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ABSTRACT
We provide an up-to-date view on the knowledge man-
agement system ScienceWISE (SW) and address issues
related to the automatic assignment of articles to re-
search topics. So far, SW has been proven to be an
effective platform for managing large volumes of tech-
nical articles by means of ontological concept-based
browsing. However, as the publication of research arti-
cles accelerates, the expressivity and the richness of the
SW ontology turns into a double-edged sword: a more
fine-grained characterization of articles is possible, but
at the cost of introducing more spurious relations among
them. In this context, the challenge of continuously rec-
ommending relevant articles to users lies in tackling a
network partitioning problem, where nodes represent ar-
ticles and co-occurring concepts create edges between
them. In this paper, we discuss the three research direc-
tions we have taken for solving this issue: i) the identifi-
cation of generic concepts to reinforce inter-article sim-
ilarities; ii) the adoption of a bipartite network represen-
tation to improve scalability; iii) the design of a cluster-
ing algorithm to identify concepts for cross-disciplinary
articles and obtain fine-grained topics for all articles.

1. INTRODUCTION
The past several decades have seen a sizable growth of
the global research community, as well as an accelera-
tion of the scientific publishing workflow. This has led
in turn to a drastic increase of the number of published
works [6, 26], a proliferation that has carried with it
many technological challenges. One such challenge is

the identification and discrimination of intra- vs. cross-
disciplinary scientific production, in order to ease and
enhance bibliographic search. The ability to make such
a distinction is seen as dependent on the so-called “con-
ceptualizing of content” [25, 27], achievable through
the maintenance of ontologies of concepts referred to
in specialized literature. The huge amount of available
articles, however, requires automating the construction
of such ontological substrates as much as possible, but
without compromising quality with respect to human-
expert relevance judgments.

The ScienceWISE platform1 (henceforth indicated as
SW) aims at facilitating the necessary type of human-
computer interaction to reach the above objective. It
provides an interactive environment in support of the
scientific community, where expert users can continu-
ously contribute to the maintenance of a data-driven do-
main ontology through routine literature review activi-
ties. In doing this, they also give the system implicit
feedback on content they consider relevant, which is
subsequently used to provide better recommendations of
new articles to bookmark and review.

In this paper, we first provide an updated view of
the SW platform and its mechanism for extracting con-
cepts from scientific articles. We then look at aspects
related to establishing a coherent correspondence be-
tween articles and broad topics of research. In partic-
ular, we will describe how the accurate selection of rel-
evant concepts (Sec. 3), the choice of suitable represen-
tation schemes (Sec. 4) and accounting for overlapping

1http://sciencewise.info/
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community structure (Sec. 5) are all viable solutions to
tackle the topic modeling issue. Finally, in Sec. 6, we
report on lessons learned and sketch future development
possibilities.

2. PLATFORM OVERVIEW
Organizing scientific literature in a systematic way
calls for effective and efficient methods to construct-
ing human-browsable taxonomies or ontologies that are
field-specific, kept up-to-date and interlinked to the con-
tents of the documents they mean to represent. The ex-
traction of relevant concepts from new publications thus
constitutes the cornerstone of SW. Currently, the plat-
form’s primary source of literature is the arXiv.org
e-print repository of physical sciences articles [11], with
which it synchronizes daily. Any newly published arti-
cle is automatically analyzed for its most relevant con-
cepts as well as novel terminology [21, 6]. The arti-
cle is then made available to the system’s users for in-
spection and concept tagging. Through this process of
bookmarking, users contribute expert input on the most
relevant concepts of the article, possibly also specifying
new concepts and semantic relations among them in the
process, such as specialization or similarity (Fig. 1).

Figure 1. Ontological representation of the concept “Dark Mat-
ter”. The entry includes information about categorization, re-
lated concepts, definitions and other resources.

Upon bookmarking an article, the user is presented
with three complementary options for selecting poten-
tial tags (Fig. 2):

• choose existing ontological concepts found in the
article;

• choose automatically extracted keyphrases, that
are not currently part of the ontology;

• manually add any missing but relevant terms.

The user may choose any combination of the above
options to compile a set of terms that best represents
his/her interest in the article in question. For conve-
nience, the list of ontological concepts is ranked by
an enhanced TF-IDF measure [21], while the list of
keyphrases is generated and ranked using the KPEX al-
gorithm [6]. New user contributions (concepts and/or
relations) are periodically validated by a group of sys-
tem curators (power-users) before being permanently
adopted as updates to the current ontology.

Figure 2. Article bookmarking interface. The column Found
concepts contains ontological entries, Possible concepts –
novel extracted keyphrases, and Chosen concepts – the user’s
personal choice.

As an additional feature, bookmark collections may
be analyzed to provide each user with personalized ar-
ticle recommendations. Since scientific literature is
generally quite specific, the co-occurrence of concepts
within the same article often suggests a thematic rela-
tion between them, whilst the presence of the same con-
cept in different articles is a building block to gauge the
relation between different articles. This feature favors
the use of SW as a personalized semantic filter over the
stream of new, incoming articles. It is at this point, how-
ever, that new methods for deriving meaningful relations
between articles are needed. The information extracted
from SW can, in turn, be represented as a set of el-
ements belonging to two distinct classes: articles and
concepts, which can be encoded as a complex network
[5, 17]. A network representation can be very effective
in highlighting important relations. When the underly-
ing ontology becomes too rich, however, the probability
that two articles share one concept by chance becomes
non-negligible. This phenomenon is responsible for the
emergence of many spurious interactions that raise the
density of connections and consequently makes the in-
formation extraction process harder. We had to devise
a number of new solutions to work around this net-
work density problem in SW. The following sections
showcase three successful but complementary ways to
address this issue, and that are applicable at different
stages of the processing pipeline – a better selection of
relevant concepts, a more effective network representa-
tion and a more meaningful partitioning of the network.

3. ENTROPIC IDENTIFICATION OF
RELEVANT CONCEPTS

Common or generic concepts present in most articles
(such as model or star in physics) create many spuri-
ous interactions in a network representation. The result-
ing structure is thus very dense, resembling a complete
graph where all nodes (articles) have a near-direct link to
each other. Several methods have already been proposed



to tackle the problem of dropping some of the links in
dense networks to make the networks sparser [24, 22]
but they operate in an ex-post way, validating connec-
tions in a resulting network based on their weights. In
our context, the challenge is instead to reduce the num-
ber of connections and the effect of spurious similarity
on the weights a priori, by filtering away the common
(or generic) concepts, which do not provide any valu-
able classification information. This is already achieved
in SW by a crowdsourced concept classification, i.e.
through the assignment of a generic concept flag. Yet,
the concepts that may be considered as generic in one
discipline may be quite specific in another. This makes
the problem of identifying common concepts strongly
dependent on the considered collection of papers and
their topics. Hence, the problem requires a solution that
does not rely on human-made input, but rather supple-
ments it.

Our solution to this problem consists in making use of
entropy to select relevant concepts. Entropy has previ-
ously been used in semantic analysis studies to classify
documents [12, 3] based on the frequency of words in a
text – i.e. term frequency TF – [30, 8, 9, 10]. Specifi-
cally, we make use of Shannon’s entropy to quantify the
amount of information carried out by concepts. For each
concept c, we compute two different entropies: one, Sc,
associated to the observed TF probability distribution,
and the other, Smax

c , associated to a probability distri-
bution derived from the maximum entropy principle and
constrained by the first moment and log-moment of the
observed TF distribution [3, 1, 29]. The maximum
entropy value acts as an upper bound for the observed
entropy, allowing to determine if the observed value is
big or small with respect to a quantity computed for the
same concept. Hence, the comparison of the two en-
tropy values (Fig. 3) constitutes the core of the method-
ology we used to filter the similarity network.

More specifically, in Fig. 3 we consider the distribu-
tion of points in the Sc vs Smax

c space for the concepts
extracted from all the articles submitted during the year
2013 to the arXiv in physics subject classes as prin-
cipal category (hereafter arxivPhys2013pc), which
comprises nearly 30k articles. A glance at the diagram
reveals some intriguing features. For instance, the vast
majority of hand-labeled generic concepts (black dots)
sit along the Sc = Smax

c line, suggesting that generic
concepts tend to maximize their entropy and, conse-
quently, carry little information. However, a more care-
ful analysis (displayed in the inset) hints at the presence
of many more concepts whose observed entropy is close
to the maximum. This paves the way for the establish-
ment of a parallel between generic concepts and those
with an observed entropy closer than a given threshold
p to their maximal one Smaxc .

Figure 3. Relation between the entropy Sc of a concept c and
Smax
c , for the collection arxivPhys2013pc. The background

colors delimit the regions where the distance between a point
and the line Sc = Smax

c is less than a given percentile p. Black
dots identify the concepts marked as generic by experts.

The second interesting feature is the presence of a
few groups of common concepts located away from the
boundary. These outliers have been marked by users
who might correctly consider them as common in their
own sub-discipline, but which might represent only a
small fraction of the whole dataset. On the network den-
sity side, the pruning of basic concepts allows to drop
significantly the link density. As an example, by remov-
ing concepts falling within the 10th percentile, we are
able to decrease link density by ∼20%. Such a drastic re-
duction leads to a clearer and more specific community
structure and topic classification. Furthermore, the au-
tomatic identification of common concepts can thus be
used to signal potentially wrongly-defined generic con-
cepts.

4. ALTERNATIVE GRAPH REPRESEN-
TATIONS

The set pf articles and concepts used by SW has thus
far been represented as a unipartite (up) network, where
only articles are nodes. Alternatively, the system may
be represented as a bipartite (bp) network, where its ar-
ticles and concepts can be directly mapped to two types
of nodes. Links (edges) only connect cross-type nodes
– articles to their respective concepts. Such an alterna-
tive representation eliminates the density problem since
the number of links in a bipartite network grows linearly
with the number of articles, n, while it grows as O(n2)
in the unipartite case (see Fig. 4(a)). Consequently,
the bipartite approach significantly reduces the compu-
tational resources needed to cluster big collections with-
out loss of quality, as shown below.

Besides the arxivPhys2013pc dataset, we also
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Figure 4. (a) Number of links as a function of the network size
n. (b) Run-time required to compute one single realization of
the Louvain algorithm as a function of n; results refer to its
python-igraph implementation. (c) Stability of the outcome
of the stochastic algorithm for the two different network repre-
sentations. (d) Similarity between the up and bp partitions.

consider 1084 of its subsets of different sizes account-
ing for single arXiv categories (7k – 11k articles);
sub-categories (280 – 3k articles) and smaller groups of
papers (with at least 20 nodes) that are rather focused
on specific topics in their own disciplines. All these
subsets have been selected uniformly by recursively ap-
plying modularity optimization methods [4] to the up
representation of the entire collection and the resulting
clusters/sub-sets [20].

We investigated run-time dependence on the size of
the dataset for the up and bp representations using the
Louvain clustering algorithm [4], which aims at max-
imizing the modularity function [18]. Originally, the
modularity function had been designed for unipartite
networks. To deal with bipartite networks, Barber’s gen-
eralization of modularity [2], which adjusts the under-
lying null model, was employed. However, our pre-
liminary examination shows that the choice of the null
model is not crucial, as it barely affects the community
detection results. This motivates us to use the same im-
plementation in order to make a consistent comparison
between the resources required to cluster articles in the
two representations.

The run-time results are showcased in Fig. 4(b),
where the average time to cluster a collection of a given
size is supplemented by the standard deviation. In both
representations, the run-time t scales as a power-law
function of the size n as t∼nα. However, the scaling is
close to quadratic for the up representation (α ≈ 2.20),
but about linear for the bp one (α ≈ 1.15). The
difference is likely due to the aforementioned discrep-
ancy in the number of links between the two representa-

tions, which follows roughly the same trend. For small
datasets (below 100 articles), a unipartite approach is
more convenient, while for bigger collections the bi-
partite representation prevails. Noticeably, there is a
100 times difference in the run-time for collections of
n = 104 articles.

Since the heuristic used be the Louvain algorithm
has a stochastic component, the results of different runs
may, in general, differ. Thus, it is crucial to understand
how stable the outcomes of different runs are: is it nec-
essary to consider an optimal partition over many runs
or is it enough to take just one run? To answer this ques-
tion, we first identify 100 partitions for each dataset and
each network representation. Then, we consider all pos-
sible pairs of these outcomes and perform pairwise com-
parisons using Rand Index R [23]. The behaviors of R,
shown in Fig. 4(c), indicates that a single run of Louvain
suffices for any up network and for small bp networks.

Although stability is a fundamental requirement, it is
also important to establish how similar two partitions
are within different representations. We therefore com-
pared each of the 100 partitions of up representations
with each partition obtained from the bp representation
for every single considered dataset. The results in terms
of R are shown in Fig. 4(d): significant discrepancies
for small datasets have been observed, while the two
representations lead to similar outcomes for larger col-
lections. Comparing these results to the stability results
(Fig. 4(c)), we conclude that the similarity between up
and bp partitions is closely approaching the (smallest)
stability index of the resulting partitions for all datasets
above 100 articles. This means that the clustering ob-
tained using the two alternative approaches are similar,
though this similarity is limited by the stability restric-
tions of each approach.

To summarize, our resource and quality performance
tests have highlighted under which conditions bp and
up approaches may be used as alternative ways to clus-
ter article collections with comparable outcomes. There
is a clear trade-off between computational resources
and stability: smaller datasets should be clustered us-
ing the up representation (good stability, low resource
consumption) while larger datasets should employ bp
clustering despite less stable results.

5. OVERLAPPING COMMUNITIES
In the above sections, we considered the non-
overlapping clustering of articles where each manuscript
belongs to a single topic. However, there are many
cross-disciplinary articles whose contents do not belong
to a single well-defined topic. In this section, we there-
fore consider overlapping clustering [15], and instead
of maximizing the usual modularity function, we maxi-
mize its extended version [19].



In this context, we propose a greedy optimization al-
gorithm, HiReCS, inspired by the Louvain routine. At
each single iteration it merges initially ungrouped nodes
into communities using maximal a Mutual Modularity
Gain (MMG) criterion.

More specifically, for each node #i in the network,
we identify a set of neighbors such that the pair-wise
merge of #i with each of these leads to a maximal gain
in modularity. Then, two nodes #i and #j are merged
into a cluster if such a move is optimal for both of them.

An overlap appears when for a given node #i sev-
eral neighbors satisfy the MMG criterion equally. To
represent the overlap in the shared node #i, we replace
#i by a set of replica nodes #ik, one for each of the
K overlapping clusters Ck. To ensure the conservation
of the weights of the links incident to a shared node, we
equally distribute them across all the replicas as follows:

∀ k ∈ {1, . . . ,K}; wik,j =
wi,j
K

,

where wik,j stands for the weight of the link between
#ik and #j. Unlike the Louvain algorithm, HiReCS
groups the nodes into fine-grained clusters in a deter-
ministic way.

The clustering itself is an agglomerative hierarchical
method, where each clustering iteration builds a subse-
quent level of the hierarchical community structure. At
each iteration, the non-clustered nodes are propagated to
the next iteration where they are treated as input nodes,
as well as the previously formed clusters. The execution
terminates when a new iteration does not produce any
new cluster.

To assess the quality of the results, our algorithm was
applied to synthetic networks with overlapping clusters
generated by the LFR benchmark [14]. We compare
HiReCS against state-of-the-art algorithms, including
Louvain [4], Ganxis [28], Oslom2 [15], SCP [13] and
a random communities generator (Rcoms). The latter
takes the number and size of clusters from the ground-
truth and assigns connected nodes randomly to clusters.

To assess the similarity between the resulting clusters
and the ground-truth communities, we use the Normal-
ized Mutual Information (NMI) for overlapping clus-
ters [7], which is fully compatible with the standard
NMI [16]. The NMI values vary in the range [0, 1],
where a value of 1 signifies that a clustering is identical
to the ground-truth. The results shown in Fig. 5 show
that HiReCS outperforms state-of-the-art solutions, in-
cluding both parameter-free and parameterized ones on
sparse networks, due to the fine-grained structure of the
clusters resulting from the clustering.

Fine-grained cluster identification is important to
trace and interrelate topics from the most common ones
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Figure 5. Comparison of NMI values achieved by different clus-
tering algorithms, as a function of the number of nodes in the
benchmark network. Results are averaged over eight network
instances.

to the most specific ones, as well as to identify topics in
cross-disciplinary articles.

Those experimental results show that our algorithm
grasps the community structure better than its competi-
tors in a parameter-free way and allows to identify mul-
tiple topics for a given paper. Additionally, HiReCS
achieves a linear space complexity and near-linear run-
time complexity on sparse networks with respect to the
number of links.

6. CONCLUSIONS

6.1 Summary
In this paper, we showcased the novel methods that
SW employs to address the problem of semantic or-
ganization and contents retrieval on large collection of
scientific papers. Since its launch in 2009, the sys-
tem has reached several milestones, evolving from the
whim of a few scientists to a well-established platform
used by hundreds of users on a daily basis. Based on
the experience accumulated by developping and using
SW over the years, we are able to pinpoint some impor-
tant lessons learned so far, and to use them as departure
points for the further developments of the system. In
this article, we highlighted three key issues related to
the assignment of topics to document networks. More
specifically, we showed how:

• The automatic selection of relevant concepts based
on entropy favors the emergence of strongly-
organized structures – also at the level of sub-
topics – and, more importantly, does not rely on
human evaluation/validation.

• The bipartite representation of the system can be
used to overcome the limitations imposed by the
density of the unipartite graph. Moreover, the sta-
bility of the results, albeit being inferior to the uni-
partite case, remains still high.



• The HiReCS algorithm, which supports overlap-
ping communities, can be applied to improve both
the classification of cross-disciplinary articles and
the identification of fine-grained topics for the ar-
ticles.

6.2 Future Work
A number of important challenges lay ahead. We are
currently working on overtaking the current limitations
of the methodologies presented in this manuscript, for
example, by combining together two – or more – ap-
proaches. Another challenge relates to the application
of the insight extracted from physics-related articles (for
which a well-established ontology exists) to other disci-
plines such as biomedicine or environmental sciences,
and to non-scientific media altogether, where ontologies
are scarce or even often missing. In a wider perspective,
SW can be seen as an ideal ecosystem to test various
search, clustering and data management technologies,
ranging from community detection and topic modeling,
entity linking or knowledge extraction.
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