
The University of Manchester Research

The Statistical Properties of Raw and Preprocessed ToF
Mass Spectra
DOI:
10.1016/j.ijms.2018.03.005

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Thacker, NA., Tar, P., Seepujak, A., & Gilmour, J. D. (2018). The Statistical Properties of Raw and Preprocessed
ToF Mass Spectra. International Journal of Mass Spectrometry, 428, 62-70.
https://doi.org/10.1016/j.ijms.2018.03.005

Published in:
International Journal of Mass Spectrometry

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:22. Nov. 2022

https://doi.org/10.1016/j.ijms.2018.03.005
https://www.research.manchester.ac.uk/portal/en/publications/the-statistical-properties-of-raw-and-preprocessed-tof-mass-spectra(a9ccbfc0-8d81-47d6-8283-25412afb79e7).html
https://doi.org/10.1016/j.ijms.2018.03.005


The Statistical Properties of Raw and Preprocessed ToF Mass

Spectra

N.A. Thacker,1 P.D. Tar,1∗ A.P. Seepujak,1 1 and J.D. Gilmour2

Single–valued summaries, such as signal–to–noise ratio, are

insufficient to fully describe the input and output characteristics

of time–of–flight mass spectra preprocessing methods. A detailed

understanding of uncertainty, biases and correlations is essential

for selecting appropriate methods, and for drawing confident

scientific conclusions from preprocessed data. We apply a range of

diagnostic tests to mass spectra, allowing statistical and systematic

sources of uncertainty to be assessed throughout the typical stages

of a preprocessing pipeline. Baseline correction, alignment and

peak detection are reconsidered, with an emphasis on producing

outputs with statistical properties compatible with an independent

Poisson ion counting process. Benchmarking is also performed

against a range of alternative preprocessing methods. In contrast

to other preprocessing methods, new techniques are presented

which provide improved statistical stability. The benefits are

demonstrated using simulation and also data from the RELAX

(refrigerator–enhanced laser analyser for xenon) mass spectrome-

ter. A two-fold improvement in accuracy of Xe peak measurement

over the original method for the same dataset is observed.

1 Introduction

Mass spectrometry separates ionised species by their

mass–to–charge ratio in order to identify and quantify molecules

or isotopes. Whilst all mass spectrometers contain the essential

components of an ion source, a mass analyser and a means of

ion detection,1 there exists a wide variety of each of these three

components2. Mass spectrometry has applications across the

range of biological and physical sciences3–6. In this work, we

present preprocessing techniques that are relevant to mass spec-

trometers equipped with time–of–flight (ToF)7–9 mass analysers.

The methods are illustrated using, but not limited to, noble gas

isotope analysis.

An ideal mass spectrum can be viewed as a histogram, with each

bin representing a specific mass range. The frequencies recorded in

each bin, being independent counts of detected ions falling within

that range, should be consistent with discrete Poisson counting

statistics10,11. In practice, however, the output signal from a mass

spectrometer is not always a discrete ion count; it can be a voltage,

produced by the time–varying output current from a detector as it

passes through an impedance.2 A step change in voltage will be as-

sociated with each count, therefore a translation between voltage

and ion detections is required. Electrical and thermal effects in-

troduce additional uncertainty in the form of Gaussian–type noise

on the continuously monitored output12. Charging and discharg-

ing effects can introduce a non–zero baseline for ion counts, which

may vary as a function of the signal. Mass calibration may also

drift, which can misalign what should be equivalent bins, and so

lead to the broadening or misidentification of peaks. Causes of

misalignment can include jitter on timing signals, differences in

sample surface hight and also variations in initial ion velocities,

all of which can effect time-of-flight. These issues do not neces-

sarily invalidate analysis approaches based on Poisson statistics, so

long as appropriate preprocessing can be performed. The aim of
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our preprocessing is to minimise these effects so that data analysis

based upon ideal Poisson statistics can be applied, such as Linear

Poisson Modelling.26–28

Preprocessing is an essential step for the analysis of mass spec-

tra,13 but represents a challenging problem. Poorly performed pre-

processing may prevent meaningful analysis of signal.14 15 Previ-

ous methods for preprocessing include principal component anal-

ysis, independent component analysis, agglomerative hierarchical

clustering, sequential approaches based on Gaussian scale–space

theory and hidden Markov model–based methods.10,13 Bayesian

approaches have also been suggested.13 Some of the above prob-

lems with mass spectra data have been addressed by others in

the form of various baseline correction16,17 and alignment meth-

ods.18–21 With increasing reliance on mass spectrometric quan-

titation, e.g. in proteomics22 and structure determination of

protein–protein complexes,23 knowledge of uncertainty is becom-

ing vital. Determination of error arising from fluctuations in the
m
z value has been attempted.24 Empirical estimates of error on

values computed from mass spectra have also been undertaken,

using the principle that a χ2 statistic can be forced to adopt an

expected value for a specified number of degrees of freedom by

fitting appropriate variance terms.3 Additionally, analytical tech-

niques such as error propagation25 have been applied in order to

understand errors on summaries such as metabolomics data analy-

sis.29. However, the evaluation of methods often focus on narrow

properties, such as signal–to–noise, or true/false positive rates30.

They also often make untested assumptions of independence, or

neglect effects at low signal.24 It is rare for algorithms to be as-

sessed more comprehensively in terms of multiple statistical prop-

erties, e.g. changes in noise as a function of signal, actual shapes

of noise distributions, correlations within noise, or preservation of

signal normalisation and shape (bias); which are exactly the tests

required to confirm idealised histogram behaviour.

To address the above issues, we develop methods of baseline

correction, peak alignment and peak integration specifically de-

signed to provide output characteristics that are closer to those of

idealised independent Poisson histograms. In addition, we present

methods for assessing a wide range of statistical properties. These

include checking the functional dependencies between signal and

noise, via Bland–Altman (BA) plots33,34 (also known as funnel

plots and Tukey mean–difference plots10). We assess noise cor-

relations, using a standard correlation coefficient. We also assess

how well the shape of signal is preserved, via χ2 statistics, and

check that total signal normalisation is preserved, using Pull dis-

tributions.46 These metrics of success are selected in preference

to any other evaluation approaches, as these directly quantify the

statistical properties of interest. We evaluate our methods us-

ing synthetic Monte Carlo spectra and experimental spectra from

the refrigerator–enhanced laser analyser for xenon (RELAX) mass

spectrometer.3 Our methods have already been applied success-

fully to organic mass spectra that are far more complex,32 where

resulting spectra were used for quantifying lipid samples. Here,

simpler spectra are selected so that fundamental statistical proper-

ties of the data can be more easily assessed.

Results are compared to a range of other preprocessing ap-

proaches, as implemented in the preprocessing suite SpecAlign,

by Wong35,36. This software was selected as a standard owing to

its popularity and ease of availability as an open–access resource.

2 Methods

The three preprocessing steps evaluated in this work consist of

baseline correction, alignment and integration of peaks:
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• Baseline correction is performed to mitigate against the non-

zero Gaussian noise background, thereby providing an im-

proved zero-point for the counting of ions;

• Alignment is performed to ensure that shifts along the m/z

axis are minimised, allowing mass bins to be interpreted con-

sistently across multiple spectra;

• Peak integration is performed to reduce spectra into simpler

histograms with one peak per bin, which would otherwise be

spread over multiple mass bins.

To assess these methods, a Monte Carlo spectrum generator and

six metrics of success are applied:

• From Bland-Altman analysis, the power-law relationship be-

tween signal and noise is determined, on a mass-by-mass ba-

sis;

• From Bland-Altman analysis, the scaling of errors in compari-

sion to Poisson errors is determined, on a mass-by-mass basis;

• Using χ2 statistics, the overall shape of spectra are assessed

against known reference shapes;

• Using Pull distributions, bias in total ion counts is assessed

against known values of total signal integral;

• Using Pull distributions, the statistical spread of total ion

counts is compared to expected Poisson variability;

• A correlation coefficient is used to check correlations between

noise on adjacent masses, on a mass bin by mass bin basis.

Between these metrics, bin-by-bin behaviour and total signal

behaviour can be comprehensively understood, with well-defined

predictions for all expected results.

2.1 Data sources

In order to assess the preprocessing functions, a source of spec-

tra with known problems and associated ground truth is required.

A Monte Carlo simulation was therefore employed, based on

experimentally–acquired RELAX air calibration spectra.3 44 RELAX

is an ultra–sensitive resonance mass spectrometer for measuring

xenon isotope ratios of extraterrestrial materials. The instrument

consists of a resonance ionisation ion source with a cryogenic sam-

ple concentrator, a ToF mass analyser, and a detector consisting

of a pair of chevron–mounted microchannel plates. Data are ac-

quired in analogue mode using an Acquiris DP240 8–bit digitiser

card sampling at 1 ns. Noble gas analyses including those employ-

ing RELAX are conducted statically. Thus, the signal intensity mea-

sured using the RELAX instrument exponentially decays as a func-

tion of time as xenon is implanted into the detector. For calibration

purposes, a reservoir attached to the instrument supplies a known

composition of xenon derived from the earth’s atmosphere. These

allow determination of the sensitivity of the instrument (from the

signal produced from the known amount of calibration xenon)

and of its mass discrimination (by comparing measured isotope

ratios to the known values of atmospheric xenon). Data from such

air calibrations were used to configure the parameters of Monte

Carlo data, and also act as a source of real data, against which

a conventional calibration and our pre-processed calibration can

be checked. At the time the original air calibration data were ac-

quired, instrumental contamination also contributed to the signal

in the form of non-resonantly ionized hydrocarbons. The presence

of hydrocarbons can be identified from the broadening of some

peaks and the presence of visible peak at mass 127.

Our Monte Carlo simulation generates peaks with a Gaussian

profile at the masses listed in Table 1. Mass spectra with indepen-

dent Poisson noise were created by drawing frequencies for each

mass bin, Hi, (with i being a particular mass range) from a Poisson

random number generator.42 The expected value of the Poisson

variable, < Hi >, is determined from the Gaussian signal profiles

at each mass, i. Simulated spectra with misalignment are created

by systematically adding a small random offset to the mean of each

Gaussian peak. Finally, a non-zero baseline is added to each mass

bin using a Gaussian random number generator with finite positive

mean. 500 spectra are created per experiment, with normalisation

decaying exponentially, to match real data. The properties of the

spectra were assessed to configure the Monte Carlo to give com-

parable signal-to-noise, background, levels of misalignment, and

number of spectra per dataset. The background noise (between

peaks) was measured at 1.6 counts with a mean background level

of 5.0 counts; the amplitude of the highest peak was 500 counts,

decaying to zero by the 500th spectrum; and a peak misalignment
m
z < 3 bins was measured. Fig. 1 and Fig. 2 show example simu-

lated spectra.

The decaying quantities across the 500 spectra and the vary-

ing widths and relative peak heights present a range of challenges

for the preprocessing. The low peaks at 126, 127 and 128 are

close together, ideal for testing baseline correction and peak de-

tection. The other peaks are a mixture of distances apart and are

comparatively large, ideal for testing alignment and overall sig-

nal integral preservation. Each Monte Carlo dataset consists of

4,500 peaks in total (500 decaying spectra of 9 peaks each), con-

taining a broad range of signal-to-noise ratios. The successful pre-

processing of such spectra is evidence that the approach will also

work on other data which require similar adjustments, regardless

of apparent spectral complexity.

In addition to synthetic data, the pre-processing is illustrated us-

ing real RELAX data, albeit limited by lack of ground-truth knowl-

edge. Complex biological spectra have also been pre-processed

using our approach in other work32.

Peak Standard Notes

mean deviation

126 15 Dominated by hydrocarbons.

127 15 All hydrocarbon.

128 35 50:50 hydrocarbon and xenon,

hydrocarbon is higher mass

(Xe is nearer 127.9, hc nearer

128.3)

129 5 Xenon

130 5 Xenon

131 5 Xenon

132 5 Xenon

134 5 Xenon

136 5 Xenon

Table 1. List of air calibration spectrum replication parameters;

the replicated spectrum consisted of the nine largest peaks

between masses 120 and 140 in the source air calibration,

showing contributions from xenon isotopes and hydrocarbons.

The means and widths are selected to approximate the actual

appearence of true spectra. The species contributing to each peak

are listed for information only. A low abundance xenon isotope at
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mass 124, where there is no contribution from hydrocarbons, was

not incldued in the synthetic spectra.

Figure 1 Example of a synthetic air calibration spectrum generated us-

ing Monte Carlo simulations. Peaks have a Gaussian profile (parameters

given in Table 1), with bin frequencies varying with Poisson noise.

Figure 2 Example of simulated raised baseline using non–zero mean

Gaussian noise background. Spread of the between-peak noise and level

above zero is set to match that observed in real data.

2.2 Baseline correction

The continuous voltage produced from detectors operating in ana-

logue mode is an indirect count of ions, as opposed to being an

idealised direct Poisson counting process. The voltage correspond-

ing to zero ion counts is not necessarily zero, moreover, this voltage

is not necessarily constant across an entire spectra set. As a result,

peaks appear upon a varying noisy background. The correction

method proposed herein iteratively estimates this non-zero back-

ground, B, on a spectrum–by–spectrum basis, subtracting it bin-

by-bin from the original, H ′
i = Hi −Bi, in order to provide baseline-

corrected output, H ′. This provides a zero-point that actually cor-

responds to zero ions counted. This must be performed without

biasing the signal and without introducing noise correlations.

The proposed method iteratively converges upon a baseline cor-

rected solution by making successive attempts at estimating the

shape of the background, subtracting it, then checking that the

noise around the baseline has stabilised to a constant value. The

algorithm starts by identifying peaks using hysteresis thresholding,

which classifies bins into peaks or background.38 Mass bins with

values above an upper threshold, Hi > tu, are identified as belong-

ing to a peak. Bins adjacent to previously–identified peak bins are

also designated as part of that peak if above a lower threshold, e.g.

Hi−1 > tl and Hi+1 > tl if i is part of a peak. This thresholding can

be interpreted as a pair of statistical significance tests, where peaks

are expected to be some number of standard deviations above the

baseline noise, with a weaker test being permitted on bins neigh-

bouring identified peaks so that their tails can be identified with

more sensitivity. The upper threshold is set to be 3 standard devia-

tions above the baseline noise, with the lower threshold starting at

1 standard deviation. The results of thresholding are recorded in

a mask, M, where Mi = 0 at peak locations and Mi = 1 at non-peak

locations.

For the current estimate of M, smooth estimates of the back-

ground are computing using:

B = ((H ⊙M)⊗G(w))⊙ (M⊗G(w))−1 (1)

where G(w) is a zero-mean unit Gaussian with a standard devi-

ation of w; ⊙ is an element-wise product; and ⊗ is a convolution.

The baseline deviations away from zero, (H ′
i −0)2, for bins where

Mi = 1, are used to estimate the standard deviation of baseline

noise, σ . This estimate of noise is used to update the thresholds,

tu = 3σ and tl = 1σ , to improve determination of peak locations

during the next iteration. Once the baseline noise converges to a

fixed value, the process terminates and tl is set to zero to extract

as much of the peaks’ tails as possible. The positive and negative

residuals around the tails approximately cancel, ensuring that no

net bias is introduced as the tails enter the noise floor.

2.3 Alignment

Slight drifts in timing can cause mass peaks to move up or down

the m/z scale, increasing instabilities of bin values, especially near

the edges of peaks. Removing this source of variation can be

achieved through an alignment process. This process should make

efforts to not change the shape or normalisation of the signal, nor

introduce unwanted noise correlations. Our approach is designed

to ensure we maintain signal normalisation and statistical inde-

pendence.

We assume a simple model of misalignment, which can be reme-

died using a fixed offset applied to all peaks within a spectrum.

Whilst this may limit applicability to certain mass spectra datasets,

in the present experimental RELAX data, such an offset was ob-

served, thus the simple model is adopted. Additionally, related

work on organic mass spectra found this offset approach to be

sufficient.32 The alignment algorithm applies two steps. Firstly,

a simple alignment to the nearest whole mass bin; secondly, a

sub–bin resolution alignment in the Fourier domain. The proposed

approach requires a reference spectrum, against which all other

spectra can be aligned. The average spectrum, H̄i, of a related set

of spectra can be used for this purpose. Alignment to an average

ensures relative consistency between spectra but does not solve the

problem of absolute mass calibration. Absolute calibration shall be

left as an application-specific problem that can be solved using ar-

tificially introduced internal standards or knowledge of naturally

occurring peaks.

A solution to nearest whole-bin alignment can be achieved by

minimising

argδ min∑
i

(
√

Hi+δ −
√

sH̄i)
2 (2)
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where δ is the alignment offset, in units of bins; and s is a scal-

ing factor for matching the normalisation of the misaligned spec-

trum, H, with that of the reference spectrum, H̄. An Anscombe-

style square-root transform39 is applied to transform the Poisson

noise found within bin frequencies into approximately Gaussian

noise with constant variance. This is appropriate because the least-

squares formulation of Equ. 2 is consistent with a Gaussian (not

Poisson) Likelihood solution. The use of a square-root is also con-

sistent with the presevation of total signal quantity when aligning

in the Fourier Domain (see below).

As this is a simple 1 dimensional search, all integer values of

δ within a range commensurate with the levels of misalignment

in the data can be systematically tested to find a globally optimal

solution. At the minimum, the best sub-bin solution is then likely

to be less than 1 bin away from the current whole-bin estimate.

To align to a sub–bin resolution, a technique similar to sinc in-

terpolation40 is applied. The square-root transform is performed

to misaligned and reference spectra prior to computing sin and

cosine Fourier coefficients:

√

Hi =
J

∑
j=0

a j sin(
2πi j

J
)+b j cos(

2πi j

J
) (3)

where the a j and b j terms describe the components of the mis-

aligned spectrum, and similar ā j and b̄ j terms are computed to

describe the reference spectrum. Alignment is then achieved by

adding phase shifts to these terms. The phase of a component is

then given by

φ j = atan
a j

b j

such that a j = m j sinφ and b j = m j cosφ , where m j =
√

a2
j +b2

j .

Updated coefficients can be computed for a relative shift of δ along

the original function using:

θ j = δ j

for 0 < j < n
2 and

θ j =−δ (n− j)

for n
2 < j < n (where the index, j, follows those in42). Applying

the phase shifts gives new coefficients, a′j = m j sin(φ +θ) and b′j =
m j cos(φ + θ). The δ parameter is then adjusted to minimise the

distance between the reference coefficients and the updated ones:

argδ min∑
j

(ā j −a′j)
2 +(b̄ j −b′j)

2 (4)

A golden ratio search42 is used to determine the optimum, as

we expect only one minimum to exist locally. Once a solution is

found, the inverse Fourier transform is applied, followed by squar-

ing of bins to restore the spectrum to the original domain. The

final mass bins should be independent (assuming the source spec-

tra were independent) and the signal quality should be preserved,

via Parseval’s theorem.

2.4 Integrating peaks

Peaks are not ideal delta functions. Rather, ion counts form lo-

calised distributions with widths that can vary depending upon

signal strength and choice of x-axis (e.g. time domain, mass, or

m/z). A peak which spans multiple bins may posses highly vari-

able bins near to the maximum (owing to the steep sides) if there

are misalignments. Discarding gaps between peaks and integrat-

ing peaks into individual bins may reduce shift artefacts and also

reduce correlations, as any adjacent correlations are eliminated

once they are added together. The integrated area of a peak is also

more representative of signal than peak amplitude.13 A peak de-

tection and integration method can thus be applied, which should

reduce variability and correlations, whilst preserving total signal

and resulting in a simpler data format.

Given a set of related spectra, a mean spectrum can be com-

puted, H̄. Using hysteresis thresholding (as used previously for

detecting peaks during baseline correction above), the location of

peaks within the mean spectrum are located. This gives a peak

mask, P, where Pi = 1 at peak locations and Pi = 0 at non-peak lo-

cations. The process is performed on the mean spectrum, rather

than on a spectrum-by-spectrum basis, so that a binning common

to all spectra can be created. For each individual spectrum, the

signal at each peak is integrated by simply summing bin values:

HI = ∑
i∈I

HiPi (5)

where I is a new histogram bin for an individual peak and i is the

index of the original binning. In places where the mean peak lo-

cations do not exactly match individual spectra, the Gaussian–like

baseline noise should largely cancel, as there should be as many

negative and positive instances after baseline correction. The re-

sults are intended to produce histograms similar to that of Fig. 3,

starting from histograms similar to Fig. 1.

Figure 3 The results of applying the peak integration tool. Here, each peak

in the spectrum has been identified and integrated into its own histogram

bin.

4



2.5 Bland–Altman analysis: mass bin error behaviour

(a) Gaussian distribution (b) Poisson distribution

Figure 4 Bland–Altman (BA) plots for commonly–occurring distributions.

For each distribution, a line of the mean residual value versus the intensity

is shown. For the Gaussian function, the mean residual value is uniform

with intensity; a Poisson distribution has square-root growth in errors with

intensity.

Ideal Poisson spectra have the property that the standard devia-

tion of a mass bin (σi) should be equal to the square root of the

expected bin value, i.e. σi =
√
< Hi >. This assumes that Hi is a

direct count of detected ions, not voltage or ADC units. If noise

in mass spectra bins is dominated by Gaussian perturbations, or

artifacts from misalignment of spectra are present, then this link

between σi and bin value will be broken. A range of dependencies

can be expressed as a power–law and a scaling

σ = a

(

Hi

a

)
0.5
b

(6)

where the term a is a scaling factor on the variance, and b is a

scaling factor on the power–law dependency (with Poisson being

the reference at unity). These parameters can be estimated from

replicate spectra data in a Bland-Altman (BA) plot, and then fitting

the above power–law model using likelihood. The x–axis of a BA

plot covers the range of expected values, 〈Hi〉, whilst the y–axis

covers observed residuals, 〈Hi〉−Hi. Fig. 4 shows the difference

between Gaussian and Poisson residuals.

As the expected bin values, 〈Hi〉, are unavailable in real data,

they are estimated as the average of equivalent bins in the two

spectra adjacent in the time sequence, thus,

δi j =

(

Hi, j−1 +Hi, j+1

2

)

–Hi j (7)

The subscript i represents the mass bin and the subscript j rep-

resents the replicate spectrum. Using Poisson data, if the set of all

δi j residuals is calculated and plotted, and the power–law model

fitted, values of a = 1.5 and b = 1.0 are expected.

2.6 χ2 and Pull analysis: total signal behaviour

The spectra used in the following experiments are all replicates. As

such, they should only differ in terms of specific patterns of noise.

This knowledge is used to check how well signal is preserved from

one processing step to the next in terms of both overall shape and

total integral.

The known spectrum shape, Ri, (determined by the Monte Carlo

parameters) is fitted to each spectrum. A χ2 per degree of freedom

statistic can then be computed to perform a consistency check for

each individual spectrum.

χ2
D =

1

D
∑

i

(
√

Hi −
√

sRi)
2

1
4

(8)

where D is the number of bins in a spectrum minus 1 (i.e. minus

the fitted normalisation parameter) and s is the scaling required to

fit the mean to the specific spectrum. If a spectrum is the correct

shape, χ2
D should be on average unity.

Since Monte Carlo data are generated with a known quantity of

data (simulated ion counts), this ground truth can be compared to

the total integral of each spectrum to ensure no signal has been

lost or gained. The difference between fitted integral and ground

truth can be divided by the expected error (the square root of the

Poisson count of simulated ions):

∆ j =
(∑i Hi j)− (s jRi j)

√

s jRi j

(9)

where j indicates a different spectrum. The distribution of these

differences, ∆ j, is known as a Pull distribution. Assuming the spec-

tra exhibit Poisson behaviour and the spectrum size is unbiased, the

Pull distribution (distribution of ∆) will have a standard deviation,

σ∆ = 1.0, and mean, µ∆ = 0.0. If found to be non-zero, the mean

indicates a net bias in signal. If found to be larger than unity, σ∆

indicates that errors are bigger than expected from Poisson count-

ing.

2.7 Correlations

As a final check, the residuals between a fitted mean spectrum, δi =
Hi − sRi, can be analysed for correlations. Residuals from adjacent

mass bins can be used to compute a correlation coefficient, given

by,

r =
1

N

N−1

∑
i

δiδi+1

1
4

(10)

which should be consistent with zero for independent Poisson

spectrum bins. Correlations significantly above zero indicate that

either raw data or some pre-processing steps have introduced un-

intended dependencies between mass bins.

3 Experiments

A range of challenges were presented to the preprocessing meth-

ods, with results measured using the six noted metrics of success:

Bland–Altman plot error parameters (scaling a and power law b);

Chi-square Per DoF (χ2
n ); Pull distribution parameters (µ∆ and σ∆);

and correlations (r).

The challenges included:

1. Ideal Monte Carlo spectra: Processing of independent Poisson

data with no misalignment and no additional background.

500 spectra produced with exponentially decaying signal over

time. Preprocessing should not be required for such data, and

if applied should not corrupt the data. Results in Fig. 5.

2. Determination of free parameter w: Our methods are predomi-

natly driven by the properties of the data, with only 1 genuine

free parameter, that being the width, w, of the baseline correc-

tion smoothing Gaussian kernel. A width of 40 bins in the m
z

axis was used by default in experiments. Results of an exper-

iment varying the smoothing width with the best performing

combination of preprocessing steps is shown in Fig. 6.

3. Misaligned Monte Carlo spectra: No additional background,

but with misalignment of peaks within ±2 mass bins. Align-

ment is hence necessary, but additional steps should not cor-

rupt the data. Results in Fig. 7.
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4. Misaligned Monte Carlo spectra with background: Including a

non–zero baseline (random Gaussian addition with mean of

5 and sigma of 1.6), i.e. the most realistic simulation of data

that our Monte Carlo can produce, requiring all preprocessing

steps to be applied. Results in Fig. 8.

5. Benchmark comparison The data was also processed using

alternative methods, with results in Fig. 9. Baseline sub-

traction is performed by using a line–picking algorithm,

whereby the user defines a m
z window, and values beneath

a dynamic local–average are utilised to deduce a global

moving–average, in order to ascertain the baseline function.

Various method are provided in SpecAlign for alignment of

mass spectra: Peak alignment by FFT (PAFFT) correlation,

and recursive alignment by FFT (RAFFT) correlation; the for-

mer relies upon a FFT and a segmentation model utilising

equally–sized segments, the latter upon a FFT utilising a re-

cursive segmentation model from global to local–level, in or-

der to refine the alignment. Each of these three methods al-

low the order of the polynomial interpolation to be assigned

as either 1 (linear), 2 (square) or 3 (cubic). Details are de-

scribed elsewhere.35,36,45

6. RELAX air calibartion data: Processing a genuine spectra,

used for comparing calibration results against a conventional

calibration method. Results in Fig. 10 and 11

Figure 5 Ideal Monte Carlo spectra results: (A) No processing; (B) Inte-

grate peaks. Ideal parameter values are shown using dashed lines. These

results confirm the expected properties of the ideal Monte Carlo spectra.

The primary focus of this current work is that of assessing the

properties of raw and pre-processed data, and therefore does not

extend to any detailed investigation or explanation of any subse-

quent analysis that may be undertaken using the pre-processed

outputs. However, to show applicability of the pre-processing,

an air calibration is performed with the help of a statistical mod-

elling method which requires independent Poisson behaviour of

histograms.

For the air calibration tests, conventional data reduction was

performed by subtraction of a mean ‘blank’ spectrum (for baseline

and contamination correction), followed by a manual identifica-

tion of peaks.3 Blank spectra were acquired, i.e. spectra with no

sample present in the sample chamber, to estimate the spectra of

baseline and equipment contaminants. The peak-ratios of manu-

ally segmented peaks were then compared to known ratios for the

Xenon present in the air calibration samples. The mean and vari-

ance of these ratios were estimated by using 15 repeat datasets. In

a our alternative analysis, the preprocessing techniques described

in this paper were applied in order to obtain Poisson independent

noise characteristics. Achieving these statistical properties allowed

us to apply an LPM26 (independent component analysis with an

assumption of Poisson noise), to model the contamination within

‘blank’ spectra. The modelled contamination was then subtracted

from the spectra, and repeated ratio calculation were again com-

puted using the same 15 repeat data sets. The key objective of

this particular experiment was to provide an example of how an

analysis requiring our ‘ideal’ spectra properties could be applied.

Additional examples of applying LPMs to more complex spectra

which were preprocessed with our methods can also be found.32

(a) (b)

Figure 6 Variation of (a) the BA scaling function parameter, and (b) the

BA power –law function, as a function of smoothing level on baseline cor-

rection. Data used were real RELAX spectra. A minimum is seen at 40,

after which both parameters continue to rise again with a kernel smoothing

width of greater that 50. For each plot, the mean of the plateau region is

greater than the mean of the minimum region.

4 Results and Discussion

Overall, our processing pipeline successfully corrects for misalign-

ment of peaks and also raised backgrounds. The criteria for success

was defined as being the ability to produce spectra histograms that

behave in a way consistent with independent Poisson bins, whilst

maintaining the shape and total integral of the original data (i.e.

reaching the dotted target lines in the associated figures). In con-

strast, the benchmark alternative methods failed to produce these

desirable statistical properties under most conditions. After apply-

ing our preprocessing methods to real RELAX data, we were able

to apply Linear Poisson Modelling to aid in determining calibration

values, which were achieved within levels of up to a quarter of the

variance achieved using a more conventional approach.

4.1 Ideal Spectra

With and without applying our preprocessing methods, ideal spec-

tra produced Bland-Altamn error model parameters consistent

with predicted ideal values, showing Poisson growth in errors as

a function of intensity and no additional upward scaling of errors.

Measures of signal shape and total signal integral also produced

expected properties consistent with ideal spectra. Finally, there

were no significant correlations between adjacent residuals, with

unprocessed and integrated peaks both giving correlations consis-

tent with zero. These results show that, a) our Monte Carlo data

generator was correctly generating ideal spectra, b) that our pre-

processing pipeline did not introduce any unwanted effects, and c)

that our six figures of merit are capable of spotting ideal spectra

when they occur. Fig. 5 summarises these results.
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Figure 7 Misaligned Monte Carlo spectra results: (A) No processing; (B)

Integrated peaks; (C) Whole–bin alignment; (D) Sub–bin alignment. Ideal

parameter values are shown using dashed lines. Failure of procesing

method A has resulted in outlier values (not shown) for the BA scaling

function parameter and χ2 PDoF.

4.2 Misaligned Spectra

If no preprocessing is applied to misaligned spectra then most fig-

ures of merit fail to reach target values. The lack of alignment

pushes the error scaling to such a high level (greater than 70) that

the data point is omitted from Fig. 7. The power-law growth in er-

rors is also more linear than square-root dependent. Signal shape

is adversly affected, with poor χ2
D observed. Simply integrating

the peaks improves the statistical properties, as the reduction in

binning mitigates against the shifting peaks.

When whole-bin and sub-bin alignment is applied, results are

similar to one another, with an overall improvement in shape and

integral preservation and reduction in error correlations. However,

unless spectra are aligned with sub-bin precision, there are sig-

nificant scalings of errors observed. This can be attributed to the

added variability of ions at bin boundaries being randomly counted

in adjacent bins.

These results show that a) when spectra are misaligned, prepro-

cessing is essential, b) integrating peaks alone can solve many of

the problems with the statistical properties, c) that for overall best

results, sub-bin alignment should be performed (with integration

of peaks performed afterwards if desired).

4.3 Misaligned Spectra with Background

When spectra are misaligned and have additional non-zero base-

line, then applying no processing produces very poor statistical

properties (points A in Fig. 8). When background is present,

applying only peak integration also results in poor spectra, with

biased total integral and larger than expected spread of total inte-

gral (points B). The ideal combination of preprocessing involves

applying all three steps: sub-bin alignment, baseline correction

and peak integration (points D). However, the addition of Gaus-

sian noise superimposed upon the Possion signal still moves error

scaling slightly away from unity.

These results show that a) baselines clearly bias signal (which

is perhaps obvious) and also make total signal measurements less

repeatable, b) that the additional Gaussian noise, on top of Pois-

son signal, changes the overall error model, so a pure Poisson as-

sumption on real data should be made with causion, and c) that

producing close to ideal spectra requires a complete preprocessing

pipeline.

Figure 8 Misaligned Monte Carlo spectra with added background: (A)

No processing; (B) No alignment, no baseline correction and integrated

peaks; (C) Sub–bin alignment and baseline corrected; (D) Sub–bin align-

ment and baseline corrected and integrated peaks; (E) No alignment,

baseline correction and integrated peaks . Ideal parameter values are

shown using dashed lines. Failure of processing method A has resulted in

an outlier value (not shown) for the BA power–law function parameter.

Figure 9 The SpecAlign implementation of alternative methods: Fourier

transform (FT), peak alignment by Fourier transform (PAFT), peak match-

ing (PM) and recursive alignment by Fourier transform (RAFT). The n

refers the the polynomial order of the sub-bin interpolation function. Ideal

parameter values are shown using dashed lines. Failure of the PM and

PAFT (n=1) processing methods has resulted in outlier values (not shown)

for the BA scaling function parameter, the χ2 PDoF and correlation factor.

4.4 Background Smoothing Parameter

The optimal smoothing width, w, will be dataset dependent, and it

is reasonable to assume that the optimal smoothing width is a func-

tion of peak width. A given replicated spectrum consists of peaks

of different widths (see Table 1). Taking the best performing com-

bination of processing (FT align, followed by baseline correction,
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then peak integration), and scanning over the smoothing parame-

ter shows the optimum smoothing w to be between 40 and 50 bins,

i.e. ≈2.5× the average peak width. There is a clear minimum at

this point in the BA plot parameters (Fig. 6).

4.5 Preprocessing using SpecAlign

Spectra that were misaligned with additional background were

additionally tested against benchmark software. The standard

SpecAlign baseline correction was applied, followed by all com-

binations of peak alignment, including the most basic peak match-

ing, and more complex interpolation schemes, with results shown

in Fig. 9. Overall, statistical properties atainable with SpecAlign

fall short of our criteria for ideal spectra.

The interpolation schemes (FT, PAFT and RAFT), did produce

the correct Poisson power-law behaviour, i.e. errors grew with

square-root of intensity. Also, the overall signal shape, as assessed

using χ2
D, approaches a respectable level of 2 (in comparision to

the no-processing equivelent of point A in Fig. 8). However, the

repeatability of total integral (Pull distribution σ) appears to im-

prove (i.e. smaller spread), at the expense of introducing system-

atic bias (Pull distribution mean). Larger correlations are also ob-

served in comparision to our own methods.

In contrast, the simpler peak matching (PM) method did not

bias the total integral, and gave improved bin independence, yet

significantly failed other tests.

These results show that a) polynomial interpolation schemes

add statistical instabilities, b) poorly designed preprocessing meth-

ods can trade off statistical repeatability with systematic errors,

giving false impressions regarding levels of accuracy (as in real

data, only the stability of a signal is observed if no knowledge of

true mean behaviour is avaiable, i.e. bias can be hidden). Finally,

simple peak matching methods behave much differently with re-

gards to statistical effects than more complex approaches.

4.6 Preprocessing of real data

Statistical analysis methods typically make assumptions regarding

the properties of data, for example, least-square methods assume

Gaussian residuals, PCA assumes orthogonal modes of variation,

and KS-tests assume Poisson noise within histograms. The analysis

of a data set will be most efficient when the properties of that

data are a good match to the assumptions made by the analy-

sis approach. Similarly, methods applied to mass spectra will be

more efficient if the properties of the spectra are well matched to

the assumptions made. The application of Linear Poisson Models

(LPMs), for instance, is best applied to histograms with indepen-

dent Poisson bins. Our air calibration demonstrates this point. The

power-law parameter consistent with unity at the minimum in Fig.

6 confirms the Poisson assumption in this real dataset.

Fig.10 and 11 allow us to compare the results of using our pre-

processing methods to provide calibration values for Xenon in stan-

dard air. Achieving ideal spectra was key to the application of Lin-

ear Poisson Models (an independent component analysis for his-

tograms) for modelling hydrocarbon contamination. The ability to

model contamination supports a factor of approximately two im-

provement in accuracy of xenon peak measurement over the orig-

inal method for the same dataset. The new estimates still conform

to the behaviour expected for the equipment, but with a closer

conformity, consistent with the predicted errors. The observed de-

crease in variance of calibration points is equivalent to having in-

creased the original sample volume by a factor of four. Given that

the main challenge with using xenon spectra in scientific analyses

is the need to work with small samples, this represents a significant

improvement in performance.

The observed variations were computed using 15 attempts at

end-to-end calibration, including the process of extrapolating iso-

tope ratios back to time zero, so that all sources of possible error

were present. The level of calibration precision attainable is lim-

ited by the Poisson sampling of ions detected. There are ≈ 100,000

atoms in an air calibration sample, with a ≈ 50% detection rate.

Using the total quantity of data (i.e. 15 repeat air cal. spectra),

and knowledge of the relative quantities within each peak (Fig.

3), we find that our observed variances (Fig. 11) are consistent

with reaching this limit.

The results show that a) our preprocessing can be a valuable

tool in producing histograms with properties suitable for subse-

quent analysis by methods that rely upon independent Poisson

histograms, and b) the independent Poisson behaviour attainable,

coupled with the conservation of signal shape and total integral,

permits statistical modelling to be performed to improve the cali-

bation of RELAX data.

Figure 10 A comparison of deviation (bars) from a standard (crosses, rep-

resenting an air mass spectrum), for a range of masses. Deviations are

shown in parts per 1000. Real data is used, of the form used in the Monte

Carlo replicated spectra.

Figure 11 Variance of calibration points in parts per 1000. Comparison

of variance (i.e. error bars from Fig.10) of calibration points for a range

of masses, using the conventional and the new calibration methods. On

average across the data points analysed, the new variances are equivalent

to a factor of four increase in data quantity. (Black bars) Conventional

calibration variance; (grey bars) new calibration variance.
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5 Conclusions

A great many algorithms are assessed using simple metrics, such as

signal-to-noise, or true/false detection rates on such things as peak

identifications. We have shown that a range of alternative figures

of merit also have value, and can identify problems with statistical

properties of data that could otherwise be hidden. For example,

χ2 statistics can be used to compare actual verses expected dis-

tributions of spectra, which only give expected values if all peaks

are present and are the correct shape, whereas a simple detection

rate would only determine how many peaks were detected. In ad-

dition, the use of Pull distributions, Bland-Altman and correlation

analyses can successfully quantify the behaviour of noise and bias,

providing information about errors as a function of signal, and as-

sess the effects of noise upon adjacent bins.

Our pre-processing approach can successfully correct spectra

that has been misaligned and have non-zero baselines, in order to

achieve idealised histograms. The subsequent analysis of spectra

by methods that assume idependent Poisson histogram behaviour

can therefore be used with greater confidence. In constrast, meth-

ods that were not designed with such properties in mind (e.g.

SpecAlign) may superficially improve the alignment and baselines

of spectra, but may compromise other properties. By following our

quantitative approach, we have shown that calibration curves for

air samples can be estimated with higher precision than previously

obtained.3. The methods described herein can also be applicable

to mass spectra acquired using other instrumentation e.g. MALDI

(matrix–assisted laser desorption/ionisation), and different condi-

tions e.g. laser intensity or different and more complicated spec-

tra32, but results must be assessed on a case-by-case basis.
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