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Preface vii

Preface

This is it. This is the main station on an almost life-long journey to understand biology
at its core. Ever since I first saw the classical human body poster in kindergarten,
around the same time my father showed the viscera of a lab rat to me and my brother,
I have been fascinated by the stupendous complexity inherent in the machinery of life.
For most people, the same fascination (and horror) does never become so tangible as
when a baby is born or when our bodies cease to function normally. My quest to
understand biology has taken me around the life sciences on a path I never imagined.
Starting from basic chemistry, to cell biology, to physiology and pathology, just to
realize the detailed explanations about life processes that I sought was never answered
in a satisfactory way. In despair, I equipped myself with technological skills in bio-
engineering to at least exploit my current knowledge in an industrial setting. To my
surprise, the mathematics and physical-chemistry I rather unwillingly acquired at the
time, turned out to provide the necessary framework to address and answer the driving
forces governing life, down to the protein level. Well, it continued down to the atomic
level. As Richard Feynman pointed out in his Lectures on Physics [1]:

...if we were to name the most powerful assumption of all, which leads
one on and on in an attempt to understand life, it is that all things are
made of atoms, and that everything that living things do can be under-
stood in terms of the jigglings and wigglings of atoms.

The only experimental technique (although purist might disagree) that allows this level
of detail is by means of computer simulation. Suddenly I found myself in a challen-
ging field, that almost consumed me, that provided the tools to address questions on
a level I had never imagined. This thesis is a contribution in the quest to understand
the machinery of life from the necessary view point of the water molecule.

On a stalled train to Stockholm
January 7th 2018
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Popular summary in English

Around 4 billion years ago, our dry and scorching hot planet endured an incessant
bombardment of dirty snowballs from outer space. The water that these meteorites
carried eventually formed vast oceans as the planet cooled, and within these oceans,
life emerged a few hundred million years later. These lifeforms used complex bio-
molecules, such as proteins, to self-organize and catalyze chemical reactions. From
that moment on, all lifeforms on our planet have been dependent on liquid water to
thrive.

Reflect on the stupendous timespan that these proteins have had to adapt to and
exploit the properties of the ever-present water molecules in their surroundings. You
will not be surprised when I tell you that most proteins embed water molecules as a
building scaffold in their structure, that water force the protein to hide water-hating
building blocks, or that water is an active participant in protein-catalyzed chemical
reactions. It is with these proteins that the drug prescribed by your doctor interacts.
If the drug is a good one, you will hopefully feel better as the drug molecule takes
control over its target protein. If it is bad, we have to come up with something better.
But this requires that we know exactly how proteins function, and we therefore have
to bring water into the picture as it is not a passive bystander.

The interactions between water molecules and proteins is known as protein hydra-
tion, and involves all water molecules that have different properties compared to the
bulk water. We say that these water molecules are perturbed by the protein. For dec-
ades, the magnitude and the spatial range of the protein-induced water perturbation
have been a matter of debate, depending on the interpretation of various experiments.
Some claim that water molecules are significantly affected far away from the protein,
whereas most evidence point to a short-ranged perturbation. Ideally, we would like
to have a microscope allowing individual water molecules to be monitored, but no
experimental technique available can do this for us. The next best thing at our hand
is therefore a computational microscope, made out of supercomputers, sophisticated
software, and mathematical functions to describe the chemistry. The computational
microscope will simulate and record the behavior of the protein under experimental
conditions, giving us a movie showing the motion of water molecules and the protein.

In this thesis we have used molecular dynamics (MD) simulations as our com-
putational microscope to map out and measure the protein-water perturbation. By
assigning water molecules into shells we obtain a convenient handle to describe dis-
tances from the protein surface. Each shell is one water molecule thick and the first
shell contains all water molecules in contact with the protein surface. For each shell we
study several water properties, and many can be compared to results obtained from
experiments. For instance, we have looked at how tightly packed water molecules
are in each shell and how they fluctuate. We have also studied the rotation of water
molecules to determine how long time it takes before a water molecule has lost its
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positional memory. Virtually all properties that we look at are only changed in the
first shell compared to bulk water. This verifies assumptions used in the analysis of
experimental data, and it casts doubt over the claims by some research groups that the
protein perturbs water even in the eighth shell.

We also used data from a ”super-long” protein-water MD simulation to uncover
how internal water molecules exchange with the surrounding bulk via water-filled
tunnels and pores that form as the protein spontaneously change its structure. This
finding led us to further investigate how different parts of the protein are transiently
open and exposed to the surrounding water molecules. By analyzing the open state,
we have postulated a mechanism for how water and protein hydrogen atoms swap
places, a question that has remained unanswered for more than 60 years.
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Populärvetenskaplig sammanfattning på svenska

För circa 4 miljarder år sedan blev vår torra och stek-heta planet bombarderad av
smustiga snö-bollar från yttre rymden. Vattnet som dessa meteoriter bar på bildade
så småningom stora hav när jorden avsvalnade, och några hundra miljoner år sena-
re, uppstår liv i dessa hav. De enkla livsformerna använde stora biomolekyler, såsom
proteiner, för att organisera och föröka sig. Liv på jorden har ända sedan dess varit
beroende av flytande vatten för att frodas.

Reflektera över vilken otrolig tidsrymd som proteiner har haft för att anpassa sig
till och uttnyttja egenskaperna hos de ständigt närvarande vatten-molekylerna i dess
omgivning. Du kommer inte bli förvånad när jag säger att nästan alla proteiner har
vatten-molekyler inbyggda i sin struktur, att vattnet tvingar proteinet att gömma un-
dan vatten-skygga byggelement, eller att vatten är en aktiv del i protein-katalyserade
kemiska reaktioner. Det är med dessa proteiner som medicininen utskriven av din
läkare samspelar med. Om det är en bra medicin kommer du känna dig bättre när
läkemedelsmolekylen tar över kontrollen över dess mål-protein. Om det är en dålig
medicin däremot, måste vi göra den bättre. Men det kräver att vi föstår hur proteiner
fungerar, och därför måste vi ta med vattnet i vår förståelse eftersom det inte är en
passiv åskådare.

Interaktionerna mellan vattenmolekyler och proteiner kallas för proteinhydrati-
sering, och inkluderar alla vattenmolekyler vars egenskaper skiljer sig från rent vatten.
Vi säger att dessa vattenmolekyler är störda av proteinet. I flera årtionden har man
dividerat över hur mycket och över vilken räckvidd som vattnet störs av proteinet.
Grunden för denna oenighet är att experimentella resultat kan tolkas på flera sätt.
Vissa menar att vattenmolekyler påverkas över väldigt långa avstånd från proteinytan,
medan de flesta andra menar att det bara är vattenmolekylerna precis i närheten av
proteinet som påverkas. Om vi hade fått önska skulle vi vilja ha ett mikroskop där
vi kan studera enskilda vattenmolekylers beteeende när de närmar sig proteinytan.
Tyvärr kan ingen experimentell teknik idag göra detta för oss. Det näst bästa vi har
tillgång till är mikroskop bestående av super-datorer, avancerad mjukvara och mate-
matiska modeller för att beskriva kemi. Detta datormikroskop simulerar hur rikiga
proteiner beter sig i olika vatten-miljöer, och det vi får ut i slutändan är en film som
visar rörelserna hos vattenmolekylerna och proteinet.

I den här avhandlingen har vi använt molekyldynamik-simuleringar (MD) som
vårt datormikroskop för att kartlägga och mäta proteinets påverkan på omgivande
vattenmolekyler. Genom att fördela alla vattenmolekyler i skal runt proteinet får vi
ett behändligt avståndsmått till proteinytan. Varje skal är en vattenmolekyl tjockt,
och det första skalet är de vattenmolekyler som är i kontakt med proteinet. För varje
skal tittar vi på flera egenskaper hos vattnet och många av dem går att jämföra med
experiment. Vi har bland annat undersökt hur tätt vattenmolekylerna packas i varje
skal och hur detta varierar över tid. Vi tittar även på vattnets rotation och bestämmer
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hur lång tid det tar för vatten i de olika skalen att tappa sitt positionsminne. För
praktiskt taget alla egenskaper som vi undersöker ser vi att det bara är vatten i det
första skalet som skiljer sig från rent vatten. Detta beräftar flera antaganden i olika
experiment, men det kastar också stort tvivel på de forskargrupper som hävdar att
proteinet påverkar vatten upp till åttonde skalet.

Vi har även använt en superlång MD-simulering för att identifera hur vatten-
molekyler inbäddade i proteinet byter plats med det omgivande bulkvattnet genom
kortlivade tunnlar som uppstår då proteinet spontant ändrar sin struktur. Den här ob-
servationen gjorde oss nyfikna på ett annat fenomen, nämligen hur delar av proteinet
tillfälligt öppnas upp och exponeras för det omgivande vattnet. Genom att analysera
det öppna tillståndet kunde vi beskriva en möjlig mekanism för hur väteatomer i delar
av proteinet byter plats med väteatomer hos vattnet. Detta har varit ett mysterium i
över 60 år.





We wish to pursue the truth no matter where it leads— but to find the truth,
we need imagination and scepticism both. We will not be afraid to specula-
te, but we will be careful to distinguish speculation from fact. The cosmos is
full beyond measure of elegant truths; of exquisite interrelationships; of the
awesome machinery of nature. The surface of the Earth is the shore of the
cosmic ocean. On this shore we’ve learned most of what we know. Recently
we’ve waded a little way out, maybe ankle deep, and the water seems in-
viting. Some part of our being knows this is where we came from. We long
to return. And we can. Because the cosmos is also within us. We’re made of
star-stuff. We are a way for the cosmos to know itself.

— Carl Sagan¹

¹Episode 1 in the TV series Cosmos: A Personal Voyage (1980)





Chapter 1

Introduction

Follow the water¹

When Carl Sagan said to his viewers ”we are made out of star-stuff”, he meant it
literally; the atoms in our body are traceable to the stars that cooked the light atoms
hydrogen and helium into heavier ones. Among them carbon, oxygen, nitrogen and
other ingredients fundamental for life. The enriched guts of the stars were scattered
all across the galaxy as they became unstable in their later years and finally exploded,
forming gas clouds that later condensed to solar systems with orbiting planets, Earth
one amongst them some 4.5 billion years ago [3]. A little bit later, bombardment of
ice-carrying meteorites may have brought water to Earth’s hot surface that eventually
formed oceans as the planet cooled. We do not know exactly when or how, but some
4 billions years ago life emerged in these oceans [4]. Ever since then, life on Earth
cannot be sustained without liquid water.

The large biomolecules, such as proteins, comprising life’s machinery have con-
sequently had a ”very long” time to adapt and exploit the conditions set by the physical
and chemical properties of liquid water. If we want to understand how proteins per-
form their function, their stability, structure and dynamics must be viewed against this
aqueous backdrop. Although we have detailed knowledge on bulk water’s structure
and dynamics, we understand much less about how water behaves near the protein
surface. What is the spatial range over which the structure and dynamics of a water
molecule deviates from bulk water due to the presence of a protein? How does this
perturbation vary with distance and what is the nature of its coupling? These ques-
tions have become increasingly contentious in the scientific community, especially
with the ever-increasing sophistication of experimental tools for which less sophistic-
ated physical models may be used to extract meaningful information about protein
hydration. Because no experimental technique can unambiguously determine the

¹NASA’s mantra in the search for life in outer space [2].
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2 Introduction

number of water molecules affected by a protein, the best we can do at the moment
to resolve these questions is via computer simulations.

In this thesis we have used molecular dynamics simulations to characterize the
interactions between protein and water. Chronologically, we have worked our way
from the protein interior, via exchange of internal water molecules (paper [I-II]),
to the exterior via protein conformational changes transiently exposing buried back-
bone amide hydrogens to water (paper [III]). As we continued farther away from the
protein, we were motivated to properly define hydration shells as a metric for water-
distance to the protein surface (paper [IV]). Having defined robust hydration shells,
we could then analyze several structural (paper [IV] and [V]) and dynamical (paper
[VI]) properties for water molecules in each shell, some of which can be compared
directly to results obtained from experiments.

1.1 Why do simulations?

Much of our current understanding about the molecular properties of proteins has
come through experiments, accompanied by models representing a simplified picture
of the observable that is being measured. In order to provide an understanding that
”makes sense”, the model has to trade-off accuracy for simplicity. An example of a
model frequently adopted is the two-state model for protein configurations as used
in amide hydrogen exchange (section 2.2) for instance. But a simple model will not
give us detailed information about all molecular properties in a complex system such
as a protein in aqueous solution. The more difficult and interesting our questions are,
the more desirable it becomes to have detailed and exact (in some sense) data about
our system. This is where computer simulations come into the picture. Here, the
model is detailed instead, but much more accurate on the other hand. The models in
themselves do not necessarily provide any interesting information, but when plugged
into powerful computers they will provide vast amount of data that allows in principle
any property to be ”measured”. Whereas the subtle details about molecular motions,
and the fast time-scale over which they occur, are difficult to probe experimentally,
they represent no obstacle to a simulator.

The simulation provides a path from the microscopic details of the system to the
macroscopic properties observed in experiments. If the model in the simulation is
good, the results can be compared to experiments and provide insights to the exper-
imentalist which can simplify the (often) complicated interpretation of experimental
data. Because of this bridging role, connecting models and experimental results, and
the way simulations are carried out, simulation techniques are rightfully called ”com-
puter experiments”.



Chapter 2

Protein hydration

In this chapter we will cover a selection of the many aspects of protein hydration that
are addressed in this thesis. It includes the structure and dynamics of water inside and
outside of the protein surface - the hydration shell. The connection between water
inside of proteins, so called internal water molecules, and the outside bulk is related
to the process of amide hydrogen exchange that will also be covered.

Before continuing, we interject the definition of hydration which is ambiguous.
The term mainly refers to (1) the total interaction of a solute with its aqueous solvent
environment; and (2) the perturbation of the properties of water as a result of the
interaction with the solute [5]. The second definition is more restrictive and will
be used here. At some distance from the protein surface, the aqueous environment
should display properties of bulk-like water, i.e. pure water without the protein. The
problem at hand when understanding protein hydration is to understand to what
extent water near the protein is different from the bulk.

2.1 Internal water molecules

Native proteins fold spontaneously from the polypeptide chain to adopt a tertiary
structure that is necessary for function. The principal driving force for this folding
is the hydrophobic effect [6–8]; apolar side-chains are driven away from entropically
unfavourable contacts with water. During the folding process, water molecules may
be incorporated into the structure to achieve minimal frustration in the folding en-
ergy landscape, balancing the (free-energy) optimization problem of maximizing the
number of hydrogen bonds and, at the same time, the packing density [9]. Thus,
these internal water molecules provide favourable hydrogen bonds to be formed with
otherwise unsatisfied polar atoms while maintaining optimal packing [10, 11]. In this
way, internal water molecules heal packing defects that would otherwise form empty
cavities. In addition, they also provide ways for catalytic or binding processes to oc-
cur [12, 13]. Internal water molecules should therefore be regarded as an integral part

3



4 Protein hydration

of the protein, and they are conserved to the same extent as amino acid sequence
[14]. Figure 2.1 shows the protein systems studied in this thesis, with internal water
molecules depicted.

GB1

UBQ BPTI

AFP

Figure 2.1: Crystal structures of the four proteins studied in this thesis, showing the outline of the solvent accessible
surface (white), the secondary structure (gray), disulfide bridges (yellow) and internal water molecules. Miss-
ing residues or hydrogen atoms have been added. GB1 the immunoglobulin-binding domain B1 of protein
G from Streptococcus sp. (PGB1 [ [15]]) contains no internal water molecules. AFP the insect antifreeze
protein from Tenebrio molitor (1EZG [ [16]]) with five internal water molecules together with waters on the
ice-binding surface. UBQ mammalian ubiquitin (1UBQ [ [17]], residues R74, G75, G76 removed) contains
one internal water molecule close to the protein surface. BPTI bovine pancreatic trypsin inhibitor (5PTI [ [18]])
contains four internal water molecules of which three form a hydrogen-bonded water chain.

Internal water molecules are very frequent in globular proteins. A statistical survey
of high-resolution (r<1.5 Å) crystal structures found internal water molecules in 90 
of the 261 examined proteins¹ [19]. The number of internal water molecules between
proteins is very variable. It correlates with protein size but not with the fold type,
although fewer internal water molecules are observed for proteins containing many
helical secondary structures[11, 19]. Instead, internal water molecules tend to be in
regions with residues in loop conformations. Following O. Carugo, internal water

¹The proteins had a length of (mean±std) 217 ± 6 residues
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molecules can be classified as ”lake-like” or ”bay-like”[19]. Lake-like water molecules
are completely isolated from the bulk solvent, whereas bay-like water molecules are
connected to the bulk through a surface water molecule. On average, there are 2.4
lake-like and 2.8 bay-like water molecules per 100 amino acid residues. Lake-like
water molecules are never found to be deeply buried in the protein; the minimum
distance between the protein surface and a water molecule in a lake-like cluster is 2.7
Å on average, suggesting that internal water molecules are just beneath the protein
surface. As might be expected, comparing crystallographic B-factors shows that lake-
like water molecules are as rigid as protein atoms, and that bay-like water molecules
are slightly less rigid.

Since the protein is not static but samples many conformational sub-states, these
internal water molecules will occasionally undergo exchange with the external bulk
water. The average life time of internal water molecules have been measured by mag-
netic relaxation dispersion (MRD, section 2.3.2). Depending on the hydration site,
analysis of MRD data shows that internal water molecules exchange with external ones
on a time scale ranging from tens of nanoseconds to hundreds of microseconds [20–
22]. Thus, by probing the exchange rate of internal water molecules, which is a rare
and transient event on the molecular time scale, one obtains information about the
underlying protein dynamics. However, the exchange mechanism between internal
hydration sites and bulk solvent is unknown, but large-scale conformational fluctu-
ations are thought to be necessary[20]. In paper [I] we do a detailed characterization
of internal-water exchange in BPTI using an ultra-long MD simulation.

2.2 Hydrogen exchange in proteins

Even though proteins have a rather high packing density, they undergo fluctuations
that expose the most deeply buried parts of the polypeptide chain to the external
solvent. This was first suggested more than 60 years ago by Hvidt and Linderstrøm-
Lang, who demonstrated that all backbone amide hydrogens in insulin exchanged
with the surrounding water hydrogens [23]. It has now become clear that all back-
bone amide hydrogens in proteins eventually undergo exchange, with half-times ran-
ging from seconds to years. By monitoring amide hydrogen exchange, we can there-
fore obtain information about the structure, flexibility and, in favourable cases, the
dynamics of proteins.

Hydrogen atoms covalently bonded to protein O, N and S atoms are labile and
will undergo a hydrogen exchange reaction (HX) when exposed to solvent. Because
one hydrogen atom is replaced by another one, the reaction is monitored in D2O so
that they can be distinguished in the exchange process

P−H+DOD −−→ P−D+HOD (2.1)
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where D is the exchanging deuterium atom and P is a protein O, N or S atom. An
NMR spectrometer tuned to hydrogen will not ”see” deuterium (due to different spin
numbers) and the signal from the P-H atom will therefore gradually disappear in a
HX experiment¹. The difference in mass between the hydrogen atom and deuterium
atom also allows the exchange process to be measured by mass-spectrometry (MS)
experiments.

Hydrogen exchange is catalyzed by both acids and bases, including the autopro-
tolysis products of water, the hydronoium ion H3O+ and the hydroxide ion OH−.
In a buffer-free aqueous solution, the pH-dependence of hydrogen exchange rate kex
is the sum of contributions from acid-, base-, and a pH-independent water catalysis
according to

kex = kw + ka[H3O
+] + kb[OH−] = kw + ka10−pH + kb10pH−pKw (2.2)

where the second order rate constants ka and kb are the acid- and base catalysed rates
respectively, kw is the rate constant for water catalysis, and Kw = [H3O

+][OH−] is
the ionization constant for water with pKw = 14.00 at 25 ◦C[25]. The rate constants
ka and kb have been determined for model compounds where the labile hydrogen
atom is fully solvent-exposed. For instance, the exchange rate for the amide hydrogen
in poly-D,L-alanine at 25◦C is plotted in Fig 2.2 with ka = 42 M−1min−1 and kb =
1.1 ·1010 M−1min−1 [26]. As can be seen, the minimum of the pH-dependent curve
(pHmin) around pH 3 is the result of the much more effective base catalysis. The pH-
independent (water-catalysed) exchange is only significant in experimental exchange
rates measured at pH near pHmin. The position of pHmin varies considerably due
to the inductive and steric blocking effects imposed by the neighbouring sidechains.
This effect has been quantified in a set of correction factors [26] to the rate constants
in Eq 2.2, allowing the exchange rate to be predicted for any structureless peptide
sequence. Figure 2.2 shows the exchange rate profiles for two unstructured dipeptides
as predicted by Eq 2.2 with correction factors to rate constants for PDLA [26].

In the native state, the measured exchange rate of protein amide hydrogens is
lower than for solvent-exposed peptides since most of the backbone peptide groups
are buried inside the protein. Nevertheless, even the deeply buried amides are exposed
to solvent as the protein undergoes conformational changes. Because of this transient
exposure, the analysis of HX experiments is based on the following kinetic scheme
(the Linderstrøm-Lang model) [27]

N−H(C)
kop−−⇀↽−−
kcl

N−H(O)
kint−−→ N−D (2.3)

¹HX is typically measured using 1D 1H NMR or 2D NMR such as 1H15N HSQC [24].
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Figure 2.2: Hydrogen exchange rate profiles (log(kex) for two structureless dipeptides as described by Eq 2.2 using rate
constants for poly-DL-Alanine (PDLA) at 25 ◦C with correction factors from reference [26].

where each amide can exist in a closed (C) state, where exchange cannot occur, or in
an open (O) state, where exchange can occur at the intrinsic rate kint. The general rate
equation describing this process is given by [27]

kex =
kop + kcl + kint −

[
(kop + kcl + kint)2 − 4kopkint

]1/2

2
(2.4)

In the two state model above, the protein fluctuates between the C and O state with
equilibrium constant Kop. At equilibrium, we have the detailed balance condition

kop fC = kcl fO (2.5)

where fO and fC are the fractional equilibrium populations of the two states. The
equilibrium constant Kop can then be written

Kop =
kop
kcl

=
fO
fC

=
τO
τC

(2.6)

where we have introduced the mean life times in the two states

kop =
1
τC

(2.7)

kcl =
1
τO

(2.8)
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For a buried amide, solvent exposure will be a rare event and the population of
the closed state (fC) can therefore be assumed to be much larger than the population
for the open state (fO). In view of detail balance (Eq 2.5), fC ≫ fO so that kcl ≫ kop.
In Eq 2.4, we can then assume (kopkint) ≪ (kop+ kcl+ kint)2 to obtain the simplified
equation

kex =
kopkint

kop + kcl + kint
=

kopkint
kcl + kint

(2.9)

where kcl ≫ kop was invoked in the last step. Equation 2.9 can be further simplified
in two limiting cases, known as the EX1 and EX2 limit.

2.2.1 The EX2 limit

Under non-perturbing conditions, the protein structure can be regarded as stable such
that kcl > kop. For instance, if we assume the mean life time of the open state, τO, to
be less than 1 µs ¹, we have kcl > 106 s−1, which means that kcl is much faster than
kint even at high pH (see Fig 2.2). Under these conditions, opening and re-closing of
the open state occurs many times before a successful exchange can occur, and Eq 2.9
reduces to the EX2 limit.

kex =
kop
kcl

kint =
fO
fC
kint (2.10)

where the last step follows from Eq 2.5. The vast majority of HX experiments are
performed under conditions where the EX2 limit applies, and consequently do not
provide any information about the conformational dynamics underlying the exchange.
In order to make practical use of Eq 2.10, we further have to assume that the intrinsic
exchange rate can be approximated with the exchange rate from model peptides as
described by Eq 2.2. This allow us to express a protection factor κ defined as

κ ≡ kint
kex

(2.11)

Thus, the protection factor on a buried backbone amide reports on how much the
exchange rate is slowed down compared to a solvent exposed peptide. In view of Eq
2.6 and 2.7, the protection factor can also be expressed

κ =
fC
fO

=
1
Kop

=
τC
τO

(2.12)

Since protection factors scale with the inverse of Kop, they also provide informa-
tion about the free energy change , ΔGop, associated with the opening process

¹The mean life time of the unfolded state from MD simulations of several fast folding proteins [28].
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ΔGop = −kBT ln

(
fO
fC

)
= kBT ln κ (2.13)

The free energy of the opening process can be compared with the free energy of
global unfolding ΔGUF from denaturation experiments. Indeed, the amides in pep-
tide groups deep in the apolar core typically exchange by global unfolding as suggested
by ΔGop ≈ ΔGUF [29]. Hydrogen exchange in the more peripheral amides seems to
require only local unfolding based on denaturation sensitivity. However, the struc-
tural features of the locally unfolded (open) state has been a matter of debate for dec-
ades, as well as the mean life-time of the open state. Two models have been proposed
for how the exchange catalyst, in most cases the hydroxide ion, access the protein
interior for amide hydrogens that do not exchange in the unfolded state. In the ”pen-
etration model” [30], the catalyst enters the protein via transiently formed channels
and cavities. Speculations on how these channels arise include redistribution of in-
terior hydrogen bonds [31] or from random association of pre-existing cavities [32].
In the ”local unfolding model” [33, 34] on the other hand, structural elements, like
the α-helix, transiently unfolds into the bulk solvent where exchange can occur [35].
It is assumed that the main barrier to exchange is provided by hydrogen bonds to
amide hydrogens. In this model, correlated exchange behaviour has been suggested
since adjacent amide hydrogens in the unfolded region are predicted to exchange at
roughly the same rate.

Given that the nature of the open state is not known, it is difficult to escape the
fact that the analysis of hydrogen exchange in the EX2 limit fully depends on the
assumption that exchange in the open state is equivalent to that of solvent-exposed
model peptides. In paper [III], we try to characterize the hydrogen exchange mech-
anism using an ultra-long MD simulation.

2.2.2 The EX1 limit

Provided that the protein is not degraded, it is possible to reach the EX1 limit at very
high pH. Here, kcl ≪ kint so exchange occurs immediately when the amide hydrogen
atom is in the open state. In this limit, Eq 2.9 simplifies to

kex = kop =
1
τC

(2.14)

and measured exchange rates thus report on the dynamics of the fluctuations under-
lying the exchange. The distinction between the EX1 and EX2 limits is determined
by the pH-dependence of kex. Whereas exchange in the EX1 limit is essentially pH-
independent, exchange in the EX2 limit depends on pH the same way as kex for model
peptides shown in Fig 2.2 [24].
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2.3 The hydration shell

The first experimental studies of protein hydration was performed by adding water
incrementally to dry protein powders. The process was continued until a level of
hydration was reached in which the experimental quantity did not change with further
addition of water. This was termed the hydration end point, and the hydration shell
was defined as the amount of water covering the protein on average at the endpoint.
For many of the properties studied (such as the heat capacity and enzyme activity),
the hydration level end point was at around 0.3-0.4 g water per gram protein. This
was interpreted as a hydration shell corresponding to a monolayer of water molecules
where each water on average cover 20 Å2 on the protein surface[36]. However, the
hydration level will depend trivially on the protein size, making the translation to the
number of water molecules on the protein surface questionable.

Although the term hydration shell originally referred to the water molecules in
contact with the protein [37], the term has become ambiguous with a qualitative and a
quantitative interpretation [38]. Qualitatively, the hydration shell is the one-molecule
thick layer of water molecules that fully wrap the protein. Contrary to experiments,
this qualitative picture can be realized (more or less) in molecular simulations by ap-
plying a set of geometric conditions to assign water molecules to the shell. A common
method to define the hydration shell from a simulation-generated configuration is to
include all water oxygen atoms within a given maximum distance from the closest
protein atom. Typically, a uniform 3.5 Å distance-cutoff to heavy protein atoms is
used so that any water oxygen within the cutoff is assigned to the shell [38–41]. An-
other method is based on topological neighbours based on Voronoi-tessellation (see
section 4.2) where all heavy atoms are assigned a polyhedron, so that any point in-
side of it is closest to that particular atom; all water polyhedra that share a face with
protein polyhedra are defined to be in the first shell [42–45]. By the same token,
successive hydration shells can be defined by both methods and the spatial range of
the protein-induced water perturbation can be studied in each shell.There is no con-
sensus on how to define these hydration shells and in paper [IV] we do a thorough
comparison between the most widely used methods.

Quantitatively, the hydration shell comprise all water molecules with properties
different from bulk water. However, this perturbative view of the hydration shell is
non-trivial as it can depend on the particular property being probed, and thus on
the experimental technique. Indeed, the magnitude and the spatial range of the per-
turbation - the thickness of the hydration shell - is controversial as no experimental
technique can unambiguously provide the number of water molecules that are per-
turbed by the protein.

We will not attempt to review all experimental techniques used to study protein
hydration, which can be found elsewhere [5, 38]. Instead, we will outline the current
understanding of the protein-induced water perturbation, and its contrasting views.
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We will do one small exception, however, concerning magnetic relaxation dispersion
(MRD) experiments, since parts of this thesis have been motivated by the need to
quantitatively test the approximations in the model used to interpret MRD data.

2.3.1 Structure

The structure of water in the hydration shell has been studied by X-ray and neut-
ron diffraction which provide — in most cases — generic information about (time-
averaged) positional correlations [5]. The electron density maps from X-ray diffraction
provide spatial information on the heavier atoms such as oxygen, nitrogen and car-
bon, while neutron diffraction allows hydrogen atoms to be detected. The position of
individual water molecules can be derived from diffraction data on protein crystals,
provided that they are ordered to yield maxima in the electron density map. Small
angle X-ray and neutron scattering (SAXS and SANS) are also used to study hydrated
proteins which provide information on the radial pair distribution function (section
4.1) of atom pairs.

Diffraction studies have shown that the highly corrugated protein surface, with
its heterogeneity in polar, non-polar, and charged groups, results in different local hy-
dration geometries [38]. From a Voronoi volume analysis (see section 4.2) of protein
crystals, it has been suggested that the water density at the protein surface is ∼20
higher compared to bulk [46], with higher water densities in concave regions. Scat-
tering experiments on hydrated proteins have also shown a mean density-excess of
10-15  in the hydration shell [47], and a complementary MD simulation has con-
firmed this [48]. Yet, other MD simulations have suggested a modest density increase
between 1-3  for proteins [42, 43] and polypeptides [49, 50]. This discrepancy is
scrutinized in paper [IV].

2.3.2 Dynamics

The range of the perturbation has been studied by NMR on simple model systems,
showing that only water molecules in contact with the solute surface have dynamics
significantly different from bulk water [5]. This has also been suggested from MD
simulations [45, 51], although the decay length of the short-range perturbation has
not been characterized in great detail. This is one of the objectives in paper [VI]. In
contrast, measurements from terahertz (THz) spectroscopy¹ suggest that the protein
significantly perturbs water up to distances of 20 Å — corresponding to 7-8 mono-
layers of water — from the protein surface [52]. For an insect antifreeze protein, even
longer perturbations was claimed [53]. In both cases, the evidence for long-range
perturbation was argued to be supported by an MD simulation showing perturbed

¹THz spectroscopy probes the collective hydrogen-bond distortions via absorbance in the far infrared
frequency range.
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hydrogen-bond dynamics and rotational relaxation up to a distance of 7 Å (i.e. 2-3
monolayers) [52].

MRD

While most evidence points to a perturbation range involving the first 1-2 monolayers,
the magnitude of the perturbation is also debated. The most convincing evidence on
its magnitude comes from magnetic relaxation dispersion experiments (MRD), which
is one of the few methods that selectively probes the dynamics of water molecules in
dilute protein solutions. In MRD, the longitudinal spin relaxation R1 rate of the
quadrupole water nuclei 2H and/or 17O in isotope enriched water is measured as
a function of the resonance frequency ω determined by the applied magnetic field.
Typically, measurements of R1 on an aqueous protein solution spans several frequency
decades to generate a dispersion profile. The dispersion profile, R1(ω), shows the
excess relaxation rate compared to bulk due to slower rotational water dynamics in the
hydration shell and internal water molecules. Figure 2.3 depicts a typical dispersion
profile measured for a dilute protein solution, and the relaxation rate is described by

R1(ω) = R bulk
1 + 0.2j(ω) + 0.8j(2ω) (2.15)

Molecular level information is extracted from the frequency-dependent spectral
density function j(ω); it is the Fourier transform of the rotational time correlation
function (section 4.3) describing how fast a water molecule looses its orientational
memory (section 4.3.3). The spectral density function describing R1(ω) has the form

j(ω) = α+ β
τβ

1 + (ωτβ)2
(2.16)

where τβ is the rotational correlation time (section 4.3.2). The parameters α and β de-
scribe the dynamics of two types of water in the hydration shell that exchange rapidly
with the surrounding bulk water molecules. The constant α is the contribution to R1
from water molecules rotating on a time scale faster than 1 nanosecond, but slower
than the picosecond rotational correlation time τ0 in bulk at room-temperature. The
effect is seen as a frequency independent increase of the relaxation rate above the bulk
value, R bulk

1 . The nanosecond-limit is set by the experimentally accessible timescale
(∼ 100 MHz), and the limit serves as an operational definition for slow and fast
water molecules; those rotating slower or faster, respectively, than 1 nanosecond. If
we know the number of water molecules that are perturbed by the protein, Nhyd, it
is possible to extract the mean rotational correlation time ⟨τhyd⟩ of those waters. In
MRD it is assumed that only water molecules in contact with the protein are affected
(the primary hydration shell), so that Nhyd can be estimated simply by dividing As,
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the solvent-accessible surface area [54] (SASA)¹ of the protein, by the mean SASA that
a water molecule occupies on the protein surface,aH; Nhyd = As/aH in short. Com-
puting SASAs is a standard tool in many molecular software packages, and many of
them use the numerical algorithm by Shrake and Rupley [55]. In this thesis we have
computed SASAs using the analytical algorithms implemented in MSMS [56] and
getArea [57].

The second contribution to R1 is from a few slow water molecules with rotational
correlation times longer than 1 nanosecond. These are typically internal water mo-
lecules (section 2.1) or waters residing in deep pockets on the protein surface, where
the rotation is highly restricted until the water is exchanged with external water mo-
lecules due to a protein conformational change. The slow water molecules produce
the observable frequency dependence in the dispersion profile, and their contribution
to R1 is described by the β parameter. From the MRD profile, it is possible to de-
termine the number of slow water molecules, and how rotationally restricted they are
via an order parameter.
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Figure 2.3: Schematic dispersion profile from magnetic relaxation dispersion (MRD) experiments. The excess relaxation
rate relative to bulk is a sum of two contributions α and β, containing dynamical information about fast and
slow water molecules, respectively, in the hydration shell.

MRD measurements on dilute protein solutions have established that water ro-
tation in the primary protein hydration shell is only moderately perturbed compared
to bulk water. Using aH = 15 Å 2 and measurements on 11 proteins (fitted using Eq
2.15-2.16), gave a retardation factor ⟨τhyd⟩/τ0 = 5.4±0.6 [5]. This is stronger than the
retardation factors around 1-2 seen for small organic molecules and peptides [58–60].

¹The SASA is the locus of points traced out by a water-like probe sphere as it rolls over the protein’s
vdW surface. A probe radius of 1.4 Å is typically used.
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The main determinant for the degree of slowed dynamics appears to be the to-
pography of the protein, resulting in various local geometries, such as pockets and
grooves, that may interfere with the cooperative motions underlying water rotation
and translation [5, 38]. For the most mobile half of water molecules, retardation factors
around 2 have been estimated from MRD [61]. The origin of this dynamical hetero-
geneity is investigated in paper [VI].



Chapter 3

Molecular dynamics

Nature and Nature’s laws lay hid in night; God said, Let Newton be! and all was light.
— Alexander Pope¹

Molecular dynamics (MD) refers to the solution of Newton’s laws of motion to propag-
ate a set of molecules over time. In other words, we use the same laws of classical
mechanics that were first postulated to study the motion of planets, stars, and other
celestial objects. Although the actual behavior of microscopic systems is described
correctly by quantum mechanics, this classical approach turns out to be a surprisingly
good approximation at the molecular level ². In this chapter we cover the basic (and
non-rigorous) foundation of molecular dynamics simulation and discuss some of the
practical aspects involved in setting up a protein MD simulation. For a more rig-
orous description of MD there are many good books, and Understanding molecular
simulations [64] by Frenkel & Smit is a good starting point.

3.0.1 Equations of motion

MD simulations are largely based on Newton’s second law, stating that bodies accel-
erate under the action of an external force according to

Fi = mai = mr̈i (3.1)

where Fi is the force on atom i with (Cartesian) position vector ri, m and ai is its

¹Epitaph indented for Sir Isaak Newton, Westminister Abbey (1730) [62].
²This simple classical treatment is justified within the Born-Oppenheimer approximation [63] —

only nuclear positions have to be considered. Also, quantum effects can mostly be ignored in condensed
systems with heavier atoms. For an ideal gas, the classical limit applies when the thermal de Broglie
wavelength is much smaller than the inter-particle distance.

15
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mass and acceleration respectively. Here we have adopted Newton’s notation for dif-
ferentiation, so that r̈i above is defined as d 2ri/dt2.

When working with a complex dynamic system, it is more convenient to use a re-
formulation of classical mechanics known as Hamiltonian mechanics [65]. Hamilton’s
equations of motion can be obtained from a generating function known as the Hamilto-
nian. The Hamiltonian H is usually the internal energy E of the system. For a system
of N particles, the Hamiltonian may be written as the sum of kinetic (K(p)) and
potential (V(q)) energy functions as [66]

H(p,q) = K(p) + V(q) = =
1

2m

N∑
i=1

pi · pi + V(q1,q2, ... ,qN) (3.2)

where qi is the position of atom i and pi is the momentum of the atom. The co-
ordinates qi and pi are generalized. This means we do not necessarily have to use a
Cartesian coordinate system, which is sometimes useful when treating molecules as
rigid bodies for instance. By differentiating H we obtain Hamilton’s equations of
motion:

q̇i =
∂H
∂pi

=
pi

m
(3.3a)

ṗi =
∂H
∂qi

= Fi (3.3b)

In general, Hamilton’s equations can be very complicated, but for simple liquids where
the Cartesian coordinate system can be used, they become rather simple. In this case,
Newton’s second law can be recovered by eliminating pi above, verifying that no new
physics is introduced in this formalism.

3.0.2 Conservation laws

If H is both invariant under translation and rotation about an axis (by a judicious
choice of generalized coordinates), it can be shown that the total linear and angular
momentum are conserved [66]. In practice the angular momentum is actually not
conserved in most MD simulations. This is because we have to use different box
geometries (see section 3.3) for our system that break the symmetry required for the
conservation to apply. However, the most important conservation law to mention is
the conservation of energy. If H does not depend on time (explicitly), we may write
the total time derivative of H as
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dH
dt

=

N∑
i=1

[pi · ṗi

m
+

∂V(q1,q2, ... ,qN)

∂qi
· q̇i

]
(3.4)

=
N∑
i=1

[pi · ṗi

m
− Fi · qi

]
= 0

showing that H is a constant of motion and thus that Hamilton’s equations conserve
energy under these conditions.

3.0.3 The arrow of time

An interesting point to make regarding the equations of motions is that they are time
symmetric [65]. This means that they are invariant under the transformation of time
t → −t. Thus, if we change all the sign of the velocities or momenta, the molecules
in our simulation will retrace their motional course. This time-insensitivity of the
equations of motion obviously seems to contradict the second (statistical) law of ther-
modynamics; how come that entropy (almost always) increases as time goes forward
even though our equations do not distinguish between past and future? This incon-
sistency is known as Loschmidt’s paradox.

3.1 Statistical ensembles

Since most simulations are carried out to facilitate the interpretation of experiments,
we have to set up our simulations in a way that mimics the relevant experimental
conditions. This implies we should solve the equations of motion for a stupendous
number of degrees of freedom - 1 mole consists of 6.022 · 1023! This gap is bridged
by the realizations of statistical mechanics that macroscopic properties are not heav-
ily dependent on the exact motions of every particle in the macroscopic system, but
rather on averages of the microscopic details. This is the basis of the ensemble concept
used in statistical mechanics [65]. An ensemble is a collection of systems that have
different microscopic configurations (states) but share a set of common macroscop-
ical (thermodynamic) properties (such as the total energy, volume and number of
particles). The particles in each system of the ensemble evolve from different initial
conditions so that every system is a unique microscopic state at any point in time.
If the ensemble is in equilibrium, the experimental (macroscopic) observables can be
obtained by averaging over all the microscopic states at any instant.

If we define an ensemble having constant number of particles N and volume V,
and apply Newton’s or Hamilton’s equation, we are automatically in the so called
microcanonical (NVE) ensemble in which the energy E of the system is constant (as
described by Eq 3.4 above). However, our experiments are performed under constant
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temperature and not constant energy. But temperature is problematic here since it is
an ensemble average; we cannot know beforehand what the temperature will be given
a value of the energy. In MD simulations we do not have ensembles per se, but we do
obtain different microscopic states over time. Thermodynamic properties can then
be obtained as time averages. If the simulation is long enough, then the time average
is equal to the ensemble-average according to the ergodic hypothesis. To obtain the
temperature from an MD simulation for instance, we average the kinetic energy K as

3
2
NkBT = ⟨K(p)⟩ =

⟨ N∑
i=1

p2
i

2m

⟩
(3.5)

where kB is the Boltzmann constant and the brackets denote averaging over time. This
is the equipartition principle, stating that an average energy of kBT/2 per each degree
of translational freedom. An instantaneous kinetic temperature in the simulation can
be defined as T = 2K(p)/3NkB.

3.1.1 Constant-temperature MD

There are various methods to achieve constant temperature during a simulation, and
they are known as thermostats. All of them involve a tampering of the equations
of motion, and they can be classified as either deterministic or stochastic thermostats
[66] depending on the nature of the tampering. When studying dynamical properties
we therefore have to be cautious which thermostats to use, otherwise there is a risk of
obtaining spurious dynamics of the system. In this thesis, the MD simulations have
used the stochastic Langevin thermostat and the deterministic Berendsen thermostat
[67], and we will briefly outline how they work.

In both thermostats the system is coupled to a heat bath, an infinite energy reser-
voir, with a certain temperature. Energy is allowed to flow to the system and back to
the reservoir. In the Berendsen thermostat [67] (also known as the weak-coupling
thermostat), the system is coupled to the heat bath during the simulation and the
momenta are scaled as

p′
i = pi

√
1 +

Δt
τ

( T
T

− 1
)

(3.6)

where T is the desired (thermodynamic) temperature and T is the instantaneous kin-
etic temperature. The coupling-strength to the heat bath is set by the time constant
τ in the scaling factor Δt/τ . Although this method ensures a reasonable total kinetic
energy for the desired temperature, it is not guaranteed that the temperature will be
equal in all parts of the system, despite particle collisions tending to even out the tem-
perature distribution [68, 69]. Hence, the distribution is non-canonical and sensibly
depends on the scaling factor [66]. Despite this, the Berendsen thermostat is widely
used as it efficiently relaxes the system to the desired temperature.
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In the Langevin thermostat the equations of motion are modified by using Langevin
dynamics as [66]

ṗi = Fi − γipi + fi(t) (3.7)

where γ is a friction constant (sometimes called a collision frequency constant) and
fi(t) is a random force that is uncorrelated with the dynamical variables (i.e. posi-
tions and momenta). During the simulation, all particle then receive a random force
(this is the stochastic element) and have their momenta lowered by γ, which corres-
ponds to collisions with imaginary heat-bath particles. The value of the random force
is not set arbitrarily, but is connected to γ in a way that preserves the fluctuation-
dissipation theorem ¹. This is the reason why the Langevin thermostat ensures the
proper sampling in the canonical ensemble. However, when implementing the ther-
mostat in a simulation one has to rely on pseudo-random numbers which may in-
troduce synchronization artifacts if the seed to the random number generator is not
updated [71].

3.1.2 Constant-pressure MD

In addition to constant temperature, most experiments in chemistry are carried out
under constant pressure and it is desirable to replicate these conditions in our simula-
tions as well. This is achieved by carrying out the simulation in the isothermal-isobaric
(NPT) ensemble.

The pressure in an MD simulation can be obtained from the virial theorem. De-
pending on the functional form of the potential V(q), discussed in section 3.2.2, the
virial pressure for pairwise interacting particles is given by [64]

P =
kBTN
V

+
1
V

⟨ N∑
i=1

N∑
j>i

fij(rij) · rij
⟩

(3.8)

where fij is the force excerted by particle i on j, at a distance rij, and the brackets
denote the time average. To adjust the pressure during the simulation we inevitably
have to adjust the volume of the system, and methods to do this are called barostats.
As for the thermostats, there exist both deterministic and stochastic barostats in which
the system is coupled to a pressure ”bath” at the desired pressure P0.

The Berendsen barostat [67] is a commonly used (deterministic) pressure-control
method that rescales the pressure in the same way as the Berendsen thermostat. Dur-
ing the simulation the system volume is rescaled by a factor µ. If our system is within
a cubic box (and isotropic), then

¹At equilibrium, the magnitudes of thermal fluctuations are related to how fast the system approaches
equilibrium from a small perturbation. The theorem relates many transport properties, such as diffusion
and viscosity, from these fluctuations [70]
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µ = 1 − κTΔt
3τP

(P0 − P) (3.9)

where P is the instantaneous pressure, κT is the isothermal compressibility and τP
is a time constant that governs the coupling strength to the bath. However, this
barostat does not sample rigorously from the NPT ensemble and will not generate the
correct volume fluctuations [66], which is important when computing the isobaric
compressibility κP as done in see paper [V].

To get the proper sampling from the NPT ensemble, one can implement the
Monte-Carlo barostat that change the system volume by a stochastic process. During
the simulation, this barostat will do trial moves where the current volume Vold is
changed to a new volume Vnew, with system coordinates rescaled accordingly. The
probability of accepting this move, χacc, is [66]

χacc = min
[
1, exp(−δH/kBT)

]
(3.10)

with

δH = δV + P(Vnew − Vold)− ln
((

Vnew/Vold
)N/kBT) (3.11)

where δH is the energy change between the new (trial) and old (initial) system con-
figuration. If the system energy is lower in the new configuration, the move is im-
mediately accepted. If not, a random number ξ is generated uniformly on [0, 1] and
compared with exp(−δH/kBT). If ξ is lower than exp(−δH/kBT), the move is ac-
cepted. This procedure is the Metropolis Monte Carlo method [72], where the name
’Monte Carlo’ refers to the gambling part of the method, i.e. the heavy use of random
numbers.

3.2 Practical implementation

Having outlined the basic molecular mechanics involved in an MD simulation, we
will now cover the practical aspects involved in setting up a protein MD simulation.

3.2.1 Numerical methods

The simplest form of the equations of motion such as Eq (3.1) cannot be solved ana-
lytically, and we therefore have to resort to numerical methods. A method that works
surprisingly well is the finite-difference method, which can be outlined as follows:
Given the positions and velocities at time t, we seek to find the positions and velocit-
ies at a later time t+Δt. The time interval Δt is called the time step in our simulation
since we solve the equations of motion one step at a time; after many steps we have
approximated the trajectory of each particle in the system, ri(t).
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If we do a Taylor expansion about r(t) in Newton’s second law, Eq ( 3.1), we
obtain [66]

ri(t+ Δt) = ri(t) + Δt ṙi(t) + 1
2 r̈i(t)Δt

2 + . . .

ri(t− Δt) = ri(t)− Δt ṙi(t) + 1
2 r̈i(t)Δt

2 + . . . (3.12)

Addition of these expansions yields the Verlet algorithm [73]

ri(t+ Δt) = 2ri(t)− ri(t− Δt) + Δt2r̈i +O(Δt2) (3.13)

where the error is of order Δt 2. Although this method has very good energy-conserving
properties, two problems are associated with it. First, since we subtract two large
quantities from another, 2ri(t) and ri(t− Δt), to obtain a small one, numerical im-
precisions will arise. Secondly, the momenta are not present in this equation and
must therefore be computed in order to estimate the kinetic energy (and hence the
total energy). They may be obtained by another finite-difference as [66]

ṙi(t) =
ri(t+ Δt)− ri(t− Δt)

2Δt
(3.14)

One improved version of the basic Verlet algorithm, that mitigates the numerical
imprecisions, is the so called half-step ’leapfrog’ algorithm [66]:

ṙi(t+ 1
2Δt) = ṙi(t− 1

2Δt) + r̈i(t)Δt
ri(t+ Δt) = ri(t) + ṙi(t+ 1

2Δt)Δt (3.15)

The algorithm consists of half-advancing the velocities at time t + 1
2Δt, from a time

point t− 1
2Δt, thus leaping over the coordinates at time t. The velocities at t+ 1

2Δt are
then used to determine the new positions at t+ Δt, ahead of the velocities, at which
point the accelerations are determined as well.

The Lyapnov instability

Because we use approximate methods, the trajectory will not follow the true traject-
ory, r(t)true, indefinitely. Even if we had exact methods, we are using finite precision
arithmetic on our computers which will introduce errors (although tiny). Two sys-
tems with particles at identical positions, but with a tiny difference δp, in momenta,
will diverge from one another exponentially with time according to the Lyaponov
divergence [64]

Δr(t) ∼ (δp)exp(λt) (3.16)
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where Δr(t) is the distance (in phase space) between the trajectories, and λ is the so
called Lyaponov exponent. This means that it is difficult to reproduce a simulation
unless the systems are identical down to the very bit-level of precision. Any small
difference in the prediction of position and momenta at each time step will result
in large deviations at longer times. Arguably, this realization seems to render the
whole idea of undertaking MD simulations pointless. But as pointed out in section
3.1, it suffice to obtain information about the statistical properties over a long time
rather than predicting the true trajectory, which is necessary for satellites in space on
the other hand. This is similar to the experimental reality where measurements may
be taken over periods of time, and where each measurement represents a population
average of the measured property.

3.2.2 The force field

Up until now, we have left out any details about the functional form of the potential
function V(r), which contains all the interesting information about the molecular
interactions. The mathematical form of the potential is called a force-field. Given
that the major computational cost lies in computing the forces one needs to have a
force field that is simple, yet can produce results consistent with experimental data
of the same system. An optimal trade-off between these conflicting requirements
have resulted in semi-empirical force fields, which are based on a combination of
experimental results and quantum-mechanical calculations.

There are many different force fields to model proteins ansd several carry names
associated with the MD-software for which they were originally developed. The
most commonly used families of force-fields are AMBER [74], CHARMM [75],
OPLS [76], and GROMOS [77]. These force-fields are similar, but differ in the
set of functions used and the associated parameters. However, they are all built on
two fundamental approximations: 1) electrons are not modeled explicitly, hence we
cannot describe chemical processes where bonds are broken (e.g. enzyme catalysis); 2)
the total potential energy is given by the sum of interactions between pairs of atoms,
so many-body contributions have to be effectively included in the parameters.

The contributions to the potential are divided into two groups referred, somewhat
inaccurately, as ”bonded” and ”non-bonded” energy terms. The bonded energy terms
include interactions reflecting deformations of the local geometry, whereas the non-
bonded energy terms describe interactions between atoms separated by more than two
or three bonds, or atoms belonging to different molecules. In this thesis, we have used
the AMBER family of force-fields with the functional form [74]
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V(r) =
∑
bonds

kb(b− b0)
2 +

∑
angles

kθ(θ − θ0)
2 +

∑
dihedrals

kϕ[1 + cos(nϕ− ϕ0)]

+
∑
i

∑
j>i

4ϵij

[(
σij

rij

)12

−
(
σij

rij

)6
]
+
∑
i

∑
j>i

qiqj
4πϵ0rij

(3.17)

where the first three terms are the bonded interactions and the remaining two terms
are the non-bonded interactions. The functional form of each sum is depicted in Fig
3.1.
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Figure 3.1: The interaction terms in a typical protein force-field. The bonded interactions describes local deformations
in geometry with energy contributions from stretching (A), bending (A) and rotations (torsion) of bonds (B).
Nonbonded interactions describes interactions of atoms separated by more than three bonds, with energy
contributions from short-range dispersion (Lennard-Jones potential) (C) and long-range Coulomb interac-
tions.
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Bonded terms

The ”bonded” interactions in Eq (3.17) includes energy contributions from bond
stretching, angle bending and rotations about a bond, so called dihedral (torsion)
rotations. The bond term is a sum over all ij pairs of atoms connected and describes
the energy of deforming a bond length b (by stretch vibrations) from its ideal value
b0. The angle term is a sum over groups of three consecutively bonded atoms ijk and
describes the energy of bending a bond (by bend vibrations) with angle θ from its
ideal angle θ0. Both the bond and angle term are modelled as Hookean springs with
force constant kb and kθ respectively. The thirds sum in Eq (3.17) runs over all groups
of four consecutive atoms ijkl and describe the energy change when the dihedral angle
ϕ is rotated from 0 to 2π. The parameter kϕ is a force constant, while the parameters
n is an integer (commonly set to 3) and ϕ0 is the phase shift respectively.

Non-bonded terms

The ”non-bonded” terms in Eq (3.17) consists of summing Lennard-Jones [78] (LJ)
and Coulomb interactions. Both summations exclude atoms separated by one or
two bonds (so called 1-2 and 1-3 pairs). Atoms connected by three atoms (1-4 pair)
are partly described by the torsion term, so their LJ-interaction is scaled down. The
LJ potential describes the exchange-repulsion and dispersion attraction acting on all
atoms, while the Coulomb potential describes the electrostatic interaction between
two point charges. Together, the LJ- and Coulomb interactions will also describe
hydrogen bonds, which are electrostatic interactions, so we do not have to define
them explicitly.

The mixed parameters (ϵij, σij) are obtained by different combination rules, typ-
ically as σij = 1/2(σii + σjj) and ϵij =

√
ϵiiϵjj (the Lorentz-Berthelot rules) [69].

While the decay of the dispersion term, r−6, is physically motivated — describing the
distance-dependence for the interactions of two freely rotating dipoles — the repuls-
ive term, r−12 is less so. It is simply a rapidly decaying function that can conveniently
be obtained by squaring the dispersion term. The true decay of the repulsion is better
described by an exponential term as done in the Buckingham potential [79].

Since the LJ-parameters depends on the electronic distribution in the atoms,
which is in turn affected by bond types, we need different parameters for the same
element. In the AMBER ff14SB protein force-field [80] used in this thesis, parameters
for 10 different carbon atoms are used, of which seven are unique for Histidine and
Tryptophan residues.

The last term in Eq 3.17 is the Coulomb potential, where qi and qj are the partial
charges on two atoms separated by the distance rij, and ϵ0 is the relative permittivity in
vacuum. The partial charges are positioned at the atomic centers, and their values are
determined by QM-calculations such that they approximate the electrostatic potential
from the continuous electron distribution [69].
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Parametrisation

The process of assigning parameters to the functional form of the force field is called
parametrisation. This involves fitting the functional forms to experimental results or
quantum-mechanical (QM) calculations. The parameters b and θ0 are typically ob-
tained from crystal structures of small organic molecules, and the force constants kb
and kθ from gas-phase vibrational spectra of similar molecules. The torsional para-
meters kϕ and ϕ0 are often obtained by fitting to a QM-calculated potential for small
organic molecules [69]. The LJ-parameters ϵii andσii are usually obtained by fitting to
thermodynamic data on liquids, such as density and heat of vaporization [69, 74, 77].

3.3 Defining the system

We would like to carry out our simulations under bulk-like conditions in order to
mimic the macroscopic sample probed by experiments. Because proteins are strongly
affected by the surrounding solvent, we need to include the effect of the bulk solvent
environment on our system. As mentioned in section 3.1, this implies we should
account for on the order of 1023 molecules. Common computational resources limit
this number to a couple of million atoms [81] with standard protein force-fields, and
one therefore have to resort to approximations to mimic bulk-like behaviour.

There are two approaches we can employ to simulate the solvent environment.
The first approach is to model the solvent implicitly as a continuum dielectric medium
(using the generalized Born model for instance). However, this approximation is
only accurate if the length scale of interest is large compared to the size of a water
molecule [82]. The second approach, which is more rigorous, is to include a small
number of solvent molecules explicitly in a simulation cell. Here we will only focus
on the latter approach since all simulations in this thesis have been carried out using
explicit solvent.

With explicit solvent, a typical MD simulation of a globular protein in solution
would include several layers of water molecules inside a simulation cell. If it is a
membrane protein, phospholipids would have been included as well. As an example,
a simulation cell with a 15 kDa protein would consist of around 2000 protein atoms
and around 5000 water molecules together with ions to neutralize the protein net
charge. Clearly, the behaviour at the free boundaries of the simulation cell has to be
specified, otherwise we would simulate an evaporation process in which the molecules
diffuse throughout space. At the boundary, the fraction of molecules is proportional
to N−1/3 if the geometry of the simulation cell is a cubic box [64]. In the example
above, some 30  of the atoms will then be found at the surface, and their properties
would be different from those in the bulk.
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Figure 3.2: A three dimensional periodic system with two types of particles. The cubic primtitive cell (orange box), with
side length L, is tiled in every dimension to create an infinite lattice with periodic images of the original cell
(white boxes). When a molecule leaves the primitive cell, its periodic image moves in the same direction, so
that one of its image enters on the opposite side. The transparent sphere with radius rC < L/2 shows the cut-
off distance for interactions to that particle, allowing interactions with particles in the closest neighbouring
images.

Periodic boundary conditions

A solution to achieve a bulk-like system is to apply periodic boundary conditions [66].
The original simulation cell (often called the primitive cell) is then tiled throughout
space to form an infinite grid of boxes (a lattice) called image cells, illustrated in Fig
3.2. The image cells have no degrees of freedom; as a molecule moves in the original
cell, its periodic image in the neighbouring cells moves in the same direction. When
the molecule leaves the original cell, it reappears on the opposite side via its periodic
image. Thus, there are no walls in the primitive cell and no molecules on the surface.
Practically, we do not follow the coordinates of all molecules in the images (they are
infinitely many) but only their coordinates in the primitive cell. Other geometries
than cubic systems can be used with periodic boundary conditions, including the
rhombic dodecahedron and the truncated octahedron. Since these shapes are more
spherical, they can significantly reduce the number of solvent molecules needed in the
system.

When applying periodic boundaries we have to consider the range of the inter-
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molecular potential. If the range is longer than the side length L of the simulation cell,
then a particle will interact with itself (via neighbouring images) and we will impose
spurious correlated motions. To prevent this we define a cut-off, rC, for the interac-
tion range, taken as rC < L, so that only the interaction of a particle i with the nearest
periodic image of particle j has to be considered. This is the nearest image convention.
If the intermolecular potential is not zero for r ≥ rC, then the potential will have a
discontinuity at rC and we will introduce a systematic error in the total energy of the
system. The total energy will then not be conserved. For short range interactions,
we can correct for this by adding a small tail contribution to the potential. How-
ever, for the long-ranged¹ electrostatic interactions, with r−1 distance dependence,
the tail correction will diverge [64]. Instead, lattice methods have to be used that sum
interactions with all periodic images. One such method is the Ewald sum[83, 84],
which is an effective technique to perform summation over all periodic images [66].
This technique is usually optimized for computational performance by assigning all
the charges to a fine regular mesh which allows the fast Fourier transform algorithms
to be used. This is implemented in the particle-particle/particle mesh (PPPM) al-
gorithm [85]. A version of PPPM frequently used is the particle-mesh Ewald (PME)
algorithm [86]. An important notion to make is that Ewald-summation techniques
require the system to be electroneutral. This can be achieved by adding counter ions
to the system or rescale the charges. For non-neutral systems, a uniform background
charge is applied in the Ewald algorithms to effectively neutralize the system. How-
ever, for non-homogeneous systems such as protein in water, this may result in signi-
ficant artifacts [87].

Water models

Most of the computational overhead will be spent on simulating the water molecules.
Because of this, water molecules are often modelled as rigid bodies in most force
fields so that the three internal degrees of freedom, involving bending and stretching
of intramolecular bonds, are excluded. Thus, only the nonbonded interactions are
included in the force field.

The simple rigid water models are grouped based on the number of interaction
points, called sites, included in the model. In this thesis we have used the 3-site
models TIP3P [88] and SPC/E [89], and the 4-site model TIP4P-Ew [90] which has
been developed to be used with the Ewald summation technique. All models use a
single LJ site for the oxygen atom and three partial charges, which is illustrated in Fig
3.3. The 3-site models have a negative partial charge at the centre of the oxygen atom
and a positive partial charge at the centre of each hydrogen atom, whereas the 4-site
models have the negative charge placed on a dummy atom (M) along the bisectris
of the αHOH angle. The geometries for TIP3P and TIP4P-Ew are taken from the

¹Usually defined as a force decaying slower than r−d, where d is the dimensionality of the system.
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Table 3.1: Parameters for water models used in the thesis.

Model rOH (Å) αHOH (◦) σ (Å) ϵ (kJ/mol) q(H) q(O) q(M) rOM (Å)

TIPP [] 0.957 104.52 3.151 0.636 0.417 −0.834 0 0
SPC/E [] 1.000 109.47 3.166 0.650 0.424 −0.848 0 0
TIPP-Ew [] 0.957 104.52 3.164 0.1627 0.524 0 −1.048 0.125

experimental gas-phase geometry of water monomers [90] whereas SPC/E adopts an
HOH-angle permitting tetrahedrical bonding patterns. Parameters for these water
models are given in table 3.1.

O

H H

M
rOMrOH

αHOH

σ/2

Figure 3.3: Parameters for the rigid 3- and 4-site water models.

The charges in all models are defined so that an effective liquid-phase dipole mo-
ment µ of 2.3 Debye is achieved. The current estimate for the dipole moment for
liquid water is 3 Debye [94, 95]. The 3-site models accurately predict the densities ρ
at fixed pressure, but TIP3P overestimates the dynamics by a factor two for the self-
diffusion coefficient D [96]. The 4-site model, TIP4P-Ew, reproduces many of the
qualitative features of the water phase-diagram [90], including a density maximum
at around 1◦C. Dynamical and structural properties, such as the water-oxygen ra-
dial distribution function (see section 4.1) have also been shown to be in very good
agreement with experiment. Table 3.2 summarizes some calculated physical proper-
ties for the water models. In paper [VI], we further benchmark these water models
with respect to experimentally determined rotational correlation times.

Starting up

If we had unlimited compute resources, we could take any configuration of the un-
folded protein and let it fold spontaneously during the simulation. This is not yet a
viable option unless we are simulating a small and fast-folding protein [28]. Instead,
the initial configuration of the protein is taken from crystal structures.
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Table 3.2: Calculated and experimental properties for the water models at 298 K and 1 atm.

Model µ ϵ ρ D Cp αV κT

[D] [kg/m3] [−9m2/s] [J/(mol K)] [10−5K−1] [GPa−1]

TIPP a 2.35 82 1000.2 5.19 83.6 92 0.65
SPC/E b 2.35 71.1 999.5 2.46 86.3 49.1 0.47
TIPP-Ew c 2.32 63.9 995.4 2.4 80.3 32 0.49
Expt. d 1.86∗ 78.4 997.5 2.3 75.3 25.6 0.46

References a[ [91]], b[ [92]], c[ [90]] and d[ [93]]. ∗gas phase.

Before the real simulation can start, the system usually has to be prepared as fol-
lows. First, missing atoms (typically hydrogen) in the protein structure are added.
Solvent molecules are placed in the simulation box, without creating substantial over-
lap in the configuration. Any steric clashes or covalent strain will lead to large forces
which is a potential issue when solving the equations of motion. This is prevented by
performing an energy minimization of the system to the nearest local minimum in the
energy landscape. The steepest descend method [66] will relax the system by setting
the velocities at the start of each step to zero, which allows the system to evolve ”down-
hill” in the direction of the forces. Physically, this corresponds to a rapid cooling of
the protein to 0 K.

The initial velocities of all molecules have to be specified in order to propagate the
system by the equations of motion. Often, this is done by randomly assigning each
molecule velocity components drawn from a Maxwell-Boltzmann distribution [64] at
the desired temperature.

Most protein simulations are carried out at room-temperature to mimic common
experimental conditions, and the system must then be heated from 0 K to around
300 K. The heating step may be performed over a short time interval by including
restraints in the protein force field. Since the barostats can cause instabilities at low
temperature, the heating step is often done in the NVT ensemble. The system is then
allowed to equilibrate in the NPT ensemble until the density has converged. If all
goes well, the system is then setup to begin the production simulation used for the
main analysis.

The length of the time step

In an MD simulation, the force calculations are by far the most time consuming part
of the simulation as they have to be determined at every time step. Consequently,
we do not want Δt be too short, but not too long either; Eqns 3.13-3.15 are truncated
Taylor series and only accurate approximations if the time step Δt is sufficiently small.
If the time step is too long the total energy of the system will not be conserved, which
manifests as an energy drift during the simulation. To guarantee energy conservation,
the time step is often taken to be an order of magnitude less than the fastest motions
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in the system. For proteins in solution the fastest motion is the vibrational motions
of bonds to hydrogen atoms. For example, the main band in the vibrational spectra
of liquid water at 298 K occurs at ∼ 3400 cm−1 [97], which corresponds to a period
of 10 femtoseconds (1 fs = 10−15 s). Thus, the time step in a the simulation has to be
0.5-1 fs to ensure that the simulation is stable (no energy drifts over time) if this type
of motion is of interest in the simulation. However, these bond stretching vibrations
are of minimal interest when studying protein function and dynamics, which involve
molecular motions on a much longer time scale. By constraining the bonds to hy-
drogens to a fixed length one can increase the time step to 2 fs. This involves adding
constraints where the equations of motion are solved while imposing the constraint.
Commonly used algorithms for applying constraints are SHAKE [98], RATTLE [99]
and LINCS [100].



Chapter 4

Analysis of MD simulations

Data! Data! Data! I can’t make bricks without clay!
— Arthur Conan Doyle ¹

Once the dust has settled and the production simulation is finished we are left with
a trajectory of the system saved to a storage device. Because successive time steps in
the simulation are correlated, the trajectory only contains snapshots (frames) of the
simulation sampled at time intervals adequate for the subsequent analysis ². Each
frame usually contains coordinates for the atoms, but it can also contain velocities or
forces. As the frames are time ordered, the trajectory is a movie of the evolution of the
system. From the trajectory we can extract various types of information reporting on
the structural and dynamical properties of the molecules in the system, some of which
can be compared to experiment and others that cannot be experimentally determined.
Here we will focus on structural and dynamical correlation functions, including rota-
tional correlation functions of relevance for NMR. We will also discuss the nontrivial
task of decomposing molecular volumes from an MD-generated configuration.

4.1 Radial distribution function

The structure in a liquid (such as water) can be probed by the radial distribution func-
tion (or pair correlation function) g(r). We will leave out its formal definition in stat-
istical mechanics and only consider its operational definition, i.e. how it is determined
from a simulation. If we have a simulation of a liquid with N particles in a periodic
cell with volume V, then the average (uniform) particle density is ρ(r) = ρ = N/V.

¹The Adventure of the Copper Beeches, page 322.
²In order to determine an oscillatory motion for instance, the sampling interval has to be at most

1/(2B) seconds for a motional frequency of B Hertz. This is the so called Nyqvist-Shannon sampling
theorem.

32



4.1 Radial distribution function 33

We will drop the vector notation since the liquid is assumed to be homogeneous. The
time-averaged density in a shell at radius r from a reference particle can be defined as
ρg(r), where g(r) is the probability of finding a particle at a separation r from the ref-
erence particle. However, the radial distribution function should not be regarded as a
density per se; it does not represent a packing density that can be obtained physically.
This point is elaborated in detail in paper [IV].

To calculate g(r) from a simulation we do the following. First, we choose a refer-
ence particle iwith position vector ri. With particle i as the center, we define spherical
shells of radius r and thickness Δr. We count the ni(r,Δr) number of particles in the
shell. Each particle j in the shell is separated from i at a distance rij = |ri−rj|, so that
r−Δr ≤ rij < r. We then divide by the volume of the shell. Repeating the procedure
for N reference particles, and taking the average we obtain the pair density ρ(2)(r)

ρ(2) =
1
N

N∑
i

ni(r,Δr)
4πr2Δr

(4.1)

By normalizing with the average particle density, ρ = N/V, we obtain

g(r) =
V

4πr2ΔrN2

N∑
i

ni(r,Δr) (4.2)

Provided that we choose sufficiently thin shells, determined by the bin size for the
rij particle distances, Eq 4.2 is the estimation of the true radial distribution function
(RDF). Figure 4.1 illustrates the procedure for the RDF calculation, and how the
local environment of a reference particle is reflected in the RDF — notice the short-
range order in g(r) which is a hallmark for liquids. The first and second maximum in
g(r) describes the coordination shell of the nearest neighbors and the second nearest
neighbours respectively. Because of the disorder in the liquid, the peaks become less
pronounced with increasing distance from the reference particle, and the distribution
eventually approach the homogeneous density limit. Thus, the density of a shell at a
large distance should approach N/V. Inserting this into Eq 4.2, we get

g(r) =
V
N2

N∑
i

ni(r,Δr)
4πr2Δr

≈ V
N2

N∑
i

N
V

= 1 (4.3)

This shows that at a distance much larger than some characteristic correlation length
ξ, the RDF goes to unity, i.e.

g(r ≫ ξ) = 1 (4.4)
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g(r)

1

r

Figure 4.1: The radial distribution function g(r) for a fluid of hard spheres. The first coordination shell (red area) is
associated with the first peak in g(r). The second shell (yellow area) has a broader second peak in g(r) due
to the more loose coordination of the spheres. As the distance increases, the correlation to the reference
sphere is lost and g(r) approach unity (the homogeneous limit).

4.1.1 Coordination numbers

The coordination number is the average number of particles nc within a distance rc
from the reference particle. Figure 4.1 shows that nc is related to the integral of the
radial distribution function, and it is obtained as [65]

nc = 4πρ
∫ rc

0
dr r 2g(r) (4.5)

To define the average number of particles in the first coordination shell we have to
define an appropriate integration range. Although not unique, the position rc =
rmin of the first minimum is typically used to define the first shell. A more general
”running” coordination number can be calculated as

nc(r) = 4πρ
∫ r

0
d r′ r′ 2g(r′) (4.6)

which defines the average number of particles coordinating a reference particle out to
a distance r. From the MD trajectory we calculate the coordination number within
distance rM = MΔr as

nc(rM) =
M∑

m=1

N
V

4πr 2
mΔr g(rm) (4.7)

where rm is the distance for (shell) bin m.
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4.1.2 Experimental determination

The radial distribution function can be determined experimentally by diffraction tech-
niques using X-rays and neutrons which have wavelengths comparable to the inter-
atomic distances in liquids. In these experiments, the intensity I(θ) is measured with
respect to the scattering angle θ from the incoming beam. The scattered intensity is
described by an atomic form factor f(k) and a structure factor S(k) according to [65]

I(θ) = f(k)NS(k) (4.8)

where k is the magnitude of the scattering vector k. While the atomic form-factor f(k)
is unique for the atomic species (and depends on instrumental details), the structure
factor S(k) contains the positional information of the atoms. The radial distribution
function is essentially the Fourier transform of S(k).

4.2 Voronoi diagrams

In MD simulations we can obtain other structural details that are not easily probed
by experiment. Because we have the spatial coordinates in our simulation, we can
compute a variety of geometrical quantities, such as the volume of the protein or
analyzing shape complementary for a ligand bound to an active site. In this thesis we
have analyzed the volumes of the protein and solvent molecules by a method known as
Voronoi decomposition (also known as the Voronoi diagram/tessellation). Before we
continue, it is pertinent to point out that volume is not an intrinsic molecular property
(such as mass) as it depends on the environment. A molecule in a liquid will have
different volumes depending on the nature of the interactions with the surrounding
molecules. We should therefore distinguish between thermodynamic volumes, such
as partial volumes obtained from experiments, and geometric volumes obtained from
a simulation as described here.

Unlike for a macroscopic object, a dividing surface cannot be uniquely and pre-
cisely defined for a molecule. The volume for a molecule will thus depend on where
we place the dividing surface. A common method is to partition the space by creating
a Voronoi diagram, named after Georgy Voronoi who extended the method to higher
dimensions in 1907 [101]¹. If we represent the atoms as points, that we call sites, then
each site is assigned a region in space called a Voronoi cell. Each point in space is
assigned to the nearest site, the Voronoi assignment, and the subsequent subdivision
is the Voronoi diagram [103]. Operationally, the Voronoi cell for a site is created by
defining a plane between each pair of surrounding sites, such that it is halfway and
perpendicular to the line connecting them. The faces thus define a polygon in 2D,
which is illustrated in Fig 4.2 A, and a closed polyhedron in 3D. The Voronoi cell has

¹Voronoi diagrams had studied earlier by Johann G. Dirichlet in 1850 [102]
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A B

DC

primitive (PR) Voronoi diagram Delaunay triangulation

additively weigted (AW) Voronoi diagram AW vs PR Voronoi diagram

Figure 4.2: The Voronoi decomposition. A-B illustrates the relationship between the primitive (PR) Voronoi diagram and
its dual graph, the Delaunay triangulation. Each triangle in B is created such that no point is inside the
circumscribed circle (green) associated with that triangle. C The additievly weighted (AW) Voronoi diagram
for a set of disks. In contrast to the planar surfaces in (A), the dividing plane is put halfway between the
radii of the disks which creates curved surfaces. D Superposition of the PR and the AW Voronoi diagram.

the property that every point inside the cell is closer to the included site than to any
other site. This fact has made Voronoi diagrams a versatile geometric structure with
applications ranging from social geography to astronomy [103].

Mathematically, the Voronoi diagram is the dual graph of the Delaunay triangula-
tion, which is usually determined as the first step in computing the Voronoi diagram.
In other words, if we have the Delaunay triangulation for a set of points we automat-
ically have the Voronoi diagram for the same set of points. For points in the plane,
the Delaunay triangulation creates triangles such that no point in the set is inside
the circumscribed circle for any triangle. This is illustrated in Fig 4.2 B. There are
many algorithms available to compute the Delaunay and Voronoi tesselations from
a set of points in 2, 3 or higher dimensions, but the most common is the Quickhull
algorithm [104] implemented in the Qhull C++ library. In this thesis we have used
both Qhull and the delaunayTriangulation class implemented in MATLAB.

When applying the Voronoi decomposition to molecular systems, the dividing
plane is placed between the atomic centers and therefore does not take into account
any difference in atomic size. This will be a rather unphysical approach for allocating
space to atoms of different species. A variant of the Voronoi diagram called addit-
ively weighted (AW) Voronoi diagram, will instead put the dividing plane between
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Figure 4.3: The Voronoi diagram for the protein-water interface using AW and PR tesselation. The edges in the AW
diagram are shown in yellow, and the edges belonging to the PR diagram are shown in cyan. Oxygen (red),
nitrogen (blue) and carbon (grey) atoms are shown with standard van der Waals radii. The tessellations were
done on heavy atoms.

the surface of the atoms, typically defined by their van der Waals (vdW) radius. As
a consequence, the surfaces of the Voronoi cells will be curved instead of planar. In
this thesis we have used the Voronota algorithm [105] which has been developed spe-
cifically to obtain AW tesselations from vdW radii in molecular structures. For a
system with the same atomic species, i.e. with the same atomic radii, the AW Voro-
noi diagram is equal to the PR Voronoi diagram. Figure 4.2 C shows the AW Voronoi
diagram for disks in the plane, and the difference to the PR diagram is shown in Fig
4.2 D. It is not obvious how this difference translates to a Voronoi tesselation of a
more complex system, such as a protein surrounded by water molecules. Figure 4.3
compares the AW and PR the diagram defining the protein-water Voronoi faces for
heavy atoms. As can be seen, the differences are associated with faces belonging to
carbon atoms that have a larger vdW radius than nitrogen and oxygen atoms. Al-
though the difference between AW and PR looks small, which would render the AW
tesselation unnecessarily complicated, the difference is crucial for the correct analysis
of density an volume fluctuations in protein hydration (see paper [IV]).

The volume of a Voronoi cell can be computed easily by defining a point inside
the cell, the centroid for instance, and triangulate to obtain irregular tetrahedrons and
add their volumes. The volume of an irregular tetrahedron can be obtained via the
lengths of the edges as [106]
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where d12 is the length of the edge connecting vertex 1 and 2, and similarly for the
other pair of the four vertices. For the Voronoi cells generated by the AW Voronoi
diagram, the calculation of the volume is much more complicated. The cell has to
be triangulated to a fine mesh to define small sub volumes that are added up, but
numerically adding many small values of finite precision will lead to rounding errors.
Thus, volumes from PR diagram are preferable over the AW diagram whenever the
decompositions involve the same type of atoms.

4.3 Time-correlation functions

Many stochastic processes can be characterized by their time correlation function
(TCF) which measures statistical correlations across time signals. In MD simula-
tions, TCFs are often computed since their time integral and Fourier transforms are
more or less directly accessible to experiments, such has measurements from NMR or
infrared spectroscopy (IR).

Statistical dependence between two different quantities A and B is often measured
by the correlation coefficient as

cAB =
cov(A,B)
σAσB

(4.10)

where cov is the covariance of the variables and σ their standard deviations. The
correlation coefficient is normalized so that a high degree of correlation will give cAB
equal to 1 (or −1), whereas a value of 0 indicates no correlation. If we have sampled
M values of the quantities above, we obtain the correlation coefficient as

cAB =
1
M
∑M

i=1
(
Ai − ⟨A⟩

)(
Bi − ⟨B⟩

)[(
1
M
∑M

i=1 (Ai − ⟨A⟩)2
)(

1
M
∑M

i=1 (Bi − ⟨B⟩)2
)]1/2 (4.11)

where the brackets denote the average of the Ai and Bi values over the data set.
By evaluating the variables at two different time points, the correlation coeffi-

cient is extended to a time correlation function (TCF) cAB(t). The non-normalized
correlation function is defined as

C(τ)AB =
⟨
A(τ)B(0)

⟩
(4.12)
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where the brackets denote the expectation value in an equilibrium ensemble. If the
quantities A and B are different the TCF is referred to as a cross-correlation. If they are
the same, i.e. B = A, the TCF CAA(τ) is referred to as an autocorrelation function.
The autocorrelation function can be viewed as a measure of the ”memory” of the
system, i.e. to what extent the system has a memory of its previous values. In other
words, CAA(τ) shows how long time it takes for A to loose its memory.

4.3.1 Time symmetry

Equation 3.4 showed that Hamilton’s equations conserve energy and that the Hamilto-
nian H is a constant of time. This fact will also result in the equilibrium ensemble
being invariant in time, which has implications for the time correlation functions [65].
Perhaps the most important property is that time correlations are independent of the
reference time t such that ⟨

A(t+ τ)B(t)
⟩
=

⟨
A(τ)B(0)

⟩
(4.13)

This leads to interesting symmetry properties. For instance, the autocorrelation func-
tion is symmetric in time ⟨

A(0)A(−τ)
⟩
=

⟨
A(0)A(τ)

⟩
(4.14)

Thus, the time correlation function can be obtained from an average of a trajectory
in the equilibrium ensemble. If our MD simulation is sufficiently long, the statistical
correlation function (Eq 4.12) can be estimated from the trajectory by averaging over
reference times t

CAB(τ) =
1

Δt− τ

∫ Δt−τ

0
dt A(t+ τ)B(t) (4.15)

where Δt is the length of the trajectory, and τ is the time period in which correlations
are followed. The time available for averaging is Δt− τ , which means our trajectory
has to be long enough relative to τ in order to obtain sufficient statistical accuracy.
Given that we sample the MD simulation at discrete time intervals δt, so that τ is a
multiple m of δt, the TCF is estimated as

CAB(τ) ≈
1

M− m

M−m∑
n=1

A(tn+m)B(tn) (4.16)

where M is the total number of time steps in the trajectory.
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4.3.2 Correlation times

In MD simulations of systems at equilibrium we are often computing quantities that
fluctuate in time. Although the data will look noisy, the time dependence is sta-
tionary. The time scale of the fluctuations are often characterized by computing the
correlation time (or relaxation time) τcorr which can be estimated from experiments.
The correlation time is characteristic for the quantity investigated, and reports on how
long time it takes for the quantities A(τ) and B(0) to loose their correlation. After a
time τ ≫ τcorr, A and B will be statistically independent so that

CAB(τ ≫ τcorr) =
⟨
A
⟩⟨
B
⟩

(4.17)

As for the correlation coefficient (Eq 4.10), correlation functions are typically nor-
malized. For instance, the autocorrelation function CAA(τ) is normalized as

cAA(τ) =
⟨
δA(t)δA(0)

⟩
⟨δA(0)2⟩

δA(t) = A(t)− ⟨A⟩ (4.18)

where the brackets denote the average. Thus, cAA(0) = 1 and cAA(τ → ∞) = 0. If
the decay time is exponential, i.e. cAA(τ) = exp(−τ/τcorr), we obtain the correlation
time as

τcorr =

∫ ∞

0
dτ cAA(τ) (4.19)

For more complicated correlation functions, Eq 4.19 may still be used as a measure
of the relaxation time, but then it is more pertinent to call it an integral correlation
time.

4.3.3 The spectrum

Apart from reporting on the correlation time, auto correlation functions may contain
a wealth of information about the underlying dynamics in the system. To extract this
information in a way that is more easy to interpret, the TCF is decomposed into a
frequency spectrum that can be compared to experiment. The spectrum is obtained
by taking the Fourier transform, defined as

f(ω) =
∫ ∞

−∞
dτ e−iωτ cAA(τ) (4.20)

Evaluating the correlation at negative times is possible due to the time symmetry
property in Eq 4.14, so that
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c(−τ)AA = c(τ)AA (4.21)

By the same token, we can obtain the spectrum as the cosine transform along the
positive time axis only

f(ω) = 2
∫ ∞

0
dτ cos(ωτ)cAA(τ) (4.22)

and the spectrum f(ω) will in turn be symmetric in the frequency ω

f (−ω) = f (ω) (4.23)

We can recover cAA(τ) using the Fourier inversion theorem

cAA(τ) =
1
2π

∫ ∞

0
dω e−iωτ f (ω) (4.24)

Examples

The Fourier transform of the velocity autocorrelation for hydrogen atoms in liquid
water can be used to assign its vibrational spectra obtained from IR measurements.
For a N-atom system, the velocity autocorrelation function is defined as

cvv(τ) =
1
N

N∑
i=1

⟨
vi(t) · vi(0)

⟩⟨
vi(0) · vi(0)

⟩ (4.25)

where vi(t) is the velocity of atom i at time t, and the brackets denote the statistical
average. From a simulation, the average is thus taken both over time origins and over
all the atoms; cvv(τ) is thus a single-particle TCF. The velocity autocorrelation con-
tains information about the vibrational motion in the system at short times, whereas
its long time behavior is related to the diffusive motion.

If we consider the angular velocity of a molecule instead, we get the angular ve-
locity correlation function (TCF)

cωω(τ) =
1
N

N∑
i=1

⟨
ωi(t) · ωi(0)

⟩⟨
ωi(0) · ωi(0)

⟩ (4.26)

which is the angular velocity analog of the linear velocity correlation function in Eq
4.25. Thus, cωω(τ) indicates the degree to which the angular velocity of a molecule
at time t is related to its angular velocity at time 0.

Molecular rotations can be probed by several experimental techniques to yield the
rotational correlation time τLR of different ranks L. The rank depends on the type of



42 Analysis of MD simulations

z
C2

x y

σv(xz) σv(yz)

Figure 4.4: The water molecule in a body fixed coordinate system used in the calculation of rotational TCF. The two
symmetry planes, σv(xz) and σv(yz), defines the principal axes (C2, z) which is along the dipole direction.

interaction (tensor) that is involved in the relaxation process of the technique. For in-
stance, rotational TCFs associated with NMR relaxation measurements are computed
via the rank 1 and rank 2 Legendre polynomials

c (1)uu (τ) =

⟨
u(τ) · u(0)

⟩⟨
u(0) · u(0)

⟩ =
⟨
u(τ) · u(0)

⟩
= ⟨cos θ(τ)⟩ (4.27)

c (2)uu (τ) =

⟨
3
2
[
u(τ) · u(0)

]2 − 1
2

⟩
(4.28)

of the reorientation for a body fixed axes u that has rotated an angle θ(τ) in the time
interval τ . Figure 4.4 shows the body-fixed coordinate system for the water molecule
used in the calculation of rotational TCFs in paper [VI]. The Fourier transform of
c (2)uu is probed by 2H MRD (section 2.3.2).



Chapter 5

Summary of thesis work

In this chapter we will overview our main findings in the different papers. For the
initiated reader, the terse abstracts for each paper will serve equally as well.

5.1 Paper I&II

Many proteins rely on brief visits to highly excited conformations in order to per-
form their function, such as conformationally gated ligand binding and release or
solvent access to internal cavities. In magnetic relaxation dispersion experiments, wa-
ter molecules buried in such cavities can be used to probe the underlaying transient
protein motions that govern their exchange. For the bovine pancreatic trypsin in-
hibitor (BPTI), the four crystallographically identified internal water molecules in
the interloop region [18] exchange on a timescale ranging from tens of nanoseconds
to hundreds of microseconds [20, 21]. However, it is experimentally challenging to
characterize these transient states, and little is therefore known about the exchange
mechanism. In order to extract exchange kinetics, three assumptions are used in the
exchange-mediated orientational randomization (EMOR) model [107, 108] used to
interpret MRD data: 1) water exchange is instantaneous; 2) once a water leaves the
protein it has the same probability to return as any other water; and 3) the probabil-
ity that a water has not exchanged - its survival probability - can be described by the
stochastic Poisson process. To validate these approximation requires the full atomic
detail provided by MD simulations. But the long simulation time required to sample
enough statistics on water exchange was hopelessly beyond reach, until 2010 when
the first all-atom millisecond long MD simulation was published by D.E. Shaw et al.
[109] for BPTI solvated in water. The previously longest MD simulation published
just 3 years earlier was only 10 microseconds long, and this milestone simulation was
made possible thanks to the development of Anton, a super-computer optimized for
running MD simulations [110].

43
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In paper [I] we used the 1 ms MD simulation to test the validity of the MRD
model, characterize the exchange mechanism and benchmark the forcefield. In order
to do so we had to address many non-trivial computational issues in the process. First
we had to identify persistent hydration sites occupied by long-lived water molecules
in a protein structure that undergoes large conformational changes during the sim-
ulation. This will result in dynamical disorder [111] where the water exchange rate
depends on the conformational state of the protein. The simulation does not repro-
duce the equilibrium conformations of the C14-C38 disulfide bond [112] determined
from NMR measurements [113, 114]; the dominant M1 state has a population of 95
 whereas it is 25  in the simulation. We therefore defined conformational states
based on a cluster analysis of the rotamer states sampled by the disulfide bond, and
analyzed sub-trajectories for each conformational state. Since, the exchange event was
negligibly short compared to the time between exchanges, we could describe the ex-
change process as a stationary point-process [115, 116] and characterize the dynamical
disorder. The information in such a process is completely contained in the resid-
ence correlation function (RCF), QR(τ), which is the probability to observe a water
molecule occupying a hydration site longer than a time τ . This general framework,
presented in paper [II], can be used to extract the essential dynamical characteristics
for any reoccurring transient event observed in an MD simulation.

W122

W113

W112

W111

C14C38

Q
R (τ)

Q
S (τ)

W113

10−9 10−7 10−5 10−9 10−7 10−5
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τ (s)

Q
R (τ)

by Shaw et al.

Figure 5.1: Internal hydration sites in BPTI and the disulfide bonds (yellow). Residence QR(τ) and survival QS(τ) correl-
ation functions for W113 in all states and the experimentally dominant M1 state. If residence times are inde-
pendent and exponentially distributed, we have a Poisson process for whichQR(τ) = QS(τ) = exp(−τ/τS).

Because experimental measurements are not synchronized with the exchange event,
the RCF cannot be used to compare simulation with results from MRD. Instead, the
proper correlation function is the survival correlation function (SCF), QS(τ). This is
the probability that a water molecule residing in a hydration site at a randomly chosen
time point does not leave the site in the subsequent time interval τ . Measurements
on immobilized proteins by MRD yields essentially the Fourier transform of the SCF,
and the MRD-derived survival times (ST), τS is the integral of the SCF. In paper [II]
we present an algorithm for computing the SCF that is several order of magnitudes
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faster than the original algorithm by Impey et al [117], and we give a detailed error
analysis of both the statistical error and the binning error for the SCF.

For SCFs computed from the M1 state, the simulation reproduces the experi-
mental STs remarkably well for the four internal hydration sites. For the sites W111-
W113, the activation energy discrepancy is 1.5 kBT, and for the W122 site, adjacent
to the C14-C38 disulphide bond, the discrepancy is 3 kBT. However, the forcefield
underestimates the C2 flip barrier in the sites by as much as 6 kBT. The essentially
exponential SCFs validates the Poisson approximation in the EMOR model. The fast
exchange events, absence of site correlations, and the very low return probability for
recently exchanged water molecule also validates the EMOR model.

The exchange mechanism for water exchange of the three deepest sites (W111,
W112 and W122) revealed, in all cases, a short-lived (≤ 5 ns) transition state where
the buried site is accessed via a single-file water chain migrating through a transient
tunnel or pore. We call this the aqueduct mechanism which was observed to have
two variants. The water chain either involved the adjacent sites W111-W113, or one
or more new tunnels or pores. The latter variant was dominated for W122 in the M2
state of the C14-C38 disulfide bond and resulted in a higher water content in the
interloop region.

5.2 Paper III

The transient solvent exposure of the protein interior observed in Paper [I] spurred
us to see if the 1 ms simulation of BPTI [109] could cast light on another mechan-
ism that has remained elusive for more than 60 years. Like internal water molecules,
amide hydrogen exchange (HX) requires transient solvent access to the interior sites,
but here the site must also be accessed by a catalytic ion (usually OH−). Under nat-
ive conditions, few amides exchange by global unfolding so exchange must involve
subglobal structural changes for the majority of amides. For the past decades there
has been much debate about the nature of these subglobal fluctuations and their fre-
quency, duration, amplitude and cooperativity. Measuring HX rates is usually done
by NMR in the EX2 limit of the standard HX model [27] where the measured HX
rate kHX reports on the protection factor κ of the amide

κ =
kint
kHX

=
fC
fO

(5.1)

where fO and fC are the fractional populations of the open (O) exchange competent
state and the closed (C) exchange incompetent state. It is implicitly assumed that kint
is the same as the HX rate from structureless peptides. Protection factors are often
determined to gain information about protein structure and flexibility. But because
the exchange mechanism is unclear, the interpretation of these experiments are of
qualitative value at best.
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We therefore set out to see if we could use the ultra-long simulation to repro-
duce experimental PFs and thereby gain insight into the HX mechanism. Because
no bonds are broken in an MD simulation, the O state cannot be identified directly.
Instead, we had to postulate a structural criterion that must be satisfied for HX to
occur. Our O-state criterion requires an amide hydrogen N-H to have at least two
water oxygens within RHO = 2.6 Å. This criterion will almost always guarantee that
any intramolecular hydrogen bonds are broken, which is often used to correlate exper-
imental PFs [118–120]. Out of 53 amides, 41 accessed the O state in the subtrajectory
where the C14C38 disulfide bond is in the experimentally dominant M1 configur-
ation. As might be expected, weakly protected amides required a smaller structural
adjustment to become exchange competent. However, the rigidity as measured by
crystallographic B-factors did not show any such correlation, in contrast to a previous
suggestion [121].

We determined PFs using the O-state definition and compared them against re-
liable experimental PFs on BPTI [122–124] at the simulation temperature 300 K. For
the 30 PFs available for comparison, the computed PFs agreed well with experiment
(see Fig 5.2). Except for three amides, the simulation-based O/C free energy difference
agrees to better than 2.5 kBT. Expressed as a signed average, β⟨ΔGsim − ΔGexp⟩ =
0.44 kBT. Our O-state definition is also supported by the observation that none of
the eight amides in the beta-sheet core access the O-state. These amides exchange
by global unfolding and should not be expected to access the O-state in the analysed
native-state trajectory.

Experiment Simulation

1.0

2.4

5.2

6.6

8.0

3.8

log κ @ 300 K

Figure 5.2: Backbone amide hydrogen atoms in BPTI, color-coded according to the HX protection factor (κ). (Left )
Experimentally determined protection factors from reference [ [122–124]] for 41 backbone amide hydrogens
(temperature corrected). (Right) Protection factors determined from MD simulation where 41 backbone
amide hydrogens accessed the postulated open state.
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Most of the visits to the O-state were only a single frame, so the mean residence
life time (MRT) of the O-state must be shorter given that only a fraction are recorded
in the 0.25 ns sampling resolution. We could correct for this systematic binning error
by modelling theC ⇆ O fluctuations as an alternating Poisson process. The approach
was validated by the MRT distribution for the C-state which is close to exponential.
While the MRTs for the C-state ranged from 1 ns to 2 µs, the MRTs for the O-state
varied by only a factor of three, with mean and standard deviation 81 ± 18 ps. The
O-state is thus highly unstable, so the large variation in PF must almost entirely be
due to the variation of MRTs in the C-state.

Two competing models for the HX mechanism have been proposed where the
amide either gets exposed to solvent by ”solvent penetration” or by ”local fluctu-
ations” [30, 32, 34]. We find that these imprecisely defined models are not mutually
exclusive; a few amides gain access to solvent by the aqueduct mechanism seen for
internal water exchange in Paper [I], but most amides gain access to solvent by more
local structural distortions. However, because no protons are actually exchanged in
the simulation, the exchange-competent state cannot unambiguously be established.
Nevertheless, we believe that the proton transfer occurs via a Grotthuss-type (pro-
ton jumping) structural diffusion in which the amide has to be ”pre-solvated” by two
water molecules before the catalyst can approach the amide through a water wire.

5.3 Paper IV

The protein hydration shell is a well established concept but with different operational
definitions. In its simplest interpretation, the protein hydration shell consists of the
water molecules in contact with the protein surface, but no consensus exists on how
to identify these water molecules from molecular simulations. We were motivated to
examine methods to construct hydration shells as they provide a simple and robust
metric in the analysis of the spatial range of the protein-induced water perturbation;
the hydration shell index represents the number of water monolayers that may separate
a perturbed water molecule from the protein surface.

Two different types of methods, based on spatial or topological proximity between
protein and water oxygen atoms, have been used to define the hydration shells. We
compared these methods on how well they produce shells that are one water molecule
thick and that fully covers the protein surface or the inner hydration shell. Our ana-
lysis is based on molecular dynamics simulations of four globular proteins in dilute
aqueous solution, with three different water models. For all systems, the best method
to construct the first shell is a 5 Å water-carbon cutoff (CC) which almost completely
covers the protein surface, whereas a popular method, using a ∼ 3.5 Å cutoff to any
protein heavy atom [39, 40, 125, 126], only covers half of the surface. The topological
method based on Voronoi-tessellation is being used more and more to define the first
and higher order shells [42–44, 49–51, 127, 128]. We find that this method produce
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too thick shells (4 Å) owing to the fact that the majority of topological neighbors are
3.5-6 Å away from the water molecule. Using a 4 Å water-water cutoff (WC) we
obtained higher order shells with 95  coverage and a shell thickness of 2.8-2.85 Å
that closely matches the first maximum in the bulk water oxygen-oxygen radial distri-
bution function (RDF) [129–131]. Figure 5.3 shows nine hydration shells constructed
using the CC/WC and the VN definitions.

Figure 5.3: The first nine hydration shells of Ubiquitin, constructed from the first frame of the production simulation
using the WC/CC (left) and VN (right) shell definitions.

Having defined monolayer hydration shells we then analyzed different, essentially,
geometric properties for the protein-water interface. At the molecular scale, geomet-
ric volumes cannot be unambiguously defined; any estimate of the hydration water
density relies on a suitable choice of a protein-water dividing surface. If the dividing
surface is put at equal distance between any atom pairs, i.e. the ordinary Voronoi
cell, we obtained a density increase of 1  compared to bulk. But a more physically
realistic volume decomposition is to put the dividing surface at equal distance, at any
point, from the vdW surfaces of the neighboring atoms. This decomposition is called
additively weighted Voronoi tessellation [105, 132] and yields a 6  density increase
compared to bulk. The experimentally measured first-shell density is estimated to 10
 from scattering experiments [47]. Because these experiments cannot disentangle
the hydration shell thickness and the density, we argue that the difference to our res-
ults can be explained by 1) the too small estimate on the amount of water in the shell,
taken from studies of non-freezing water [133, 134], which typically corresponds to
only half of the first shell; and 2) the assumed 22  effective excess density of this
shell based on measurements of unit cell volumes of hydrated and anhydrous crystals
of (mostly) inorganic salts [133–135].

Including the higher shells, the protein-induced relative density perturbation is
short-ranged and highly invariant for all systems as shown in Fig 5.4b; it is reduced
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Figure 5.4: [a] Contours of the bivariate distribution f(AS,N1) where AS is the SASA and N1 is the number of water
molecules in the first hydration shell. The line corresponds to IWA= 11.11 Å2. [b] Percent difference from
bulk water of the mean water density in the n:th hydration shell for the four proteins studied. The dashed
curves resulted from exponential fits.

five-fold in going from one shell to the next higher shell. This correspond to a decay
”length” of 0.6 shells, the length at which the perturbation has decayed to a fraction
of 1/e of its value in the first shell. Using an average shell thickness of 2.8 Å, this gives
a physical decay length of 1.70 Å.

Several experimental techniques, such as small-angle scattering and magnetic re-
laxation dispersion (MRD), rely on an estimate of the number of water molecules in
contact with the protein surface. If one knows the mean interfacial water-area (IWA),
i.e. the average amount of the protein solvent-accessible surface area (SASA) occupied
by a water molecule on the protein surface, the number of water molecules in the first
shell is simply approximated as SASA/IWA. We determined the IWA to 11.1 Å2 and
conjecture that this value applies to most globular single-domain proteins (Fig 5.4a).

We also characterized the neighborhood of individual water molecules by com-
puting local coordination numbers resolved on shells and subsets thereof. The co-
ordination numbers were defined as the number of ”ligand” (L) atoms within a cutoff
distance from a water oxygen atom (W), with L = C, N, O and W atoms. The cutoff
distances were defined from the first minimum in the W-L RDFs. The distribution
of the polar coordination number (L = N+O+W) differs very little among the four
proteins. Remarkably, this distribution differs very little from the bulk-water distri-
bution. The mean polar coordination number is 4.26, a mere 1  below the bulk
water, and is the net result of a near cancellation of a 4  excess (relative bulk) in the
polar subset and a 5.4  deficit in the nonpolar subset.
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5.4 Paper V

Having studied molecular volumes in paper [IV], we also investigated the fluctuations
of protein and hydration shell volumes, which is related to the compressibility for
a system. The isothermal compressibility describes the stability of a protein against
pressure denaturation [136–139] and its functional relevant [140, 141] mechanical prop-
erties [142] and volume fluctuations [143]. Because the work of cavity formation is
(inversely) related to compressibility [144], the compressibility of the hydration shell
is linked to hydrophobic effects at the protein-water interface [145].

For a closed system with volume ⟨V ⟩, with fixed particle numbers {N}, the iso-
thermal compressibility κ describes how the volume responds to an isothermal pres-
sure change, defined as

κ ≡ 1
⟨V ⟩

(
∂⟨V ⟩
∂p

)
{N},T

(5.2)

The isothermal compressibility can be obtained from molecular dynamics (MD) sim-
ulations performed at different pressures, or it can be obtained from the isothermal
volume fluctuation δV = V− ⟨V ⟩ of a closed system in an NpT MD simulation,

κ =
⟨(δV )2⟩
kBT⟨V ⟩

(5.3)

We were motivated to determine κ since experiments, which measures the partial
protein compressibility, cannot disentangle the contributions to κ from the protein
and the hydration shell. To compute κ for the hydration shells in our NpT simula-
tions of small globular proteins, we had to solve many non-trivial problems, some that
had been recognized before but never analyzed or discussed. First, as shown in paper
[IV], the density is higher near the protein than further away, but the compressibility
definitions above are not defined for this inhomogeneous solvent. Secondly, the hy-
dration shell is an open system, containing a fluctuating number of water molecules,
but Eqns 5.2 and 5.3 are only valid for a closed system; one obtains a pseudo compress-
ibility κ̃n that will differ greatly from the true (intrinsic ) compressibility κ̂n for shell
n, because it includes a (negative) contribution ηn from molecular exchange between
regions of different density. Thus, κ̃n = κ̂n + ηn. Third, because geometry and inter-
actions cannot be rigorously disentangled at the molecular level [146] a protein-water
dividing surface must be imposed and this choice affects the compressibility. Here we
use the realistic dividing surface obtained by so-called additively weighted Voronoi
tessellation [105, 132], but so far only primitive Voronoi tessellation has been used to
compute compressibilities [127, 146–149]

Because compressibility is a collective property, reflecting coupled volume fluc-
tuations among several water molecules, κ̂n can be decomposed into self κ̂selfn and
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cross κ̂crossn contributions from waters in the hydration shells. The total cross con-
tribution, κ̂crossn , are made up of rapidly decreasing contributions from nearby shells
(or the protein), with negligible contribution from shells beyond n ± 4. They ac-
count for between 50 to 60  of the total κ̃n, and many authors have ignored these
contributions [42, 125, 150]
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Figure 5.5: [a]Relative variation of the intrinsic compressibility κ̃n with shell index n. [b] Relative variation of the intrinsic
self compressibility κ̃self

n with shell index n. The magenta curve is a joint exponential fit to all six data sets.

We find that the intrinsic compressibility κ̂ is 25-30  lower in the first hydration
shell compared to bulk. This difference is larger than the static properties determined
in paper [IV], but it is largely a trivial effect of the non-local character of κ̂: the prox-
imity to a more rigid material (the protein) suppresses volume fluctuations in the first
shell, thereby reducing the self and correlated contributions. Figure 5.5a shows the
intrinsic compressibilities for shells 1-5 for the studied systems, with an exponential
fit yielding a decay length of 0.95 shells. Figure 5.5b shows the intrinsic self compress-
ibility for shells 1-8, with an exponential fit yielding a decay length of 1.4 shells.

Finally, we show how to compute the experimentally measured partial protein
compressibility κ̄P from simulations. For our systems there is a negative hydration
contribution to κ̄P, and it is of similar magnitude to the intrinsic partial protein com-
pressibility, so that κ̄P is close to zero. Although no experimental data is available
for our small proteins, surface-to-volume scaling suggest that the negative hydration
contribution should be more important for small proteins [151]. We therefore regard
our results as being consistent with the available experimental database [152–154].

5.5 Paper VI

The dynamics at the protein-water interface is important in many biological processes,
and water motions at or near the protein surface has been characterized by several
experimental techniques. The most compelling experimental evidence comes from
17O magnetic relaxation dispersion (MRD) experiments which selectively probes the
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motions of single water molecules. Apart from providing information about internal
water molecules (paper [I]), this technique provides the average rotational correlation
time τR of the primary hydration shell, which is often expressed as the rotational
perturbation factor (RPF) ξR = τR/τ

bulk
R . MRD measurements of a large number

of native proteins has found that ξR ≈ 3-5 at room temperature [20–22, 59, 61, 155–
167]. For the past decade, RPFs from molecular dynamics (MD) simulations have
achieved semi-quantitative agreement with those measured by MRD [45, 168–171],
but these studies suffer from several shortcomings to allow a rigorous comparison to
MRD data. On the other hand, what has been demonstrated in these simulations
is a strong dynamical heterogeneity within the hydration shell around proteins [51,
168–171], showing rotational correlation times spanning three orders of magnitude.
Yet, the precise distribution of correlation times is not clear, nor is the molecular
mechanisms that give rise to these wide distributions.

Using MD simulations, we therefore set out to do a comprehensive analysis of
protein hydration dynamics in order to add missing pieces to this puzzle as well as
performing the most rigorous comparison with MRD results to date. Our analysis is
based on simulations of four globular proteins, with three different water models, in
dilute aqueous solution at room temperature. As a spatial metric, we assigned water
molecules to monolayer hydration shells (as established in paper [IV]) and subsets
thereof. We compute three different rotational time correlation functions: two uni-
axial TCFs of rank 1 (U1) and 2 (U2) describing the rotation of a water-molecule
fixed vector and one biaxial TCF of rank 2 (B2) describing the rotation of a water-
molecule fixed tensor. The B2 TCF must be computed in order to compare with
17O MRD results (which is rarely done [45, 166]). Because MRD essentially gives
the integral rotational correlation time (IRCT) (at zero frequency), we computed the
TCFs up to 1 ns which is a much wider range of delay time than what is customary.
In most previous MD studies, the IRCT has been extracted by fitting the TCF to an
exponential at short times (typically less than 10 ps [169, 170], which will lead to an
underestimation of the RPF (typically by a factor of 2 as shown in Fig 5.6) as well as
missing the information about confined water molecules.

We determined RPFs for polar and nonpolar subsets of the first hydration shell
since water dynamics has been suggested to depend strongly on site polarity. Water
molecules within polar subsets were subdivided if the site involved charged or neutral
protein atoms. RPFs increased in the order nonpolar < positive < neutral < negative,
ranging from ∼ 2 (nonpolar) to 7-11 (negative). The slowest dynamics at negatively
charged sites have been found before [40, 169], but some authors have claimed that
rotation is slowest at positively charged sites [172] or even at nonpolar sites [173] -
in stark contrast to our results. However, the correlation on site polarity is merely a
correlation and may instead depend on the surface topography (which in turn may
be correlated to polarity). Slower water dynamics have been noted in several MD
simulations, with water in concave sites, pockets or clefts being more perturbed than
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exposed, convex sites [39, 39, 40, 169–171, 174–176]. But no quantitative correlation
has been established. Guided by these observations, we assigned each water molecule
a confinement index zC, defined as the number of carbon atoms within 5.0 Å of the
water oxygen atom.

This simple definition turned out to capture the essence of water confinement and
reveal several key insights about water perturbation: With increasing confinement
index zC, the RPF ξ(zC) increases exponentially for zC < 10, whereas the number of
water molecules with confinement index zC, N1(zC), decreases exponentially. For the
most confined sites, the RPF increases more strongly and with more protein specificity.
Among the three TCFs, the B2 TCF is the most sensitive probe for water confinement;
for every additional carbon atom the (B2) RPF increase with 27 .

confinement index, zC

P(z
C )ξ R

(z
C
)

Figure 5.6: [Left] Water molecules in the first shell of GB1, color-coded according to their confinement index (only a
fraction of the zC = 1 subset is shown). [Right] The rotational perturbation factor ξ(zC) based on IRCTs
(filled circles) and ξ(zC) based on exponential fitting to the TCF in 2-10 ps interval (open symbols) versus
confinement index zC. Dotted lines resulted from exponential fits for zC ≤ 10. TCF type: U1 (green) and U2
(blue) and B2 (red). The bars shows the fraction P(zC) of first shell water molecules with a given zC.

The confinement index also correlates with the number of neighbouring polar
atoms. Although the number of neighbouring water molecules decrease with increas-
ing zC, the number of polar protein atoms increase with zC. Thus, our confinement
index measures the extent of the protein-water contact regardless of whether it in-
volves polar or nonpolar protein atoms.

Our discovery of a universal and exponential dependence of the RPF on confine-
ment index indicates that water molecules in the hydration shell rotates by different
mechanism on a spectrum of two extremes. At the lower end, the water molecules
with zC = 1 at nonpolar (non) sites coordinate almost the same number of water mo-
lecules as in bulk and therefore rotate by a bulk-like mechanism, with a cooperative
motion of several water molecules. This is supported by the TCF rank dependence,
τ nonR (U1)/τ nonR (U2) = 2.55, which is the same as in bulk. For the most confined
water molecules at the high end of the spectrum, orientation is restricted and rotation
cannot occur by concerted motions as in the bulk. Rotation therefore requires an
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exchange event, whereby another water molecule enters the confined site and the ori-
ginal one now can rotate with little or no retardation: this is the exchange-mediated
orientational randomization (EMOR) mechanism. For water molecules rotating by
the EMOR mechanism, the asymptotic decay time should be the same for all three
TCFs, on the time scale of the mean survival time. This is indeed what we see for the
most confined water molecules, as shown in Fig 5.7a.
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Figure 5.7: [a] The three TCFs for the most confined (zC = 15) water molecules in the first hydration shell of Ubiquitin.
Exponential fits (dashed line) in the interval 0.5-1.0 ns. [b] Excess rotational perturbation factor, δnR = ξnR−1,
derived from the three TCFs for water molecules in the n:th hydration shell, and averaged over the four
proteins. TCF type: U1 (green) and U2 (blue) and B2 (red).

By computing the B2 TCF for all water molecules in the systems we could bench-
mark the simulation force-field with model-free MRD results. Like previous studies
we obtain a semi-quantitative agreement between simulation and MRD, supporting
the simulation data and the conclusions drawn from it. However, our rigorous ana-
lysis shows that the simulation overestimates the MRD-derived (generalized excess)
RPF by 25-30  for three of the four proteins. The same discrepancy is seen for
the other water models, and we therefore attribute the difference between simulation
and experiment to the protein force-field; because the RPF is heavily influenced by
a small number of highly confined sites, it depends sensitively on the protein water-
interactions which might not be described correctly by the protein force-field.

Finally, we address the contentious issue of the spatial range of the protein-induced
perturbation on water dynamics by computing RPFs for each monolayer-thick hydra-
tion shell. The perturbation is short-ranged as shown in Fig 5.7b; on going from one
shell to the next higher one, the perturbation is reduced by an order of magnitude.
This corresponds to an exponential decay-length of 0.4 or 0.3 shells for the uniaxial
and biaxial (B2) TCFs respectively. Translated to a decay length, with an average
shell-thickness of 2.8 Å (paper [IV]), this yields 1.1 and 0.8 (B2) Å.

However, the only long range perturbation that we observe is a weak alignment
of the water molecules by the electric field of the protein, which decays as R−3 for the
electroneutral proteins studied here. Such a weak alignment hardly affects the local
water dynamics, but it introduces a persistent orientational correlation. Complete
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randomization of a water molecule’s orientation then requires diffusion around the
protein, which is manifested in the TCFs as two distinct time-scales: picosecond water
rotation brings the TCF down to a small plateau value, whereupon nanosecond water
diffusion completes the decay towards zero. The weak long-time tail associated with
this isotropic averaging of the local electric field could be observed for the U1 TCF
up to the sixth shell, but it has already decayed to 1  of its initial value in the second
shell. The effect of the second and higher shells contribution to the total perturbation
measured by 17 O MRD is only 3 , verifying that the (generalized excess) RPF can,
to a very good approximation, be assigned to water molecules in the first shell.
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Most proteins have evolved to function optimally in aqueous environments, 
and the interactions between protein and water therefore play an essential 
role in the stability, dynamics and function of proteins. Although we under-
stand many details of water, we understand much less about the protein- 
water interface. In this thesis we use molecular dynamics (MD) simulations to 
cast light on many structural and dynamical properties of protein hydration 
for which a detailed picture is lacking, such as the exchange mechanism of 
internal water molecules captured in the MD-snapshot above, or the spatial 
range of the protein-induced water perturbation depicted on the front cover.


