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Understanding the mechanisms underlying the formation of cultural traits is an open challenge. This is intimately connected to
cultural dynamics, which has been the focus of a variety of quantitative models. Recent studies have emphasized the importance of
connecting those models to empirically accessible snapshots of cultural dynamics. In particular, it has been suggested that empirical
cultural states, which differ systematically from randomized counterparts, exhibit properties that are universally present. Hence, a
question about the mechanism responsible for the observed patterns naturally arises. This study proposes a stochastic structural
model for generating cultural states that retain those robust empirical properties. One ingredient of the model assumes that every
individuals set of traits is partly dictated by one of several universal “rationalities,” informally postulated by several social science
theories. The second, new ingredient assumes that, apart from a dominant rationality, each individual also has a certain exposure
to the other rationalities. It is shown that both ingredients are required for reproducing the empirical regularities. This suggests
that the effects of cultural dynamics in the real world can be described as an interplay of multiple, mixing rationalities, providing

indirect evidence for the class of social science theories postulating such a mixing.

1. Introduction

A solid theoretical understanding of how preferences form
is currently lacking. There is little doubt that preferences,
opinions, values, and beliefs, which are generically referred
to as “cultural traits,” are dynamical entities, and that
interpersonal social influence plays an important role in
driving their dynamics, among other factors. Moreover, a
complete theoretical understanding should account for the
fact that the dynamics of traits takes place in parallel along
multiple dimensions, namely, that opinions and preferences
can develop in relation to multiple topics or aspects of
life. Along these lines, various dynamical models have been
developed and studied [1], such as the Axelrod model [2],
which is very representative for studies of multidimensional
dynamics, commonly referred to as “cultural dynamics,” in
contrast to studies of unidimensional dynamics, commonly
referred to as “opinion dynamics.” Various studies of cultural
dynamics extending the Axelrod model can be found in
the literature [3-11]. Recent studies [12-14] have shown
that models of cultural dynamics are sensitive to the initial

conditions, namely, to how the initial vectors of agents’ traits
are chosen: initial cultural states constructed from empirical
data show systematic deviations from their shuffled and
random counterparts. In fact, [14] argues that such deviations
point towards universal structural properties inherent in
empirical cultural states. More insights about the formation
of cultural traits should be achievable by studying these states,
since they can be regarded as partial snapshots of cultural
dynamics in the real world.

The universal properties mentioned above are expressed
in terms of the effects the empirical cultural state has on social
influence models using it for their initial conditions—here, a
“cultural state” is a set of cultural vectors (SCV), where each
cultural vector encodes the sequence of cultural traits associ-
ated with one agent in the model. On one hand, an Axelrod-
type model [2] of (multidimensional) cultural dynamics is
used to evaluate the propensity of the cultural state to long-
term cultural diversity (LTCD). On the other hand, a Cont-
Bouchaud-type model [15] of (one-dimensional) opinion
dynamics is used to evaluate the propensity of the cultural
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state to short-term collective behavior (STCB). Both mea-
sures are functions of a common parameter w, controlling
for the range of social influence in cultural space, which
allows for an LTCD-STCB correspondence to be drawn for
a given cultural state. It turns out that an empirical cultural
state generally induces an LTCD-STCB curve that is close to
the second diagonal (LTCD(w) = 1 — STCB(w), VYw), while
exhibiting, for a given STCB value, higher LTCD values than
a trait-shuffled cultural state, which in turn exhibits higher
LTCD values than a randomly generated counterpart [12,
14]. These results seem universal [14], namely, independent
of the dataset used for constructing the cultural vectors
composing the empirical cultural state, suggesting that real-
world cultural dynamics are governed by universal laws.
Moreover, as argued in [14], this type of analysis suggests that
interagent social influence, the essential ingredient of cultural
dynamics models, is insufficient for explaining the observed
structure. Although it is meaningful to incorporate additional
ingredients into social influence models, while attempting
to give rise to empirical-like structure in a dynamical set-
ting, this study does not aim for that. Instead, it aims at
providing an effective, phenomenological, static description
of the observed structure, which should provide additional
insights before developing a more fundamental, dynamical
description.

The purpose of this study is to develop a structural
stochastic model that would generate realistic cultural states,
while incorporating plausible ingredients from social sci-
ence. Specifically, these states should retain the universal
properties inherent to empirical cultural states that are
observed in [14]. In fact, [13] has already investigated various
ways of generating sets of cultural vectors in random, but
nonuniform, ways. A method that appeared particularly
promising relied on the notion of “cultural prototypes”: a few
underlying, abstract sequences of logically compatible, self-
enforcing cultural traits, which govern the way the generated
vectors are distributed in cultural space. According to the
method, each cultural vector is partly a copy of one of the
prototypes and partly random. The implicit claim is that
each cultural prototype is induced by one of a few (3 to
5) fundamental and universal “principles of social life,” or
“rationalities,” that would strongly affect any process of trait
formation in any social system. Such entities are postulated,
under different names and in slightly different numbers,
by several theoretical frameworks in social science [16-20].
The exact number of such entities depends on the exact
theory that is considered, as different theories are built on
somewhat different arguments and pieces of evidence. It is
important that the number is larger than 1 but not too large,
while independent of system size. From a natural science
perspective, such ideas are attractive, since they exhibit a
certain reductionist tendency of trying to understand the
observed sociocultural variability in terms of combinations
of a few, elementary, and universal building blocks. Various
parallels and similarities between these theories are discussed
in the literature [21-23]. For the purpose of the current
study, all these theories are equivalent. Still, for creating an
instructive and compact context, the discussion is restricted
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to one of them, namely, to Plural Rationality Theory, chosen
for reasons discussed in Section 5.

Plural Rationality Theory (PRT), also referred to as
“(Grid-Group) Cultural Theory” [16], is a qualitative descrip-
tion of sociocultural structure and dynamics as an interplay
between a small number of irreducible “ways of life,” or
“rationalities.” These ways of life are understood as abstract,
“elementary building blocks” of societies and are supposedly
recognizable regardless of the geographical context, of the
historical context or of the scale of the system that is studied.
It is believed that the ways of life go along with different
perceptions of risk [24, 25] and, interestingly, that they always
coexist, although either of them is often dominant for a given
period of time, for a given (part of the) system that one
studies. (It may be useful to think of the ways of life as being
the elements of a complete, orthogonal basis of some abstract
vector space; one may then associate a vector in this space
with a certain part of a certain sociocultural system, at a
given moment in time; it is not clear to what extent such
vectors would be related to the cultural vectors used in this
study; this is only a semiformal analogy that is not exploited
further here, nor in any other study so far, to the extent
that the authors are aware of.) Such ideas appear compatible
with recent empirical findings concerning the existence of
a small number of behavioral phenotypes in dyadic games
[26]. In PRT, each way of life is understood as a self-enforcing
combination of a “pattern of (social) relations” and a “cultural
bias.” On one hand, a pattern of relations is often understood
as a tendency of organizing the social ties between people
in a certain way, thus a connectivity pattern in the social
graph. On the other hand, a cultural bias is a combination of
preferences, opinions, values, and beliefs that are compatible
with each other and with the associated pattern of relations.
By comparison to the definitions in [14], one can easily realize
that a cultural bias can be thought of as a point or a region in
“cultural space” that is representative for the respective “way
of life.” A cultural bias is formally represented here by the
notion of “cultural prototype,” previously used in [13].

This notion is at the core of two stochastic, structural
models of culture that are defined and studied here. The
first model, called “Prototype Generation” (PG), postulates
that each cultural vector is partly a copy of one of the k
prototypes and partly random. This generation method is
similar to the “Prototype Evolution” method of [13], though
with small technical differences. The second model, called
“Mixed Prototype Generation” (MPG), postulates that each
cultural vector is an asymmetric mixture (or combination) of
all the prototypes. From the perspective of PRT, this “mixing”
is a formal realization of the idea that every person combines
the ways of life in a unique way, such that preferences and
opinions related to different aspects of life—cultural traits
of different cultural features (or variables)—are due to the
“influence” of different cultural biases, though at any given
moment in time one cultural bias is usually dominating. In
the literature concerned with PRT and the other, similar,
theories, this mixing aspect often goes under the name of
“the multiple self” and was not implemented in [13]. The
importance of mixing for correctly interpreting (and testing)
PRT has been already stressed on [25], while the general
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FIGURE 1: Schematic illustration of the two stochastic models, showing (a, b, ¢, and d) an empirical SCV with N vectors (x; to x,) and
F nominal variables (Q, to Qp); a set of k = 3 cultural prototypes for the same F variables; an SCV with N vectors generated, from the
prototypes, using the PG model; an SCV with N vectors generated, from the same prototypes, using the MPG model. For the PG and MPG
sketches, red, green, and blue denote the copies of cultural traits from one of the first, second, and third prototype, respectively, while black

denotes the explicitly random generation of traits.

importance of multiple selves for social science has also been
extensively discussed [27]. Moreover, research on preferences
in economic contexts also suggests that the multiple self is
important [28-30]. On the other hand, research in cross-
cultural psychology appears to be divided: some studies
seem to ignore the multiple self [31], while others seem to
acknowledge it [32, 33]. This study provides further insights
on this matter, by directly comparing the PG and MPG
models with each other and with empirical data.

Section 2 explains the models in detail, while Section 3
describes how the free parameters are tuned, so as to repro-
duce some lower-order properties of one empirical cultural
state. Cultural states generated with the two models are then
evaluated, in Section 4, by means of the LTCD-STCB analysis
of [12, 14]. It is shown that cultural states generated by PG
are structurally dissimilar to the empirical ones, as they do
not exhibit the universal LTCD-STCB behavior, after tuning
the free parameters to empirical data in terms of simpler,
but meaningful, quantities. On the other hand, cultural
states generated with MPG are structurally similar to the
empirical ones, as they reproduce the universal LTCD-STCB
behavior, after applying an analogous tuning procedure. This
suggests that the mixing, multiple-self ingredient is crucial
for describing the effects of preference formation in terms
of cultural prototypes and that MPG should be regarded as
the successful model. Section 5 further discusses the results,
their limitations, and extensions of this work and questions
that are worth investigating in the future. The manuscript is
concluded in Section 6.

2. Model Description

This section describes the two stochastic models of cul-
ture: the Prototype Generation (PG) model and the Mixed
Prototype Generation (MPG) model, which are used below
for generating sets of cultural vectors (SCVs) that can be
quantitatively studied with the LTCD-STCB tool, previously
applied to empirical SCVs in [12, 14]. Both models rely on the
concept of cultural prototype introduced above.

An SCV can be visualized as a table of cultural traits,
where the columns correspond to cultural vectors (or
sequences) and the rows correspond to cultural features (or
variables). If the SCV is constructed from empirical data,

the columns correspond to real people that are sampled
by a social survey, while the rows correspond to questions
that are asked in the social survey. This is illustrated by
Figure 1, which is explained in detail below. Consistently
with [14], a “cultural space” is the set of all possible cultural
vectors (or combinations of traits) allowed by the given set
of cultural features: one combination of traits is one point in
this discrete space. For the purpose of this work, the general
set-up is restricted to cultural spaces defined in terms of
features that are exclusively nominal. In this setting, distances
between points in the cultural space are given by (5) of
Section 3. Disregarding ordinal features makes the modeling
paradigm compatible with the (arguably strong) assumption
that one prototype corresponds to one point in cultural space,
meaning that a prototype picks up one and only one trait
of any given feature. Other limitations of this assumption
are extensively discussed in Section 5, together with possible
ways of relaxing it, for the purpose of generalizing the current
modeling paradigm in future work.

The two models are schematically illustrated in Figure 1.
The figure first shows a sketch of an empirical SCV, where the
rows correspond to cultural features, the columns correspond
to cultural vectors, and the letters correspond to cultural
traits—the nth row shows the traits of the N agents that are
expressed (or formulated) with respect to the nth feature.
Then, it shows a set of 3 cultural prototypes (their number
could have been different), in 3 different colors, all of them
spanning over all features (or questions) relevant for the
empirical set of vectors. Finally, it illustrates a typical set
of vectors generated using the PG method, followed by one
generated using the MPG method. The colors distinguish
between the prototypes, while indicating how the traits are
copied from the prototypes to the cultural vectors, while black
denotes traits generated in an explicitly random way (uniform
distribution, independently of the prototypes).

There are several things worth noting in relation to
Figure 1. First, the possibility that two or more prototypes pick
the same trait for a certain feature is allowed by the current
modeling paradigm (note that any of the traits that can be
copied from one of the prototypes can also be generated
via explicit randomness). This is essential for controlling
the average prototype-prototype distance, as will become
apparent below. Second, a PG vector is partly copied from one



prototype and partly generated in an explicitly random way,
while a MPG vector is a mixture of copies from all the pro-
totypes, with one dominating prototype and with few traits
generated in an explicitly random way. Third, both models
make use of another type of randomness, in addition to the
explicitly random trait generation and to the randomness
involved in generating the prototypes. This randomness has
to do with assigning every trait of every vector to a “prototype
of origin,” once the random generation fraction and the
influence fractions of the prototypes are specified. In the case
of MPG, it is mainly this trait-assignment randomness that
allows for the generation of a multitude of distinct cultural
vectors from a small set of fixed prototypes, in the presence
of little explicitly random trait generation.

The procedure for generating the cultural prototypes is
the same for both the PG and the MPG models. One needs
to specify the number of prototypes k, as well as the value of
another parameter o € (0, 1), which controls for the expected
cultural distance between the prototypes. This parameter
governs the expected number of overlaps (or coincidences)
between prototypes in terms of how they are distributed
over the traits of a specific feature. In the extreme case
of @ — 1, all prototypes pick the same trait for every
feature, yielding the smallest possible separation between
the prototypes in cultural space (which coincides with the
minimum of 0 allowed by the cultural distance definition in
(5)). In the other extreme case of « — 0, the prototypes
are distributed as uniformly as possible over the traits of
every feature, yielding the largest possible separation between
the prototypes in cultural space (which only coincides with
the maximum of 1 allowed by (5) if the number of traits g
is larger than or equal to the number of prototypes k for
every feature). This is achieved by a formulation in terms
of the set of integer partitions I; describing the possible
ways of distributing the k prototypes over the g traits of
a certain feature. The « parameter actually controls the
probability distribution over the set I}, via the “compactness”
of the integer partitions in this set. Appendix A.2 precisely
describes how these probabilities are assigned and how the
set I} is computationally generated in the first place, for any
combination of k and g. Once the prototypes are chosen,
everything else is conditional on them, for both models.

According to the Prototype Generation (PG) model, each
cultural vector is a partial realization of one of the prototypes.
Each of the N cultural vectors is generated by copying a
random sequence of traits from one of the k prototypes,
while generating the other traits in a uniformly random
way—choosing the prototype is done randomly for every
vector. Then, a subset of the F features of length round(3 - F)
is randomly and independently selected for each vector and
the traits of these features are copied from the prototype to
the vector. Here, “round” returns the integer that is closest to
its argument, while 8 € [0, 1] is a third model parameter, in
addition to k and « (which are already needed for the purpose
of specifying the prototypes, in the manner described above).
The 8 parameter specifies the fraction of traits that are
directly copied from the prototype, thus controlling for the
expected distance between a vector and its prototype. The
traits for the remaining features are generated randomly and
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independently, according to uniform feature-level probability
distributions—the explicit random generation mentioned
above. Thus, f also controls for the amount of explicitly
random generation of traits. The PG method effectively
specifies that there are k “classes” of cultural vectors and
those of a certain class are located at a certain, f8-controlled
average distance from the associated cultural prototype.
This is similar to the “Prototype Evolution” method of [13],
although there are small differences in how exactly the vectors
are generated in the two cases. Moreover, the method of [13]
did not allow for controlling the expected cultural distance
between the prototypes.

According to the Mixed Prototype Generation (MPG)
model, each cultural vector is a combination of all pro-
totypes, though an unbalanced combination, meaning that
the numbers of traits copied from the different prototypes
are deliberately unequal. The extent of this discrepancy is
explicitly controlled via the third model parameter, which,
like for PG, is called . Although the exact definition and
usage of the f € (0,1) parameter are different in MPG
than in PG, its role is quite similar. Specifically, also in the
context of MPG, f (indirectly) controls for the fraction of
traits copied from the dominating prototype to the vector:
more traits are copied from the dominating prototype if the
discrepancy between the prototypes is higher. In addition to
traits copied from the prototypes, there are traits that are
generated in an explicitly random way, but in a small number.
For each generated vector, this number is by construction
not higher than the number of traits copied from the lowest-
contributing prototype. Consequently, if there are k proto-
types, the number of traits generated via explicit randomness
does not exceed F/(k + 1). Thus, 1/(k + 1) is an upper bound
for the fraction of explicit randomness in an entire set of
cultural vectors generated with MPG. It is also important to
note that, like for PG, this fraction is controlled by f and
that the upper bound is reached when S is in the limit of
minimal imbalance. The limited usage of explicitly random
trait generation by MPG means that cultural vectors are more
strongly constrained by the prototypes, compared to PG. Still,
MPG allows for generating a large variety of possible cultural
vectors, since the k prototypes can mix in many different
ways.

The MPG model needs a procedure of specifying, for
each generated vector, the k values of the numbers of traits
that are to be copied from the k prototypes, along with the
number associated with explicitly random generation. These
k + 1 positive, integer numbers should add up to F and have
their discrepancy controlled by the 3 parameter. Moreover,
there is no reason to believe that the sequence of numbers
associated with one f value should be the same across
all generated vectors, so randomness should be involved
in choosing these numbers. Therefore, the model needs a
probabilistic way of drawing k + 1 random, positive integers
{t.(B), ..., tr1 (B)} satistying Z;‘:ll t;(8) = F, such that their
expected discrepancy is controlled via a single parameter S.
The procedure chosen for this purpose is described below.

This procedure heavily relies on isometrically mapping
the discrete {0, 1,..., F} set of integers to the [0, 1] interval
of the real axis. For each generated vector, the latter interval
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is split into k + 1 parts, by performing “cuts” in k ran-
domly chosen points. In this manner, a sequence of k + 1

preliminary weights {W,,..., W}, subject to f:ll w

1, is numerically obtained. These weights are obviously
independent of 8 and have a fixed expected discrepancy.
A p-dependent transformation (explained below) is applied
on the preliminary weights {W,,..., W}, thus providing
a sequence of f-dependent weights {w;(f),...,wy,,(B)}
satisfying Zf‘: wy(B) = 1, with expected discrepancy con-
trolled by f. Finally, the sequence of 3-dependent weights is
converted back into the desired sequence {t,(f3), ..., t; .1 (B)}.
This final operation is nontrivial, requiring a self-consistent,
joint rounding procedure, which is generally difficult to
choose, since one cannot generally ensure that w;, =
round(t;/F), Vl—a nontrivial problem of weight discretiza-
tion. Here, a simple, pragmatic choice is made: converting
the lowest k weights into the closest, lower integer, while
converting the highest weight into the integer needed for
satisfying the summation constraint—this ensures that the
highest weight, which should correspond to the dominating
prototype, is converted into the highest integer.

The only aspect of MPG remaining to be explained is how
the S-dependent weights {w, (f3),...,wy,;(B)} are obtained
from the preliminary weights {W,,..., W, ,}. This is done
by raising the latter to a common power p(f8) and then
normalizing:

(‘/Vl )P(ﬁ)

wB) = o —oe @
S (W)

where the common power p(8) € (0,+00) controls for the

average discrepancy between these weights and maps to 8 €

(0,1) via

p(B)=tan(p3), @)

where the tangent is a convenient choice of a smooth,
continuous function, with the appropriate domain and range.
Thus, a value B > 0.5 implies a value p > 1 and a higher
discrepancy of {wf,...,wfﬂ} than that of {W,,...,W,},
while a value 8 < 0.5 implies a value p < 1 and a lower
discrepancy of {w?, ..., wlfﬂ} than that of {W},..., Wi}
Before describing the fitting and the outcomes of the PG
and MPG models, it is worth summarizing a few important
aspects. Both models rely on the notion of cultural proto-
types, which is currently formalized in a simplistic manner,
which is only sensible for cultural spaces defined exclusively
in terms of nominal features. The procedure for generating
the prototypes is the same for both models and relies on two
parameters, k and &, which specify, respectively, the number
of prototypes and the expected distance between them. The
differences between PG and MPG consist in how the cultural
vectors are generated conditionally on the prototypes: for PG,
every vector is in part a copy from one of the prototypes
and in part explicitly random; for MPG, every vector is an
imbalanced mixture of all prototypes and explicitly random
to a much lower extent, which is how the “multiple-self”
ingredient is implemented. Nonetheless, in both cases, there

is a third model parameter, 3, which governs, in different
ways, the lengths of the randomly selected subsets of features
whose traits are copied from the prototypes. In both cases, f3
effectively controls for the expected distance between a vector
and its (dominating) prototype, as well as for the fraction of
explicit randomness.

3. Model Fitting

Before applying the LTCD-STCB analysis on SCVs generated
with either the PG or MPG models, it is useful to somehow
constrain some of the free model parameters. This is done in
terms of statistical quantities simpler than the LTCD and the
STCB measures, which can be evaluated on both empirical
SCVs and the model SCVs. On the empirical side, the quan-
tities are averaged over several, empirical SCVs constructed
by randomly selecting N = 500 cultural vectors from the
13000 available ones in the Eurobarometer dataset [34], with
restriction to the nominal features—let “(EBM,,)” stand for
the nominal part of the Eurobarometer dataset. The empirical
data is formatted according to the procedure explained in
[14]. On the model side, these quantities are averaged over
many SCVs, of the same size N, which are realizable in
the cultural space of (EBM,), for the given combination
of parameters—the prototypes are independently generated
upon creating every model SCV.

The two simple quantities in terms of which the models
are tuned to empirical data are the average and the standard
deviation of the intervector distances in the SCV, which are
here denoted by “AIVD” and “SIVD,” respectively:

2
AVD = TR 2% 3)
2 2

where N is the number of cultural vectors and d;; is the
cultural distance, as defined and used in [12-14]. The notation
i < j denotes that the respective summation is carried out
over all distinct pairs (i, ). In the case of a fully nominal
cultural space, with which this study is dealing, d;; reduces to
the Hamming distance between the two sequences of symbols
encoding cultural vectors i and j:

lF

1 F
dj=1- FZ‘S (x ) = F;d;, (5)

I=1

with d;; taking values within the [0, 1] interval. Here, [ iterates
over the F nominal features, xﬁ, xlj are the traits of vectors i
and j with respect to feature /, and § stands for the Kronecker-
Delta function. The second equality shows that the cultural
distance can be expressed as an average over feature-level
contributions, which becomes useful below. Previous work
has shown that an empirical SCV is characterized by a lower
AIVD than its random counterpart and a higher SIVD than
both its random and shuffled counterparts [12,13]. The AIVD
and SIVD quantities, which incorporate pairwise distance



information, are conceptually different than what is often
used in the context of cultural dynamics and of the Axelrod
model, namely, the size of the largest connected component,
which can be regarded as an overall measure of similarity.
Instead, the latter is somewhat similar to the STCB quantity
explained and used in Section 4.

It is instructive to see that the expressions of AIVD and
SIVD can be rewritten in the following way:

1 F
AIVD = Z
l IN

_ 1) z]’ (6)

i<j

SIVD

F F l
l/
FL Y | N2

by using a feature-level cultural distance dgj introduced via
(5)—the transition from (4) to (7) was suggested by the SI of
[12].

Note that the AIVD can be understood as an average
over feature-level AIVD contributions, which are represented
by the expression within the /-summation of (6). It can be
checked that the (nominal) feature-level AIVD contribution
is a measure of how uniformly the N vectors are distributed
over the possible traits of that feature. This is more obvious
when expressing the expected value of the AIVD contri-
bution in terms of probabilities associated with the traits,
which is shown in (8) below. Thus, for an empirical SCV
containing only nominal features, the AIVD is a measure of
average uniformity of the empirical frequency distributions
associated with the features. Consequently, the AIVD is also
a measure of how subjective the questions/topics associated
with the features are on average—when the frequencies of
possible answers are more similar to each other, there is less
justification to talk about a “better,” a “more correct,” or a
“more agreed upon” answer, so the question is inherently
more subjective.

Also note that, in (7), the quantity inside the average over
pairs of features (k,I) is the covariance between features k
and [, defined in terms of the feature-level cultural distances.
Given that this quantity is averaged over all possible pairs of
features and that the square-root is a monotonous function,
the SIVD encodes information about the pairwise correla-
tions between features, though in a somewhat indirect way.

For both models, the choice made here is that of

(7)
N 2

i<j i<y

N? (N

(i) tuning the o parameter in terms of the AIVD quantity
(see (3), (6)), for any combination of values of the 5
and k parameters;

(ii) tuning the 3 parameter in terms of the SIVD quantity
(see (4), (7)), for any value of the k parameter, based
on the previous fitting of « in terms of AIVD;

(iii) simply repeating the tuning (and the LTCD-STCB
analysis in Section 4) for several values of k.

This implies that, for every value of k, the tuning (or fitting)
is done at two levels: the a-AIVD level and the 3-SIVD level,
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the former being nested into the latter. In practice, the fitting
is carried out automatically, using a nested, 2-level algorithm
that relies on a modified bisection-type method for each level.
The algorithm is precisely described in the supplementary
materials (available here). In order to work, this approach
relies on the assumption that there is one, unique solution
for the fitting problem, for every value of k. This uniqueness
is demonstrated via Figures 2 and 3, which are also used for
providing a general intuition of how the fitting works and of
how the AIVD and SIVD quantities depend on «, 3, and k,
for the two models.

Before entering this description, it is worth mentioning
that the computer time for the fitting algorithm is greatly
reduced by being able to evaluate the average (model) AIVD
quantity analytically, in a manner that properly accounts
for all SCVs that can be generated for any combination of
k, «, and B. While the calculation is described in detail
in Appendix B, a schematic understanding can already be
provided here. The essential ingredient of the calculation is
a simple, exact formula for the expected AIVD contribution
of one feature of range g:

(A1vD ({py...

q
) LR VN
i=1

which assumes that the probabilities of its traits {p;, ..., p}
are all known—see Appendix B for the proof. For a dis-
crete probability distribution, (8) is a measure of unifor-
mity very similar to the Shannon entropy. Conditional
on a specific choice of the prototypes, this set of prob-
abilities (thus the feature-level probability distribution) is
fully determined by the integer partition describing how
the prototypes are distributed over the traits and by the
fraction of traits that are randomly generated, the lat-
ter being controlled by . In this context, (8) already
assumes that an averaging is performed over SCVs gener-
ated from the same set of prototypes. One still needs to
perform an average of this expression over integer parti-
tions ((B.2) of Appendix B), according to the probability dis-
tribution controlled by «((A.3) and (A.4) of Appendix A.1),
followed by another average over all features ((B.1) of
Appendix B), since different features will in general have
different ranges g. At a superficial inspection, using a sim-
ilar approach for analytically computing the SIVD quantity
appears very complicated, if at all possible. Numerical cal-
culations are instead employed for computing the (model)
SIVD.

Figure 2 deals with the first-level fitting. It shows the
dependence of the analytically computed AIVD quantity
(see above) on the o parameter, for several  values, for
several k values, and for both the PG and MPG models.
Moreover, it shows the empirical AIVD uncertainty range (an
uncertainty range, as defined in the supplementary materials,
is the interval spanned by one standard mean error on each
side of the mean) via the horizontal bands in the six panels.
Thus, a solution of the first-level fitting is indicated by an
intersection between a model curve of a given combination
of k and f and the horizontal band. Note that, for either of the
two models and for any combination of k and 3, if a solution
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FIGURE 2: Dependence on model AIVD on the « parameter, for several values of the § parameter (legend), for k = 2 (a, b), k = 4 (¢, d), and
k = 6 (e, f) prototypes, for the PG (a, ¢, e) and MPG (b, d, f) models. The horizontal lines show the empirical AIVD uncertainty range (one
standard error on each side of the mean).
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FIGURE 3: Dependence of model SIVD on the 8 parameter, for several values of the number of prototypes k (legend), for the PG (a) and MPG
(b) models, where the o parameter is tuned such that the empirical AIVD is reproduced. The error bars of the points show the numerical
uncertainty ranges, while the horizontal lines show the empirical SIVD uncertainty range (one standard error on each side of the mean).

exists, this solution is actually unique. In order to understand
the behavior implicit in Figure 2, which is explained below,
one should keep in mind that AIVD measures the average
uniformity of the feature-level probability distributions.

First, it is worth focusing on the AIVD dependence on
the & and 3 parameters. Note, on one hand, that, for a
given combination of k and f3, the AIVD generally decreases
with & or at least remains constant. This is due to the fact
that the AIVD decreases with decreasing distance between
prototypes, thus with increasing «. For PG, this decrease
is stronger for higher f values, since for low f3 value the
uniformity is anyway high, because of the large fraction of
randomly generated traits. For MPG, this f-dependence of
the decrease is not that strong, since the fraction of randomly
generated traits cannot exceed 1/(k + 1). On the other hand,
for a given combination of k and «, the AIVD generally
decreases with increasing 8. This is due to the fact that
the AIVD decreases with decreasing fraction of randomly
generated traits, thus with increasing f3.

Second, it is worth focusing on the AIVD dependence
on the number of prototypes k. For PG, for a given «, a
larger number of prototypes k implies a higher AIVD, since
traits copied from prototypes are more uniformly distributed,
but this has a significant effect only for large 3 values, again
due to the uniformity being anyway in place for small
values. For MPG, the corresponding behavior is more subtle.
While, for large § — 1 values, the AIVD still increases with
increasing k at a given « (for the same reason as for PG),
and the AIVD(«) curves corresponding to small 3 approach
the AIVD(«) curve corresponding to large  — 1 with
increasing k, rather than remaining in place (which is the case
for PG). This is related to the fact that the upper bound on

the fraction of randomly generated traits 1/(k + 1) decreases
with increasing k, thus decreasing the role of 8 in controlling
the AIVD via the uniform component of the feature-level
probability distributions.

Figure 3 deals with the second-level fitting. Everything
shown in this figure relies on « already being tuned (at the
first level) such that the empirical AIVD is matched—as
apparent from Figure 2, the tuned « value depends on f3
and on k. Figure 3 shows the dependence of the numerically
computed SIVD quantity (with uncertainty ranges) on the
B parameter, for several k values and for both the PG
and MPG models. Moreover, it shows the empirical SIVD
uncertainty range via the horizontal bands in the two panels.
Thus, a solution of the second-level fitting is indicated by
an intersection between a model curve of a given k and the
horizontal band. Note, again, that, for either of the models
and either of the k values, if a solution exists, this solution is
actually unique. The exact technical procedure employed for
producing any of the model points in Figure 3 is described
at the end of the supplementary information, followed by
the explanation of the final choice of values for the o and f3
parameters, for use in the analysis of Section 4.

Note that the SIVD increases with 3 for both models and
for all k values, suggesting that the extent of feature-feature
correlation increases with decreasing distance between vec-
tors dominated by the same prototype. For PG, all SIVD(J3)
curves meet for some f3 = 0.45, at which point they also end.
No points are plotted for lower 8 because « cannot be tuned
in terms of AIVD, which can be understood from Figure 2
when noticing the AIVD(«) curves of low f3 that do not cross
the empirical line. For MPG, the SIVD(f3) curve of k = 2
ends at a value of 8 = 0.5, before crossing the empirical line,
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meaning that the MPG model cannot be entirely tuned when
only 2 prototypes are used. No points are plotted for higher f3
because « cannot be tuned in terms of AIVD, which can be
understood from Figure 2, by noticing the AIVD(«) curves of
k = 2 and high f3 that do not cross the empirical line. This is
due to certain limitations of the current modeling paradigm,
which are further discussed in Section 5.

4. Model Outcomes

Here, the most important results of this work are presented.
The focus is on the LTCD-STCB analysis, applied to sets of
cultural vectors generated with the PG and MPG models. The
aim is to assess how well the two models reproduce the uni-
versal empirical patterns described in [14]. Figure 4 illustrates
the results obtained with the two models, whereas Figure 5
summarizes, for comparison purposes, the empirical results,
focusing on the nominal part of the Eurobarometer dataset
(EBM,,)—formatted according to the procedure explained in
(14].

Before describing the results, it is worth recalling the main
ingredients of the LTCD-STCB analysis. This is essentially a
two-dimensional plot showing the correspondence between
the LTCD quantity versus the STCB quantity, both of them
being evaluated on empirical, on shuffled, and on random
SCVs. Drawing the LTCD-STCB correspondence is made
possible by the fact that, for each of the three scenarios,
both quantities depend on the bounded-confidence thresh-
old w, which controls the maximal cultural distance over
which social influence can act. On one hand, the LTCD
quantity is a measure of cultural diversity after a long-term
process of cultural dynamics driven by w-bounded social
influence, starting from an initial cultural state specified
by the respective SCV. Essentially, it counts the number of
distinct points in cultural space (commonly referred to as
“cultural domains”) towards which the agents converge in
the final state of a minimalist, bounded-confidence Axelrod
model. The STCB quantity is a measure of collective behavior
(or social coordination) after a short-term process of opinion
dynamics driven by w-bounded social influence. Essentially,
it is the standard deviation of the aggregate opinion distri-
bution of the agent population, resulting from a minimalist
Cont-Bouchaud-type model applied to the (cultural) graph
obtained by drawing a link for each pair of agents separated
by a cultural distance smaller than w. Mathematically, the two
quantities, as functions of the bounded-confidence threshold
w, are captured by the following two expressions:

LTCD (w) = %,

)

. 2
STCB (o) = ;(Sﬁ)w

where N, is the number of cultural domains in the final state
of the Axelrod-type model, N is the number of agents (and
cultural vectors), and S, is the size of the Ath of connected
components in the w-determined cultural graph. The average

in the LTCD formula is taken over multiple simulations of the
Axelrod-type model. The STCB quantity is calculated ana-
Iytically, once the cultural connected components are found,
based on the assumption of independent opinion-agreement
within each connected component. An essential difference
between the two quantities, reflected in the long-term/short-
term distinction, consists of an idealized separation between
two time-scales, in terms of the role that the SCV specified
as input plays: cultural vectors, together with the distances
between them, are assumed to be dynamical by the LTCD
definition and static by the STCB definition, such that one
deals with dynamics of vectors and with dynamics on vectors
in the two cases, respectively. The interested reader is referred
to [12, 14] for more details and remarks about the LTCD-
STCB analysis.

For both the PG and the MPG models, the o and f3
parameters are tuned in the manner described in Section 3
for every value of the number of prototypes k, while the
latter is simply iterated over. In Figure 4, the LTCD-STCB
plot is shown for the values k = 3, k = 4, and k =
5, for the PG (Figures 4(a), 4(c), and 4(e)) and the MPG
(Figures 4(b), 4(d), and 4(f)) models. The value k = 2 is
omitted since the o and f parameters could not be both
tuned for MPG with two prototypes. All SCVs are generated
using the cultural space of EBM,, whose empirical SCVs also
served for providing the AIVD and SIVD values in terms of
which the tuning was conducted (Section 3).

When looking at Figure 4, one should ask whether the
universal, empirical patterns are reproduced by any of the
six illustrated model scenarios. Qualitatively, the patterns are
defined first in terms of a higher compatibility between LTCD
and STCB in the model-generated SCV than in the shuffled
SCV and a higher compatibility in the shuffled SCV than in
the random one and second in terms of the model-generated
LTCD-STCB curve being close to the second diagonal. These
empirical features are visible in Figure 5. It is clear that PG
does not satisty these criteria for any value of k. Indeed, the
model-generated curve is far below the second diagonal for
most of the relevant interval and often below the shuffled
curve. MPG, however, appears to satisfy all these criteria for
all k values, although for k = 3 it is not obvious that the
shuffled curve is indeed above the random one, due to the
lack of points in the lower-left corner. This has to do with the
effective discreteness of the bounded-confidence threshold
w spectrum, due to the finite number of nominal features
available—in other words, it is meaningless to split the w
axis into intervals that are smaller than the nearest-neighbor
spacing of the cultural space lattice. For a direct comparison
with analogous empirical curves, one should use Figure 5,
which shows the results of the LTCD-STCB analysis applied
to EBM,, data. However, it is only meaningful to compare
the qualitative nature of the empirical and the model curves,
rather than the exact values, since, as discussed in Section 5,
neither model has a maximum-likelihood nature, due to a
certain simplicity in the way prototypes are formalized and
chosen here. Still, MPG apparently does generate SCV's that
are structurally similar to the empirical ones. Thus, the notion
of cultural prototypes, even if implemented in a simplistic
way, can be used to reproduce the important, universal



10

0.8}
PG k=3
0.6

LTCD

0.2}

0.4 0.6 0.8
STCB

—— Mod. gen.
Shuffled
+—— Random

()

0.8}
{ PG, k=4
0.6

LTCD

0.2} I {

STCB

—— Mod. gen.
—— Shuffled
—— Random

()

0.8

} PG,k =5
0.6}

LTCD

0.2}

—— Mod. gen.
—— Shuffled
—— Random

(e)

LTCD

LTCD

LTCD

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Complexity

- ]
- ’}! -
I
H MPG, k =3
I
L . ]
k3
L I 4
E:

-] i .
L £ * - I* 4
0 0.2 0.4 0.6 0.8 1
STCB
—— Mod. gen.
—— Shuffled

—— Random

(b)

E MPG, k = 4
I
L : J
S
L ; J
E
L= H . a
0 0.2 0.4 0.6 0.8 1
STCB
—— Mod. gen.
+—— Shuffled
—— Random
(d)
i MPG, k=5
L £ J
] 3
L . J
i
L : . J
Lz P s
0 0.2 0.4 0.6 0.8 1
STCB
—— Mod. gen.
—— Shuffled
—— Random
(f)

FIGURE 4: The correspondence between long-term cultural diversity (LTCD) and short-term collective behavior (STCB) for a model-generated
(red), a shuffled (blue), and a random (black) SCV obtained via the PG model (a, ¢, €) and MPG model (b, d, f), for k = 3 (a, b), k = 4 (¢, d),
and k = 5 (e, f) prototypes. Error bars denote standard deviations over multiple trait dynamics runs. There are N = 500 elements in each set

of cultural vectors.
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the nominal part of the Eurobarometer dataset (EBM, ). Error bars
denote standard deviations over multiple cultural dynamics runs.
There are N = 500 elements in each set of cultural vectors.

properties of empirical cultural states, as long as mixing of
prototypes is in place.

5. Discussion

The purpose of this study was to develop a way of gener-
ating cultural states that reproduce the apparently universal
properties of the empirical ones, namely, those described
by [14]. This naturally calls for input from social science,
in particular from social science theories that are intended
to describe universal aspects of culture and society. There
is an entire “class” of social science theories that appear
relevant for this purpose, originating from either psychology
or cultural anthropology [16-20], some of them being explicit
attempts at unifying social science. All of them make use
of cultural prototypes, though in somewhat different ways,
under different names and numbers. Moreover, they had all
been overlooked by previous studies of cultural dynamics,
on which [14] largely builds: [13] was the first study that
connected quantitative studies of cultural dynamics with
these theories, via the generic, formal notion of cultural
prototypes. For creating an instructive and compact context,
this work focused on one of these theories, namely, on Plural
Rationality Theory (PRT).

There are several aspects justifying the focus on Plural
Rationality Theory. First, its informal notion of cultural
bias matches very well the more formal notion of cultural
prototype, in the manner used in [13] and here. Second, it
is more appealing from a natural science perspective than
the others, in particular from a physics and complex systems
perspective. This is largely due to various concepts that are
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qualitatively (and sometimes just implicitly) invoked by PRT,
such as the following: energy landscapes, symmetry breaking,
graph/network theory, dynamical systems, crossovers (possi-
bly phase transitions), self-organization, and fractals. Third, it
explicitly claims to provide some insight into how preferences
form: preferences are formed in the process of building social
relations, while different patterns of relations (and types of
institutional settings) go along with different conglomerates
of preferences (the cultural biases). Finally, this dualism
between patterns of relations on one hand and cultural biases
on the other hand comes along with distinguishing between
a “social plane” and a “cultural plane” of interacting human
systems, while acknowledging the dynamical nature of both,
as well as the strong coupling and interdependency between
the two. Thus, PRT seems to resonate well on one hand
with research on social network structure and dynamics and
on the other hand with research on cultural structure and
dynamics.

Up to now, little work has been done to explore either
of these two connections. While [13] and the present work
are the first steps in exploring the latter connection, some
steps have also been taken in exploring the former connection
[35, 36]. Note, however, that [13] refers to several theories
similar to PRT, without explicitly mentioning PRT, that
[36] focuses on a social theory similar to PRT, while still
discussing a connection with PRT, and that [35] works with
an earlier, more rudimentary version of PRT, which gave
less importance to the notions of “way of life,” “rationality,”
and “cultural bias.” Although the coupling between social
dynamics and cultural dynamics is recognized and studied by
quantitative complex systems research (e.g., [9, 37]), this has
been carried out in isolation from PRT.

In loose terms, each rationality of PRT has, as a “projec-
tion” on the cultural plane, one distinct cultural bias. These
cultural biases correspond to the cultural prototypes used
in this study. In agreement with [13], a cultural prototype is
a combination of cultural traits, thus one point in cultural
space—the limitations of this assumption are extensively
discussed below. Relying on these notions, two stochastic,
structural models of culture are developed and studied here:
Prototype Generation (PG) and Mixed Prototype Generation
(MPG). It is important that, regardless of which model is
used, once the prototypes and the remaining free parameters
(parameter f3, for either PG or MPQG) are specified, one
implicitly defines a cultural space distribution (CSD): a
probability mass function taking the cultural space as a
support, as defined in [14]. Generating a set of N cultural
vectors is then equivalent to selecting N points at random
according to this distribution. Thus, the resulting cultural
states are generated in a nonuniformly random way, with
nonuniformities depending on the prototypes and on other
model specifications.

For this study, the usage of both stochastic models is
restricted to cultural spaces constructed only from sets of
nominal features. This is due to the assumption that every
prototype picks one and only one trait in any feature, which
from a PRT perspective means that, upon answering a ques-
tion under the influence of one cultural bias, a respondent
can only provide one specific answer. In reality, even a
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specific cultural bias would generally point towards several
answers, though with different probabilities, so it would be
more realistic to say that every prototype corresponds to
one probability distribution defined over that feature. Not
allowing for this freedom makes this modeling paradigm
incompatible to ordinal features, whose associated traits are
by construction sorted along an axis, in which case it is not
reasonable to assume that a prototype points to one trait of a
feature with full probability and to its nearest-neighbors with
zero probability. Nonetheless, the paradigm is reasonably
compatible with nominal features, in which case the distance
between any two traits of one feature is anyway assumed to
be the same.

The current study belongs to a preliminary, simplistic
paradigm which makes use of what one may call “sharp
prototypes.” A more realistic paradigm, which would account
for the probabilistic nature of the cultural biases, would
make use of what one may call “diffuse prototypes.” Using
sharp prototypes comes at the cost of not having enough
flexibility to reproduce the empirical, feature-level frequency
distributions, with either of the two models, since every
prototype corresponds to a probability distribution entirely
peaked on one trait. Instead, using diffuse prototypes would
allow this by enforcing, for every feature, that the empirical
distribution is a linear combination of the prototype distri-
butions. Nonetheless, as shown in Section 3, both models are
still able to reproduce the empirical average uniformity of
the feature-level frequency distributions, namely, the AIVD
quantity. This is partly due to both models making some use
of uniformly random trait generation, independently of the
prototypes. This translates to a flat noise component in the
probability distribution of every feature, which in a sense
compensates for the rigid peaks of the sharp prototypes.
When also considering the results of Section 4, the usage
of sharp prototypes restricted to nominal variables appears
to be enough as a proof of concept. This justifies further
research towards the more sophisticated paradigm relying on
diffuse prototypes. Although this is left for future studies, it
is worth contemplating upon, in order to better understand
the purpose, greater context, and limitations of the current
paradigm.

Working with diffuse prototypes should go hand in hand
with a method of inferring them from data. One can imagine
doing this by applying a sensible clustering method on
the empirical set of cultural vectors, followed by a sensible
method of constructing one diffuse cultural prototype from
every cluster, as a probabilistic entity that is representative
of that cluster. The main advantage of this approach is that
once the prototypes are constructed and provided as input
to a sensible stochastic model, the artificial SCVs generated
with this model would be close-to-representative of the same
distribution in cultural space as the empirical SCV on which
the method is applied in the first place. This means that
the model would have a maximum-likelihood flavor and
could be used for generating synthetic data, which would also
reproduce the feature-level frequency distributions.

By contrast, the approximation of sharp prototypes used
here is too strong to be employed together with a method
of inferring them from data. Instead, sharp prototypes are
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being assigned to randomly chosen positions in the given
cultural space. On one hand, the fact that the prototypes
are randomly chosen makes any model symmetric up to any
permutation of the traits of any feature, as long as all features
are nominal, which is the case here, a symmetry which is
broken by an empirical SCV and also by an artificial SCV
generated from a specific choice of the prototypes. On the
other hand, the fact the prototypes are sharp does not allow
for the exact frequency distribution of a specific feature to
be reproduced, not even up to a permutation of the traits.
Still, after parameter tuning, one should expect from a good
model to provide a cultural space distribution whose rough
“shape” is compatible with the empirical data, though the
“orientation” and the structural details implied, for instance,
by the feature-level distributions would not be compatible.
This should reflect in roughly reproducing the universal
LTCD-STCB patterns emphasized in [14]: on the one hand,
the formulation of the LTCD and STCB observables is also
symmetric up to permuting the traits of any feature and
thus independent of the “orientation”; on the other hand,
the empirical, feature-level frequency distributions should
heavily depend on the specific dataset, thus being of little
relevance for the universal patterns.

There are various aspects that make the random gener-
ation of prototypes sensible for the purpose of the present
work. First, results are evaluated for various values of the
number of prototypes k, which is considered a free parameter
for both the PG and MPG model. Second, the expected
prototype-prototype distance is controlled for via parameter
a. Third, for every choice of parameters, the prototypes are
independently drawn for each realized cultural state in the
set used for computing the model AIVD and SIVD quantities
for fitting purposes. These compensate somewhat for not
inferring the prototypes from empirical data.

In order to give an example of how the sharp prototypes
approximation can be pushed beyond its limits, it is worth
recalling that fitting the MPG model is not possible for k =
2 prototypes, as pointed out at the end of Section 3: the «
parameter can be successfully tuned in terms of the AIVD
only for small 8 values, which do not allow for the subsequent
fitting of the 3 parameter in terms of the SIVD. This is related
to there being at least g = 3 traits associated with every
nominal feature selected from the Eurobarometer dataset,
while there are only two, prototype-induced peaks in the
model probability distribution of every feature, on top of
the uniform component. Since the integrated probability of
the uniform component cannot exceed 1/k by construction,
all the distributions are bound to be relatively nonuniform,
such that the empirical average uniformity is only attained
for small-« (few coincidences between the prototype-induced
peaks) and small- (large uniform component) combina-
tions. This does not hold for the PG model, as in this case
the integrated probability of the uniform component can
attain any value between 0 and 1. Nonetheless, if k > 2,
the fitting of the MPG leads to generated cultural states that
reproduce much better the universal empirical patterns than
PG. This justifies considering MPG the successful model,
while emphasizing the importance of the mixing ingredient,
which validates the multiple-self assumption.
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When thinking in terms of the feature-level probability
distributions, it might seem that the MPG and PG models
are not that different from each other. As mentioned above,
for both models, if there are k prototypes, the probability
distribution of a certain feature would consist of k peaks of
equal probability contents and of a uniform component asso-
ciated with the explicitly random trait generation. Although
the probability content of the uniform component of MPG
is bounded from above, that of PG is not bounded in any
way, so one might think that MPG is just a particular
realization of PG. However, this reasoning is misleading, as
it focuses on partial information encoded in the feature-level
probability distributions, disregarding the rest of the infor-
mation encoded in the complete cultural space distribution.
With PG, a cultural vector whose trait, with respect to a
certain feature, is generated under the probability peak of a
certain prototype will have its trait generated, with respect
to another feature, under the well-determined probability
peak of the same prototype or under the uniform component.
By contrast, with MPG, a cultural vector, whose trait, with
respect to a certain feature, is generated under the probability
peak of a certain prototype, will have its trait generated,
with respect to another feature, under the probability peak
of any prototype—though with a higher likelihood under the
peak of the dominating prototype—or under the uniform
component. Thus, for the same choice of the prototypes and
the same extent of explicitly random generation of traits (and
consequently the same AIVD), PG implies a different level of
cross-feature correlation and a different shape of the cultural
space distribution than MPG. This conceptually explains the
impact of the mixing ingredient.

Although this study does not attempt at providing a
complete mathematical theory of trait dynamics and for-
mation, one can argue that the MPG model qualifies as a
good effective, static description of (generic snapshots of)
trait dynamics (“effective description of” stands for “descrip-
tion of the effects of,” for “approximate description,” or
for “phenomenological description,” as used in the physics
literature, rather than for “successful or “efficacious”). This
static description is inspired by Plural Rationality Theory
which, though originating in cultural anthropology, does
seem to integrate notions of both psychology and of a
(complex) system based understanding of society. Although
it is formulated in an a qualitative, informal way, Plural
Rationality Theory and related research should be of use for
developing a complete formal theory of trait dynamics, at
least as a source of guidance and inspiration.

6. Summary and Conclusions

This study was dedicated to developing and testing a stochas-
tic model for generating cultural states that would be struc-
turally similar to the empirical ones. The aim was to repro-
duce the universal, empirical properties pointed out in [14],
while relying on some social science hypothesis. Following up
on previous work, the idea of cultural prototypes was used
for this purpose. The study first tested the hypothesis that
each cultural vector is a partial realization of one prototype
and random for the rest, which is what was previously
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assumed. This turned out to be insufficient for reproducing
the empirical patterns. Instead, one has to assume that each
cultural vector is a combination, or mixture, of all prototypes,
though still dominated by either of them, which is what the
MPG model encodes. This additional, mixing ingredient is
actually suggested by the same social science theories that
inspired the prototypes idea in the first place. In this specific,
social science context, this aspect is often referred to as “the
multiple self.” These results provide indirect evidence for
social science theories like PRT, which postulate, in one way
or another, some notion of cultural prototypes, along with
some associated notion of mixing.

Still, there is a certain rigidity in the way prototypes are
currently formalized (Section 5), related to the assumption
that every prototype corresponds to one and only one value
of every cultural variable, instead of corresponding to a prob-
ability distribution over the variable. This makes the cultural
space distribution induced by the successful MPG model
generally incompatible with the cultural space frequency dis-
tribution with respect to which it is fitted. As it stands, MPG is
far from being a maximum-likelihood type of model and thus
cannot be used to generate synthetic data. Nonetheless, this is
arguably achievable once diffuse prototypes are used instead
of sharp ones, while being inferred from the data rather than
randomly chosen. In this sense, this work can be seen as
an important step towards a realistic, maximum-likelihood
model of empirical cultural states and towards generating
synthetic sets of cultural vectors. Moreover, MPG can be
considered an effective description of the outcome of trait
dynamics, since the generated cultural states seem to repro-
duce the generic structure of the empirical ones. The LTCD-
STCB analysis, used for validating this effective theory, could
also be used for validating a more fundamental, dynamical
theory of culture. It appears likely that Plural Rationality
Theory has more to say for aiding the development of such
a theory.

Appendix

A. Controlling the Generation of Prototypes

This section describes the calculation of probabilities
attached to sets of cultural prototypes employed by the PG
and MPG models defined in Section 2. These probabilities are
collectively controlled via a parameter (e), which effectively
dictates the expectation value of the average prototype-
prototype cultural distance for one set of prototypes. The
assignment of traits to prototypes is conducted independently
for every feature, so the discussion is reduced to assigning
probabilities to prototype-to-trait mappings at the level of a
single feature. Furthermore, since generating the prototypes
neglects empirical occurrence frequencies of specific traits,
the problem is symmetric with respect to permutations of
the traits, so the discussion is further reduced to assigning
probabilities to “topologies” of prototype-to-trait mappings
at the level of a single feature. Mathematically, such a
topology is an “integer partition.” Integer partitions turn
out to be the mathematical objects to which elementary
probabilities are to be assigned. Appendix A.l explains the
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procedure for assigning the probabilities to integer partitions,
while Appendix A.2 explains the procedure for generating
the integer partitions.

A.L Integer Partition Probabilities. Let I, be the set of all
integer partitions of k elements, where an integer partition of
k elements is an ordered sequence of integers that add up to
k, also called “parts.” Let the ordered sequence (ky,...,k,) €
I, be one generic element of this set, where s counts the
number of nonzero parts. This notation implies that the
parts are sorted for descending values k; > k;,, Vi €
{1,...,s — 1} and that they add up to k = Y, k;. For
instance, (3,2,2,1) is an integer partition of 8 elements
with 4 parts. For the purpose of this work, an element of
the integer partition corresponds to one prototype. For a
specific choice of the prototypes and a specific feature, an
integer partition is a representation of how the prototypes are
distributed over the traits of this feature, up to a permutation
of these traits. Thus, when the fraction of traits that are
randomly generated vanishes, the probabilities of the traits
are just the normalized part sizes—in the example above,
the ordered sequence of probabilities associated with the
traits would be (3/8,2/8,2/8,1/8). Random trait generation
then simply introduces a uniform noise component to the
feature probability distribution, whose contribution increases
with the fraction of traits that are randomly generated. Thus,
the integer partition is in any case a proxy for the feature
probability distribution, regardless of which stochastic model
is used.

Let c(ky,. .., k) bethe “compactness” of integer partition
(ky»...,k,), defined by

1

S

clh k)= YRR (A1)
= 2

which counts the number of pairs of elements belonging
to the same part. For instance, the compactness of integer
partition (3,2,2,1) is ¢(3,2,2,1) = 3* + 1* + 1* + 0°
11. The compactness thus counts the prototype-prototype
coincidences for one feature. In light of the above paragraph,
a small compactness implies a high uniformity for the
feature probability distribution and thus a high value of the

associated (feature-level) AIVD contribution.

Let I] be the set of integer partitions of k elements of at
most q parts (which implies that I] < I,). This definition
is needed for working with features with range q < k.

min

Furthermore, let ¢ . and c,zn;x be the minimal and maximal

compactness values attainable by the elements of I]. These
notions are needed for normalizing generic compactness

values. They formally read
gt =c(A). (M eIABr eIl (cV) <c(N))),

g =c(V). (N elndrerl(cy>c(X))),

« »

where the
that.”

At this point, it is possible to define a nonnormalized
probability mass function parametrized by & over the discrete

(dot) notation stands for “with the property
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set of integer partitions I, function whose shape would
depend on «. High « values correspond to integer partitions
of high compactness values being favored over those of low
compactness values, while low « values correspond to integer
partitions of low compactness values being favored over those
of high compactness values. For simplicity, the function is
chosen to be monotonous when reexpressed in terms of
compactness. A simple choice for such a function, denoted
here by p¢ ., is given by

Prg M)

2c(A) - c,z‘;x - c,zgn } (A.3)

T
= exp tan I:(Z(x - 1) _] max min
2 Ck,q - Ck,q

where the inner fraction linearly maps the compactness
c(A) from interval [g7",¢x"] to interval [-1,1], while
the argument of the tan function linearly maps « from
interval (0,1) to interval (-1, 1), from where it is further
mapped to (—0o,00) by the tan function. In this manner,
the function is increasing with c(A) for « > 0.5 (implying
a relatively low expectation value of average prototype-
prototype separation), the function is decreasing with c(A)
for « < 0.5 (implying a relatively high expectation value of
average prototype-prototype separation), and the function is
a constant of ¢(A) for & = 0.5. The actual probability P,ff q()x)
associated with integer partition A can then be obtained via
the normalization:

Piqg M)
Z/\EIZ P;:q oy ’

with the sum in the denominator being taken over all integer
partitions in IZ.

P, = (A.4)

A.2. Integer Partition Generation. Let I 4 {of, 11} u LUuLu
-+ be the set of all integer partitions of any size, together
with a “null” element 0’ and a “unity” element 1/, which
are meaningful in relation to the ® operation defined below
and are needed for keeping some of the following definitions
compact and self-consistent.

Let the integer partition “merging” & : I x I — I,
acting on two integer partitions of k, and k; elements, with
s, and s, parts, respectively, be defined in the following
way:

(k.. kYo (K. k) = (kys.. Ky, (A.5)
producing another integer partition of k = k, + k; elements
and s = s, + s, parts, such that the sequence of parts

in the resulting partition is a sorted merging of the two
original sequences of parts. For instance, (3,2,2,1) & (4,2) =
(4,3,2,2,2,1). Moreover, any integer partition A € I satisfies
Ao0'=0"and A1’ = A.

Let the integer partition “multimerging” ® : I x P(I) —
P(I), where PP(I) is the set of all subsets of I, be defined
by

a®{ag,...,0} ={ada,...,a0a,}, (A.6)
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where &, «;,...,«a, € I are all integer partitions. The ®
operation produces a set of integer partitions of ¢ elements
from an initial set of integer partitions of the same size and
another integer partition «, by merging o with each element
«; in the initial set via the & operation.

Relying on the notions above, the following recursive
definition of function sip(k,m;,m;) : N x N* x N* —
P(I) encodes the procedure for generating the set of integer
partitions of k elements, of maximally m; parts, with maximal
part value my,:

sip (k, my, my)

{1} k=0,
{OI} k> mp - my, (A7)
{(le, e mV)mLentries} k= my - My,

U [(x)®sip (k—x,m; —1,x)] else.

x€l,min(k,my)

The definition is inspired by the work [38], where the order of
the four cases matters, in the sense that one case is considered
only if none of the conditions of the above cases is valid. The
last line returns the set that resulted from the reunion “(J”
of all sets of integer partitions of type (x) ® sip(k — x,m; —
1,x), where x spans the indicated interval. This general
formulation, which also takes the maximal part value m,, as
argument, is required for a compact recursive definition. But
of actual interest for this work is the set of integer partitions
of k elements and maximal part value g, I, given by

I} =sip (k, g, k) - {0',1'}, (A.8)
where the last part of the expression takes out the null and/or
the unity element, which might be present in the set of
integer partitions as leftovers from the computation. Here we
explicitly show how the sip function works when calculating
the set of integer partitions of 4 elements of maximally 3 parts,
given by If =sip(4,3,4) — {0%, 17}, where

sip (4,3,4) = | ] (x) @sip (4-x,2,x) = [(1)

xel4

®sip (3,2,1)] U [(2) ®sip (2,2,2)] U [(3)
®sip (1,2,3)] U [(4) @ sip (0,2,4)] = [(1)

2 {0'}u|@e | xesip@-x1x)

xel2
u[ e esip(,1,)]ul[@e{1'}] = {o'}
u[(2)

@ [[(1)®sip(1,1,1)] U [(2) ®sip(0,1,2)]]]
u[@eme{l'tui@={}tu[@

g [[(We{WHu[@e{1'}]]]uiG)e{)
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u{@} = {0} ul@ e {1, D} u{)}]
u{G,DIU{@} = {0'u[R e {1, 1), @)}]
U{3,1), @} = {0} u{21,1),(2,2)}
U{G.D, @} = {042 1,1),(2,2),6,1), @},
(A9)

yielding I; = {(2,1,1),(2,2),(3,1),(4)}, which is the

expected result.

B. Analytic Calculations of Model Average
Intervector Distance

This section explains the analytic calculation for the expec-
tation value of the average intervector distance (AIVD) for
sets of cultural vectors generated using either the PG or MPG
model. The first part of this section just gives the essential
formulas—(B.1) and (B.2) are common for the two models;
the difference between the models becomes apparent when
comparing (B.3) with. (B.4). The second part gives the proof
equation (8), which is the basis for (B.2).

The expectation value of the AIVD, as a function of the
three model parameters k, o, and f3, is given by the average
over the feature-level expectation values:

k 1 k,
(AIVD)g s = =3 n, (AIVD) %, (B.1)
q

where the sum goes over all possible values ranges g and n,
is the number of features with range g, with ¥, n, = F being
implicitly satisfied, where F is the number of features. Note
that the feature-level contribution also depends on g. In turn,
this contribution is given by

(AIVD)S = 1= Y Pf, (koK)
k

(B.2)

=

s k 2
' {Z [”zf_l +(1-m5s) é]

i=1

1—712’1; 2
+(q—S)< p >}

which is essentially a weighted averaging of (8) over the set
of integer partitions (k,,...,k,) € I, where the weights are
the integer partition probabilities P gk 5 k). These are
calculated in the manner described in Appendix A.1, while
the integer partitions themselves are generated in the manner
described in Appendix A.2. The set of p;’s of (8) depends
on the integer partition in the manner illustrated between
the braces of (B.2), where the first term accounts for the
s traits that are covered by the (nonzero) elements of the
integer partition, namely, those under the peak(s) of one (or
more) prototype and under the flat noise component, while
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the second term accounts for the remaining g — s traits,
namely, those that are only under the flat noise component.
The dependence on whether the PG or the MPG model is
used is captured by 7 , which is the average fraction of traits
directly copied from prototypes, given by

UZF _ round (BF) ’ (B3)
” F

for PG, where the “round” function accounts for the fact that
only integer numbers of traits can be copied and

B

1 ‘/Vkﬂ

ko _

Mg p = lWﬁ ;w, (B.4)
k+1

for MPG, where w iterates over all values of W 1> Which is
a large sequence of lowest MPG discrete weights (see Sec-
tion 2), which are numerically generated during a previous

step, for each used combination of (k, B) values. |W} +1| is the
number of elements in this sequence of discrete weights. For

this study, IWkﬁ al = 10° elements were generated for every
(k, ) combination, which allows for a very precise numerical
calculation of ”Z,F in the case of MPG.

The consistency between the analytical AIVD calculation
explained above and the numerical calculation is illustrated
here via Figure 6. The expected AIVD value is shown as a
function of the 8 parameter, for 5 values of the o parameter
and 3 values of the k parameter, for both the PG and MPG
models. The analytical values are shown by the lines, while
the numerical ones are shown by the dots, which have small,
almost indiscernible error bars attached. For the numerical
case, 50 sets of N = 500 cultural vectors are generated for each
combination of parameters. Note that the numerical profiles
follow closely the analytical ones, with small deviations that
are consistent with the expected fluctuations of the mean.

It is now worth presenting a proof of (8), on which (B.2)
is based. Consider a feature with g traits and a set of a priori
probabilities {p;, ..., p,} attached to them. Then, the entry of
each cultural vector generated with respect to this feature is an
independent, random choice from the g traits, according to
the probability mass function (py, . .., p,). Thus, the expected
AIVD contribution from N cultural vectors is given by

(AIVD ({p1,.... pg})) = 1- N(N#—l)

X +4x,=N g

X; (x ,,,,,
LR )

Xg

2
(AIVD ({p1,....pg})) = 1- N(N-1)
q thle ('xz - 1)
; 2 5
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(AIVD ({p1- s pg})) = 1- ﬁ

(B.5)

where f(N ,;i;:) denotes the probability that the N inde-
pendent random variables fill the g traits with the frequency
distribution (xy,...,x,), given the associated probability
distribution (py, ..., p,), where Y1 x; = N. This is con-
ventionally called the multinomial distribution. In the above
derivation, S; stands for the summation over all elements of
the multinomial except that which has a certain x; number of
entries for the ith trait, which can be further manipulated:

Xyt X Xy ek X =N-x;

S; = D

X seensXi 15Xy peeerX,

Xyt Xy Xy b X =N-x;

X1 Xio1 X Xigl Xq
R Aew A o Pg

i
Si - plle
x! (N = x;)!

Xyt X X X =N-x;

)

X]peerXi 15X jq 1 reeerX,

(N =x;)!
xple g g e xg!

PR P
N X; N-x;

Si:< )Pi’(l‘Pi) i
Xi

This shows that S; is just a term of the binomial distribution.
By inserting the final expression of (B.6) in the final expres-
sion of (B.5), one gets

(AIVD ({p1,- s pg})) =1 - m

x;<N

i

N

(xiz ‘xi) (x

(AvD ({py ...

'MQ

)pi“" (1-p)"7,

i=1 X; i

1
Pg})) =1- NN-D (B.7)

q
: Z [Np; (Np; = p; +1) = Npi],

i=1
(AIVD ({py...

Pg})) = 1—21’?)

which concludes the proof of (8), after using the well-known
expressions for the first and second moments (x;) and (xiz)
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FIGURE 6: Comparison between numerical (dots) and analytical (line) expected AIVD as a function of f3, for the PG (a, ¢, e) and MPG (b, d,
f) models, with k = 2 (a, b), k = 4 (¢, d), and k = 6 (e, f) prototypes, for several values of « (legend).
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of the binomial distribution. Note that the dependence on N
is cancelled out during the derivation.

Another, arguably shorter, proof can be formulated with
the aid of indicator functions of the type [;(x), which gives 1
if cultural vector x is an entry of trait i and gives 0 otherwise.
One can express the feature-level AIVD of one generic set of
cultural vectors in terms of indicator functions and write the
expected feature-level ATVD as an average of this expression.
The p; part of (8) then appears from an averaging of the
0;(x)0;(y) product, where x and y are two arbitrary cultural
vectors.
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