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We discuss a number of strategies to reduce the B(B0
s → `+`−γ) theoretical error, and

make such a measurement a new probe of the interactions that are interesting in the
light of present-day flavor discrepancies. In particular, for low di-lepton invariant mass
we propose to exploit the close parenthood between B(B0

s → `+`−γ) and the measured
B(B0

s → φ(→ K+K−)γ). For high q2, conversely, we exploit the fact that the decay is
dominated by two form-factor combinations, plus contributions from broad charmonium
that we model accordingly. We construct the ratio Rγ , akin to RK and likewise sensitive
to lepton-universality violation. Provided the two rates in this ratio are integrated in a
suitable region that minimises bremsstrahlung contributions while maximising statistics,
the ratio is very close to unity and the form-factor dependence cancels to an extent
that makes it a new valuable probe of lepton-universality violating contributions in the
effective Hamiltonian. We finally speculate on additional ideas to extract short-distance
information from resonance regions, which are theoretically interesting but statistically
limited at present.
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1. Introduction

Flavor data from different experiments display persistent anomalies in b → s and b → c
decays, obeying a consistent pattern. The very first feature to be remarked is qualitative,
and is the fact that a whole range of differential branching fractions of b → sµ+µ− modes
measured at LHCb lie below the respective Standard-Model (SM) prediction. This is the
case for the following channels: B0 → K0µ+µ−, B+ → K+µ+µ−, B+ → K∗+µ+µ− [1–3],
B0
s → φµ+µ− [4] and Λb → Λµ+µ− [5,6] for di-lepton invariant masses squared in the region

[1, 6] GeV2, i.e. below the charmonium threshold. While most of the above measurements
are relatively old, the very recent analyses in refs. [2, 3] are entirely independent from their
predecessors, yet the results show again the aforementioned pattern.

Since branching-ratio measurements are affected by large theoretical uncertainties, such
as hadronic form factors, it is hard from the above data alone to draw conclusions. However,
this objection can be averted by constructing ratios of branching ratios to different final-state
leptons. LHCb performed the following measurements [7, 8]

RK([1, 6]GeV2) ≡ B(B+→K+µ+µ−; q2∈[1,6]GeV2)

B(B+→K+e+e−; q2∈[1,6]GeV2)
= 0.745+0.090

−0.074 (stat)± 0.036 (syst) ,

RK∗0([0.045, 1.1] GeV2) = 0.660+0.110
−0.070 ± 0.024 , (1)

RK∗0([1.1, 6] GeV2) = 0.685+0.113
−0.069 ± 0.047 ,

where the RK∗0 definition is analogous to the RK one, and q2 is the invariant mass squared
of the dilepton pair. Within the SM, either of the above ratios is predicted close to unity
with a few-percent accuracy [9] (see also [10–12]). The RK and RK∗0 measurements each
imply a discrepancy between 2 and 2.6σ [7, 8], at face value signalling lepton-universality
violation (LUV) beyond the SM.

The electron-channel measurement would be an obvious culprit for either of the RK and
RK∗0 discrepancies, because of bremsstrahlung and lower statistics with respect to the muon
channel. On the other hand, disagreement is rather in the muon channel, see [1, 13] and,
very recently, Ref. [2]. A systematic effect in the muon channel, although not impossible, is
less likely than in the electron channel, considering that muons are among the most reliable
objects within LHCb.

The other b→ sµ+µ− modes mentioned above turn out to fit a coherent picture with RK
and RK∗0 :

• The Bs → φµ+µ− differential branching ratio is measured to be consistently lower
than the SM prediction, in the same range m2

µµ ∈ [1, 6] GeV2. This was initially found
in 1/fb of LHCb data [14] and was afterwards confirmed by a full Run-1 analysis [4].
This discrepancy is estimated to exceed 3σ [4].

• The B → K∗µµ angular analysis exhibits a well-known discrepancy in one combination
of the angular-expansion coefficients, known as P ′5, in, again, the same kinematic region
in q2 as initially measured in [15], confirmed by a full Run-1 analysis [16]. The picture
is further corroborated by a Belle analysis [17, 18], whereas the recent ATLAS and
CMS measurements come at present with large error bars [19,20]. While theoretically
more debated, cf. [21–26] for minimal literature, this observable provides additional
circumstantial support to the other discussed data.

Further interesting results come from measurements of the ratios R(D(∗)) ≡ B(B →
D(∗)τν)/B(B → D(∗)`ν), but are of no direct concern in the present context. We refer the
reader to [27, 28]. A generic up-to-date approach towards a common explanation of these
anomalies has been given in [29].
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As mentioned above, the key feature of this would-be first manifestation of physics beyond
the SM at collider scales is LUV. Given the somewhat unexpected nature of this conclusion,
it is of utmost importance to have the largest possible number of further tests, in order to
sufficiently constrain the short-distance physics responsible. A first set of such tests is the
measurement of further RK-like ratios, such as RK∗, Xs,K0(1430), φ, as discussed in Ref. [30].

In this paper we put forward one further test of LUV, namely the ratio Rγ ≡ B(B0
s →

µ+µ−γ)/B(B0
s → e+e−γ), to be properly defined in sec. 4. The main advantage of the

above radiative modes with respect to the corresponding non-radiative counterparts is the
fact that the chiral suppression factor – especially severe in the electron channel – is eluded
by the presence of the additional photon. In fact, the above ratio is very close to unity, with
numerator and denominator being both in the ballpark of 10−8, which should be compared
with B(B0

s → µ+µ−) ' 3× 10−9 and B(B0
s → e+e−) ' 9× 10−14 [31]. Such relatively ‘large’

branching ratios, and in spite of the challenges inherent in the electron channel, make these
radiative modes interesting new observables for Run 2 (and beyond) of the LHC.

As regards the sensitivity of B0
s → `+`−γ to beyond-SM effects, the presence of the

additional photon warrants a richer short-distance structure than B0
s → `+`−, because the

photon lifts the chiral suppression of the purely leptonic decay [32]. For this very reason, the
radiative decay is promising even for lepton-flavor-violating searches [33,34]. As a matter of
fact, the additional photon extends the sensitivity to include all the operators relevant for
the previously mentioned discrepancies since the effective Hamiltonians of B0

s → `+`−γ and
b→ s`` are identical.

The two decays involved should be measured in appropriate kinematic ranges, chosen to
have a sufficiently large event yield, and such that theoretical uncertainties can be kept below
the level of the expected new-physics effects. (A recent search in both the µ+µ− and e+e−

channels was presented in [35].) These two q2 intervals lie respectively below and above the
narrow-charmonium resonances, and are accordingly denoted as low- and high-q2 regions.
We disregard the narrow-charmonium region, although some of the considerations we make
for the low-q2 interval may one day be applicable to that region as well.

The low-q2 range includes the φ(1020) resonance. We argue that the theoretical uncer-
tainty associated to the prediction for the total B(B0

s → µ+µ−γ) (as defined above) can be
drastically reduced taking into account, for low q2, its close parenthood with the measured
B0
s → φ(→ K+K−)γ. As concerns the high-q2 region, we point out that the q2-differential

branching ratio is dominated by only two B0
s → γ form factors, to wit the vector and the

axial one. As a consequence theory uncertainties do cancel to a large extent in the ratio
between two different lepton channels. Keeping in mind that this region is by far dominated
by the Wilson coefficients C9 and C10, such ratio provides a new, stringent test of LUV.
Incidentally, a measurement of this ratio in the low-q2 region would provide a cross-check of
the RK0∗ (1) result in the lowest bin. This measurement is rather surprising, as e.m.-dipole
operators, which are the dominant ones in this region, are necessarily lepton-universal. It
should also be kept in mind that, due to the proximity to the kinematical threshold, a robust
error assessment may be more delicate in this region [9]. The discrepancy in this bin, if con-
firmed, would require light new physics not describable within the effective-theory approach
to be detailed in the next section.

This paper is organised as follows. In sec. 2 we discuss the effective-theory basics of the
B0
s → µ+µ−γ decay. Our aim is to introduce necessary notation for the ensuing discussion,

on the short- vs. long-distance contributions to this decay in the two different kinematical
regions considered. The two following sections, 3 and 4, are devoted to a more in-depth
consideration of the low- and high-q2 regions, and of the main theoretical uncertainties
involved. Here we put forward a number of strategies to reduce these uncertainties below

3



the level that makes this observable a valuable new probe of the very interactions hinted at
by present-day discrepancies in flavor data. In sec. 5 we collect a few ideas that, we believe,
deserve further investigation. Finally, a summary of our main results and conclusions are
presented in sec. 6.

2. The B0
s → µ+µ−γ decay

Basic formulae

The dynamics of the B0
s → µ+µ−γ amplitude can be parameterised by the following b→ s``

effective Hamiltonian [36–38]

Heff =
4GF√

2

(
2∑
i=1

(λuCiOui + λcCiO
c
i )− λt

6∑
i=3

CiOi − λt
10∑
i=7

(CiOi + C ′iO′i)

)
, (2)

where λi ≡ V ∗isVib, with Vij CKM matrix elements, and Ci are the Wilson coefficients. The
operators that will be relevant for the rest of the discussion are defined explicitly as

Oq1 = (s̄iγµqLj)(q̄jγ
µbLi) , Oq2 = (s̄iγµqLi)(q̄jγ

µbLj) ,

O7 =
emb

16π2
s̄σµνF

µνbR , O8 =
gsmb

16π2
s̄σµνG

µνbR , (3)

O9 =
e2

16π2
(s̄γµbL)(¯̀γµ`) , O10 =

e2

16π2
(s̄γµbL)(¯̀γµγ5`) ,

where i, j are colour indices and the primed operators are obtained from eq. (3) by the
replacements {L → R, mb → ms}. The sign conventions for the e.m. and strong couplings
of O7,8 are consistent with the covariant derivative Dµ = ∂µ + ieQfAµ + igsGµ (e.g. Qµ =
Qe = −1) and CSM

7,8 < 0. The O1−6,8 matrix elements give rise to long-distance (LD)

contributions with distinct q2 dependence and strong phases. The O(′)
7,9,10 matrix elements

are of short-distance (SD) nature, and are parameterised by form factors, see e.g. [39],1 of
dilepton momentum transfer q2 = (p− k)2,2

〈γ(k, ε)| s̄γµ(1± γ5)b |B̄0
s (p)〉MBs = − e{Pµ⊥ V⊥(q2) ± Pµ‖ V‖(q

2)} ,

〈γ∗(k, α)| s̄iqνσµν(1∓ γ5)b |B̄0
s (p)〉 = + e{Pµα⊥ T⊥(q2, k2) ± Pµα‖ T‖(q

2, k2)} , (4)

and the B0
s decay constant

〈0| s̄ γµγ5 b |B̄0
s (p)〉 = ipµfBs . (5)

Above
Pµα⊥ = εµαβγpβkγ , Pµα‖ = i (p · k gµα − pα kµ) , (6)

1 Our notation translates into the one of Ref. [39, 40] as V⊥ = −FV , V‖ = −FA, T⊥ = −FTV , T‖ = −FTA.
One reason for introducing this new notation is to make contact with the B → V `` literature, where V and A
labels refer to the polarisation of the leptons in the effective theory language. We also note that the sign of the
form factors depends on the sign convention of the covariant derivative. Our covariant derivative convention,
specified above, is consistent with all B̄s(B̄u) → γ form factors being positive (negative), since their leading
contribution is proportional to the light quark charge. This can be inferred from Refs. [41–43] in the context
of Bu → `νγ transitions.
2 The photon on-shell matrix elements, for the last two expressions in (4), are obtained by setting k2 = 0
and contracting by the polarisation vector ε∗α(k).
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where the ε0123 = 1 convention is assumed and Pµ⊥ ≡ ε∗αP
µα
⊥ and analogous for the ‖-

direction. In practice for T⊥,‖(q
2, k2) either q2 or k2 will be zero because of the on-shell

photon in the final state, cf. caption of fig. 1 and at last we note the algebraic relation
T⊥(0, 0) = T‖(0, 0) [39]. We comment on the theoretical status of the form factors in appendix
A. We define the amplitude as

A ≡ 〈µ+(p1)µ−(p2)γ(k, ε)|(−Heff)|B̄0
s 〉 (7)

and derive the following SD amplitude3

ASD = −eαλtGF√
22π

{
2mb

q2

(
(C7 +

ms

mb
C ′7)T⊥(q2)Pµ⊥ − (C7 −

ms

mb
C ′7)T ‖(q

2)Pµ‖

)
ū(p2)γµv(p1)+

1

MBs

(
(C9(q2) + C ′9)V⊥(q2)Pµ⊥ − (C9(q2)− C ′9)V‖(q

2)Pµ‖

)
ū(p2)γµv(p1)+

1

MBs

(
(C10 + C ′10)V⊥(q2)Pµ⊥ − (C10 − C ′10)V‖(q

2)Pµ‖

)
ū(p2)γµγ5v(p1)−

ifBs2mµ

(
C10 − C ′10

)
ū(p2)

(
/ε∗/p

t−m2
µ

− /p/ε
∗

u−m2
µ

)
γ5v(p1)

}
, (8)

where
T⊥,‖(q

2) = T⊥,‖(q
2, 0) + T⊥,‖(0, q

2) , (9)

takes into account diagrams (a, b) and (c, d) in fig. 1.
Before amending the LD part let us mention that the amplitude (8) gives rise to a double-

differential decay distribution in two of the three Mandelstam variables, or equivalently
dΓ(B̄0

s → `+`−γ)/dq2d cos θ, see [39, 40]. Here θ is the angle between the three-momentum
vectors of the µ− and of the photon in the dilepton center-of-mass system [39]. All but the
last line in eq.(8) are S and P -waves. It is worthwhile to mention that that the bremstrahlung
contribution, being non-local in cos θ, gives rise to all higher partial waves and can in principle
be filtered out by a method-of-moments analysis, as proposed in [44].

The LD contributions involve a muon pair emitted from a photon and we may therefore
parameterise the full amplitude (7) as

A = −GF λt√
2

e α

2π

(
2mb

q2

(
a⊥(q2)Pµ⊥ − a‖(q

2)Pµ‖

)
ū(p2)γµv(p1) +O(C

(′)
9,10)

)
, (10)

such that

a⊥,‖(q
2) = (C7 ±

ms

mb
C ′7)T⊥,‖(q

2) + (C8 ±
ms

mb
C ′8)G⊥,‖(q

2) +
6∑
i=1

CiLi⊥,‖(q
2) . (11)

Above G⊥(q2) and Li(q
2) stand for the chromomagnetic penguin and the four-quark operator

contributions, respectively, which are the LD parts to be discussed further below.

Short- versus long-distance contributions at low and high q2

Before discussing applications in the low and high q2-region in sections 3 and 4 respectively,
we give an executive summary over the different topologies and their relevance in those
regions.

The different SD contributions to the leading-order amplitude in weak interactions are
displayed in fig. 1. We briefly digress on the relevance of each of these contributions in the

3 Cf. [40], and [33] for the correct sign of the interference term in the corresponding differential width.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Short-distance diagrams contributing to the B̄0
s → µ+µ−γ process to lowest order. The

black and the grey circles denote the insertion of the four-fermion operators O(′)
9,10 and respectively

of O(′)
7 . The form factors T⊥,‖(q

2, 0) and T⊥,‖(0, q
2) describe the diagrams (a, b) and (c, d) respec-

tively. Diagrams (e) and (f) are described by the V⊥,‖(q
2) form factors and diagrams (g) and (h)

encode bremsstrahlung contributions, whose hadronic matrix elements are described by the B̄0
s decay

constant.

different kinematic regions. Except for the kinematic endpoint, there are analogies with the
B → V ``-type decays. At very low q2, the O7 matrix elements, diagrams (a)-(d), dominate,
because of the proximity of the photon pole. This holds true in the region of the φ(1020)
resonance. With regard to the O7 diagrams it is useful to distinguish between diagrams
(a, b), where the off-shell photon is the one emitted from the penguin, and its momentum
dependence is described by the form factors T⊥(q2, 0) and T‖(q

2, 0), and diagrams (c, d),
in which the off-shell photon momentum probes the bottom and strange quark currents,
and its momentum dependence is described by the form factors T⊥(0, q2) and T‖(0, q

2). For
q2 'M2

φ the subprocess B0
s → (φ→ µµ)γ dominates, which is of crucial importance for this

paper. Concerning the O9,10 diagrams, it is in turn helpful to distinguish between diagrams
(e, f) and (g, h), where the photon is radiated from the strange or bottom quark, and the
final state leptons, respectively. The latter are of the bremsstrahlung (also referred to as
final-state radiation, FSR) type, are described by the B0

s → vacuum matrix element (5), and
are dominant close enough to the kinematic endpoint.

Next we would like to discuss the leading LD topologies. The latter, see fig. 2, are the four-
quark contributions, which we shall loosely refer to as weak annihilation (WA) following the
terminology in [40],4 and the contribution from the chromomagnetic O8. LD contributions
are relevant at very low q2 due to the 1/q2 enhancement from the virtual photon emitting
the lepton pair, and in the respective resonance region(s).

WA has been computed for low q2 in [40], at leading twist-2 (i.e. perturbative photon) and
in the limit of massless up- and charm-quarks. We note that this contribution can also be
obtained from the WA amplitude for the B0

d → γγ decay, as computed in Ref. [45], including
its full up- and charm-quark mass dependence. In the notation of eq. (11) this contribution
reads

L1⊥ = − 8

3

fBs
mb

1

λt
(λug(zu) + λcg(zc)) , L2⊥ =

1

3
L1⊥ , (12)

4 In B → V ``, one distinguishes between quark loops and WA for four quark operators. This terminology
will become relevant when discussing the B0

s → φ(→ µµ)γ subprocess.
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(i) (j)

Figure 2: Long-distance diagrams contributing to the B̄0
s → µ+µ−γ process to lowest order. The

empty square or circle denote the insertion of one of the four-quark operators in eq. (2) and, re-
spectively, of the operator O8. The symbol ⊗ denotes all the possible ways of attaching an on-shell
photon, with exclusion of bremsstrahlung.

with zi ≡ m2
i /m

2
b and the g(z) function defined in [45].5 We include this contribution in our

analysis. In this work we disregard the corresponding contributions from 4-quark operators
other than O1,2 (“quark loops”) because of their small Wilson coefficients.

The chromomagnetic matrix element of O8 is unknown but we can expect it to be small,
as is the case for B → V `` [46], in part because of, again, the small Wilson coefficient.

As concerns the O(αs) corrections only partial information is available. We first discuss the
low-q2 region, which can be described by light-cone physics. The discussion of the different
contributions necessitates the choice of a formalism. We discuss them in the light-cone
sum rule (LCSR) approach with photon distribution amplitude (DA). Then the gluon can
connect to the vertex and the spectator quark or to the photon-DA itself. None of these
contributions are known, but we can build on our knowledge from B → V `` decays. The
vertex correction has been shown to factorise into form factors times a loop function, known,
from the inclusive b → s`` [47], in leading order (LO) in 1/mb within QCD factorisation
[48, 49]. This contribution is sizeable because it is, unlike the O(α0

s) part, not large-Nc

suppressed. Hard spectator corrections can be expected to be small, judging from their
1/mb contributions in B → V `` [48]. The contribution of the gluon emitted into the photon
DA is also relatively small [43, 50] and we expect the same to hold for the case at hand. In
summary, the known vertex corrections in the 1/mb limit might well be the most important
contributions for the low-q2 region (i.e. below the narrow charmonium resonances), which
we therefore include.6

At low-q2 the B0
s → µ+µ−γ decay is dominated by the subprocess B0

s → φγ, measured
to 10% accuracy and deemed to further improve. This point is discussed and exploited in
section 3 below.

In the high-q2 region, above the two narrow charmonium resonances J/ψ and ψ(2S), the
form factors associated with the genuinely SD operators, in particular O9,10, are formally
dominant over the matrix elements of LD operators [52, 53], as the latter are suppressed
by 3 powers of mb '

√
q2. This formal suppression may however be overruled by the

broad charmonium resonances. In B → K``, estimates using naive factorisation [53] are
not sufficient to account for the effect [24, 54]. In section 4 we will build on this knowledge
and introduce a suitable resonance function to judge its impact on the there defined Rγ
observable, sensitive to LUV new physics.

5 Note that the definitions of O1,2 in [45] are interchanged with respect to our notation in eq. (2), which
follows [36–38]. We use C1(mb) = −0.278, C2(mb) = 1.123.
6 Further corrections, e.g. corrections beyond the 1/mb-limit which do not inherit the polarisation structure
of the SD form factors, can be added once the B0

s → µ+µ−γ decay enters a large-statistics regime. Such
corrections are for example relevant in the high-statistics B → K∗µµ channel [51] where they might explain
the P ′5 angular anomaly [51] and are of importance for the search of right-handed currents e.g. [50].
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3. The low-q2 region

Modeling the φ and higher resonances

In the low-q2 region the branching fraction is dominated by the φ(1020) resonance. For exam-
ple, the q2 interval between 2m2

µ and 1.7 GeV2 (corresponding to q2/M2
Bs

= 0.06) contributes
75−80% of the total branching ratio, defined by cutting out the narrow charmonium interval
[8.6, 15.8] GeV2 (corresponding to q2/M2

Bs
∈ [0.30, 0.55]).7 This singles out the subprocess

B0
s → (φ→ µµ)γ which in the SM is dominated by the e.m.-dipole interactions and therefore

offers a sensitive probe of the C7 and C ′7 Wilson coefficients as well as of other interactions,
mediated by light new particles, and as such beyond the effective-theory picture.

The reduced amplitude (11) can be written as an n-times subtracted dispersion relation

aι(q
2) =

n−1∑
k=0

1

k!
a(k)
ι (s0)(q2 − s0)k

+ (q2 − s0)n
1

2πi

∫ ∞
cut

Disc[aι(s)]ds

(s− q2 − i0)(s− s0)n
, (13)

where hereafter ι =⊥, ‖, Disc[f ](s) ≡ f(s+ i0)−f(s− i0) and it is assumed that the the only
singularity in the physical sheet of the q2 plane runs over the real axis. We emphasise that
whereas a dispersion relation is possible for the entire aι(q

2) amplitude it is only indispensable
for the part of the amplitude which is not well described by perturbative theory because of
resonant behaviour. In the narrow-width approximation

1

2πi
Disc[aι(s)] = −δ(s−M2

φ)MφfφÂB̄
0
s→φγ

ι + . . . (14)

where 〈φ|s̄γµs|0〉 = fφMφε
∗
µ is the φ decay constant and the dots stand for higher resonance

states such as the φ(1680) and other KK-continuum, to be commented later on. In eq. (14)

ÂB̄
0
s→φγ

ι is the formal analogue of a
(B̄0
s→µµγ)

ι (11),

ÂB̄
0
s→φγ
⊥,‖ =

(
C7 ±

ms

mb
C ′7

)
T
B̄0
s→φ
⊥,‖ (0) +

(
C8 ±

ms

mb
C ′8

)
G
B̄0
s→φ
⊥,‖ (0) +

6∑
i=1

CiL
B̄0
s→φ

i⊥,‖ . (15)

In more standard notation, e.g. [58], the form factors are denoted by T
B̄0
s→φ
⊥,‖ (0) = 2T

B̄0
s→φ

1 (0) =

2T
B̄0
s→φ

2 (0) and the equality of the polarisations is the analogue of the previously mentioned
algebraic relation below eq. (6).

To exemplify (13) with s0 = 0 and zero and one subtraction (n = 0, 1 respectively) one
obtains beyond the narrow width approximation

aι(q
2) =


fφMφÂ

B̄0
s→φγ

ι

q2−M2
φ+iMφΓφ

+ . . . [n = 0]

aι(0) + q2

M2
φ

fφMφÂ
B̄0
s→φγ

ι

q2−M2
φ+iMφΓφ

+ . . . , [n = 1]

, (16)

with Γφ being the decay width of the φ meson. The n = 1 version of this expansion corre-

sponds to the one given in [40] in the approximation ÂB̄
0
s→φγ
⊥,‖ = 2T

B̄0
s→φ

1 (0) × C7 with the

identification T
B̄0
s→φ

1 (0) = −gB̄
0
s→φ

+ (0) [40].

7 Close to the endpoint region q2/M2
Bs
≈ 1 one must take into account the effect of soft resummed

bremsstrahung emission [55, 56]. This step is performed by an experimental Monte Carlo, using e.g. PHO-
TOS [57]. This approach is more trustworthy than a theoretical calculation, because, for example, it is able
to account for photon efficiencies.
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Let us briefly discuss the status of knowledge of the various contributions entering B̄0
s →

φγ. The form factor is known most precisely from LCSR, yielding [58]

T
B̄0
s→φ

1 (0) = 0.309± 0.027 (17)

at twist-4 tree level and twist-3 O(αs) which updates the analysis [43,59] in input parameters
and a twist-4 tree-level contribution.8 The O8 and four quark topologies are known in the
1/mb-limit [48,49] and in LCSR which does rely on an 1/mb-expansion from Refs. [46] and [62]
respectively.

Using B0
s → φγ data

An alternative and possibly more effective strategy towards improving the prediction (15)

is to extract the amplitudes ÂB̄
0
s→φγ
⊥,‖ from experiment and then use them as probes of the

interference components in the B0
s → µ+µ−γ rate. This approach is promising since the

branching ratio [63]
B(B̄0

s → φγ) = (3.52± 0.34)× 10−5 (18)

is known to 10% accuracy. An update including the entire Run-1 dataset of 3/fb is in progress,
and further updates from Run-2 data will follow up. Hence the statistical component of the
error on this measurement – about half of the error quoted in eq. (18) – will decrease
steadily.9 As a consequence one can expect to extract the amplitudes at the 5% level, which
compares favourably to a theory error which is above 10%.

There is a complication though, in that B(B̄0
s → φγ) ∼

(
|ÂB̄

0
s→φγ
⊥ |2 + |ÂB̄

0
s→φγ
‖ |2

)
and

does not provide enough information for two complex amplitudes. This situation can be
improved through theoretical knowledge and related observables in this channel. First in
the SM the amplitude is dominated by the form-factor component [43, 46, 48–50, 62]. From
these references it seems that the imaginary part does not exceed 10%, which bounds the
strong phase to just below 6◦. We also note that for b→ s transitions λu is negligible, which
renders the discussion of the weak phase unimportant. Further knowledge on the amplitudes
in terms of information about polarisation and phase may be obtained from direct and time-
dependent CP asymmetries, see e.g. the formulae in [50]. Actually, for the latter LHCb has
reported a first value A∆ ' −0.98(50)(20) [65] with a large uncertainty but also with a large
deviation from the SM prediction A∆ ' 0.047(28) [50].

In fig. 3 we display a simplified study assuming that both the B̄0
s → φγ and the non-

resonant part of the spectrum are form-factor dominated. This figure shows the impact on
the prediction of the low-q2 spectrum of trading the main form-factor uncertainty, that on
T⊥,‖(0, q

2) for the measured B̄0
s → φγ branching ratio. Specifically, we show the dB(B̄0

s →
µ+µ−γ)/dq2 spectrum with T

B̄0
s→φ

1 (0) from eq. (17) with an error of 15% (left panel),

and (right panel) with T
B̄0
s→φ

1 (0) traded for eq. (18). The 15% error on the left panel is
indicative, but can be motivated using a theoretical or an experimental argument. On the
one hand, since the form-factor error is around 10% and the LD part is likewise around 10%,
one can understand the 15% as a Gaussian average. Alternatively, the central value in eq.
(17) implies B(B̄0

s → φγ)form factor = 2.7× 10−5, which is about 30% lower than the central

8 Another approach is based on relativistic quark models, with meson wave-functions constrained by leptonic

decay constants. Predictions for T
B̄0

s→φ
1 (0) range between 0.38 [60] and 0.28 [61] depending on the parameters

used, indicating a degree of model dependence.
9 On the other hand, as this measurement, like any Bs mode, is obtained from a ratio with respect to a
suitable Bd mode, its error is eventually limited by the uncertainty on the ratio of the Bd and Bs hadronisation
fractions in pp collisions, fs/fd, currently of about 7% [64].
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δT1Bs→ϕ = 0

δT1Bs→ϕ = ±15%
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Figure 3: Differential branching ratio for B0
s → µ+µ−γ around the φ(1020) resonance, with (left

panel) g
B0

s→φ
+ from eq. (17), and with (right panel) the φ-peak region constrained from the present

experimental measurement of B(B0
s → φγ).

value in eq. (18), again justifying an error of about 15%. As concerns the systematic error
inherent in the choice of the form-factor parameterisation [39], it can only be estimated and
included once an alternative evaluation, possibly from first principles, is available. More
considerations on this important aspect are presented in appendix A. The reduction in the
error in the right with respect to the left figure displays the potential gain of the method,
which has further potential for improvement with more statistics. On the systematic side,
one needs to go beyond form-factor dominance.

Additional resonances

In order to make the discussion following eq. (14) more transparent, we have restricted
ourselves to the case of one single resonance, the φ(1020). At this stage it is very important
to assess the potential impact on the prediction of the low-q2 B0

s → µ+µ−γ spectrum of
other resonances – most notably the φ(1680), to be denoted as φ′ hereafter. The B0

s → φ′

form factor can be estimated by scaling by the decay constants,

T
B0
s→φ′

1 ' fφ′/fφ T
B0
s→φ

1 .

This is the case since the decay constant is the first term in the partial-wave expansion of the
vector meson distribution amplitude. This implies B(B → V γ) ∝ |TB→V1 |2 ∝ f2

V . As we are
unaware of an evaluation of fφ′ we resort to K∗-meson data, assuming fφ′/fφ ' fK∗′/fK∗ .
From the ratio between B(B → K∗(1410)γ) and B(B → K∗(892)γ) data [63], suitably
corrected for the relevant kinematic factors, we get fφ′/fφ ' 0.86. We note that this value
is encouragingly close to fρ′/fρ = 0.875 from Ref. [66] using non-local condensate sum rules.

For such a potentially large coupling, it is clear that including or not the φ′ would consider-
ably alter the prediction of the B0

s → µ+µ−γ spectrum at low q2, hence of the B0
s → µ+µ−γ

branching ratio as a whole. However, the large width of the φ′ (Γφ′ ' 35×Γφ [63]) turns out
to suppress the φ′ contribution to the B0

s → µ+µ−γ spectrum to be a below-1% correction
to the total branching ratio. Needless to say, our argument can put on more solid grounds
with data on B(B0

s → φ′γ), to be measured in a statistically favorable φ′ decay mode, for
example φ′ → KK̄∗(892). Such data are not yet available at present [63] and we would like
to emphasise their interest, not only to robustly assess the systematics due to the φ′, but

10



also, potentially, for interference studies. We remark in fact that a large phase in the φ′

Breit-Wigner would entirely cancel the suppression due to Γφ′ � Γφ.
A final remark is in order on the charmonium region. Attempting a description of this

region with an approach similar to eq. (16) is, in principle, possible, because the J/ψ and
ψ(2S) resonances are sufficiently narrow. On the other hand, the required radiative branching
ratios are, again, not yet measured. We also remark that, at variance with the low-q2 range,

in this region the SD dynamics is dominated by the O(′)
9,10 operators, that one can more

cleanly extract from the region q2/M2
Bs
> 0.55 to be discussed next.

4. The high-q2 region

The ratio rγ

We next consider the part of the spectrum above the narrow-charmonium resonances, q2/M2
Bs

& 0.55. As concerns the theoretical error in this region, the first consideration to be made
is that the by far largest contributions come from just two sets of terms, those proportional
to V 2

⊥ or to V 2
‖ , because of C9,10-dominance, followed by the impact on broad charmonium

resonances which we address in a later section. Terms proportional to all other form-factor
combinations have an impact that numerically does not exceed a few percent. Furthermore
the existing theoretical predictions of V⊥ and V‖, as well as their associated errors, are partly
correlated.

From these considerations it is clear that the ratio of the B0
s → `+`−γ differential branching

ratios between two different lepton channels offers a potentially much cleaner quantity than
the two branching ratios considered separately. As such, this ratio provides a valuable test
of lepton universality violation, in a channel devoid of final-state hadrons. More specifically,
let us consider the following quantity

rγ(q2) ≡ dB(B0
s → µ+µ−γ)/dq2

dB(B0
s → e+e−γ)/dq2

, (19)

as well as

Rγ(q2
1, q

2
2) ≡

∫ q2
2

q2
1
dq2 dB(B0

s → µ+µ−γ)/dq2∫ q2
2

q2
1
dq2 dB(B0

s → e+e−γ)/dq2
, (20)

where we choose q2
1/M

2
Bs

= 0.55 (corresponding to q2
1 = 15.8 GeV2), i.e. somewhat above

the ψ(2S) resonance, and q2
2/M

2
Bs

= 0.8 (q2
2 = 23.0 GeV2) due to bremsstrahlung in the

µ+µ− channel, as explained below. The ratio rγ(q2) has the following properties:

• Among the Wilson coefficients appearing in the Hamiltonian (2), the by far largest
SM contributions are those from C9,10, and the largest sensitivity is correspondingly

to C
(′)
9,10. The ratio rγ therefore offers a further test of the very same new-physics

contributions that would be responsible for RK and RK0∗ .

• The radiative branching ratios for the µ+µ− and for the e+e− channels appearing in
rγ are very close to each other, and not hierarchically different, as in the correspond-
ing non-radiative decays. In fact, either of B(B0

s → µ+µ−γ) and B(B0
s → e+e−γ),

integrated over the whole q2 range, are of the order of 10−8. We note explicitly that
such rate, in the case of the e+e− channel, amounts to an enhancement over the non-
radiative branching ratio of about 5 orders of magnitude.
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δV⊥,∥=δT⊥,∥=0 w/ broad charmonium

δC9=-δC10=-12% C9SM δV⊥,∥=±10%
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Figure 4: Comparison between (left panel) the theoretical error in the B0
s → µ+µ−γ spectrum and

(right panel) the corresponding error on rγ as defined in eq. (19).

• As mentioned above, both numerator and denominator on the r.h.s. of eq. (19) are
dominated by terms proportional to V 2

⊥ or V 2
‖ for q2/M2

Bs
∈ [0.55, 0.8]. An error of,

say, ±10% on these form factors thus reflects in roughly twice the same error on the
differential branching ratios. This is illustrated in the left panel of fig. 4. Such spread,
shown as a blue area, is too large to clearly resolve the C9,10 shift required by RK and
RK0∗ . The effect of the latter shift is displayed by the red line in the same figure, and
as shown, this line lies barely outside the blue area.

• Form-factor uncertainties cancel to a large extent in rγ . In fact, the rγ variation due
to these uncertainties is suppressed by powers of the difference (m2

µ −m2
e)/m

2
Bs

. The
residual theoretical uncertainty amounts to a relative error on rγ of at most 5%,10 well

10 The error depends on the degree of correlation between the form-factor errors. For example, the case
of V⊥ and V‖ errors exactly anti-correlated obviously amounts to an additional cancellation – between the
coefficients of the V 2

⊥ and V 2
‖ terms within each of the two branching ratios in Rγ . The figure displays the

least favorable case, and as such the blue area represents the envelope of any realistic theoretical error on the
form factors.
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below the size of the shifts to C
(′)
9,10 required by RK and RK0∗ . This point is illustrated

in the right panel of fig. 4. In this plot the red line lies well outside the blue band of
the theoretical error throughout the considered q2 range.

• We do not consider q2/M2
Bs

values above 0.8. In fact, for such values the FSR compo-
nent – diagrams 3 and 4 in fig. 1 – becomes, in the µ+µ− channel, comparable in size
with the ISR one – all the other diagrams in the same figure.11 Being ISR diagrams
proportional to just the first of the matrix elements in eq. (4), they steadily spoil the
cancellation of form-factor uncertainties between the numerator and denominator of
eq. (20) as q2 increases. This can be appreciated in fig. 4 (right panel), where from
left to right rγ gradually departs from unity and its error gets larger. Incidentally, this
departure from unity distinguishes B0

s → `+`−γ decays from B → V `` ones.

Impact of broad charmonium

In the discussion so far we have disregarded one further source of potentially significant theory
systematics, namely the contamination of the B0

s → µ+µ−γ spectrum by broad-charmonium
resonances. A dedicated study in the context of B+ → K+`` has been performed in [24], and
extended by LHCb to include low-lying ρ, ω, . . . resonances [3]. Similar effects are possible
for our decays of interest, through the subprocess B0

s → Vcc̄(→ ``)γ, with Vcc̄ any of ψ(2S),
ψ(3770), ψ(4040), ψ(4160) or ψ(4415). We model LD effects associated with such resonances
as a sum over Breit-Wigner poles [68], through the replacement

C9 → C9 −
9π

α2
C̄
∑
V

|ηV |eiδV
m̂V B(V → µ+µ−) Γ̂Vtot

q̂2 − m̂2
V + im̂V Γ̂Vtot

, (21)

with free floating absolute value and phase [24] to measure the deviation from naive factori-
sation (|ηV | = 1 and δV = 0).12 The sum runs over the five resonances mentioned above,
hats indicate that the given quantity is made dimensionless by an appropriate power of MBs ,
and C̄ = C1 + C2/3 + C3 + C4/3 + C5 + C6/3. The relevant numerical input for all reso-
nances but the ψ(2S) is taken from the recent determination [69]. For the ψ(2S) we use data
from the PDG [63] and checked the stability of our results against numerical input taken
from [24, 68]. The effect of the shift (21) is shown in either panel of fig. 4 as a wiggly solid
line using |ηV | = 1 and δV = 0 for illustrative purposes. The figure displays that, while the
differential branching ratio (left panel) shows some sensitivity to such effect, that may partly
compensate the new-physics shift required by RK and RK0∗ , this sensitivity is substantially
reduced in rγ (right panel), that neatly distinguishes the SM case from the new-physics one.

5. Outlook

Here we collect considerations on a few further directions that may be promising with future
data, and with further thinking.

First, the low-q2 spectrum is in principle sensitive also to FV,AC10, as can be appreciated
by inspection of the B0

s → µ+µ−γ differential branching ratio [40]. This sensitivity can be
‘projected out’ by measuring the first cos θ moment of the differential distribution, namely

11 In the e+e− channel the ISR component stays negligible up to q2 very close to the endpoint, because of
chiral suppression. The relative size of the ISR and FSR components can be inferred from fig. 1 of Ref. [67].

12 In Ref. [24], for B → Kµ+µ− it was found that |ηV | ' 2.5 and δV ' π gives a good description of the
data.
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the quantity ∫
dq2 d cos θ

dB(B0
s → µ+µ−γ)

dq2 d cos θ
cos θ , (22)

where, we remind, θ is the angle between the three-momentum vectors of the µ− and of the
photon in the dilepton center-of-mass system [39]. By choosing the integration region to be a
symmetric interval around the φ peak, one is able to cancel out the resonant terms and single
out the interference ones. Such an analysis is the only way we are aware of to disentangle the
different spectrum components – in particular direct emission versus interference, because
terms ∝ cos3 θ and higher only enter the latter contributions, and not the former. We also
note explicitly that, per definition, interference terms permit access to combined information
about all the Wilson coefficients, and not only the e.m.-dipole ones.

The most outstanding limitation of such a measurement is of course statistical. A crude
estimate of the number of events to be expected in the near future for such an analysis
can be obtained by projecting the number of signal candidates in Ref. [70] to the end of
Run 3, and suitably rescaling for the relative branching ratio to the µ+µ− over the K+K−

channels. We thereby estimate around 350 signal candidates for the φ → µ+µ− channel
alone. Furthermore, this estimate assumes the same trigger and reconstruction efficiencies
as Run 1, which is rather pessimistic.

As concerns the q2 resolution required for such a measurement, it would seem that it need
to be comparable to, or better than, the width of the resonance in question, which in our
φ(1020) example is about 4 MeV. Such resolution is actually realistic (see e.g. supplementary
material in Ref. [3]). Furthermore, even for a resolution larger than the natural width of the
resonance, the assignment of events to either side of the peak may be performed statistically
(rather than on an event-by-event basis), because the template for the q2 resolution can be
measured elsewhere. Of course the actual effectiveness of such technique requires a dedicated
MonteCarlo.13

An obvious question is whether and to what extent all the above considerations may be
applicable in the narrow-charmonium region as well. One first objection is the fact that
B(B0

s → J/ψ γ) is yet to be measured. Furthermore, the presence of the nearby ψ(2S)
resonance makes it necessary to also determine the phase of each relevant amplitude.

A further, short comment concerns the B0
d counterparts to the decays discussed in this

paper. They would statistically suffer from the relative CKM suppression, of about 4 ×
10−2, with respect to the B0

s modes, but in principle enormously benefit from the huge
statistics and detector capabilities foreseen at Belle 2, although this can be ascertained only
through a dedicated study. From the theoretical point of view, many of the considerations
we made for the B0

s modes can be extended to the B0
d ones. For example the isolated

φ resonance is replaced by the ρ0, ω, ... on which, again, data exist. This topic requires
separate consideration.

6. Summary and Conclusions

In this paper we reappraised the decay B0
s → µ+µ−γ, discussing its main sources of theo-

retical error as well as strategies towards substantially reducing them. These uncertainties
are different in the two kinematical regions that one can realistically exploit at present,
and defined by the dilepton invariant mass squared being below or respectively above the
narrow-charmonium region.

13 We thank F. Dettori for a clarifying discussion on this matter.
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In the low-q2 region, the decay is dominated by the subprocess B0
s → φγ, with the φ

decaying to a µ+µ− pair. Since, however, the process B0
s → φ(→ KK)γ is measured to

already good accuracy, we show how the main form-factor uncertainties in this region can be
traded for experimental data. We emphasise that our aim in proposing this trade-off is not
to better control B0

s → µ+µ−γ in the region where the amplitude is completely dominated
by the φ resonance. In other words, we are not proposing to use B0

s → µ+µ−γ as a proxy of
B0
s → φγ, because the φ→ KK decay mode is statistically more advantageous, by far. We

rather aim at constraining as well as possible the resonant region with experimental data,
in order to better predict the rest of the B0

s → µ+µ−γ spectrum at low q2. In particular,
one may thereby extract the interference terms in the amplitude. We likewise discussed the
potential impact of further resonances such as the φ′.

In the high-q2 region, conversely, we exploit the fact that the decay is dominated by two
form-factor combinations, plus contributions from broad charmonium that we model accord-
ingly. We construct the ratio Rγ , akin to RK and likewise sensitive to lepton-universality
violation. We show that in an appropriately chosen q2 range most of the form-factor uncer-
tainties indeed cancel, thereby making Rγ sensitive to the Wilson-coefficients’ shifts hinted
at by RK and RK0∗ . Our choice of the q2 range takes into account the two main effects
we are aware of, that can spoil the cancellation of the form-factor errors in Rγ : the pollu-
tion by broad-charmonium resonances, and the increasing importance of the bremsstrahlung
component to the amplitude for high enough q2 in the µ+µ− channel.

We conclude with predictions of the total branching ratio for B0
s → µ+µ−γ for low and

high q2

B(B̄0
s → µ+µ−γ)low q2 = (8.4± 1.3)× 10−9 ,

B(B̄0
s → µ+µ−γ)high q2 = (8.90± 0.98)× 10−10 , (23)

where the q2-integration windows are respectively q2/M2
Bs

= [(2mµ/MBs)
2, 0.30] and q2/M2

Bs
=

[0.55, 1−2Ecut/MBs ], with Ecut = 50 MeV [56].14 These ranges correspond to q2 = [0.04, 8.64]
GeV2 and q2 = [15.84, 28.27] GeV2. For the ratio Rγ we obtain

Rγ(q2
1, q

2
2) = 1.152± 0.030 , (24)

where, we remind, we choose q2
1/M

2
Bs

= 0.55 and q2
2/M

2
Bs

= 0.8. The errors on the above
predictions are obtained by assuming form factors with uncorrelated Gaussian errors of 10%

and
√

(|AB̄
0
s→φ
⊥ |2 + |AB̄

0
s→φ
‖ |2) traded for eq. (18).

In our above estimates we neglect the possible contribution from the φ′, having estimated
it to be below 1%. On the other hand, we do include possible systematic effects due to
the J/ψ (low q2) or to broad-charmonium resonances (high q2). These effects are modelled
according to eq. (21), where we take the resonance couplings to be uniformly distributed in
the ranges |ηV | ∈ [1, 3] and δV ∈ [0, 2π], and uncorrelated with one another. The possible
pollution from the J/ψ resonance is actually the reason why we limited the low-q2 prediction
to q2/M2

Bs
≤ 0.30.15

14 The q2 endpoint takes into account that experiments cannot be completely photon-inclusive. The choice
we made is indicative. In practice, the best procedure is to extrapolate to the kinematic endpoint by an
experimental Monte Carlo, which would also take into account soft resummed bremsstrahlung, cf. footnote 7.

15 For reference, taking the low-q2 range to extend up to q2/M2
Bs
≤ 0.33, as chosen elsewhere in the literature,

we find

B(B̄0
s → µ+µ−γ)q2/M2

Bs
≤0.33 = (8.3± 1.3)× 10−9 (no J/ψ)
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A. Status of B0
s → γ form factors

This appendix aims to summarise the status of the B0
s → γ form factors V⊥,‖(q

2) and
T⊥,‖(q

2, k2), defined in eq. (4), reproduced here for the reader’s convenience

〈γ(k, ε)| s̄γµ(1± γ5)b |B̄0
s (p)〉MBs = + e{Pµ⊥ V⊥(q2) ± Pµ‖ V‖(q

2)} ,

〈γ∗(k, α)| s̄iqνσµν(1∓ γ5)b |B̄0
s (p)〉 = − e{Pµα⊥ T⊥(q2, k2) ± Pµα‖ T‖(q

2, k2)} ,

and provide motivation to improve on them in future computations.
First, we remind the reader that the tensor form factors T⊥,‖(q

2, k2) are only needed in
either the T⊥,‖(q

2, 0) or T⊥,‖(0, q
2) configuration if one final-state photon is on-shell. The

computation of T⊥,‖(0, q
2), which actually is a B0

s → γ∗ form factor, is a formidable task
since there are cuts in the very low-q2 region due to meson and multi-meson states coupling
to the s̄s-state which is best treated in a dispersive approach as outlined in eq. (13).

Let us therefore turn our attention to the form factors V⊥,‖(q
2) and T⊥,‖(q

2, 0). A coherent
discussion of these form factors summarising the status in 2002 has been given in [39]. These
authors have pointed out the previously mentioned algebraic relation T⊥(0, 0) = T‖(0, 0) and
built upon the large-energy relations [71] and various low-q2 evaluations using QCD sum
rules and quark models. A single-pole parametrisation has been assumed (reminiscent of
vector meson dominance) to be valid in the entire q2 regime. We use [39] as our reference
parametrisation.

In 2003 the V⊥,‖(q
2) form factors were computed, with the aim to describe Bu → `νγ, in

QCD factorisation and at next-to-leading twist (including the photon distribution amplitude)
using LCSR by [41] and [42] respectively. In the context of B → V form factors [59] it became
clear that, unlike for the pion form factor, a single-pole parametrisation is insufficient in B
to light form factors. In order to counterbalance the possible model dependence of our first
parametrisation, we tried a second one using the form-factor results in the B → V update [58]
as follows. First, one notes that, because of the null photon mass, T⊥,‖(q

2, 0) can be simply
related [46] to the form factors T1,2,3(q2). Specifically, the zero mass of the photon establishes
the relation T2(q2) = T3(q2)(1− q2/M2), with M the initial-state meson mass. Explicitly

V
B̄0
s→γ

⊥ ↔ 2V B̄0
s→φ , T

B̄0
s→γ
⊥ ↔ 2T

B̄0
s→φ

1 ,

V
B̄0
s→γ

‖ ↔ 2A
B̄0
s→φ

1 /(1− q2/M2
Bs) , T

B̄0
s→γ
‖ ↔ 2T

B̄0
s→φ

2 /(1− q2/M2
Bs) . (26)

Second, at the twist-2 level the identification is direct if all higher partial waves of the
φ distribution amplitudes (i.e. Gegenbauer moments other than the decay constants) are

B(B̄0
s → µ+µ−γ)q2/M2

Bs
≤0.33 = (10.6± 2.9)× 10−9 (with J/ψ) , (25)

where in the first equation we take |ηJ/ψ| = 0 in eq. (21). Whereas the J/ψ effect is sizeable if the integration
range extends up to q2/M2

Bs
= 0.33, the impact for q2/M2

Bs
≤ 0.30 is well within our quoted uncertainties,

as can be inferred from the error bands in eqs. (25) and (23).
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neglected, which is a reasonable approximation in the given context. The q2 behaviour of
the V , A1, T1 and T2 form factors has been studied in Ref. [58] through a combined LCSR
and lattice [72] fit to B → K∗ form factors. Hence use of the data points in [58] plus eq. (26)
would provide a second parameterisation, under the assumption that B → K∗ form-factor
data can be used as a proxy for B → γ ones, which as mentioned are to date missing. In
support of this assumption, we may quote the fact that, at leading twist, a photon and a K∗

couple the same way at high energies.
Nonetheless we find substantial differences between the two above-mentioned form-factor

sets at high q2. This matter can be settled only by a first-principle computation of B0
s → γ

form factors, that to the best of our knowledge is still missing, and as such highly desirable.
In summary, considerable work is still to be done for these form factors, at low and at high

q2 alike. The former gap can be filled by LCSR and the latter by lattice QCD.
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