parvus indicate that,

despite its small size, it was a carnivore, probably

feeding on small insects.

Parvus - Latin, meaning small. The original species

name was retained for E. C. Olson's original diagnosis of

this organism as a small, adult captorhinid.
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Type Species'

Rhodotheratus parvus

New Holotype

UCLA VP 2910 - With the reassignment of all specimens

originally assigned by Olson (1970) to Captorhinikos parvus

to the new genus Rhodotheratus, a new holotype specimen has

been assigned for Rhodotheratus parvus. UCLA VP 2910, a

nearly complete skull that most clearly displays the new

areas and structures which structures described and

illustrated for the first time in the following pages.

Horizon and locality

Lower Permian Hennessey Formation, approximately 21.3

m above the base. SW %, NW %, sec. 13, T. 8 N., R. 2 W.,

Cleveland County, Oklahoma (approximately 1% miles

southeast of University of Oklahoma, Norman).

Diagnosis

Small-sized captorhinid reptile with, skull length

approximately 23-29 mm (average length approximately 25

mm). Maximum skull width relatively broad, approximately

two-thirds skull length. Skull shape triangular, as

opposed to "heart-shaped," as in other multiple-tooth-rowed

species. Lack of supratemporal bone. Maxillary

articulation with the palate contacts both the palatine and
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vomer. Quadrate non-symmetrical dumbbell shape with the

larger of the two condyles medial, with a long-axis

orientation offset approximately 40-45 degrees from the

short axis (perpendicular to the rostro-caudal axis).

Diamond-shaped section of the posterior parasphenoid

separated from the remaining anterior portion by thin

sutures. Coronoid process of lower jaw strongly developed,

and post-coronoid ramus long and slender. Upper dentition

consists of four premaxillary teeth and three maxillary

tooth rows. Twelve to fourteen marginal maxillary teeth

and two inner tooth rows on maxillary, the outer with five

and inner with three to four teeth. Dentary dentition with

two tooth rows. Second and third teeth of outer lower

tooth row mesio-distally elongated. Sixth tooth inset

slightly and continuing as part of inner of the two rows of

teeth in posterior part of tooth row. Labial row of four

or five teeth beginning at level of fifth or sixth tooth of

labial row. All teeth are non-recurved and lack labial

fluting.
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Description

General

The skull of Rhodotheratus parvus displays all of the

characteristic captorhinid features: a low, flat profile,

dermal sculpturing, cheek flaring, down-turned premaxilla,

and loss of the tabular bone. Dermal sculpturing covers

the entire dorsal surface of the skull and is quite

prominent on most specimens, though some of the specimens

used by Olson (1970) in his initial description were

prepared to a degree that resulted in destruction of some

or all of the sculpture. Heaton (1979) noted that such

over-preparation can impact significantly character-state

interpretations, particularly those based on sutural

patterns. Thus, the new specimens described here become

extremely important to a confident interpretation of

anatomical and phylogenetic data for Rhodotheratus. Cheek

flaring and down-turned premaxilla, though present, are not 

present to the degree that is seen in other, larger

captorhinid species.

More detailed evaluation, both of previously described 

and new specimens demand modification of Olson's original 

reconstruction. The general outline of the skull of

Rhodotheratus (dorsal view), is "triangular," as opposed to
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"heart-shaped," as in the members of the family with

greater numbers of maxillary tooth rows. Olson (1970)

described the skull table as having bilateral embayments

along the posterior borders of the squamosals. However,

newly examined specimens indicate that the caudal border of

the skull roof has a straight margin. The ventral border

of the skull, save for the slight downward hooking of the

premaxilla, is relatively straight in lateral view with

slight undulations. As with Captorhinus laticeps (1979),

the lateral surface of the muzzle of Rhodotheratus is

vertical or nearly so. The dentition is non-ogival.

Table 3 provides a complete list of all skull elements

visible in each specimen.
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2mm

Figure 4A. Rhodotheratus parvus, Reconstruction of

Skull in Dorsal View.
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Figure 4B. Rhodotheratus parvus, Reconstruction of

Skull in Ventral View.
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Figure 4C. Rhodotheratus parvus, Reconstruction of

Skull in Right Lateral View.
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Figure 4D. Rhodotheratus parvus, Reconstruction of

Skull in Occipital View.

Figure 5A. Rhodotheratus parvus, Reconstruction of

Left Mandible in Lingual View.
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Figure 5B. Rhodotheratus parvus, Reconstruction of

Right Mandible in Lateral View.
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Dermal Skull Roof

Premaxilla. The premaxilla is a tri-radiate structure 

consisting of nasal, maxillary, and vomerine rami. The 

maxillary ramus (measured from the anterior border of the 

external narial opening) tapers distally, and carries the 

two distal-most premaxillary teeth (Figures 4,6,7). Only

the dorsal-most portion of the nasal ramus is visible in a

strictly dorsal view, and it contacts the nasal bone

posterodorsally along a highly interdigitated suture. The

vomerine ramus extends posteriorly to contact the anterior

tip of the vomer along the mid-sagittal suture of the

palate. The premaxilla has an average height of 2.2 mm,

average total anterior-posterior length (lateral view) of

2.4 mm, and encompasses the anterior and anteroventral

borders of external narial opening. Light sculpturing is

present on the external surfaces, and it is angled only 

slightly postero-ventrally to the horizontal plane (Figure

7) .

Four conical, premaxillary teeth are present. They

are much longer (from base to tip) than wide and taper to a

sharp point. The first tooth is the largest and close to 

mesial edge of the bone. The-remaining teeth decrease in 

size distolaterally.
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Figure 6. UCLA VP 2922. Rhodotheratus parvus, Skull

in Left Lateral View.

38



Maxilla. The maxilla is the primary tooth-bearing

element of the skull, and is a long, narrow bone, average

total length approximately 11.2 mm (Figures 4,6,7,10). The

rostral end of the maxilla is drawn out, to form a thin

premaxillary process that overlaps the posterior maxillary

process of the premaxilla. The anterodorsal border of

premaxillary process forms the posteroventral border of

external narial opening. Passing posteriorly, the dorsal

edge of the maxilla increases in height and then decreases

to form a convex "humplike" region with its maximum height 

(average 1.4 mm) above a caniniform tooth approximately

one-third of the way down the length of the bone. The

anterior two thirds of the maxilla contacts the lachrymal

dorsally, whereas the posterior third underlies the jugal.

Rostrally, a distinct mesial widening of the maxilla

contacts the vomer and palatine to accommodate the three

maxillary tooth rows. The facet on the palate marking its 

connection with the maxilla straddles the suture connecting

the vomer and palatine. There is only light sculpturing on

the lateral dermal surface of the maxilla.
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Septomaxilla. The septomaxilla, visible only in FMNH 

UR 1255, is a scroll-shaped bone whose outer edge forms the 

mouth of the narial opening. The diameter of the opening 

decreases medially, forming a funnel shaped canal.

Lachrymal. The lachrymal is a large, irregularly

shaped bone comprising most of the lateral aspect of the

snout on each side of the skull, extending from the

posterior margin of external narial opening to the anterior

and anteroventral margin of the orbit (Figures 4,6,7,8,10).

The lachrymal contacts the nasal anterodorsally, the

prefrontal posterodorsally, maxilla ventrally, and jugal

posteriorly. Posteroventrally, an acuminate, suborbital

process extends to approximately the midpoint of the orbit.

The dorsal border is concave upward in the region of the

suture with the prefrontal, and the height of the bone

decreases to accommodate the anterior process of the

prefrontal before increasing slightly again to contact the

lateral border of the nasal bone. The posterodorsal border

is drawn out into a slightly projecting antorbital process,

though it is not as long as the posterior process. Two

vertically aligned foramina are visible on the bone's

posterior orbital surface. These correspond roughly to the
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positions of the lachrymal puncta of Captorhinus laticeps

(Heaton, 1979).
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1cm

Figure 7. UCLA VP 3023B. Rhodotheratus parvus, Skull 

in Right Lateral View.
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Nasal. The paired nasals make up the dorsal aspect of

the snout, articulating fully with each other along a

relatively straight mid-saggital suture. They are

subrectangular in shape with some lateral anterior

swelling. They average 5.9 mm, and 2.5 mm in length and

maximum.width respectively. Rostrally, the anterior border

articulates with the premaxilla, and the lateral protion of

the bone's anterior edge forms the dorsal border of the

external narial opening (average diameter 2.4 mm).

Posterior to the nasal opening, the antero-lateral border

of the nasal contacts the lachrymal, and the posterolateral

edge contacts the medial edge of the prefrontal's anterior

process. Each nasal is dorsally convex, giving it a gently

arched aspect. The anterior and posterior sutures with the

premaxilla and frontal bones are highly interdigitated.

43



Figure 8A. UCLA VP 3023A. Rhodotheratus parvus, Skull

in Dorsal View.
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Figure 8B. UCLA VP 3023A Rhodotheratus parvus, Skull

in Dorsal View.
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Prefrontal. Heaton (1979) noted the internal sutural

complexities involved in the articulations between the

prefrontal, lachrymal and nasal bones of (Eo)Captorhinus

laticeps. Constraints imposed by the extremely small size

of Rhodotheratus preclude a detailed comparison of such

articulations here, but an approximation of positional 

relationships is nonetheless determinable. The prefrontal

in Rhodotheratus is a triradiate bone with an average

length of 5.7 mm and average height at the anterior orbital

margin of 2.1 mm (Figures 4,6,7,8,10). Its

posteroventrolateral edge forms the anterodorsal border of

the orbit. As with C. laticeps a ventral process forms the

anterior border of the orbit medial to the lachrymal

(Heaton 1979) . The lateral edge of this ventral process

forms a suture with the medial edge of the lachrymal. A

prominent anterior process averages 2.9 mm as measured from

anterior edge of orbit and extends forward from the orbit

to articulate ventrolaterally with the lachrymal,

anteromedially with the nasal, and posteroventrally with

the frontal. This anterior process is directed laterally,

giving it a rounded, ventrally concave ventrolateral

border. There is also a shorter, sharply acuminate

posterior process.
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Frontal. The deeply sculptured frontals are anterior-

posteriorly elongate, subrectangular elements that average 

8.9 mm in length and 2.1 mm width. There is also a slight 

lateral widening along the posterior border of the

frontals. They contact each other medially along a 

straight suture, the nasals anteriorly along a highly 

interdigitated suture, the prefrontals anterolaterally 

along a predominately straight suture, the postfrontals

posterolaterally also along a straight suture, and

parietals posteriorly. The posterior suture with parietal 

bone is oriented perpendicular to the midline of the skull

and deeply interdigitated (Figures 4,9). As in other basal

amniotes, they form the most dorsal margin of the orbit

between the pre and post-frontal bones. In addition, a

prominent, keel projects ventrally along the lateral edge

of the ventral surface.

Parietal. The parietals of Rhodotheratus are flat,

quadrangular elements (average length 6.66 mm; average

width approximately 5.2 mm) occupying the posteromedial

portion of the dermal roof. The parietals contact each

other medially, in a straight suture continuous with those

of the postparietals, frontals, nasals and premaxillae.

The pineal foramen averages 1.5 mm in anterior-posterior
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diameter, and is located slightly anterior to midpoint of 

inter-parietal suture. The parietals contact the frontals 

anteromedially, postfrontals anterolaterally, postorbitals 

anterolaterally (lateral to postfrontals), postorbitals

anterolaterally, and squamosals posterolaterally. The

fronto-parietal sutures are deeply interdigitated. The 

frontal bones overlie significantly, the parietal bones at

the suture. This was the only case in which the internal

sutural relationships could be determined between bones for

Rhodotheratus. No supratempotal bone exists, and

therefore, there is no supratemporal notch. As with the 

other dermal skull elements, significant dermal sculpturing

occurs on the dorsal surface of these bones (Figure 9).

Although given a new generic designation, Olson's

(1970) diagnosis of the loss of the supratemporals in this

taxon is upheld. All specimens for which the

posterolateral ends of the parietals are preserved show no 

indications of the presence of this bone. Curiously, the

only other captorhinid species in which this condition is

observed is Saurorictus australis, from the Upper Permian

of South Africa (Modesto & Smith, 2001), also an extremely

small captorhinid species. Modesto & Smith (2001)

described S. australis as having an approximate skull
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length of 22 mm. Although this is smaller than the average

skull length of Rhodotheratus, some of the individual

specimens have skull lengths within 1 mm of that of

Saurorictus.

Figure 9. UCLA VP 3024A. Rhodotheratus parvus,

Parietal Bones in Posterodorsal View (Note the highly-

interdigitated fronto-parietal suture).
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Postparietal. Posterior to the parietals, the skull

table drops off at an angle nearly 90° to the plane of the

skull table at the postparietal bones. Though dermally

derived during development and therefore part of the dermal

roof, the postparietals in Rhodotheratus are vertically

oriented with a caudally directed exposure on the occipital

surface of the skull. They are paired elements that

contact each other along the full extent of their straight,

median suture. They are subrectangular in shape, with

average heights and widths of 0.9 mm and 4.0 mm

respectively.

Postfrontal. The postfrontals are triangularly shaped

bones making up the posterodorsal border of each orbit.

The anterior and ventral apices taper into the orbit,

forming narrowly angled processes. The postfrontals are

bordered dorsomedially by the posterolateral border of the

frontal bones, ventrolaterally by the postorbitals, and

posteriorly by the anterolateral border of the parietals.

They demonstrate pronounced sculpturing on the external

surfaces.

Postorbital. Making up the posterior to

posteroventral portions of orbital margin as well as some

of the "cheek space" caudal to it, the postorbital bones
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are comprised of two sections; a relatively longer (average 

length 1.2 mm), anteroventrally projecting anterior process 

that overlies the jugals along the posteroventral portion 

of the orbital margin, and a subrectangular, more posterior 

component with an average anterior-posterior length of 4.1

mm, and an average height of 3.0 mm). Ventrally, the

suture between the postorbital and jugal is concave. The

postorbitals contact and underly the postfrontals

anterodorsally, the squamosals posteriorly and

posteroventrally, and the parietals posterodorsally. The

postorbital-jugal suture is essentially straight, with some

undulation posteriorly in some specimens. The postorbital-

postfrontal suture is straight, whereas the postorbital- 

parietal and postorbital-squamosal sutures undulate to a 

small degree. The postorbitals exhibit significant surface

sculpturing.

Olson's (1970) description of this element depicted it

with a greatly reduced posterior component, but this study

suggests that his description was probably based upon a

fragmented specimen (FMNH UR 1255). This revised

description brings the shape of the postorbital in

Rhodotheratus more in line with the general shape of the

bone observed in other captorhinid reptiles.
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Jugal. ■ The jugals are sub-triangular elements that

make up the posteroventral border of the orbit. The

vertically oriented jugal bones parallel the long axis of

the skull, with an average length of 10 mm. An acuminate

anterior process extends an average of 3 mm beyond the 

contact with the orbit, where it is bordered ventrally by 

the maxilla and dorsally by the lacrimal. The height 

increases posterior to orbital margin forming a fan shaped 

posterior plate, averaging approximately 4 mm in height. 

The jugal is bordered superiorly by the postorbital,

posterodorsally by the squamosal, and posteroventrally by

the quadratojugal (Figures 4,10).
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Figure 10. UCLA VP 2894. Rhodotheratus parvus, Skull

in Right Lateral View.
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Squamosal. The paired squamosals are subrectangular, 

and make up the posterolateral portion of the cheek dorsal 

to the quadratojugals. A prominent occipital flange 

projects medially along the plane of the occiput. There is 

significant dermal sculpturing along the dorsal surface, 

but not along that of the occipital flange. The medial

edge of the squamosal has been chipped and slightly damaged 

in the specimens available for study, but the outline 

suggests that the medial aspect of the dorsal margin of the

post-temporal fenestra is concave. This, combined with the

convex ventrolateral border of the squamosal gives the

posteroventral margin of the squamosal a sigmoid shape

overall.

Quadratojugal. The quadratojugal bones are laterally, 

subrectangular in shape and contact the jugal anteriorly 

and the squamosal dorsally along a relatively straight

suture. Posteriorly, they follow the contour of the

squamosal forming a medially projecting posterior occipital

flange flush with the medial flange of the squamosal. As

with the squamosals, there is significant dermal

sculpturing along the lateral surface, though none on the

posterior flange.
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Palate

Vomer. The vomers are the anterior-most of the

palatal bones. Medially, the left and right vomers

articulate along the anterior two thirds of the mid

longitudinal palatal suture before each makes contact with

the vomerine ramus of the premaxilla on that side of the

palate. Posteriorly, they articulate with the anterior

edge of the palatine bone along a jagged suture.

Posteromedially, these bones articulate with the

anterolateral edge of the tip of the palatine ramus of the

pterygoid bone along a straight suture.

Palatine. The paired palatines are relatively large, 

quadrangular bones inserted into the angle formed by the

palatine ramus and the transverse flange of the pterygoid.

The palatines articulate anteriorly with the vomer along a

jagged suture and anterolaterally with the maxilla. A

well-developed semicircular facet marks the connection of

the maxilla to the palate. The posterior portion of the

facet is made up by the palatine, and the anterior portion

is comprised of the vomer.

Pterygoid. The pterygoids are the largest components

to the palate of Rhodotheratus and are consist of three

primary portions: (1) a slender anteromedial palatine
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ramus, (2) a laterally projecting subrectangular transverse

flange, and (3) a long posterolaterally projecting quadrate

ramus.

The anterior rami (average length 9.6 mm) are gently

tapered as they extend rostrally, their medial edges

forming the lateral borders of the narrow interpterygoid

vacuity. Anterior to the interpterygoid vacuity, the two

rami come together to form the posterior third of a long,

mid-longitudinal suture, which bisects the anterior palate.

Olson (1970) incorrectly described the two palatine rami as

being fused anteriorly. Further preparation of Olson's

original study specimens shows clearly, the paired

condition of two, separate pterygoid bones. The only

specimen (UCLA VP 2910) displaying an intact interpterygoid

vacuity reveals an anterior-posterior length of 7.0 mm.

Proceeding from the posterior margin rostrally, the

interpterygoid vacuity widens rapidly, coming to a maximum

width of 1.2 mm within the first third of its length.

Anterior to this point, the vacuity tapers gently, forming

a sharp terminus. Posterior to the palatine ramus, the

transverse pterygoid flange expands laterally into a flat,

subrectangular sheet of bone. The posterior margin of the
I
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transverse flange forms a sharp, straight edge

perpendicular to the anterior-posterior axis of the skull
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Figure 11A. FMNH UR 1256 Rhodotheratus parvus, Skull

in Ventral View.
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Figure 11B. FMNH UR 1256. Rhodotheratus parvus, Skull

in Ventral View.
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Posterior to the pterygoid flange, the quadrate ramus of

the pterygoid (average length 6.7 mm) projects

posterolaterally at an approximately 45-degree angle to the

anterior-posterior axis. The quadrate ramus is also a

subrectangular process, though much longer than it is wide,

and is slightly concave in ventral view along its long

axis. The distolateral surface of the quadrate ramus curls

vertically to articulate with the medial edge of the

anteromedially projecting process of the quadrate.

Medial to the connection between the transverse flange

and the quadrate ramus, the basicranial recess is a small,

medially oriented facet, within which, the basipterygoid

tubera of the basisphenoid articulate with the palate.

Additionally, three rows of palatal teeth are present on

the pterygoids: (1) a single row on medial border of

anterior process, (2) a group at posterior and

posterolateral regions of lateral flange, and (3) a small

group along anterolateral border of lateral flange (Figure

4,12) .
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Figure 12A. UCLA VP 2910. Rhodotheratus parvus, Skull

in Ventral View.
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Figure 12B. UCLA VP 2910. Rhodotheratus parvus, Skull

in Ventral View.
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Epipterygoid. Heaton (1979) identified the

epipterygoids of Captorhinus laticeps (= "Eocaptorhinus")

on the dorsal surface of the pterygoid with no visible

ventral contribution to the palate. This is also the case

with Rhodotheratus. None of the specimens examined in this

study afford a dorsal view of (that region of) the palate,

but in all cases where a confident ventral view is

afforded, there is no visible evidence of an epipterygoid.

Some fragments of bone were observed in some of the

specimens in which the palate has been fractured and/or

displaced which could belong to the epipterygoids, but a

confident identification for Rhodotheratus is not possible

at this time.

Quadrate. In ventral view, the quadrate has an

approximately "dumbbell" shaped outline formed by a larger,

medial and slightly smaller, lateral condyle (Figure 13).

The quadrate of Rhodotheratus differs from reconstructions

of other captorhinids, in that the long axis of the

articular surface is not oriented at a 90-degree,

transverse angle to the long axis of the skull. Instead, 

the quadrate is positioned such that the long axis is at an 

approximately 40-45-degree angle to the transverse plane.

The medial and lateral condyles form the basis for the
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articular surface of the quadrate, which is somewhat

saddle-shaped. In additionally, there is a vertically

oriented, anteromedially projecting process, for

articulation with the quadrate ramus of the pterygoid

Figure 13. UCLA VP 2908. Rhodotheratus parvus,

Quadrate Bone in Ventral View.
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Figure 14A. UCLA VP 2910. Rhodotheratus parvus,

Braincase in Posteroventral View.

65



Cult 
' pr

st for

lcm

Figure 14B. UCLA VP 2910. Rhodotheratus parvus,

Braincase in Posteroventral View.
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Braincase

Parasphenoid. This unpaired braincase element is a

flat, diamond shaped (ventral view) bone making up the mid-

ventral surface of the braincase (Figures 4,14) . It

overlies the anterior portion of the parasphenoid dorsally

and possesses a broadly acuminate posterior process that

articulates between the anteriorly projecting ventral

processes of the basioccipital. Only the thinnest of

sutures is seen running posterolaterally from the anterior

margin of the braincase (lateral to the base of the

cultriform process) to the caudal end of the basitubera (in

ventral aspect), separating the parasphenoid from the

basitubera.

It is noteworthy that the caudal end of the

parasphenoid appears to be slightly separated from the rest

by very fine sutures. These sutures run perpendicular to

the sutures that run posteromedially from the anterior

termini of the paired anteriorly projecting processes of

the basioccipital, creating a small, somewhat diamond

shaped section of bone separate from the rest of the

parasphenoid (Figure 14). The separated section appears to 

display bilaterally symmetrical morphology, and is

therefore not interpreted as being due to simple cracking.
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This separated condition of the parasphenoid appears to be

unique to Rhodotheratus among the Captorhinidae. DeBeer

(1937) stated that there are three centers of ossification

for the developing parasphenoid in the lizard group

Lacertilia, one median and rostral, and two that are

lateral and more posterior. Although the organization of

these centers appears to be reversed, it is possible that

these three centers, though completely ossified, maintain a

rudimentary separation in Rhodotheratus.

Basisphenoid. The basisphenoid makes up the

anterodorsal region of the braincase, just posterior to the

base of the cultriform process, and overlays fhe anterior 

portion of the parasphenoid. Although the paired

basitubera are clearly visible in most of the specimens

displaying braincase material (Figures 3,10,11,12), none of 

those examined showed anything more than a minimal view of

its lateral surface. The dorsum sella is not visible in

any specimens examined. The lateral surfaces of the 

basisphenoid of Rhodotheratus bear an anterior-posteriorly 

aligned groove corresponding to Heaton's (1979) groove to

accommodate the facial nerve. Not surprisingly,

considering Rhodotheratus' small size, the groove is
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relatively larger than in Captorhinus ("Eocaptorhinus")

laticeps.

Prootic. The paired prootics are also only minimally 

visible in the specimens examined. They are irregularly 

shaped bones making up the dorsolateral aspect of the

braincase (in lateral view), and connect with the

basisphenoid anteriorly, the supraoccipital
1

posterodorsally, and the stapes ventrally over straight or

weakly undulating sutures. No sutures can be confidently

identified between the prootic and stapes due to their

small size and context of preservation. UCLA VP 2910

displays a prootic structure that is possibly equivalent to

Heaton's supratrigeminal process.

Supraoccipital. The presence of a supraoccipital bone

is confirmed for Rhodotheratus. Although fragmentary in

most specimens observed, the holotype specimen displays

what appears to be the superior portion of the right side

of this cranial element. Although not enough to justify a

confident reconstruction of the inferior aspect, it does

allow for a confident reconstruction of the superomedial

border of the post temporal fenestra (Figure 4).

Exoccipital. The paired exoccipitals, located on the

posterior surface of the braincase, are crescent-shaped
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elements with convex lateral borders, and make up the

lateral walls of the foramen magnum. Ventrally, they are

fused'to the dorsolateral surfaces of the basioccipital

lateral to the occipital condyle. The (dorso) lateral

suture between the exoccipitals and the opisthotic is

confidently visible (Figures 4,15).

Basioccipital. The single basioccipital bone

comprises the posteroventral aspect of the braincase,

including the posteriorly projecting, subcircular occipital

condyle, for articulation with the atlas (Figures 5,14,15).

In posterior view, the condyle articulates bilaterally with

the exoccipitals as noted above.
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Figure 15. UCLA VP 2910. Rhodotheratus parvus,

Braincase in Posterior View.
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Ventrally, bilateral short and broadly acuminate processes

extend anteriorly from the base of the condyle. Nestled in

between these processes is the (also broadly acuminate)

posterior tip of the parasphenoid. The lateral surface

appears to bear a deep groove corresponding to part of the

foramen and groove for the facial nerve in C. laticeps

(Heaton, 1979) .

Opisthotic. The opisthotics are irregularly shaped

bones making up the posterolateral aspects of the braincase

(Figures 5,12,14). They articulate medially with the

exoccipitals, ventromedially with the basioccipital,

anterolaterally with the footplate of the stapes, and

anterodorsally with the prootic.

The general outline of the opisthotic bones in

Rhodotheratus is not unlike that seen in other, larger

captorhinids (Price, 1935; Heaton, 1979). Of note,

however, is the presence of a pronounced recess on the

posterior aspect of the opisthotic on the paraoccipital

process. Similar recesses have been described in

Captorhinus as an attachment point for the obliquus capitis

magnus muscle (Heaton, 1979; Sumida, 1990), and in the

ophiacadontid pelycosaur Ophiacodon (Romer and Price,

1940). In none of the other organisms, however, is the
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recess as deep, relative to the size of the organism as

that seen in Rhodotheratus.

Stapes. The stapes is clearly visible in several

specimens (Figures 5,11,12,14,15,16). Proximally, the

stapes connects to the body of the braincase at a wide,

subcircular medial stapedial footplate. Projecting from

the footplate is the lateral process, which is directed

laterally and slightly posteriorly and tapers to a

cylindrical, blunt end. Located slightly proximal to the

center of the lateral process is the stapedial foramen

(Figure 14, 16).
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Figure 16. FMNH UR 1256. Rhodotheratus parvus, Stapes

in A) Ventrolateral and B) Posteroventral View.
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Mandible

General. The mandible of Rhodotheratus is fairly

stoutly constructed, considering its small size. In

ventral view, the anterior three fourths of the mandible is

primarily straight before turning lingually, creating a

laterally convex outline along the caudal portion of its

length. A prominent, upwardly projecting coronoid-

surangular eminence (equals Heaton's (1979) coronoid-

surangular crest) comprises approximately one third of the

total length of the mandible. The adductor fossa is also

large, encompassing nearly the entire area lingual to the

coronoid-surangular eminence. There is no indication of

the presence of a Meckelian foramen in any of the examined 

Rhodotheratus specimens. Light surface sculpturing exists

along the lateral exposure, heavier in the area of the

coronoid-surangular eminance than further rostrally.

A maximum of 14 teeth, are organized into two rows

located on the dorsal surface of the dentary. The mesial

three to four teeth are much taller than they are wide, but

there is a distinct shortening and widening of the teeth as

they progress distally where the teeth are approximately as

wide as they are tall. The anterior three teeth are angled

rostrally.
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Dentary. Comprising the lateral and dorsal surfaces

of the rostral half of the mandible, the dentary is the

tooth-bearing element of the mandible as well as its

largest component (Figures 4,5,6,7,10,11,12,17,18). On the

medial aspect of the mandible, the dentary articulates with

the splenial rostrally, and the lateral edge of the

anterior process of the coronoid. On the lateral surface,

the splenial borders the dentary anteroventrally, the

angular posteroventrally, and the surangula,

poste'rodorsally. All of the sutures are straight. The

posterior tip is drawn out into a wide, but moderately

sharp, point at the junction between the angular and

surangular.
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Figure 17A. FMNH UR 1272. Rhodotheratus parvus, Lower

Jaw in Ventral View.
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'Figure 17B. FMNH UR 1272. Rhodotheratus parvus, Lower

Jaw in Dorsal View.

78



2mm

Figure 17C. FMNH UR 1272. Rhodotheratus parvus, Lower

Jaw in Mesial View
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Figure 17D. FMNH UR 1272. Rhodotheratus parvus, Lower 

Jaw in Right Lateral View.
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Splenial. Whereas, the dentary occupies the dorsal

and lateral surfaces of the mandible, the splenial makes up

its ventral and medial surfaces. The splenial spans the

distance between the rostral tip of the mandible

anteriorly, where it articulates with the dentary

anteriorly and dorsolaterally, and the angular posteriorly

(Figures 4,5,10,11,12). The posteroventral terminus of the

splenial tapers to a tip nestled between the two anteriorly 

projecting process of the angular. Lingually, a narrowly

subrectangular flange projects dorsally, articulating with

the dentary anterodorsally and the coronoid posterodorsally 

along straight sutures. Posteriorly, the splenial flange 

articulates with the prearticular along a slightly

undulating suture (Figure 5) .

Coronoid. The elongate coronoid is only clearly 

visible on the lingual aspect of the mandible, though it 

has a minor dorsal exposure along the ridge of the

coronoid-surangular eminence. Its posterior-most point is

just anterior to the apex of the coronoid-surangular

eminence, and it passes anteriorly to a point lingual to

the penultimate dentary tooth. Two posteroventrally

directed acuminate processes extend from the body of the

coronoid. The more posterior of the two processes extends
I
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along the lateral wall of the aductor fossa, whereas the

other projects along the anterior margin of the rim of the

fossa (Figure 5).

Prearticular. The prearticular is also located

primarily on the lingual surface of the mandible. The

dorsal edge of the prearticular encompasses the majority of

the lingual margin of the rim of the adductor fossa. The

rostral end of the prearticular is expanded into a bulbous,

dorsally oriented process, which articulates vertically

with the coronoid, anteriorly and anteroventrally with the

splenial, and ventrally with the angular. Widening

posteriorly, the prearticular forms a ventrally visible

spatulate process underlying the lingually projecting

articular process (Figures 4,5,12).

Surangular. The surangular is the lateral component

of the posterodorsal portion of the mandible, visible in

both labial and lingual views. In lingual view, it

articulates anteroventrally with the dentary and

posteroventrally with the angular, both along extended,

straight sutures. Lingually, the line of articulation

between the surangular and the dentary is more dorsally

located than laterally, indicating that there is a great

deal of overlap between these two elements. The other
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lingual associations of the surangular include the coronoid

rostrally, and the articular caudally. The dorsal border

of this mandibular element is a convex ridge that, combined

with the coronoid anteriorly, makes up the vertically

projecting coronoid-surangular eminence. This bone also

encompasses the lateral aspect of the retroarticular

process (Figure 5).

Angular. The posteroventral component of the

mandible, the angular is visible in lingual, lateral, and

ventral view. This complex, irregular bone has two primary

sections, an anterior flange that wraps around the ventral

portion of the mandible, and a posterior portion with a

lingual exposure from which, the articular process projects

(Figures 4,5,7,10,11,12). The anterior flange has a

complex set of associations. Two highly acuminate

processes project anteriorly and make up the angular's

anterior border. The caudally projecting process of the

splenial lies between these two processes. Laterally, the

longer of the two processes articulates with the dentary

dorsally. Moving caudally along the dorsal border of the

angular's lateral aspect, its articulation with the dentary

terminates at approximately the midpoint of the coronoid

prominence, there initiating its articulation with the
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surangular. Lingually, the angular contacts the

prearticular from the tip of the medial anterior process

along its entire dorsal border. All of the angular's

sutural relationships are straight.

Articular. The articular is a short, irregularly

shaped bone located on the lingual aspect of the caudal end

of the mandible (Figure 5). The primary contribution of

the articular to the mandible is the articular surface for

the quadrate dorsally, completing the ventral half of the

jaw joint in Rhodotheratus (Figures 4,5,12).

I
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Figure 18. FMNH UR 1278. Rhodotheratus parvus, Left

Mandible in Dorsal View.
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CHAPTER FOUR

DISCUSSION

Degree of Maturity

Rhodotheratus is determined here to be represented by

adult material. This conclusion is based upon a number of

features that indicate bone growth past the juvenile state:

(1) a high degree of sculpturing on the dermal roofing

bones; (2) a high degree of interdigitation of sutures,

particularly those oriented perpendicular to the long axis

of the skull; (3) well-developed facets marking the

articular surfaces between adjacent bones; and (4) multiple

rows of well-developed maxillary and dentary teeth. Dermal

sculpturing (Figures 8,9) takes the form of a "shallow pits 

and ridges" pattern commonly seen in other mature

capto'rhinid species.

The fact that most of the specimens assignable to

Rhodotheratus are nearly complete, articulated specimens is

also a testament to their degree of maturity. The poorly

ossified nature of juvenile skulls predisposes them to

disarticulation and incomplete preservation. Post-mortem
I

modification of Rhodotheratus specimens does occur, but it

is inevitably distortion, not disarticulation. All
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specimens of Rhodotheratus have skulls with sutural

articulations robust enough to resist even some post-mortem

crushing. At the level of articulation between individual

bones, all sutures perpendicular to the long axis of the

skull' display a high degree of interdigitation,

particularly when considering the absolutely and relatively

small, skull size of the species. This pattern is

particularly apparent in the connections between the dermal

roofing bones adjacent to the sagittal midline of the skull 

(prem:axilla, nasal, frontal, and parietal bones) . In some

instances, the region of interdigitation can encompass up

to 1 mm in a skull that is less than 25 mm in length.

In UCLA-VP 3024, the frontal bones are absent,

exposing their joint surfaces with the parietals. Not only

is there a high degree of interdigitation, but the lower

lip of the anterior border of the parietal bones clearly

underlies, the posterior margin of the frontal bones.

Additionally, small extensions of bone connect the

superficial parietal interdigitating, sutural projections

with the extended, underlying lip of the parietals (see

Figure 9). The overall result is, a highly interdigitated 

scarf joint. Interdigitating sutures between non-dorsally

oriented bones occur as well. UCLA VP 2894 displays a high
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degree of interdigitation between the jugal and the

squambsal plus quadratojugal.

Also indicating maturity past a juvenile stage is the

presence of well-developed facets marking the point where

one cranial element fits in or onto another element.

Further preparation in FMNH UR 1256 revealed that the right

maxilla had become separated from the palate, allowing a

clear view of the connecting surfaces (Figure 11). There

is a 'wide maxillary process that bears a well-developed

maxillary facet, marking the area of connection between the

maxilla and the palate. This maxillary process as

described here is equivalent to Heaton's (1979) maxillary

process in his reconstruction of the palate of Captorhinus

laticeps. However, the process appears to be much more

pronounced in the palate of Rhodotheratus. furthermore,

there is no apparent facet marking the connection of the

palatine to the maxilla in the reconstruction of C.

laticeps. Modesto (1998), in his update of the cranial

structure of C. aguti, appeared to include a facet on the

articulating surface of the maxillary process. Like C.

laticeps, however, the process is made up solely of the

palatine.

88



Dentitional characters implying adult age for

Rhodotheratus are: the variability within the types of

teeth present, size differences between teeth of the same

type in the same specimen, and the presence of a distinct

caniniform region within the maxillary dentition. Although

all teeth can be characterized under the general

description of "conical", there is variation between teeth

in different regions of the jaw. The height of the mesial-

most premaxillary teeth is greater than the diameter at

their bases. They also show more pointed tips and display

a gradual decrease in size proceeding from the proximal to

the distal region of the premaxilla. These features

suggest that the teeth had reached their full growth

potential.

'Proceeding distally along the tooth line, the single

row of maxillary teeth yields to a multiple-rowed region

concomitant with a lingual widening of the maxilla to

accommodate the increased number of rows. Teeth within the

multiple-rowed region of the upper jaw of Rhodotheratus

show structural differences when compared with the teeth in

the more mesial region of the jaw. The maxillary teeth are

typically more stoutly constructed than the more mesial 

premaxillary teeth, have a more rounded tip with a slight'
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mesio-distal cutting edge. They show distinct compression

decreasing the width of the teeth linguo-labially. The

mesio-distal length of the bases of these teeth is

generally much greater than that of the premaxillary teeth

with relatively more rounded bases (Figure 4). The teeth

within the caniniform region of the upper jaw also differ

in size from their maxillary counterparts. The caniniform

teeth are relatively more massive compared to the teeth in

immediately more mesial and distal positions. The

magnitude of the size differences again imply an amount of

time to allow for full growth potential of these teeth.

Distal to the caniniform region, tooth size tooth size

decreases markedly. The teeth of the lower jaw generally

follow a pattern similar to that seen in the upper jaw.

The two rows of mandibular teeth appear to lie within the

gaps in between the three rows of maxillary teeth when the

jaws are clenched.

Functional and Feeding 
1 Considerations

The dentitional characteristics of Rhodotheratus

indicate that it was likely insectivorous. The long

conical teeth towards the rostral end of the mouth appear

to have been quite well suited to capturing and holding
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small prey items. Conversely, the teeth do not demonstrate

wear patterns characteristic of the processing fibrous

plant material seen in other, herbivorous, captorhinids

(Hotton, et al. 1997). Presumably, the three rows of

smaller palatal teeth and conical cheek teeth in

Rhodotheratus might also have aided in holding prey in the

mouth, though to a lesser extent. The labio-lingual

compression of the cheek teeth in the multiple tooth rowed

region of the maxillas may have facilitated gripping or

puncture of the chitinous exoskeleton of insects.
1 r

Phylogenetic Considerations

The phylogenetic relationships of basal members of the

Captorhinidae have been addressed in a number of studies

(Gaffney and McKenna, 1979; Ricqles, 1984; Dodick and

Modesto, 1995; Laurin and Reisz, 1995). Tin analysis of the

phylogenetic relationships of all members of the

Captorhinidae is beyond the purview of this study; rather,

the phylogenetic position of Rhodotheratus relative to the

taxa for which relationships are well resolved is presented

here. As the specimens examined here do not conform to

Olson's (1970) definition of the genus Captorhinikos, and

as specimens assigned to Captorhinikos chozaensis and C.
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valensis were not studied here, that genus is not involved

in this study. Similarly, Riabininus, Rothianiscus,

Hecatogomphius, Kahneria, Moradisaurus, and Acrodontia are

not included in the analysis.

A phylogenetic analysis was performed on a group of

basal members of the family Captorhinidae including the

genera Romeria, Protocaptorhinus, Rhiodenticulatus,

Captorhinus, Labidosaurus, Labidosaurikos, Rhodotheratus,

Saurorictus, and a new, presently unnamed taxon (Taxon X)

currently in prep by Sumida, et al. using PAUP* 4.0b

(Swofford, 2002). Consistent with Heaton and Reisz's

(1986,) use of the genus Protorothyris as an outgroup for

the Reptilia, the genus was utilized here also. Forty-

three characters (Appendix B) were subjected to an initial,

exhaustive maximum parsimony analysis with no adjustments

to the data and yielded a single maximally parsimonious

tree (Figure 19). Subsequent analysis utilized addition

and subtraction of taxa and characters as described below.

Other analyses include the successive re-weighting of

homoplasic characters using the rescaled consistency index

method (Farris, 1989) as available in PAUP*. All analyses

produced a single tree congruent with that presented in

Figure 19.
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Protorothyris

Romeria

Protocaptorhinus

74
49

Rhiodenticulatus

C. laticeps
98

-- 95“

74
50

98
69

C. aguti*

Labidosaurus

98

9T
70
48

100
100

__Labidosaurikos*

84

63 Saurorictus

Rhodotheratus* 5 changes

Taxon "X"

Figure 19. Single Most Parsimonious Phylogenetic Tree

(Over 34 Million Trees Searched) Generated by Analysis

Using PAUP* 4.0 (Taxon "X" is a new, single tooth-rowed

genus of captorhinid reptile currently in prep by Sumida,

et al. and is as of yet, unnamed; * in tree represents

multiple tooth rowed species; Internal branch numbers

represent bootstrap values, both weighted (above) and

unweighted (below).
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With the distinction of Rhodotheratus as a new genus,

the total number of genera contained in the Captorhinidae

increases to 15. As expected, the protorothyridid

Protorothyris and the basal captorhinid Romeria formed a

sister group relative to the remaining captorhinid taxa.

Also as expected, the two members of the genus Captorhinus

grouped together, the two genera Labidosaurus and

Labidosaurikos grouped together, and these two groups

sorted together, forming a larger monophyletic group. (The

recently described Captorhinus magnus (Reisz et al., 2002)

is based on only fragmentary specimens and was not included

in this analysis.) The immediately successive sister taxa

to this group are Saurorictus and Rhodotheratus,

respectively. This grouping is stable and highly resistant

to change. Subsequent to the initial analysis, multiple

variations were applied, including: removal of Saurorictus,

removal of specific characters common to Rhodotheratus and

Saurorictus (Characters 18 and 40; see Appendix B), and

variation of analysis search parameters (branch and bound

as well as exhaustive maximum parsimony). Additionally,

the reliability of internal branching was tested with 100 

bootstrap replications (Felsenstein, 1985) with and without 

re-weighting of characters (Figure 19). In all cases, the
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same basic tree was generated. These results conflict with

those of numerous previous studies, including Ricqles

(1984), Ricqles and Taquet (1982) and Gaffney and McKenna

(1979) but are consistent with the more recent study of

Dodick and Modesto (1995), whose hypothesis of

relationships for more basal captorhinid reptiles is

supported in large part, by the results presented here.

There are significant morphological differences between

Rhodotheratus and Saurorictus, and phylogenetic analysis

confirms their placement in separate taxonomic groups.

This suggests that the loss of the supratemporal bone was

convergent in these two taxa, rather than lost and then

subsequently regained in the subsequent, more derived

groups. This may have been a means to increase skull>
strength and stability in each of these extremely small

predators.

It is important to note that Labidosaurikos and

Captorhinus include species with multiple tooth rows.

Given that Rhodotheratus has multiple tooth rows, the

topology of the resulting cladogram indicates that multiple

tooth rows would have had to develop on at least two

separate occasions. Alternatively, if multiple tooth rows 

developed only once, and then single tooth rows would have
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had to have been redeveloped independently in C. laticeps

and Saurorictus (Figure 19). A homoplastic return to the

plesiomorphic condition of single tooth rows is considered

here to have been less likely. However, regardless of

which of these trajectories proves to be correct, homoplasy

in dental features was clearly a feature of the basal

reptilian family Captorhinidae.
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APPENDIX A

TABLES
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Table 1: List of Cranial Characteristics Currently

Considered to Mark the Amphibian-Amniote Transition (*

indicates cranial character; indicates potentially

ambiguous character).

CHARACTER CITATION
Frontal bone contacting orbit 
between the prefrontal and 
postfrontal*

Laurin and Reisz,
1995; 1997

Lack of contact of parietal lappet 
to squamosal*

Berman, et al. 1992

Loss of intertemporal bone* Sumida, et al. 1992
Presence of occipital flange of 
squamosal (convex)*

Laurin and Reisz,
1995; 1997

Presence of dentition on transverse 
flange of pterygoid*

Laurin and Reisz,
1995

Convex basioccipital condyle* Laurin and Reisz,
1995; 1997

Supraoccipital ossification* Berman, et al. 1992
Absence of coronoid denticles* Laurin and Reisz,

1997
Single splenial in lower jaw* Berman, et al. 1992
Presence of labyrinthodont 
infolding of tooth enamel*

Laurin and Reisz,
1995

Fusion of atlantal pleurocentrum to 
axial intercentrum

Sumida, et al. 1992

Axial centrum angled anterodorsally Laurin and Reisz,
1995

Cleithrum restricted to anterior 
edge of scapulocoracoid

Laurin and Reisz,
1995

Presence of 3 scapulocoracoid 
ossifications

Laurin and Reisz,
1995; 1997

Presence of astragalus Laurin and Reisz,
1995; 1997

Dorsal scales long and slender Laurin and Reisz,
1997
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Table 2. Specimens Referred to Captorhinikos parvus in

Olson''s Initial (1970) Description of the Species, and

Which are Now Referred to Rhodotheratus parvus.

I

SPECIMEN ELEMENTS REPRESENTED
FMNH UR 1250 Holotype: Skull and part of right 

lower jaw
FMNH UR 1251 Partial skull, jaws, and skeleton
FMNH UR 1252 Distal end of lower jaw
FMNH UR 1253 Seven vertebrae
FMNH UR 1254 Crushed skull, jaws, and postcranium
FMNH UR 1255 Skull and jaws
FMNH UR 1256 Skull and jaws
FMNH UR 1257 Skull and jaws
FMNH UR 1258 Skull and jaws
FMNH UR 1259 Partial skull and jaws
FMNH UR 1262 Partial skull
FMNH UR 1263 Partial skull showing maxillary 

teeth
FMNH UR 1264 Partial skull and jaws
FMNH UR 1265 Partial skull and jaw
FMNH UR 1266 Distal end of skull
FMNH UR 1267 Jaws and skull fragments
FMNH UR 1268 Partial skull and jaws
FMNH UR 1269 Partial skull and jaws
FMNH UR 1270 Distal end of skull and jaws
FMNH UR 1271 Part of lower jaw
FMNH UR 1272 Lower jaw
FMNH UR 1273 Lower jaw
FMNH UR 1274 Part of lower jaw
FMNH UR 1275 Lower j aw
FMNH UR 1276 Part of lower jaw
FMNH UR 1277 Part of lower jaw
FMNH UR 1278 Lower j aw
FMNH UR 1279 Parts of skull and jaw
FMNH UR 1280 Lower j aw
FMNH UR 1281 Lower j aw
FMNH UR 1282 Maxillae and dentaries
FMNH UR 1283 Part of lower jaw
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Table 3: Individual Skull Elements Visible in Each

Specimen Utilized in this Study.

Skull
Element

U
C

LA
 V

P 
28

94

U
C

LA
 V

P 
28

98

U
C

LA
 V

P 
29

00

U
C

LA
 V

P 
29

08

U
C

LA
 V

P 
29

10

U
C

LA
 V

P 
29

12

U
C

LA
 V

P 
29

15

U
C

LA
 V

P 
29

18

U
C

LA
 V

P 
29

22

U
C

LA
 V

P 
30

23
-A

U
C

LA
 V

P 
30

23
-B

U
C

LA
 V

P 
30

23
-C

U
C

LA
 V

P 
30

24
-A

U
C

LA
 V

P 
30

24
-B

U
C

LA
 V

P 
30

25

FM
N

H
 U

R
 12

55

FM
N

H
 U

R
 12

56

FM
N

H
 U

R
 12

57

FM
N

H
 U

R
 12

58

FM
N

H
 U

R
 12

72

FM
N

H
 U

R
 12

73

FM
N

H
 U

R
 12

78

Premaxilla * * * * * * * *

Maxilla * * * * * * * * *

Septomaxilla *

Lachrymal * * * * * * * * * * * *
1

Nasal * * * * * * * *

Prefrontal * * * * * * * * * *

Frontal * * * * * * * * * * * * * * *

Parietal 1 * * * * * * * * *

Postparietal * * * * * * * *

Supratemporal * * * * * *

Postfrontal * * * * * * * * * * *

Postorbital * * * * * * * * *

Jugal * * * * * * * * * *

Squamosal * * * * * *

Quadratojugal * * * *

Vomer * *

Palatine , * *

Pterygoid * * * * * * * * *

Quadrate *

Parasphenoid * * * * * * * *

Basisphenoid *

Prootic *

Supraoccipital * *

Exoccipital * * *

Basioccipital * * * *
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Opisthotic * *

Stapes * * *

Cornua , 
Branchialia

* * *

Dentary * * * * * * * * * * * * * * *

Splenial *

Coronoid *

Prearticular * * * * *

Surangular * * * * * * * *

Angular , * * * * * * *

Articular ’ * * * * * * *
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Table 4: Distribution of character-states among the

eleven captorhinid taxa included in the phylogenetic

analysis presented in chapter three. The numbers in the

top rows (1-43) refer to the characters described in

Appendix B (A question mark indicates that the character-

state .could not be determined because of incompleteness of

specimen or inaccessibility of examination).

Character / 
Taxon ■

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

■
Rhodotheratu 0 0 1 0 0 1 1 0 1 0 1 0 ? 1 1
Saurorictus 0 0 ? 1 1 1 0 0 ? 0 1 0 0 0 1
Protorothyris 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Romeria , 0 0 1 1 0 0 0 0 ? 1 0 0 0 1 0
Protocaptorhinus

pricei
0 0 1 1 0 ? 0 0 1 1 0 0 0 1 1

New Taxon “X” 1 0 1 1 0 1 0 0 ? 0 0 0 0 1 1
Rhiodenticulatus 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1
Captorhinus

laticeps
0 0 1 1 1 ? 0 0 2 0 1 1 0 1 1

Captorhinus' 
aguti

0 0 1 1 1 1 0 0 2 0 1 1 0 1 1

Labidosaurus 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
Labidosaurikos 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

I
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Character / 
Taxon

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Rhodotheratus ? 0 2 ? 1 0 1 0 1 1 ? ? ? ? 0
Saurorictus 1 ? 2 ? 1 0 ? ? ? ? 0 ? ? ? 0
Protorothyris 0 0 0 0 0 0 0 0 0 0 0 ? 0 0 0
Romeria 0 0 0 0 1 0 ? 0 0 0 0 ? 0 ? 0
Protocaptorhinus

pricei
1 0 0 1 1 0 ? 0 0 0 0 0 0 1 0

New Taxon “X” 1 0 1 1 1 1 1 0 ? ? 0 0 0 0 0
Rhiodenticulatus 1 0 ? 1 1 ? 1 0 0 0 ? 0 0 ? 0
Captorhinus

laticeps
1 1 1 2 1 0 1 1 1 1 0 0 0 1 0

Captorhinus
aguti

1 1 1 2 1 0 1 1 1 1 0 0 0 1 0

Labidosaurus 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1
Labidosaurikos 1 1 1 2 1 1 1 1 1 2 2 1 1 1 1

Character / 
Taxon .

31 32 33 34 35 36 37 38 39 40 41 42 43

Rhodotheratus 1 1 0 1 ? 1 1 1 0 1 0 1 1
Saurorictus ? ? ? ? ? ? ? 1 0 0 0 1 0
Protorothyris 0 0 0 0 0 0 0 0 0 0 0 0 0
Romeria 0 0 0 ? ? ? 0 1 0 0 0 1 0
Protocaptorhinus

pricei
0 0 0 ? ? ? 1 1 0 0 0 1 0

New Taxon “X” 1 0 ? 1 1 ? 0 1 0 0 0 1 0
Rhiodenticulatus 0 0 0 1 ? ? ? 1 0 0 0 1 0
Captorhinus

laticeps
0 1 0 1 0 0 2 1 0 0 1 1 1

Captorhinus
aguti

0 1 0 1 0 0 2 1 0 1 1 1 1

Labidosaurus 1 1 • 1 1 1 1 1 1 1 0 1 2 0
Labidosaurikos 1 1 1 0 1 1 1 1 1 2 1 2 0
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APPENDIX B:

SKULL CHARACTERS AND CHARACTER-STATES

USED IN PHYLOGENETIC ANALYSIS
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1. SKULL LENGTH: small; less then 5 cm antero-posteriorly

in mature specimens (0), or large; greater than 5 cm

anteroposteriorly in mature specimens (1) (this

study).

2. SNOUT WIDTH: (immediately cranial to orbit): broad;

greater than or equal to 35% of skull length (0), or

narrow; less than 25% of skull length (1) (Dodick &

Modesto, 1995).

3. PREMAXILLA: ventral margin straight (0), or flexed &

aligned anteroventrally in lateral view (1) (Berman

'and Reisz, 1986).

4. MAXILLA: relatively straight (0), or posterior end1
flexed laterally (1) (Dodick & Modesto, 1995) .

5..MAXILLA: posterior most tooth positioned at level of 

'posterior margin of orbit (0), or positioned at level

of midpoint of orbit (1) (Dodick & Modesto, 1995).

6. LACRIMAL: suture with jugal small (0), well-developed

(1), or posterior to orbit (2) (Dodick & Modesto,

1995).

7 / PREFRONTAL: anterior process short; approximately 

equal to posterodorsal process in anteroposterior 

length (0), or Long and narrow; approximately twice
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the anteroposterior length of the posterodorsal

process (1) (Dodick and Modesto, 1995) .

8. FRONTAL: anterior process (from pt. at which frontal

contacts orbit) short; less than 55% of the total

■frontal sagittal length (0), or long; approximately

60% of the total frontal sagittal length (1) (reworded

from Dodick & Modesto, 1995).

9. JUGAL: alary process absent (0), present & positioned

'no higher than the midpoint of the suborbital process

1 of jugal and is distinct from the orbital margin (1), 

or present & positioned dorsally on the medial surface 

of the jugal flush with the orbital margin (2) (=

"median process" of Berman and Reisz, 1986; Dodick and

Modesto, 1995).

10. QUADRATOJUGAL: anteroposteriorly elongate &

subrectangular in shape (0), or relatively shorter,

almost square in shape (1) (reworded from Dodick and

and Modesto, 1995).

11. QUADTRATOJUGAL: convex upward (0), square tipped

anteriorly (1), or notched (2) (Dodick and Modesto,

1995).
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12.POSTORBITAL CHEEK: mostly straight/little lateral

convex (0), or convex/expanded laterally (1) (Dodick

and Modesto, 1995).

13 .'SUPRATEMPORAL: separated from the posparietal (0), or 

solidly fused with the postparietal (1) (Dodick and

Modesto, 1995).

14. PARIETAL (PINEAL) FORAMEN: positioned at midpoint of 

interparietal suture (0), or anterior to midpoint of 

interparietal suture (1) (Dodick and Modesto, 1995).

15. POSTPARIETAL: contacts mate fully along dorsal-ventral

thickness.(0), or dorsally only, postparietals

slightly separated ventrally by dorsal aspect of 

supraoccipital (1) (reworded from Dodick and Modesto,

1995) .

16. POSTPARIETAL: in parasagittal section, flat (0), or

concave (1) (this study).

17. POSTPARIETAL: majority of postparietal on occipital 

skull surface and unsculptured (0); or majority of 

postparietal on dorsal skull surface and sculprured

(1) (this study).

18.SUPRATEMPORAL: no contact with postparietal (0), 

contact with postparietal (1), or absent (2) (this

study).
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19.OCCIPITAL MARGIN OF SKULL TABLE: embayed bilaterally

(0), straight (1), single medial embayment (2) (Dodick

and Modesto, 1995).

20.TABULAR: present, resulting in transversely short

postparietal (0), or absent, resulting in transversely 

elongate postparietals (1) (reworded from Dodick and

Modesto, 1995).

21.SUPRATEMPORAL HORN: absent (0), or present (1) (this

study). .

22. ECOPTERYGOID: present (0), or absent (1) (Dodick and

.Modesto, 1995).

23. PTERYGOID: transverse flange broad-based and

distinctively angular in ventral view (0), or narrow

and tongue-like in ventral view (1) (Dodick and

Modesto, 1995).

24. PARASPHENOID: deep ventral groove absent between

cristae ventrolateralis (0), or present between

cristae ventrolateralis (1) (Dodick and Modesto,

1995).

25. CULTRIFORM PROCESS OF STAPES: extends anteriorly (0),

extends anterodorsally at an angle of approximately 

15° to basal plane (1), or extends anterodorsally at
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'an angle greater than 45° to basal plane (2) (Dodick

and Modesto, 1995).

26.SUPRAOCCIPITAL: in lateral view, slopes anterodorsally

(0), vertical (1), or angled posterodorsally (2)

(Dodick and Modesto, 1995).

27.SUPRAOCCIPITAL LATERAL ASCENDING PROCESS: accounts for

less than one half of height of supraoccipital (0), or 

greater than two thirds of height of supraoccipital

(1) (Dodick and Modesto, 1995).

28.OCCIPITAL CONDYLE: at level of quadrate condyles in

.ventral view (0), immediately anterior to quadrate

condyles in ventral view (1), or posterior to condyles

in vent view (2) (Dodick and Modesto, 1995).

29. PAROCCIPITAL PROCESS: short; less than one half the

length of the stapedial columella (0), or long and 

"rod-like;" greater than one half the length of the 

stapedial columella (1) (Dodick and Modesto, 1995) .

30. MANDIBULAR RAMUS SHAPE: in ventral view, relatively

straight (0), or sigmoidal shape (1) (Dodick and

Modesto, 1995).

31. MANDIBULAR RAMUS SIZE (width): less than 8% of total

jaw length (0), greater than 8% of total jaw length

(1) (Dodick and Modesto, 1995).
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32. MANDIBULAR RAMUS POSTERIOR END: rectilinear (broadly-

expanded) (0), or acuminate (1) (Dodick and Modesto,

1995).

33. MANDIBLE LATERAL SHELF BELOW CORONOID PROCESS: absent

(0), or present (1) (Dodick and Modesto, 1995).

34. MANDIBLE, ANTERIOR PROCESS OF CORONOID: short (0), or

long (1) (Reworded from Dodick and Modesto, 1995).

35. MECKELIAN FORAMEN (= posterior foramen

intermandiularis caudalis): small; anterior-posterior

length less than 9% of lower jaw (0), or large;

anterior-posterior length greater than 14% of lower

jaw (1) (Dodick and Modesto, 1995).

36CORONOID PROCESS, POSTERODORSAL PROCESS: slender and

does not form wall of adductor fossa (0), or deep and

forms dorsal most third of lateral wall of adductor

fossa (1) (Dodick and Modesto, 1995) .

37. RETROARTICULAR PROCESS: absent (0), present & slender

(1), or present & broader transversely than long (&

short) (2) (Dodick and Modesto, 1995) .

38. MAXILLARY DENTITION: tooth stations number 30 teeth or

more (0), or 25 or less (1) (Berman and Reisz, 1986) .

39. MAXILLARY CANINIFORM TEETH: present (0), or absent (1)

(Dodick and Modesto, 1995).

110



40. MAXIMUM NUMBER OF TOOTH ROWS (maxillary and

mandibular): single (0), two to three (1) , four or

more (2) (Modified from Ricqles, 1984) .

41. MARGINAL DENTITION: cheek teeth conical (0), or

chisel-shaped (1) (Dodick and Modesto, 1995) .

42. DENTARY TEETH: isodont (0), caniniform region present

anteriorly (1), or caniniform tooth present mesially 

with caniniform region absent (2) (reworded from

Dodick and Modesto, 1995).

43. DENTARY: 1st tooth oriented mainly vertically (0), or

1st tooth leans strongly rostrally (1) (reworded from

Dodick and Modesto, 1995).
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