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Abstract

The structure of the International Trade Network (ITN), whose nodes and links
represent world countries and their trade relations respectively, affects key economic
processes worldwide, including globalization, economic integration, industrial pro-
duction, and the propagation of shocks and instabilities. Characterizing the ITN via
a simple yet accurate model is an open problem. The traditional Gravity Model suc-
cessfully reproduces the volume of trade between connected countries, using macroe-
conomic properties such as GDP, geographic distance, and possibly other factors.
However, it predicts a network with complete or homogeneous topology, thus failing
to reproduce the highly heterogeneous structure of the ITN. On the other hand,
recent maximum-entropy network models successfully reproduce the complex topol-
ogy of the ITN, but provide no information about trade volumes. Here we integrate
these two currently incompatible approaches via the introduction of an Enhanced
Gravity Model (EGM) of trade. The EGM is the simplest model combining the
Gravity Model with the network approach within a maximum-entropy framework.
Via a unified and principled mechanism that is transparent enough to be gener-
alized to any economic network, the EGM provides a new econometric framework
wherein trade probabilities and trade volumes can be separately controlled by any
combination of dyadic and country-specific macroeconomic variables. The model
successfully reproduces both the global topology and the local link weights of the
ITN, parsimoniously reconciling the conflicting approaches. It also indicates that the
probability that any two countries trade a certain volume should follow a geometric
or exponential distribution with an additional point mass at zero volume.

Introduction

The International Trade Network (ITN) is the complex network of trade relationships
existing between pairs of countries in the world. The nodes (or vertices) of the ITN
represent nations and the edges (or links) represent their (weighted) trade connections.
In a global economy extending across national borders, there is increasing interest in
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understanding the mechanisms involved in trade interactions and how the position of a
country within the ITN may affect its economic growth and integration [1, 2, 3, 4, 5].
Moreover, in the wake of recent financial crises the interconnectedness of economies has
become a matter of concern as a source of instability [6]. As the modern architecture
of industrial production extends over multiple countries via geographically wider supply
chains, sudden changes in the exports of a country (due e.g. to unpredictable financial,
environmental, technological or even political circumstances) can rapidly propagate to
other countries via the ITN. The assessment of the associated trade risks requires detailed
information about the underlying network structure [7]. In general, among the possible
channels of interaction among countries, trade plays a major role [2, 3, 4].

The above considerations imply that the empirical structure of the ITN plays a cru-
cial role in increasingly many economic phenomena of global relevance. It is therefore
becoming more and more important to characterize the ITN via simple but accurate
models that identify both the basic ingredients and the mathematical expressions re-
quired to accurately reproduce the details of the empirical network structure. Reliable
models of the ITN can better inform economic theory, foreign policy, and the assessment
of trade risks and instabilities worldwide.

In this paper, we emphasize that current models of the ITN have strong limitations,
and that none of them is satisfactory, from either a theoretical or a phenomenological
point of view. We point out equally strong (and largely complementary) problems af-
fecting on one hand traditional macroeconomic models, which focus on the local weight
of the links of the network, and on the other hand more recent network models, which
focus on the existence of links, i.e. on the global topology of the ITN. We then introduce
a new model of the ITN that preserves all the good ingredients of the models proposed
so far, while at the same time improving upon the limitations of such approaches. The
model can be easily generalized to any (economic) network and provides an explicit spec-
ification of the full probability distribution that a given pair of countries is connected by
a certain volume of trade, fixing an otherwise arbitrary choice in previous approaches.
This distribution is found to be either geometric (for discrete volumes) or exponential
(for continuous volumes), with an additional point mass at zero volume. This feature,
which is different from all previous specifications of international trade models, is shown
to replicate both the local trade volumes and the global topology of the empirical ITN
remarkably well.

Preliminaries: building blocks of the model

Before we fully specify our model, we preliminarily identify its building blocks by re-
viewing the strengths and weaknesses of the two main modelling frameworks adopted so
far.
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Gravity models of trade

We start by discussing traditional macroeconomic models of international trade. These
models have mainly focused on the volume (i.e. the value e.g. in dollars) of trade
between countries, largely because economic theory perceives trade volumes as being
a priori more informative than the topology of the ITN: the striking heterogeneity of
trade volumes observed between different pairs of countries is clearly not captured by a
purely ‘binary’ description where all connections are effectively given the same weight.
Based on this argument, emphasis has been put on explaining the (expected) volume of
trade between two countries, given certain dyadic and country-specific macroeconomic
properties.

Jan Tinbergen, the physics-educated1 Dutch economist who was awarded the first
Nobel memorial prize in economics, introduced the so-called Gravity Model (GM) of
trade [8]. The GM aims at inferring the volume of trade from the knowledge of Gross
Domestic Product, mutual geographic distance, and possibly additional dyadic factors of
macroeconomic relevance [9, 10]. In one of its simplest forms, the gravity model predicts
that, if i and j label two different countries (i, j = 1, N where N is the total number of
countries in the world), then the expected volume of trade from i to j is

〈wij〉 = c GDPαi GDPβj R
−γ
ij c, α, β, γ > 0, (1)

where GDPk is the Gross Domestic Product of country k, Rij is the geographic distance
between countries i and j, and c, α, β, γ are free global parameters to be estimated. In
the above directed specification of the GM, the flows wij and wji can be different. An
analogous undirected specification exists, where the volumes of trade from i to j and
from j to i are added together into a single value wij = wji of bilateral trade. In the
latter case, 1 still holds but with the symmetric choice α = β. With this in mind,
we will keep our discussion entirely general throughout the paper and, unless otherwise
specified, allow all quantities to be interpreted either as directed or as undirected. Only
in our final empirical analysis we will adopt an undirected description for simplicity.

More complicated variants of 1 use additional factors (with associated free parame-
ters) either favoring or resisting trade [9, 10]. Like the GDP and geographic distances,
these factors can be country-specific (e.g. population) or dyadic (e.g. common currency,
trade agreements, shared borders, common language, etc.). In general, if we collectively
denote with ni the set of node-specific factors and with Dij the set of dyad-specific factors
used, 1 can be generalized to

〈wij〉 = Fφ(ni,nj ,Dij) F > 0, (2)

where the functional form of Fφ(ni,nj ,Dij) need not be of the same type as in 1,
and φ is a vector containing all the free parameters of the model (like c, α, β, γ for the
particular case above). Indeed, although in this paper we focus on the GM applied to

1Jan Tinbergen studied physics in Leiden, where he carried out a PhD under the supervision of the
theoretical physicist Paul Ehrenfest. Tinbergen defended his thesis in 1929, and then became a leading
economist. He was awarded the first Nobel memorial prize in economics in 1969.
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the international trade network, our discussion equally applies to many other models
of (socio-economic) networks as well. For instance, the recently proposed Radiation
Model (RM) [11] is also described by 2, where ni and Dij include certain geographical
and demographical variables. Our following discussion applies to both the GM and the
RM, as well as any other model described by 2. Similarly, it does not only apply to
trade networks, since both the GM and the RM have been successfully applied to other
systems as well, including mobility and traffic flows [11, 12, 13, 14], communication
networks [15], and migration patterns [16] (the latter representing - to our knowledge -
the earliest application of the GM to a socio-economic system, dating back to 1889 [17]).

It is generally accepted that the expected trade volumes postulated by the GM,
already in its simplest form given by 1, are in good agreement with the observed flows
between trading countries. To illustrate this result, in Fig. 1 we show a typical log-log
plot comparing the empirical volume of the realized (bilateral) international trade flows
with the corresponding expected values calculated under the GM as defined in 1. The
figure shows the typical good agreement between the GM and the empirical non-zero
trade volumes. However, it should be noted that, while 1 and 2 define the expected value
of wij , the full probability distribution from which this expected value is calculated is not
specified, and actually depends on how the model is implemented in practice. In the GM
case, the distribution is chosen to be either Gaussian (corresponding to additive noise,
in which case the expected weights can be fitted to the observed ones via a simple linear
regression [18, 19]), log-normal (corresponding to multiplicative noise and requiring a
linear regression of log-transformed weights [20]), Poisson [20], or more sophisticated [21]
(see [22] for a review). The arbitrariness of the weight distribution already highlights a
fundamental weakness of the traditional formulation of the model. Moreover, for both
additive and multiplicative Gaussian noise, the model can produce undesired negative
values.

A related and more important limitation of the GM is that, at least in its simplest
and most natural implementations, it cannot generate zero volumes – thereby predicting
a fully connected network [23, 22, 24]. This means that the GM can be fitted only to
the non-zero weights, i.e. the volumes existing between pairs of connected countries. If
used in this way, the model effectively disregards the empirical structure of the network,
both as input (thus making predictions on the basis of incomplete data) and as output
(thus failing to reproduce the topology). Operatively, the GM can be used only after
the presence of a trade link has been established independently [22]. As observed in [21],
“Omitting zero-flow observations implies that we loose information on the causes of
(very) low trade”, because any fit to positive-only flows would significanlty underestimate
the effects of factors that diminish trade. This problem is particularly critical since
roughly half of the possible links are found to be not realized in the real ITN [25, 26,
27, 28]. Clearly, the same problem holds for the RM and any more general model of the
form specified in 2.

While there are variants and extensions of the GM that do generate zero weights and
a realistic link density (e.g. the so-called Poisson pseudo-maximum likelihood models
[20] and ‘zero-inflated’ gravity models [21]), these variants systematically fail in repro-
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ducing the observed topology [22, 10]. In other words, while these models can generate
the correct number of connections, they tend to put many of the latter in the ‘wrong
place’ in the network. Indeed, even in its generalized forms, the GM predicts a largely
homogeneous network structure, while the empirical topology of the ITN is much more
heterogeneous and complex [23, 22]. Established empirical signatures of this heterogene-
ity include a broad distribution of the degree (number of connections) and the strength
(total trade volume) of countries [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], the rich-club
phenomenon (whereby well-connected countries are also connected to each other) [36, 37],
strong clustering and (dis)assortative patterns [26, 27]. These highly skewed structural
properties are remarkably stable over time. However, their are not replicated by any
current version of the GM [22].

Network models of trade

As we mentioned at the beginning, many processes of great economic relevance crucially
depend on the large-scale topology of the ITN. In light of this result, the sharp con-
trast between the observed topological complexity of the ITN and the homogeneity of
the network structure generated by the GM (including its extensions) calls for major
improvements in the modelling approach. In particular, in assessing the performance
of a model of the ITN, emphasis should be put on how reliably the (global) empirical
network structure, besides the (local) volume of trade, is replicated. In the network
science literature, successful models of the ITN have been derived from the maximum
entropy principle [25, 26, 27, 28, 24, 38, 39, 40, 41, 42]. These models construct ensem-
bles of random networks that have some desired topological property (taken as input
from empirical data) and are maximally random otherwise. Typically, the constrained
properties are chosen to be the degrees and/or the strenghts of all nodes. In this way the
models can perfectly replicate the observed strong heterogeneity of these purely local
properties, and at the same time illustrate its immediate (i.e. prior to invoking any other
more complicated network formation mechanism) structural effects on any higher-order
topological property of the network.

In general, different choices of the constrained properties lead to different degrees of
agreement between the model and the data. This can generate intriguing and counter-
intuitive insight about the structure of the ITN. For instance, contrary to what naive
economic reasoning would predict, it turns out that the knowledge of purely binary
local properties (e.g. node degrees) can be more informative than the knowledge of
the corresponding weighted properties (e.g. node strengths). Indeed, while the binary
network reconstructed only from the knowledge of the degrees of all countries is found to
be topologically very similar to the real ITN, the weighted network reconstructed only
from the strengths of all countries is found to be much denser and very different from
the real network [26, 27, 28]. This is somewhat surprising, given that economic theory
postulates that weighted properties are per se more informative than the corresponding
binary ones.

The solution to this apparent paradox lies in the fact that, while the knowledge of the
entire weighted network is necessarily more informative than that of its binary projection
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(in accordance with economic postulates), the knowledge of certain marginal properties
of the weighted network can be unexpectedly less informative than the knowledge of the
corresponding marginal properties of the binary network. In fact, it turns out that if
the degrees of countries are (not) specified in addition to the strengths of countries, the
resulting maximum-entropy model can(not) reproduce the empirical weighted network
of international trade satisfactorily [27, 40, 41].

An important take-home message is that, in contrast with the mainstream litera-
ture, models of the ITN should aim at reproducing not only the strength of countries
(as the GM automatically does by approximately reproducing all non-zero weights), but
also their degree (i.e. the number of trade partners) [26, 27, 28, 41]. In order to de-
vise improved models of the ITN, one should therefore include the degrees, which are
purely topological properties, among the main target quantities to replicate. This is the
guideline we will follow in this paper.

Unlike the GM, maximum-entropy models of trade are a priori non-explanatory, i.e.
they take as input structural properties (as opposed to explanatory economic factors)
to explain other structural properties. However, they can in fact be used to select
a posteriori an explicit, empirically validated functional dependence of the structure of
the ITN on underlying explanatory factors. For models with country-specific constraints,
this operation can be carried out as follows. Mathematically, controlling for node-specific
properties is realized by assigning one or more Lagrange multipliers, also known as
‘hidden variables’ or ‘fitness parameters’ xi, to each node. If a certain choice of local
constraints is found to replicate the higher-order properties of the real-world network
satisfactorily, then one can look for an empirical relationship between the values of
the associated hidden variables and those of candidate non-topological, country-specific
factors of the type ni, like the GDP or total import/export. If the hidden variables are
indeed (at least approximately) found to be functions of some country-specific factors
(i.e. if xi ≈ f(ni)), then one can replace xi with f(ni) in the maximum-entropy model,
thus reformulating the latter as a model with explanatory variables (i.e. ‘regressors’) of
trade, precisely like the GM. Already more than a decade ago, the approach outlined
above led to the definition of a GDP-driven model for the binary topology of the ITN,
where xi ∝ GDPi. The model, which is a reformulation of a maximum-entropy model for
binary networks with given degrees, predicts that the probability of a trade connection
existing from country i to country j is

pij =
δ GDPi GDPj

1 + δ GDPi GDPj
δ > 0, (3)

where δ is a free parameter that allows to reproduce the empirical link density. The
model has been tested successfully in multiple ways [24, 25, 30, 32, 38].

The GM in 1 and the maximum-entropy model in 3 have complementary strengths
and weaknesses, the former being a good model for non-zero volumes (while being a
bad model for the topology) and the latter being a good model for the topology (while
providing no information about trade volumes). An attempt to reconcile these two
complementary and currently incompatible approaches has been recently proposed via
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the definition of an extension of the maximum-entropy model to the case of weighted
networks [42]. Since, as we mentioned, a maximum-entropy model of weighted networks
with given strengths and degrees [40] can correctly replicate many structural properties
of the ITN [41], it makes sense to reformulate such model as an economically inspired
model of the ITN. Indeed, like in the binary case, the hidden variables enforcing the
constraints are found to be strongly correlated with the GDP, thus allowing to express
both pij and 〈wij〉 as functions of the GDP [42]. The resulting model is confirmed to be
in good accordance with both the topology and the volumes observed in the real ITN.

Unfortunately, in the above approach the choice of country-specific constraints (de-
grees and strengths) only allows for regressors that have a corresponding country-specific
nature. This makes the model incompatible with the inclusion of dyadic variables of the
type Dij and represents a strong limitation for (at least) two reasons. Firstly, one of the
main lessons learnt from the traditional GM is that the addition of geographic distances
improves the fit to the empirical volumes significantly. Indeed, in the light of the large
body of knowledge accumulated in the international economics literature, it is hard to
imagine a realistic and economically meaningful model of international trade that does
not allow for simple pair-wise quantities controlling for trade ‘costs’ and ‘incentives’,
including geography [9, 10]. Secondly, even if the structure of the ITN can be repli-
cated satisfactorily in terms of the ‘GDP-only’ model defined in 3 [25, 30, 32], recent
analyses have found evidence that certain metric (although not necessarily geographic2)
distances do also play a role in determining the topology of the ITN [43]. Together, these
two pieces of evidence call for an inclusion of dyadic factors in 〈wij〉 and pij , and high-
light a limitation of current maximum-entropy models based only on country-specific
constraints.

Combining all the above considerations, it is clear that an improved model of the
ITN should aim at retaining the realistic trade volumes postulated by models based on
2 (including the GM, the RM, and possibly many more), while combining them with a
realistic network topology generated by (extensions of) maximum-entropy models. Such
a model should also aim at providing the full probability distribution, and not only the
expected values as in 1, of trade flows and, unlike the GDP-only model in 3 [25] or its
current weighted extension [42], allow for the inclusion of both dyadic and node-specific
macroeconomic factors.

The Enhanced Gravity Model of international trade

In this Section, we introduce what we call the Enhanced Gravity Model (EGM) of
trade. The EGM mathematically formalizes the two ingredients that, in the light of

2Building on the hypothesis of the existence of underlying hidden metric spaces in which real-world
networks are embedded, Ref. [43] models the ITN by looking for an optimal embedding of countries in
some abstract metric space. The resulting inferred distances are interpreted as incorporating all possible
sources of empirically revealed trade costs, possibly including geographic distances as well. However,
since the postulated embedding space is either a unidimensional circle or a hyperbolic plane, these
distances are necessarily different from the usual geographic distances Rij appearing in the GM and
measured as geodesics on our spherical tridimensional world.
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the previous discussion, any ‘good’ model of economic networks should feature: namely,
realistic (trade) volumes and a realistic topology, both controllable by macroeconomic
factors.

A single model for topology and weights

The first lesson we have learnt is that 2 is successful in reproducing link weights only after
the existence of the links themselves has been preliminarly established. This implies that
2, as a model of real-world trade flows, is actually unsatisfactory and should rather be
reformulated as a conditional expectation of the weight wij , given that wij > 0. In other
words, if aij denotes the entry of the adjacency matrix of the ITN (defined as aij = 1 if
wij > 0 and aij = 0 if wij = 0), an improved model should be such that 2 is replaced by

〈wij |aij = 1〉 = Fφ(ni,nj ,Dij) F > 0, (4)

where 〈wij |aij = 1〉 is the conditional expected weight of the trade link from country i
to country j, given that such link exists. This operation ensures that, whatever the new
model looks like, its predictions for the expected trade volume between connected pairs
of countries remain identical to the ones proposed in more traditional macroeconomic
models. For instance, choosing Fφ(ni,nj ,Dij) = c GDPαi GDPβj R

−γ
ij as in 1 allows us

to retain (in almost intact form) all the empirical knowledge that has accumulated in
the econometrics literature since Jan Tinbergen’s introduction of the GM. An important
difference, however, is that in our model the trade volumes will be drawn from a different
probability distribution.

The second lesson we have learnt is that, in analogy with 4, 3 should be generalized
to allow for both dyadic (Dij) and node-specific (ni) factors as follows:

pij = 〈aij〉 =
Gψ(ni,nj ,Dij)

1 +Gψ(ni,nj ,Dij)
G > 0, (5)

where a crucial requirement is that G can in general be different from F in 4 and,
correspondingly, the vector ψ of parameters can be different from φ. Note that, since
pij is monotonic in G, the above expression is entirely general, i.e. we have put no
restriction on the functional form of pij . It is also worth noticing that the explanatory
factors used in 4 and 5 need not coincide. However, to avoid using different symbols for
the arguments of the two functions, we adopt the convention that Dij and ni denote the
sets of all factors used as arguments of either F or G, and that these functions can have
flat (i.e. no) dependence on some of their arguments. For instance, 5 reduces to 3 by
setting ni = GDPi and assuming flat dependence on Dij , or it reduces to the hyperbolic
model in Ref. [43] by setting Dij equal to the hyperbolic distance and assuming flat
dependence on ni.

We want our model to produce both 4 as the desired (gravity-like) conditional ex-
pectation for link weights and 5 as a realistic expected topology. To do so, we introduce
the full probability P (W) that the model produces a weighted network specified by the
N ×N matrix W with entries (wij). Without loss of generality, we assume that wij is a
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non-negative integer number (allowing for non-negative real numbers is straightforward,
upon taking the limit of a vanishing unit of weight, as we briefly discuss later). The
probability P (W) is the key quantity that fully specifies the model and determines both
the topology and the link weights of the ITN. From P (W), we can define the dyadic
(marginal) probability qij(w) that wij takes the particular value w. Note that the event
w = 0 indicates the absence of a trade link and is included as a possible outcome in
qij(w). The normalization condition is therefore

∑
w≥0 qij(w) = 1 for all i, j. Note that

we are not assuming independence of the trade volumes wij and wkl between two distinct
country pairs, or equivalently the factorization of P (W) into the product

∏
i,j qij(wij)

of dyadic probabilities. However, we will later find that the desired model has precisely
this independence property. Importantly, unlike the traditional GM, in our approach
dyadic independence is a consequence and not a postulate.

We now look for the form of qij(w) that enforces both 4 and 5. Let us consider the
latter first. In terms of qij(w), the probability pij that i and j are connected (irrespective
of the volume of trade) is given by the complement of the probability qij(0) that they
are not connected, i.e.

pij =
∑
w>0

qij(w) = 1− qij(0). (6)

Imposing that 6 has the form dictated by 5 leads to the following unique choice for qij(0):

qij(0) =
1

1 +Gψ(ni,nj ,Dij)
G > 0. (7)

We now relate qij(w) to 4 in a similar manner. The expected trade volume, irrespective
of whether a link exists, is

〈wij〉 ≡
∑
w>0

w qij(w), (8)

while the conditional expectation, given that the link exists, is

〈wij |aij = 1〉 ≡
∑
w>0

w qij(w|aij = 1) =
〈wij〉
pij

(9)

where

qij(w|aij = 1) =
qij(w)∑
u>0 qij(u)

=
qij(w)

pij
w > 0 (10)

is the conditional probability that wij equals w, given that the link is realized. Setting
9 equal to 4 leads to

〈wij〉 =
Fφ(ni,nj ,Dij) Gψ(ni,nj ,Dij)

1 +Gψ(ni,nj ,Dij)
F,G > 0. (11)

11 carries an important message. It reveals us that, while a superficial inspection of 8
might suggest that the expected trade volume 〈wij〉 is independent on the topology of the
ITN, i.e. on qij(0) or equivalentlyG, this is actually not the case. In fact, qij(0) is coupled
to the other values qij(w) (with w > 0) through the normalization condition manifest in
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6. This necessarily implies that the topology of the ITN must have an immediate effect
on the expected volume of trade between any two countries. This effect is rigorously
quantified in 11, which shows that 〈wij〉 depends on both F and G. This result confirms
the inconsistency of the traditional GM defined in terms of 1 and of any of its extensions
of the form 2. By contrast, the expected topology of the ITN is independent on the
expected volumes of trade, since pij depends on G but not on F . This simple but, to the
best of our knowledge, previously unrecognized result highlights a nontrivial asymmetry
between weights and topology in the ITN and, by extension, in any (economic) network
described by our generic expressions involving F and G. This basic finding provides a
natural explanation for the aforementioned empirical observation that the topology of
the ITN and several other networks can be satisfactorily reconstructed from aggregate
local constraints [26, 40], while the same result does not hold for the weighted structure
of the same network(s) [27, 28], unless topological information is explicitly included as
an additional constraint [40, 41].

Maximum entropy construction

7 and 11 fix two important properties we require for qij(w) and ultimately P (W), but
they do not specify these probability distributions uniquely. To do so, we take the
maximum-entropy approach and look for the form of P (W) that maximizes the entropy

S = −
∑
W

P (W) lnP (W), (12)

where the sum extends over all weighted graphs with N nodes and non-negative integer
edge weights, subject to the constraints specified by 7 and 11. The maximum-entropy
method ensures that the resulting functional form of P (W) is maximally random, given
the desired constraints. As well known, this procedure is guaranteed to lead to the least
biased inference, i.e. to introduce no unjustified ‘hidden’ assumption in picking a specific
form of P (W).

Since 7 is equivalent to 5, we select 〈aij〉 and 〈wij〉 as the two sets of constraints
specifying our model. In this way, if we introduce αij and βij as the (real-valued)
Lagrange multipliers required to enforce the expected value of aij = Θ(wij) and wij
respectively (where Θ(x) = 1 if x > 0 and Θ(x) = 0 otherwise), then the maximum-
entropy problem becomes equivalent to one solved exactly in Ref. [44]. There, it was
shown that upon introducing the so-called Hamiltonian

H(W) =
∑
i,j

[αijΘ(wij) + βijwij ], (13)

(representing a linear combination of the quantities whose expected value is being con-
strained) and the partition function Z =

∑
W e−H(W), the maximum-entropy probability

P ∗(W) with constraints 〈aij〉 and 〈wij〉 is found to be

P ∗(W) =
e−H(W)

Z
=

∏
i,j

q∗ij(wij), (14)
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where, given xij ≡ e−αij ∈ (0,+∞) and yij ≡ e−βij ∈ (0, 1),

q∗ij(w) ≡
x

Θ(w)
ij ywij (1− yij)
1− yij + xijyij

, w ≥ 0 (15)

is the resulting (maximum-entropy) probability that the link from node i to node j
carries a weight w. This probability is called the Bose-Fermi distribution, as it uni-
fies the Bose-Einstein and Fermi-Dirac distributions encountered in quantum statistical
physics [44]. We stress again that all our formulas apply to both directed and undi-
rected representations of the network and, correspondingly, the sums and products over
i, j should be interpreted as i 6= j in the directed case (where the pairs i, j and j, i are
different) and as i < j in the undirected one (where the pair i, j is the same as the pair
j, i). As we had anticipated, the factorization of P ∗(W) in terms of products of q∗ij(w)
shows that, for this particular choice of the constraints, pairs of nodes turn out to be
statistically independent as in the standard GM approach, even if we have not assumed
this independence as a postulate in our approach.

Importantly, while the constraints used in the maximum-entropy models of the ITN
considered so far in the literature are observed topological properties (e.g. the degrees
and/or the strengths of nodes), the constraints considered here are economically-driven
expectations, namely 5 and 11. This key step allows us to reconcile macroeconomic
and network approaches within a generalized framework, and represents an important
difference with respect to previous models. In particular, we use 6, 8 and 9 to express
pij , 〈wij〉 and 〈wij |aij = 1〉 in terms of xij and yij [44]:

pij = 1− q∗ij(0) =
xijyij

1− yij + xijyij
, (16)

〈wij〉 =
∑
w>0

w q∗ij(w) =
pij

1− yij
, (17)

〈wij |aij = 1〉 =
〈wij〉
pij

=
1

1− yij
. (18)

Now, equating 16 to 5 and 17 to 11 (or, equivalently, 18 to 4) allows us to find the values
of xij and yij solving the original problem:

xij =
Gψ(ni,nj ,Dij)

Fφ(ni,nj ,Dij)− 1
, (19)

yij =
Fφ(ni,nj ,Dij)− 1

Fφ(ni,nj ,Dij)
. (20)

Inserting 19 and 20 into 15, we finally get the explicit probability of any two countries
trading a volume w, as a function of any choice of the factors ni and Dij .

In terms of conditional probabilities, our model becomes extremely simple: estab-
lishing a link from country i to country j is a Bernoulli trial with success probability pij
given by 5; if realized, this link acquires a weight w with probability

q∗ij(w|aij = 1) =
[Fφ(ni,nj ,Dij)− 1]w−1

[Fφ(ni,nj ,Dij)]
w w > 0, (21)
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which is a geometric distribution representing the chance of w − 1 consecutive successes,
each with probability yij , followed by a failure with probability 1− yij . The above
result provides an insightful interpretation of the realized volumes in the model in terms
of processes of link establishment and link reinforcement (see Discussion).

Maximum-likelihood parameter estimation

We now take an econometric perspective and discuss how the model parameters can be
chosen to optimally fit a specific empirical instance of the network. To this end, we
use the Maximum Likelihood principle applied to network models [38]. If W∗ denotes
the weight matrix (with entries w∗ij) of the empirical network, our model generates
this particular matrix with probability P ∗(W∗). We therefore define the log-likelihood
function as

L(φ, ψ) = lnP ∗(W∗) =
∑
i,j

ln
(Gψ)a

∗
ij (Fφ − 1)w

∗
ij−a

∗
ij

(1 +Gψ)(Fφ)w
∗
ij

(22)

(where we have dropped the dependence of F and G on ni, nj and Dij) and look for
the parameter values φ∗, ψ∗ that maximize L by requiring that all the first derivatives
with respect to φ and ψ vanish simultaneously:

~∇φL(φ, ψ) =
∑
i,j

[
w∗ij − a∗ij
Fφ − 1

−
w∗ij
Fφ

]
~∇φFφ = ~0 (23)

~∇ψL(φ, ψ) =
∑
i,j

[
a∗ij
Gψ
− 1

1 +Gψ

]
~∇ψGψ = ~0. (24)

Upon checking that the second derivatives have the correct sign, i.e. that L(φ∗, ψ∗) is
indeed a maximum for L, the solution (φ∗, ψ∗) to the above equations yields the optimal
parameter values in our model. Selecting these values into 19 and 20 yields the values
x∗ij and y∗ij that, when inserted into 15, fully specify the model.

The above expressions, which are valid any specification of the EGM, show that the
estimation of the parameter φ nicely separates from that of ψ. This result solves, in
a single shot, two major problems encountered in previous econometric approaches: on
one hand, in most alternative models the estimation of the parameters determining the
expected weights is badly affected by the presence of the zeroes; on the other hand,
the expected number of zeroes may paradoxically depend on the (arbitrary) units of
measure for the weights. For instance, if qij(w) is a Poisson distribution as in zero-
inflated GMs [20, 21, 22], then its only parameter (the mean) determines both the
magnitude of link weights and the connection probability pij . As the units of money in
the data are changed arbitrarily (e.g. from dollars to thousands of dollars), so will the
estimated mean and the resulting expected number of zeroes. By contrast, in our model
the zeroes affect ψ but not φ and the money units affect ψ but not φ.

12



Empirical analysis

We can finally test the predictions of our model against empirical international trade
data. These predictions are found to improve dramatically upon those of the traditional
GM.

Model specification

We adopt an undirected network description (where the connection between two coun-
tries carries a weight equal to the total trade in either direction) to facilitate the defini-
tion of the topological properties characterizing the ITN. Previous work has shown that,
given the highly symmetric structure of the ITN, the undirected representation retains
all the basic properties of the network [30, 26, 27].

We choose Fφ(ni,nj ,Dij) in such a way that the expected non-zero trade flow
〈wij |aij = 1〉 is the same as in the GM defined by 1 (now interpreted as a conditional
expectation). This means choosing ni = GDPi, Dij = Rij , φ = (c, α, γ) and

Fφ(ni,nj ,Dij) = c (GDPi GDPj)
α R−γij , (25)

where we have set β = α due to undirectedness. Similarly, we choose Gψ(ni,nj ,Dij) in
such a way that the probability pij is the same as in the model defined in 3, i.e. ψ = δ
and

Gψ(ni,nj ,Dij) = δ GDPi GDPj . (26)

With the above specification, the expected topology does not depend on any dyadic
factor. This is the simplest choice that is found to reproduce the topology of the ITN
very well [25, 30, 32, 38] and is supported by empirical evidence that dyadic factors like
geographic distances [45] and trade agreements [43] have a much weaker effect on the
purely binary topology of the ITN than on trade volumes. Of course our formalism has
been designed in such a way that we can immediately add dyadic factors, and is therefore
much more general. For instance, we might easily add ‘hidden’ metric distances inferred
via an optimal geometric embedding [43] (although they would not be identifiable with
some empirically measurable, ‘external’ macroeconomic factors like those used elsewhere
in our model).

Given the above model specification, for a given instance W∗ of the empirical network
we find the optimal parameter values c∗, α∗, γ∗ and δ∗ through the maximum likelihood
conditions given by 23 and 24. Importantly, 24 reads in this case ∂L/∂δ = 0 and yields
a value δ∗ that ensures that the expected number of links

∑
i,j pij =

∑
i,j Gψ/(1 + Gψ)

is exactly equal to the empirical number L∗ =
∑
i,j a

∗
ij , irrespective of the volumes of

trade. This result, which is equivalent to what is found for the purely binary model
defined by 3 [38], shows that, unlike the standard GM, our model always generates the
correct number of links and, unlike some more complicated variants of the GM, it does
so independently of the money units chosen for the volumes.
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Testing the model against real data

We first test the performance of the EGM in replicating the empirical trade volumes,
i.e. the purely local structure of the ITN. In Fig. 1, superimposed to the previous
results for the standard GM given by 1, the empirical non-zero link weights w∗ij are also
compared with their conditional expected value 〈wij |aij = 1〉 under the EGM given by
25. As expected, the two sets of points largely overlap, confirming that, in terms of
trade volumes, the EGM cannot do worse than the GM. Moreover, the EGM is more
parsimonious than the GM as it achieves a narrower scatter of points while having no
dedicated free parameter to tune the variance.

We then check the performance of the EGM in replicating the purely binary topology
of the ITN. As a first illustration, in Fig. 2 we show all the trade links of the country with
maximum degree (USA), the one with minimum degree (Western Sahara) and one with
intermediate degree (Vanuatu). We also show the corresponding predictions under the
standard GM (where 1 is first fitted to the non-zero flows and then extended to all pairs
of countries) and the EGM. Since the traditional GM predicts a fully connected network,
i.e. an expected degree 〈ki〉GM = N − 1 for all i, its prediction is correct only for the
country with maximum degree and deteriorates dramatically as the degree decreases.
By contrast, the EGM gives an expected degree 〈ki〉EGM =

∑
j 6=i pij (see Materials and

Methods) which is in good agreement with the empirical one for the entire range of
connectivity.

We now consider higher-order topological properties as a more stringent and quan-
titative test. In the top left panel of Fig. 3 we plot the average degree (knni ) of the
trade partners of each country i versus the number of such partners, i.e. the degree
(ki) of country i itself. Similarly, in the top right panel of Fig. 3 we plot the clustering
coefficient (ci), i.e. the fraction of trade partners of country i that trade with each other,
again versus the number (ki) of such partners. The empirical quantities are compared
with the expected quantities under the GM and the EGM. The exact expressions for
both empirical and expected quantities are provided in Materials and Methods. The de-
creasing empirical trends observed in both plots shows that the trade partners of poorly
connected countries (small ki) are on average highly connected, both to the rest of the
world (large knni ) and among themselves (large ci). By contrast, countries that trade
with a high-degree country (large ki) are on average poorly connected, both to the rest
of the world (small knni ) and among themselves (small ci). For both properties, we find
that the EGM is in excellent agreement with the empirical ITN, as opposed to the clas-
sical GM which systematically generates nearly constant and much higher values, as a
result of predicting a complete network.

Having checked that the EGM does very well in separately replicating both the local
link weights and the global topology of the ITN, we now perform a last and most severe
test monitoring properties that combine topological and weighted information together.
In the bottom left panel of Fig. 3 we plot the average strength (snni ), i.e. the average
traded volume, of the trade partners of each country i versus the strength (si) of country
i itself. In the bottom right panel, we plot a weighted version of the clustering coefficient
(cwi ) of country i, again versus the strength (si) of country i. The empirical trends are
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compared with the predictions of the GM and EGM (see Materials and Methods for
all definitions). These two plots are in some sense the weighted counterparts of the
purely binary plots considered above. We find that, on average, countries connected to
countries with a low trade activity (small si) trade a lot with the rest of the world (large
snni ) but relatively less among themselves (small cwi ). Countries connected to countries
with a large volume of trade (large si) have instead a small trade activity with the rest
of the world (small snni ), but trade relatively strongly with each other (large cwi ). Again,
we find that both trends are replicated very well by the EGM, while the standard GM
fails systematically.

Discussion

In this paper we have introduced the EGM as a novel, advanced model for the ITN
and economic networks in general. Phenomenologically, the EGM allows us to reconcile
two very different approaches that have remained incompatible so far: on one hand, the
established GM which successfully reproduces non-zero trade volumes in terms of GDP
and distance, while failing in predicting the correct topology [22]; on the other hand,
network models which have been successful in reproducing the topology [25] but are
more limited in predicting link weights [42]. To our knowledge, the EGM is the first
model that can successfully reproduce the binary and the weighted empirical properties
of the ITN simultaneously. Just like the standard GM, the RM [11] or similar models,
the EGM can accomodate additional economic factors in terms of extra dyadic and
country-specific properties.

The agreement between the EGM and trade data calls for an interpretation of the
process generating the network in the model. In this respect, we notice that 15 and
21 allow us to interpret the realized trade volumes in the EGM as the outcome of two
equivalent processes (a serial and a parallel one) of link creation and link reinforcement.
In the serial process, for a given pair of countries i, j a trade link of unit weight is first
established with success probability pij and its volume is then incremented in unit steps,
each with success probability yij . After the first failure, the process stops and starts
again for a different pair of countries, and so on for all pairs. In the equivalent parallel
process, all pairs of countries simultaneously explore the mutual benefits of trade and
engage in a first connection, each with its probability pij . Then, all pairs of nodes for
which the previous event has been successful reinforce their existing connection by a unit
weight, each with its probability yij . The process stops as soon as there are no more
successful events. In either case, 15 is the resulting probability that the realized volume
is w.

Importantly, 15 implies that q∗ij(w) is a geometric distribution with an extra point
mass q∗ij(0) at zero volume, i.e. the first event has a probability pij which is in general
different from the probability yij of all subsequent events. This distinguishing prop-
erty of the Bose-Fermi distribution [44] ensures a realistic network formation mechanism
where the establishment of a trade connection for the first time is intrinsically different
(and therefore associated to a different ‘cost’) from the reinforcement of an already ex-
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isting trade connection. This desirable distinction, interpretable for instance in terms of
profitability of trade, has been advocated in previous studies [9, 10, 21]. Here, it is imple-
mented naturally within the maximum-entropy framework via 13, where the (expected)
binary topology is enforced separately from the (expected) link weights. Notice that
the distinction disappears if the parameter αij in 13 is set to zero, i.e. if the constraint
on the expected value of Θ(wij) (the expected topology) is removed as in the standard
GM. In such a case, pij becomes equal to yij (i.e. link creation and link reinforcement
become equally likely) and therefore q∗ij(w), not only q∗ij(w|aij = 1), becomes a geometric
distribution.

Consistently with the fact that trade volumes are always reported as integer multi-
ples of some indivisible money unit (e.g. dollars), we have assumed non-negative integer
weights. It is easy to show that, if we take the limit of a vanishing money unit, trade
volumes become non-negative real numbers and q∗ij(w) becomes an exponential density
with an extra point mass at zero volume, while q∗ij(w|aij = 1) becomes a purely exponen-
tial density. Crucially, the extra point mass q∗ij(0) ensures that, even in this continuous
limit, pij is unchanged and the topology is still described by 5. In absence of αij , in this
limit the network would become fully connected as in all specifications of the GM with
continuous volumes [39].

Our results may have strong implications for the theoretical foundations of trade
models and for the resulting policy implications. It is known that the traditional GM is
consistent with a number of (possibly conflicting) micro-founded model specifications [46,
47, 48, 49]. For instance, a gravity-like relation can emerge as the equilibrium outcome
of models of trade specialization and monopolistic competition with intra-industry trade
[10, 50]. The empirical failure of the standard GM highlights a previously unrecognized
limitation of these micro-founded models, at least in their current form, and indicates
the need for an appropriate reformulation that makes these model consistent with the
EGM, i.e. with a realistic topology of the ITN. How policy implications change as the
result of such a reformulation of current micro-founded models is an important point to
add to the future research agenda. We therefore believe that the EGM can represent a
novel benchmark supporting improved theories of trade and refined policy scenarios.

Materials and Methods

Data

We have used international trade and GDP data from the database curated by Gled-
itsch [51] for the years 1950, 1960, 1970, 1980, 1990 and 2000. This database includes
yearly trade volumes wij (which we have symmetrized by taking the sum of wij + wji),
yearly GDP values, and the (time-independent) distance matrix Rij . The numer N of
countries increases over time from roughly 85 in 1950 to approximately 200 in 2000.
Both GDP and trade date are reported in U.S. dollars. To produce Fig. 2, we have used
the BACI database [52], which reports imports and exports between N = 208 countries
in 2011. The BACI data were originally in disaggregated form, where total trade was
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resolved into 96 different non-overlapping commodity classes. We have aggregated all
these commodity classes together, and again symmetrized, to obtain a dataset consistent
with the Gleditsch data used for the earlier years.

Observed network properties

Given a weighted undirected network with weight matrix W and adjacency matrix A,
with entries related through aij = Θ(wij), the degree of node i is defined as

ki =
∑
j 6=i

aij , (27)

the average nearest-neighbor degree of node i is defined as

knni =
∑
j 6=i

aijkj
ki

=

∑
j 6=i

∑
k 6=j aijajk∑
j 6=i aij

, (28)

and the (binary) clustering coefficient of node i is defined as

ci =

∑
j 6=i

∑
k 6=i,j aijajkaki∑

j 6=i
∑
k 6=i,j aijaki

. (29)

The average nearest neighbor strength of node i is defined as

snni =
∑
j 6=i

aijsj
ki

=

∑
j 6=i

∑
k 6=j aijwjk∑
j 6=i aij

(30)

(where si =
∑
j 6=iwij is the strength of node i) and the weighted clustering coefficient of

node i is defined as

cwi =

∑
j 6=i

∑
k 6=i,j(wijwjkwki)

1
3∑

j 6=i
∑
k 6=i,j aijaki

. (31)

Expected network properties

The expected value (under the EGM) of each of the network properties defined above can
be calculated either numerically, by averaging over many network realizations sampled
independently from the probability P ∗(W) in 14, or analytically, using the following
approach. First of all, in this model the expected value of all ratios can be approximated
by the ratio of the expected values [40, 41]. Secondly, all numerators and denominators
involve only products over distinct pairs of nodes, which are statistically independent in
the model. Using 15, the expected values of such products can therefore be calculated
exactly in terms of xij and yij as follows:

〈
∑
i,j,k,...

aij · ajk · ...〉 =
∑
i,j,k,...

〈aij〉 · 〈ajk〉 · 〈...〉, (32)

〈
∑
i,j,k,...

wαij · w
β
jk · ...〉 =

∑
i,j,k,...

〈wαij〉 · 〈w
β
jk〉 · 〈...〉, (33)
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where 〈aij〉 = pij , as given by 16, and

〈wγij〉 ≡
∞∑
w=0

wγqij(w) =
xij(1− yij)Li−γ(yij)

1− yij + xijyij
, (34)

Lin(z) =
∑∞
l=1

zl

ln denoting the so-called n−th polylogarithm of z. From the above two
considerations, it follows that the expected properties of all quantities of interest can be
approximated with entirely analytical expressions obtained by simply replacing aij with
pij and wγij with 〈wγij〉 in 27, 28, 29, 30 and 31. Via xij and yij , the expected values are
ultimately a function of only the GDPs and distances. In our analysis, after preliminary
checking that the analytical expressions matched extremely well with the numerical
averages over realizations, we have systematically adopted the analytical approach, which
requires no sampling of networks and is therefore extremely efficient.
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Figure 1: Empirical versus model-generated trade flows. Log-log plot comparing
the empirical volume (y-axis) of all non-zero bilateral trade flows in the ITN with the
corresponding (conditional) expected volume (x-axis) predicted by the Gravity Model
defined in 1 (green, parameters estimated via OLS of log-transformed weights) and by the
Enhanced Gravity Model defined in 4 and 25 (blue, parameters estimated via Maximum
Likelihood as in 23). Top left: 1970, top right: 1980, bottom left: 1990, bottom right:
2000. The black line is the identity line corresponding to the ideal, perfect match that
would be achieved if empirical weights were exactly equal to their (conditional) expected
values, i.e. in absence of randomness. The results for the two models largely overlap,
the main difference being in the fitting procedure and resulting from the fact that the
EGM predicts an exponential (plus delta at zero) volume distribution, while the GM
predicts a multiplicative gaussian distribution. Note that, even though the expression
for the conditional volumes are the same and the same macroeconomic factors have been
chosen in both models, the EGM is more parsimonious as it achieves a narrower scatter
of points while not requiring an extra free parameter (which is instead required in the
GM) to estimate the variance.

22



Figure 2: Country-based network configurations for year 2011 in the real ITN
(red), the GM (green) and the EGM (blue). For three representative countries, we
show the connections to all trade partners in the world. The total number of countries
in the data (see Materials and Methods) is N = 208. The three countries are selected
on the basis of their empirical degree k: the country with maximum degree (USA,
k = N − 1 = 207), the one with minimum degree (Western Sahara, k = 13) and one
with intermediate degree (Vanuatu, k = 91). The GM produces always the maximum
number (N − 1) of connections. By contrast, the EGM produces connections randomly
with probability pij , so links change from realization to realization. The expected degree
is however independent of the individual realizations and is close to the empirical one
for all countries. We have selected a typical realization that produces a degree equal to
the expected degree for each of the three countries.
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Figure 3: Network properties in the real ITN (red), the EG (green) and
the EGM (blue). Top left: average nearest neighbor degree knni versus degree ki for
all nodes. Top right: clustering coefficient ci versus degree ki for all nodes. Bottom
left: average nearest neighbor strength snni versus strength si for all nodes. Bottom
right: weighted clustering coefficient cwi versus strength si for all nodes. All results are
for the 2000 shapshot of the ITN. For all the other years in the analysed sample, we
systematically obtained very similar results. See Materials and Methods for information
about the data and all definitions of empirical and observed quantities.
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