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RESEARCH ARTICLE

A comparison of HMGB1 concentrations between cerebrospinal fluid and blood
in patients with neurological disease
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Andrea Jorgensena#, Daniel James Antoinea, Tom Solomonb,c,d, Anthony Guy Marsona and Munir Pirmohameda
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United Kingdom; dThe Walton Centre NHS Foundation Trust, Liverpool, United Kingdom; eDepartment of Infectious Diseases, Leeds Teaching
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ABSTRACT
Aims: To determine whether a correlation exists between paired cerebrospinal fluid (CSF) and serum
levels of a novel inflammatory biomarker, high-mobility group box 1 (HMGB1), in different neurological
conditions.
Methods: HMGB1 was measured in the serum and CSF of 46 neurological patients (18 idiopathic intracra-
nial hypertension [IIH], 18 neurological infection/inflammation [NII] and 10 Rasmussen’s encephalitis [RE]).
Results: Mean serum (±SD) HMGB1 levels were 1.43±0.54, 25.28±27.9 and 1.89 ±1.49 ng/ml for the
patients with IIH, NII and RE, respectively. Corresponding mean (± SD) CSF levels were 0.35 ±0.22,
4.48±6.56 and 2.24 ±2.35 ng/ml. Both CSF and serum HMGB1 was elevated in NII. Elevated CSF HMGB1
was demonstrated in RE. There was no direct correlation between CSF and serum levels of HMGB1.
Conclusion: Serum HMGB1 cannot be used as a surrogate measure for CSF levels. CSF HMGB1 was ele-
vated in NII and RE, its role as a prognostic/stratification biomarker needs further study.
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Introduction

High-mobility group box 1 (HMGB1) is a small, highly con-
served ubiquitous protein that shuttles between the nucleus
and cytoplasm. In response to infection and sterile inflam-
mation, it is released into the extracellular milieu to func-
tion either as a chemoattractant or a pro-inflammatory
cytokine (Schiraldi et al. 2012). Several studies have shown
that serum HMGB1 may be a sensitive and specific bio-
marker for patient stratification in a number of diseases,
ranging from drug-induced liver injury (Antoine et al. 2013)
to acute coronary syndrome (Goldstein et al. 2006, Cirillo
et al. 2009, Hashimoto et al. 2012) to many types of cancer
(Chen et al. 2013, Fahmueller et al. 2013, Tabata et al.
2013a, 2013b).

In neurological conditions such as meningitis (Tang et al.
2008, Asano et al. 2011, Hohne et al. 2013), multiple scler-
osis and neuromyelitis optica (Wang et al. 2013, Uzawa
et al. 2013), cerebrospinal fluid (CSF) levels of HMGB1 may
have prognostic value. However, limited data are available
to assess the relationship between peripheral blood and
CSF levels of HMGB1, particularly in conditions where the
blood-brain barrier (BBB) can be disrupted, for example in
neurological infection or seizures. Clearly in conditions

where there is disruption of the BBB, a conduit for transfer
of biomarkers exists between the different compartments.
CSF bathes the central nervous system (CNS) and potentially
reflects the most dynamic changes that can occur in dis-
ease. However, obtaining CSF by lumbar puncture is inva-
sive and is sometimes contraindicated in certain
neurological conditions. Blood is less invasive to obtain and
hence blood biomarkers would be particularly advantageous
for diagnosing neurological disease, determining response
to treatment and for determining prognosis.

Therefore, in this study, we have compared HMGB1 levels
between CSF and blood in different neurological conditions
to determine whether there is a predictable relationship
between the two compartments. If so, this would ultimately
allow the physician to use blood biomarker levels as a sur-
rogate for CSF levels. The conditions investigated include
idiopathic intracranial hypertension (IIH), neurological infec-
tion/inflammation (NII) with fever (including viral and bac-
terial) and Rasmussen’s encephalitis (RE). The selected
conditions allow an examination of HMGB1 from paired CSF
and blood samples in neurological conditions of both
inflammatory (CNS infection and RE) and non-inflammatory
(IIH) aetiology in which the BBB is either disrupted (CNS
infection and RE) or intact (IIH).
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Methods

IIH cohort

Otherwise healthy male and female patients (n¼ 18, aged
19–58 years) with suspected or confirmed IIH were recruited
from The Walton Centre NHS Foundation Trust (WCTF).
Ethical approval was granted by the NRES Committee
Liverpool East (11/NW/0761). Patients with both confirmed
IIH attending for drainage via lumbar puncture or suspected
IIH confirmed post-procedure were included.

Neurological infection/inflammation (NII) cohort

CSF samples from adult patients with proven neurological
infection were obtained via the UK Meningitis Study cohort
(n¼ 3) and from paediatric patients with suspected acute
encephalitis syndrome (AES), a constellation of fever,
impaired consciousness ± seizure (n¼ 15). Ethical approval
was granted for the UK meningitis study from the Wales
research ethics committee 5 (11/WA/0218) and for the
encephalitis study from the Liverpool School of Tropical
Medicine ethics committee. Samples were taken for diagnos-
tic purposes but patients also provided written, informed
consent for the use of their samples in research.

RE cohort

Patients with confirmed RE under the specialist care of the
neuroimmunology group at WCFT donated paired serum and
CSF samples into a research study prior to 2006. Irreversibly
anonymised paired samples were accessed under the UK
Human Tissue Act; ethical approval was granted by the
NRES proportionate review service of Greater Manchester
West (13/NW/0879).

We recorded the age, sex, comorbidities, medications, CSF
variables, admission Glasgow coma score (GCS), seizure his-
tory and diagnosis for patients with IIH and CNS infection.
No clinical details were available about the stored RE samples
because all samples had been irreversibly anonymised.

Sample collection

CSF was collected by lumbar puncture. Patients were posi-
tioned either in the left lateral decubitus position or sitting
upright for the procedure. A sample volume of between
2 and 5 mls was obtained. Venepuncture was performed con-
currently to collect paired serum. Blood and CSF were centri-
fuged at 2000g for 20min immediately following collection.
Serum was removed and cellular debris discarded from CSF.
Samples were stored at �80 �C until analysis.

CSF and serum HMGB1 measurement

The CSF and serum HMGB1 concentrations were determined
according to the manufacturer’s guidelines using an HMGB1
ELISA kit (Shino-Test corp., Tokyo, Japan). In brief, thawed
samples were centrifuged at 2000g for 1min. The 96-well
plate was coated with sample diluent to which 10 ll of sam-
ple (serum or CSF) was added in duplicate. Samples were
incubated overnight at 37 �C for 20 h. Plates were washed

five times in wash buffer and air-dried. Detection antibody
solution (100 ll/well) was added for 2 h at room temperature.
The plate was washed again, substrate solutions were added
in equal parts (100 ll/well) and incubated at room tempera-
ture protected from light with a foil seal for 30min. Stop
solution (100 ll/well) was added and after 5min, the optical
density was measured at 450 nm. Results were fitted to
the standard curve. The HMGB1 detection range was
0.2–80 ng/ml.

Calculation of the CSF: serum albumin quotient

The degree of permeability of the BBB in patients with IIH
was estimated from the CSF/serum quotient for albumin
(QALB). Analysis was not possible in the RE and NII cohorts
due to restricted sample volume. Analysis was undertaken by
the Neuroimmunology and CSF Laboratory, University
College London Hospitals NHS Trust.

Statistical analysis

The mean and standard deviation for both compartments in
each condition was calculated. Correlation between compart-
ments was determined by the Kendall’s tau correlation coeffi-
cient (r). Correlation between blood and CSF biomarker levels
and clinical variables (where available) was undertaken by
Kendall’s tau correlation coefficient for continuous variables
and Mann–Whitney test for binary variables. The false discov-
ery rate (FDR) (<0.05) was used to correct for multiple testing.

Results

Eighteen patients with IIH were recruited and analysed. A fur-
ther 18 CSF samples and 15 paired serum samples (3/18
patients did not have paired serum taken) from patients with
NII (viral or bacterial) were analysed. The mean age of the
patients was 38.3 years (range 19–58) in the IIH cohort and
15.5 years (range 1.5–68) in the NII cohort, with female to
male ratios of 10:8 and 11:9, respectively. Ten paired samples
from patients with RE were analysed. The demographic
details for the patients are detailed in Tables 1 and 2.

The mean (±SD) serum HMGB1 levels were: IIH 1.43 ± 0.54,
NII 25.28 ± 27.9 and RE 1.89 ± 1.49 ng/ml. The corresponding
mean (±SD) CSF HMGB1 levels were: IIH 0.35 ± 0.22, NII
4.48 ± 6.56 and RE 2.24 ± 2.35 ng/ml. Sub-categorisation of the
NII group into bacterial vs. viral pathogen/AES did not reveal
any significant difference in total CSF HMGB1 concentration.
There was no significant correlation between the serum and
CSF HMGB1 concentrations in any of the conditions exam-
ined (Figure 1). However, there were significant positive cor-
relations between CSF HMGB1 levels and CSF white cell
count and history of seizures (Figure 2, Table 3) and both
associations survived correction for multiple testing with FDR.
Calculation of the QALB confirmed that the BBB was intact in
all of the IIH individuals examined,

Discussion

This study demonstrates, in conditions involving both normal
and abnormally high HMGB1 concentrations, that there is no

636 L. E. WALKER ET AL.



correlation between CSF and serum concentrations of
HMGB1. Therefore, it is not possible to use peripheral blood
HMGB1 as a surrogate measure for CSF. The present study is
the first report to our knowledge to examine HMGB1 levels
in both CSF and paired peripheral blood in IIH, which were
found to be consistent with the normal healthy range
(Fukami et al. 2009).

IIH affects mainly obese women of childbearing age and
is characterised by headaches and visual loss resulting from
elevated intracranial pressure (Corbett and Mehta 1983).
Treatment includes drainage of CSF. The pathophysiology is
incompletely understood but importantly, inflammation is

not considered to be a component and CSF cell count and
biochemistry must be normal to satisfy the diagnostic criteria
(Corbett and Mehta 1983). As such the condition was
selected as an “unhealthy control”. Recently, speculation
about the contribution of some immunological factors to the
pathogenesis of IIH have been cited (Sinclair et al. 2008,
Edwards et al. 2013, Altiokka-Uzun et al. 2015). Varying levels
of cytokine expression in the CSF in IIH have been shown
(Dhungana et al. 2009a, 2009b) but the evidence is inconsist-
ent. Some studies have shown that IIH patients show higher
CSF IL-17, IL-4, IL-2, IL-10 and IFN-c levels than comparator
patients with the inflammatory neurological condition

Table 2. Demographics of patients with neurological infection.

Category Pathogen (if known) Age Gender Ethnicity
Fever

within 14/7 Seizure
Admission
GCS (3–15) CSF WCC

Viral encephalitis 11 Male SE Asian Yes Yes 9 100
Viral encephalitis 2.0 Male SE Asian Yes Yes 10 60
Viral encephalitis 9.0 Female SE Asian Yes Yes 10 4
Transverse myelitis 10.0 Female SE Asian Yes No 14 97
Viral encephalitis Japanese encephalitis 12.0 Female SE Asian Yes Yes 15 Unknown
Viral encephalitis 5.0 Male SE Asian Yes Yes 15 200
Viral encephalitis Dengue 9.0 Female SE Asian Yes Yes 14 Unknown
Viral encephalitis 6.0 Female SE Asian Yes No 15 3
Acute encephalitis syndrome 12.0 Female SE Asian Yes No 9 Unknown
Viral encephalitis 6.0 Female SE Asian Yes No 14 5
Acute encephalitis syndrome 7.5 Male SE Asian Yes Unknown 15 Unknown
Bacterial meningitis 11.0 Female SE Asian Yes No 15 Unknown
Unknown 8.0 Male SE Asian Yes No Unknown Unknown
Viral encephalitis 13.0 Male SE Asian Yes Unknown Unknown 40
Viral encephalitis 1.5 Male SE Asian Yes Yes 7 100
Fungal meningitis Cryptococcus 41.0 Male Caucasian Yes No 15 440
Bacterial meningitis Pneumococcus 68.0 Female Caucasian Yes No 8 3426
Bacterial meningitis Pneumococcus 35.0 Female Caucasian Yes No 15 1415

The study subjects were combined from a paediatric study in South East (SE) Asia and a nationwide study across the United Kingdom of confirmed bacterial menin-
gitis. GCS: Glasgow Coma Score, a numerical assessment of consciousness, minimum 3 and maximum 15. Sub-categories include (1) viral encephalitis: raised white
cell count in CSF ± virus antibody positive, (2) acute encephalitis syndrome (fever, impaired consciousness ± seizures) and (3) bacterial/fungal meningitis.

Table 1. Demographics of patients with idiopathic intracranial hypertension.

Sex
Age

(years)
Cigarettes/

day
Alcohol

units/week
Brain imaging

(CT/MRI) Symptoms/diagnosis Medical history Medications

M 49 0 2 Normal Painless visual loss
right eye

Nil Paracetamol 1 g QDS

F 29 0 0 Normal Headache,
papilloedema

Nil Acetazolamide
250mg TDS

M 32 0 0.5 Normal Back pain Pseudomeningocele
following
microdiscectomy

Tramadol 50mg PRN

F 26 0 0 Normal Headache,
papilloedema

Nil Nil

F 44 20 0.5 Normal Headaches, diplopia,
vomiting

Osteoporosis,
depression

Citalopram 40mg OD

F 44 0 0 Normal Headache Hysterectomy
(fibroids)

Nil

M 58 0 2 Normal Headache Nil Nil
F 52 0 0.5 Normal IIH confirmed IIH 2011 Nil
M 48 0 2 Normal Headache Nil Nil
F 41 0 0 Normal Headache Nil Nil
F 58 0 0 Normal Headache Nil Nil
M 32 0 4 Normal Headache Nil Nil
M 20 0 0 Normal IIH confirmed IIH 2010 Nil
M 19 0 16 Normal Headache Nil Nil
F 44 20 0 Normal IIH confirmed Benign breast lump,

IIH 1998
Nil

F 21 15 0 Normal IIH confirmed IIH 2010 Nil
F 41 0 0 Normal Headache Nil Nil
M 31 0 20 Normal Headache, nausea Hypertension Lisinopril 20mg OD

Demographics of subjects with idiopathic intracranial hypertension recruited to the “healthy control substitute” arm. M: Male; F: Female; CT; Computed
Tomography; MRI: Magnetic Resonance Imaging; IIH: Idiopathic Intracranial Hypertension; g: gram; QDS: Four-times daily; mg: millograms; TDS: Three-times daily;
PRN: As required; OD: once-daily.
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multiple sclerosis (Edwards et al. 2013, Altiokka-Uzun et al.
2015). However, it is unknown whether this is a cause or
effect of the disease. No correlation was found between
serum and CSF cytokine levels, which is consistent with our
finding for HMGB1.

We have also identified for the first time, albeit in a small
cohort, that CSF HMGB1 is elevated in patients with RE when
compared to IIH patients, who served as “controls”. RE is a
rare CNS inflammatory disorder characterised by intractable
seizures and progressive hemiparesis. The aetiology remains
unclear, although lymphocyte infiltration and microglial nod-
ules are characteristic (Rasmussen et al. 1958). The numbers
studied were small and require further exploration in a larger
cohort to evaluate any diagnostic or prognostic value. Our
findings are, however, consistent with the proposed immune
pathogenesis of RE where cytotoxic T cells have been impli-
cated. Spectral analysis of individual T cells from brain lesions
has shown clonal expansion of CD8þ cells, suggesting an

antigen-driven CD8þ T cell-mediated autoimmune process
(Bauer et al. 2002, Bien et al. 2002). In combination with CSF
white cell counts, HMGB1 may represent a possible marker of
white cell infiltration of brain parenchyma (inflammation) and
contribute to greater understanding of the disease process.

Neurological infection is known to be associated with
raised CSF and serum HMGB1 (Tang et al. 2008) but paired
compartment analysis has never been undertaken to our
knowledge. In patients with NII, a wide range of CSF HMGB1
values was demonstrated. This likely reflects the varied tim-
ing of sampling following the onset of symptoms/infection
which was not standardised. Regardless of aetiology (viral or
bacterial), serum HMGB1 was significantly higher in neuro-
logical infection compared to the IIH group (Figure 3). No
significant difference in total CSF values was observed when
the patients were sub-categorised into bacterial vs. viral/AES
(Figure 4). Therefore, although the mechanisms responsible
for the increase in CSF HMGB1 concentration in neurological

Figure 1. High-mobility group box 1 (HMGB1) concentrations across serum and cerebrospinal fluid (CSF) compartments in (a) idiopathic intracranial hypertension
(IIH), (c) neurological infection/inflammation (NII) and (e) Rasmussen’s encephalitis (RE). Box and whisker plots represent mean ± SD, n¼ 18, 15 and 10, respectively.
Regression analysis performed using Kendal’s Tau correlation coefficient between compartments was not significant in any condition tested: (b) IIH, (d) NII, (3) RE.
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infection are unknown, and indeed, much of the pathology
of these neurological diseases is unknown, it could possibly
reflect intracerebral synthesis, leakage from blood across the
disrupted BBB or a combination of these mechanisms.
Unfortunately, this study was limited by sample volume and
therefore the QALB could not be calculated in order to ascer-
tain the contribution of the disrupted BBB to transport
between compartments. What is more, certainly in the case
of meningitis, the epithelial cells of the choroid plexus that
form the blood-CSF barrier may play their own independent
role (Schwerk et al. 2012). CSF HMGB1 may also undergo pro-
teolytic degradation in blood, and the level therefore
affected by clearance from blood via the liver or kidney.
Failure to correlate HMGB1 levels between compartments in
neurological infection and RE, both conditions in which the
BBB is impaired, may reflect the dynamic nature of the bar-
rier, and the change in permeability over time. The isolated
samples were obtained at varying time points following
symptom onset and serial studies are not possible in this
patient group. Furthermore, in neurological infection wherein

both blood and CSF HMGB1 is elevated above the normal
range (1.65 ± 0.04 ng/ml; (Fukami et al. 2009)), it is unclear
whether the source of serum HMGB1 is purely CNS, CNS and
CSF or whether it reflects concurrent peripheral production.

In this study, CSF HMGB1 was significantly associated with
elevated CSF white cell count in patients with neurological

Figure 2. Cerebrospinal fluid (CSF) High-mobility group box 1 (HMGB1) was sig-
nificantly associated with CSF white cell count in patients with neurological
infection/inflammation. Regression analysis was performed by Kendal’s Tau
correlation coefficient.

Table 3. Associations between clinical variables and serum and cerebrospinal
fluid High Mobility Group Box-1.

Variable
Serum HMGB1

p value
CSF HMGB1
p value

CSF white cell count (�10 g/L) 0.53 0.003
CSF Protein (g/L) 0.47 0.21
CSF Glucose (mmol/L) 0.79 0.11
Glasgow Coma Score 0.32 0.45
Serum white cell count (�/L) 0.09 0.93
Serum platelets (�109/L) 0.54 0.84
Serum haemoglobin (g/dL) 0.53 0.96
Seizure (Yes/No) 0.64 0.004

Figure 3. Blood, but not cerebrospinal fluid (CSF), high-mobility group box 1
(HMGB1) was significantly higher in neurological infection (n¼ 15) as compared
to the healthy-control substitute (IIH, n¼ 18). Data presented as mean ±
standard deviation. Association was determined by Mann–Whitney U-test,����p< 0.0001.

Figure 4. Cerebrospinal fluid (CSF) High-mobility group box 1 (HMGB1) in
patients with neurological infection/inflammation sub-categorised into those
with a known bacterial or viral/unknown pathogen. Individual values and the
mean value (± SD) in each group are presented.
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infection. CSF pleocytosis is associated with excessive host
immune response in human meningitis and contributes to
brain injury (Woodbury and Davenport 1952, Gekakis et al.
1998, Redzic 2011, Guidelines 2012). Furthermore, release of
inflammatory mediators activates inflammatory cells and pro-
motes vascular permeability, both of which are injurious to tis-
sue, and are associated with poor neurological prognosis
(Mustafa et al. 1989, Ohga et al. 1994, Ichiyama et al. 1997).
Invading pathogens trigger recognition of pathogen-associ-
ated molecular patterns (PAMPs) by Toll-like receptors 2 and 4
(Klein et al. 2008) leading to assembly of the Nod-like
Receptor family, Pyrin Domain Containing-3 (NLRP3) inflam-
masome. Consequently, large numbers of blood-borne leuko-
cytes are recruited into the leptomeninges. Leukocytes
recruited into the CSF space may be a source of inflammatory
mediators (Griffiths et al. 2012), including HMGB1. Release of
HMGB1 from inflammatory and/or necrotic cells is thought to
be central to persistent inflammation in pneumococcal menin-
gitis through its chemoattractant function (Hohne et al. 2013).
Fully reduced HMGB1 recruits inflammatory cells to compart-
ments undergoing necrosis (Andersson et al. 2014). Injection
of HMGB1 into the CSF of mice induces a significant increase
in CSF leukocyte counts, an effect blocked by pre-treatment
with neutralising anti-HMGB1 antibodies (Hohne et al. 2013).
In a mouse model of pneumococcal meningitis, treatment
with ceftriaxone plus HMGB1 antagonist therapy was associ-
ated with a significant amelioration of brain pathology com-
pared to ceftriaxone alone (Hohne et al. 2013).

CSF biomarkers may become increasingly useful diagnos-
tic markers for other CNS disorders, in particular Alzheimer’s
disease (AD) (Andreasen et al. 2001, Hansson et al. 2006,
Landau et al. 2010, Johansson et al. 2011), where they can
act as a surrogate for inaccessible brain tissue. CSF is mainly
produced by the epithelium of the choroid plexus and acts
both as a mechanical cushion and as a circulation system for
the brain, carrying peptides secreted in one region to
another and eliminating waste from the brain and spinal
cord into the blood circulation (Sakka et al. 2011). The physi-
ology, structure and function of the choroid plexus, that
secretes and purifies the CSF, have recently been updated
(Spector et al. 2015a). The functions are manifold including
generating intracranial pressure, maintaining CSF ion homeo-
stasis, and providing micronutrients, proteins and hormones
for neuronal and glial development, maintenance and func-
tion. The choroid plexus and CSF have been termed “the
third circulation” and perform many functions comparable to
the kidney including nourishing the brain and maintaining
homeostasis (Spector et al. 2015b). Ultimately CSF is
re-absorbed back into the blood via the venous system.
There are small but consistent differences between blood
and CSF. CSF has higher concentrations of sodium and chlor-
ide, but lower concentrations of potassium, magnesium,
bicarbonate, glucose, amino acids and uric acid (Segal 1993).
CSF is also virtually depleted of proteins, reflecting the tight
intracellular junctions of the BBB. It may be reasonable to
assume that the CSF can act as a surrogate for brain tissue
as CSF is in direct contact with nervous tissue and as such,
its composition is affected by biochemical changes occurring
in the brain (Anoop et al. 2010).

However, it is unclear whether peripheral blood can act as
a surrogate for CSF sampling in some neurological condi-
tions. Indeed, in the case of AD, the potential of blood-based
AD markers has yet to be further evaluated. Conflicting data
regarding blood Ab levels, which are decreased in the CSF of
AD patients, have been reported; levels that are elevated,
reduced or sometimes even unchanged have been observed
(Borroni et al. 2010). One example where this has been
studied extensively is neurological infection of the human
immunodeficiency virus (HIV), an event that occurs almost
universally following systemic HIV infection and can impact
upon neurological function. CSF biomarkers have proven
effective in the diagnosis and assessment of treatment effects
in this disorder however, the dilution or degradation of CNS
metabolic traces in the blood have largely prevented blood
from providing useful or direct information about brain path-
obiology in HIV (Price et al. 2013). In the demyelinating
inflammatory disorder multiple sclerosis, exploratory studies
have reported increased IL-17 levels in CSF but the timing of
detection in serum is very variable, depending on disease
stage and treatment modality/effect (Balasa et al. 2013,
Huber et al. 2014, Luchtman et al. 2014, Babaloo et al. 2015).
Successful correlation between compartments has not been
demonstrated.

Conclusions

In summary, the findings of this study comparing CSF and
serum show that no correlation in HMGB1 levels exists
between bio-compartments in any condition examined,
regardless of the integrity of the BBB. It also identifies for the
first time that HMGB1 levels are normal in IIH, despite recent
reports suggesting a possible inflammatory pathogenesis.
Elevated serum and CSF HMGB1 concentrations were identi-
fied in RE, where it may be contributing to the pathogenesis.
Lastly, elevated HMGB1 in both serum and CSF in neurological
infection support the growing literature that excessive host
inflammation is relevant to the pathogenesis of meningitis
and encephalitis, contributing to delayed resolution of inflam-
mation and a vicious cycle of inflammation-induced cell injury.
HMGB1 may represent a potential therapeutic target for novel
adjuvant therapies in specific patients with neurological infec-
tion and inflammatory conditions, but further work which
allows for biomarker-based stratification of patients into those
likely to benefit or not from such therapies is needed.

Summary points

� No correlation in HMGB1 levels exists between bio-com-
partments, regardless of neuropathology or BBB integrity.

� CSF HMGB1 is normal in IIH.
� HMGB1 is elevated in both peripheral blood and CSF in

RE and NII.
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