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Abstract We present a comprehensive regional bathymetric data compilation for the southwest Indian
Ocean (swIOBC) covering the area from 48S to 408S and 208E to 458E with a spatial resolution of 250 m. For
this, we used multibeam and singlebeam data as well as data from global bathymetric data compilations.
We generated the swIOBC using an iterative approach of manual data cleaning and gridding, accounting
for different data qualities and seamless integration of all different kinds of data. In comparison to existing
bathymetric charts of this region, the new swIOBC benefits from nearly four times as many data-
constrained grid cells and a higher resolution, and thus reveals formerly unseen seabed features. In the
central Mozambique Basin a surprising variety of landscapes were discovered. They document a deep
reaching influence of the Mozambique Current eddies. Details of the N-S trending Zambezi Channel could
be imaged in the central Mozambique Basin.

Plain Language Summary Maps are crucial not only for orientation but also to set scientific
processes and local information in a spatial context. For most parts of the ocean seafloor, maps are derived
from satellite data with only kilometer resolution. Acoustic depth measurements from ships provide more
detailed seafloor information in tens to hundreds of meters resolution. For the southwest Indian Ocean, all
available depth soundings from a variety of sources and institutes are combined in one coherent map.
Thus, in areas where depth soundings exist, this map shows the seafloor in so-far unknown detail. This
detailed map forms the base for subsequent studies of e.g. the direction of ocean currents, geological and
biological processes in the southwest Indian Ocean.

1. Introduction

The demand for high-resolution bathymetric grids from local studies to regional compilations has been
identified for a variety of marine disciplines. Only on the basis of gridded data sets, it is possible to under-
stand and interpret regional, local, and point data in a spatial context. Due to past and ongoing research
activities in the southwest Indian Ocean, a large amount of bathymetric data has accumulated for this
area over the past decade forming a critical mass of data for a regional bathymetric compilation. Com-
bined in a coherent data grid, the individual data sets form a comprehensive Digital Bathymetric Model
(DBM) (Figure 1) for an area of importance from geological, oceanographical, and climatological
perspectives.

Geologically, the southwest Indian Ocean was shaped during the Gondwana breakup that occurred in the
southwest Indian Ocean during the Cretaceous with massive magmatism and subsequent rifting (Davies
et al., 1995; Eagles & K€onig, 2008; Gaina et al., 2013; Jokat et al., 2003; K€onig & Jokat, 2010; Leinweber et al.,
2013; Salman & Abdula, 1995). The Cretaceous evolution of the Mozambique Ridge (also known as Mozam-
bique Plateau according to the GEBCO SubCommittee on Undersea Feature Names) and Agulhas Plateau is
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still under debate. Studies present conflicting interpretation of these features as being of oceanic or conti-
nental origin (Gohl & Uenzelmann-Neben, 2001; Gohl et al., 2011; K€onig & Jokat, 2010; Parsiegla et al., 2008;
Tucholke et al., 1981; Uenzelmann-Neben et al., 1999). Recent geophysical studies (Fischer et al., 2017; K€onig
& Jokat, 2010; Parsiegla et al., 2008) support the interpretation of these ridges as large igneous provinces of
Cretaceous age associated with the opening of the southwest Indian Ocean. Late Miocene neo-volcanism at
the Mozambique Ridge is interpreted as an extension of the western branch of the East African Rift System
(Fischer et al., 2017).

Sediments from the African continent in the west have formed deposits on shelves. Canyons often occur as
the extension of rivers on the adjacent continental slopes. Erosion, transport, and deposition by various
water masses (interacting with large-scale tectonic features) have resulted in the present-day seafloor mor-
phology of the southwest Indian Ocean. Furthermore, sediment waves and contourite drifts are the result

Figure 1. Southwest Indian Ocean Bathymetric Compilation. Figure 1a shows a representation of the swIOBC Version 1.0 Digital Bathymetric Model (DBM) display-
ing the major plateaus, ridges, and basins. The image is a combination of a hillshade-relief and a bathymetry raster to create a pseudo-3D effect. Rectangles show
the extent of Figures 2 and 3. Figure 1b shows the coverage of multibeam and singlebeam data. The multibeam coverage overlay is the Source Identifier (SID) grid
of the values of each cell of the swIOBC-DBM. A list and a map of all data sources is available in the supporting information linking each cell of the swIOBC to the
identifier (ID) in the SID expedition list. Furthermore, maps showing the differences between the swIOBC-DBM and GEBCO_14 and providing information on the
number of soundings per grid cell are provided in the supporting information. The swIOBC-DBM, the SID grid, and supporting grids are available at https://doi.
org/10.1594/PANGAEA.880618.
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of the interplay of bottom currents with the seafloor (Uenzelmann-Neben, 2001; Uenzelmann-Neben et al.,
2007).

At present, the southwest Indian Ocean is an area of dynamic exchange of Atlantic, Indian, and Southern
Ocean water masses (de Ruijter et al., 1999; Gordon, 1986; Hood et al., 2017; Lutjeharms, 2006; Lutjeharms &
Van Ballegooyen, 1988; Siedler et al., 2009; van Leeuwen et al., 2000). Below the southward flowing surface
currents, the pathway of northward flowing meridional deep water masses entering the Indian Ocean fol-
lows the topography of the deep ocean basins steered by the ridges and plateaus in the area (Schott &
McCreary, 2001; Schott et al., 2002, 2009; Xie et al., 2002).

Maps derived from high-resolution bathymetric data sets are sparse, despite the scientific importance, with
the existing maps only allowing for the identification of large morphological structures (e.g., the Agulhas
Plateau and the Mozambique Ridge). Sedimentary features such as sediment waves or drifts are too small
to be visible in these maps and thus, for comprehensive and in-depth investigations of the southwest
Indian Ocean, higher-resolution maps than currently available are necessary.

Research activities in the southwest Indian Ocean during the past three decades have increased the amount
of available depth soundings. However, these were scattered in various databases and have not been inte-
grated into a single bathymetric data set. Therefore, we initiated the southwest Indian Ocean Bathymetric
Compilation (swIOBC) as a regional mapping project under the auspice of the General Bathymetric Chart of
the Oceans (GEBCO) and the parent organizations the Intergovernmental Oceanographic Commission (IOC)
of UNESCO and the International Hydrographic Organization (IHO). The swIOBC will be included in future
versions of GEBCO and support the Nippon Foundation-GEBCO Seabed 2030 Project (Mayer et al., 2018).

Here, we present the swIOBC Version 1.0 DBM. The swIOBC-DBM has a spatial resolution of 250 m (8.1’’) and
is based on the WGS84 ellipsoid. It covers an area from 48S to 408S and from 208E to 458E (Figure 1a) includ-
ing the passive continental margin of southeast Africa and the adjacent ocean basins. From north to south,
this includes the southwest part of the Somali Basin, the Comoro Basin, the Mozambique Channel, the
Mozambique Basin, the Natal Valley, the Transkei Basin, and the northern-most part of the Agulhas Basin
(Figure 1a). Davie Ridge, Mozambique Ridge, and Agulhas Plateau separate these basins. In the northeast,
the study area covers the western parts of Madagascar (Figure 1a). The DBM, the corresponding Source
Identifier (SID) grid, and supporting grids are available for download at: https://doi.org/10.1594/PANGAEA.
880618.

2. Data and Methods

2.1. Data
The swIOBC V1.0 includes multibeam data from 42 cruises acquired by 8 different institutes. In total, about
1.883 billion multibeam depth-soundings are included in the swIOBC. The majority of the soundings (57.8%
of the multibeam data-constrained grid cells in the final swIOBC-DBM) originate from expeditions led by
the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI). These data were mostly
post-processed (corrected for changing sound velocities in the water column but not corrected for tides).
Most of these data have not yet been included in other regional or global bathymetric compilations.
Another large portion of multibeam data (20.2%) originates from the National Centers for Environmental
Information (NCEI), an open access database (https://www.ncei.noaa.gov/) formerly known as National Geo-
spatial Data Center (NGDC). The remaining 22.0% were contributed by the German Bundesamt f€ur See-
schifffahrt und Hydrographie (BSH), the US Naval Oceanographic Office (NAVOCEANO), the Dutch Koninklijk
Nederlands Instituut voor Zeeonderzoek (NIOZ), the Petroleum Agency South Africa (PASA), the Institut
Français de Recherche pour l’Exploitation de la Mer (IFREMER), and the Japan Agency for Marine-Earth Sci-
ence and Technology (JAMSTEC). The received data sets were mostly unprocessed raw data (with limited or
no meta-data) acquired between June 1993 and April 2014. Because the data sets were recorded over a
long time span and on different platforms, the quality of the data was heterogeneous in terms of acquisi-
tion system, background data, resolution, accuracy, and documentation (see also the supporting informa-
tion). These multibeam data form the backbone of the swIOBC database.

In addition to the multibeam data, the swIOBC database contains approximately 135,000 singlebeam
soundings. These soundings were downloaded as unprocessed data from the NCEI. In contrast to the
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multibeam data, for the singlebeam data metadata were mostly absent. Furthermore, these data were often
acquired en-route without quality control and sound velocity corrections. In general, only an average sound
velocity of 1,500 ms21 was applied. Furthermore, tides, equipment offsets, drafts, etc. were not taken into
account either. This resulted in a lower data quality compared to the multibeam data.

In areas without multibeam or singlebeam coverage, bathymetric information from GEBCO_14 (Weatherall
et al., 2015) was used. The GEBCO_14 DBM has a resolution of 30’’ and incorporates several global and
regional bathymetric compilations in which the seafloor topography of areas with no directly measured
data was estimated from satellite altimetry (Smith & Sandwell, 1997).

The topography of land areas was derived from the digital elevation model (DEM) of the NASA Shuttle
Radar Topographic Mission (SRTM) (Jarvis et al., 2008). This DEM (Version 4) has a spatial resolution of 90 m
3 90 m at the equator. For the swIOBC, the SRTM data were resampled at a resolution of 250 m 3 250 m.

2.2. SwIOBC Database
All multibeam, singlebeam, and gridded data were converted to xyz (longitude, latitude, depth) ascii data
for the swIOBC database, In addition, each data point received a source identification (SID) number. The SID
number contains information on the type of data and on the platform the data were recorded from. A
weight factor for each data point accounted for different data qualities. The data were split into square tiles
of 0.98 3 0.98 to minimize the computing time during gridding. In this way, when data sets were modified,
added or removed from the compilation, only specific tiles had to be updated. For each tile, systematic
errors and spurious measurements were rejected from the multibeam and singlebeam data with the QPS
FledermausVR software suite. These programs allowed for an efficient and comprehensive area-based data
cleaning in 3D-view by integrating all multibeam and singlebeam data sets from a region.

2.3. Data Gridding and DBM Generation
To calculate the swIOBC-DBM, we used a gridding algorithm that handles the different source data qualities
in multiple steps. It is similar to the algorithms used for the International Bathymetric Chart of the Arctic
Ocean (IBCAO) (Jakobsson et al., 2012) and the International Bathymetric Chart of the Southern Ocean
(IBCSO) (Arndt et al., 2013). From high-quality data only (i.e., multibeam data acquired after 2000), the
weighted median for 250 m 3 250 m grid cells was calculated. To do so, the depths values were sorted in
ascending order and the weighted median was defined as the first depth value where the cumulated sum
of the weights assigned to the depth values is� 50% of the sum of all weights. Using a weighted median
instead of the ‘‘standard’’ median ensured that higher quality soundings (high weight) were preferred over
soundings of lower quality in grid cells where data with different qualities were present. From the median
data, with the Generic Mapping Tools (GMT) (Wessel et al., 2013) function nearneighbor, a grid with a resolu-
tion of 250 m 3 250 m was calculated only for grid cells containing high-quality data (N-grid). In addition to
the N-grid, a second grid was computed with 1,000 m 3 1,000 m resolution using the weighted median on
all available multibeam and singlebeam xyz data as input data. For this grid the GMT surface function ‘‘con-
tinuous curvature splines under tension’’ (Smith & Wessel, 1990) was used with a tension factor of 0.35. Fur-
thermore, the maximum value was constraint to 21 m to avoid the creation of artificial islands, and the
minimum value was constrained to the minimum of the input median data. The resulting grid (S-grid) con-
tained interpolated values for every grid cell, in contrast to the N-grid that only contained values where
high-quality data existed.

For the final grid, the S-grid and the N-grid were combined as follows: The S-grid was resampled to 250 m
resolution. Grid cells containing no high quality data were assigned the S-grid value vS. Grid cells containing
high quality data were assigned the N-grid value except those located within a transition zone of 500 m
adjacent to the N-grid values. In the transition zones, values vc were calculated as a linear combination of
the S-grid and the N-grid value:

vC5
vSd2

S 1vNd2
N

d2
S 1d2

N

� �

where vS and vN are the depth values of the S- and the N-grid, and dS and dN are the inverted distances of
the grid cell to the outer (dS) and inner (dN) edge of the transition zone. This transition avoided abrupt artifi-
cial steps in the data set at the edges of the S-grid and the N-grid values. In an iterative process, the

Geochemistry, Geophysics, Geosystems 10.1002/2017GC007274

DORSCHEL ET AL. 4



resulting composite grid (C-grid) was examined in Fledermaus and obviously erroneous xyz data leading to
erroneous grid cells were identified and rejected. This process was repeated until no coarse errors were
obvious in the C-grid any more.

Land data were pasted into the C-grid similar to the combination of the S-grid and the N-grid. However, to
prevent that small islands represented only by a few grid cells were forced below water level due to the lin-
ear combination within the transition zone, we left all land grid cells unchanged and defined a 500 m buffer
zone around the land area. Within this buffer zone, we calculated the depth values by interpolating with a
linear nearest distance interpolator.

In a final step, areas containing no sounding data were filled with data from GEBCO_14 (Weatherall et al.,
2015), using the same combination algorithm as for the S-grid and the N-grid, but with a larger transition
zone of 10 km defined around all existing data (not only around high quality data). However, using the orig-
inal GEBCO_14 grid lead to undesired artefacts as there are offsets between C-grid values and GEBCO_14
values. Thus, GEBCO_14 was adjusted prior to gap-filling via multiplication with a factor grid, calculated as
follows: For every grid cell containing data the factor between the C-grid value and the GEBCO_14 value
was calculated. These factors were used as input data for the GMT surface algorithm, after applying a 5 km
GMT blockmedian to suppress small-scale variations. This resulted in a smooth factor grid used to adjust
GEBCO_14 depths to measured depths. In areas where GEBCO_14 differed strongly from the C-grid (e.g.,
flat shelf areas), after careful examination, GEBCO_14 data were excluded and interpolated values were
used instead.

3. Results and Discussion

The swIOBC represents the most comprehensive bathymetric compilation for the southwest Indian Ocean
(Figure 1a). Compared to GEBCO_14, the coverage of grid cells constrained by depth soundings has
increased from 5.5% in GEBCO_14 to 21.3% in the swIOBC-DBM. The improvements are most pronounced
in the Transkei Basin, Natal Valley, and Mozambique Ridge. The Kerimbas Graben in the north of the study
area (Figure 1a) is fully covered by a multibeam survey (Figure 1b). In addition, wide spaced multibeam

Figure 2. Comparison of the swIOBC and the GEBCO_14 DBM. Figure 2a shows an example of an area of the Mozambique shelf. There, the swIOBC-DBM, con-
strained solely by multibeam data gives a more realistic representation of the seafloor than GEBCO_14 that displays an artificially undulating seafloor. The same is
true for areas of flat, deep seafloor as for example the area of the Mozambique Channel shown in Figure 2b. There, the high-resolution multibeam data,
furthermore, show nicely developed sediment waves in the northwest corner.
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data, recorded along the tracks of seismic surveys, cover the northern Mozambique Basin. The distribution
of the multibeam data however reveals that multibeam coverage is sparse for large parts of the shelf areas
and the southern Mozambique Basin (Figure 1b).

The improvements of the swIOBC-DBM, in comparison to GEBCO_14, are particularly obvious in the Mozam-
bique Channel area (Figure 2a). There, a raster of multibeam track-lines is sufficient to characterize the

Figure 3. Examples of the swIOBC-DBM. Figure 3a shows the southern Mozambique Ridge with abundant volcanoes, sediment ridges, and scours. In Figure 3b,
complex sedimentary and tectonic landforms are displayed. Figure 3c shows sediment waves in the Mozambique Channel and the Zambezi Channel resolved in
detail between 418E and 428E.
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general nature of the seafloor. According to the multibeam data, the seafloor represents mostly a flat plain.
This is a contrast to GEBCO_14 that, as a result of using satellite altimetry data in the area, shows an undu-
lating seafloor (Figure 2a). In this area and in areas with similar differences between GEBCO_14 and the mul-
tibeam data used in swIOBC-DBM, the interpolated surface between multibeam data represents a more
accurate representation of the actual seafloor than GEBCO_14. Therefore, the exclusion of GEBCO_14 data
from these areas resulted in an improved representation of the seafloor. This approach is similar to the
approach used by Arndt et al. (2013) for the Southern Ocean. By carefully adjusting the areas of large dis-
crepancy, the swIOBC-DBM improved in particular the shelf areas (Figure 2a). In the deep basins, in areas of
flat seafloor, the multibeam data also reduced the artificial undulating of GEBCO_14 and added high levels
of detail in areas with multibeam coverage (Figure 2b).

A selection of geological and sedimentological features is presented below that can now be observed in
the swIOBC. Prominent geological features are kilometer-sized volcanic cones abundant on the southern
Mozambique Ridge (Figure 3a), the northwest Agulhas Plateau, and in the northern Agulhas Basin. Some of
these volcanoes have already been identified in seismic data by Fischer et al. (2017). To what extent this
neo-volcanism (Fischer et al., 2017; Uenzelmann-Neben et al., 1999) can be related to the African Rift system
is still under debate (Fischer et al., 2017) and requires further investigations. The swIOBC also images the
fault controlled eastern side of the Mozambique Ridge and a large escarpment extending from east to west
across the southern Mozambique Ridge (Figure 3a).

In addition to the landforms of geological origin, the swIOBC also reveals a plethora of sedimentological
landforms. Sediment waves, scours, sediment ridges, and drifts occur (Figures 1 and 3a–3c) providing infor-
mation on the interactions of bottom currents on the seafloor over prolonged periods of time indicating
areas of erosion, lateral sediment-transport, and deposition (Stow et al., 2002; Uenzelmann-Neben, 2001;
Uenzelmann-Neben & Huhn, 2009; Uenzelmann-Neben et al., 2007; Wiles et al., 2014a, 2014b). These land-
forms have already been described and interpreted by Breitzke et al. (2017) for Mozambique Channel link-
ing them to the flow paths of Antarctic Bottom Water and North Atlantic Deep Water as part of the
meridional overturning circulation (Breitzke et al., 2017; Sultan et al., 2007). For the Mozambique, Transkei,
and Agulhas Basin, similar analyses are still missing. Other sedimentary landforms in the Mozambique Chan-
nel and Basin and the Natal Valley (Figures 3a and 3b) have developed as the result of bottom currents
intensified around obstacles on the seafloor (Faugères et al., 1999). In the eastern Natal Valley, where the
path of water masses is deferred by the Mozambique Ridge, bottom currents have formed a series of scours
and drift sediments (Figure 3a) similar to those described adjacent to the Agulhas Plateau (Uenzelmann-
Neben, 2001; Uenzelmann-Neben et al., 2007). In addition, sediment waves on the Mozambique Ridge indi-
cate a potential spillover of waters through the east-west trending valleys of Mozambique Ridge (Figure 3a).
In the southern Mozambique Basin, the swIOBC reveals complex crosscutting landforms of varying orienta-
tions (Figure 3b) likely representing interactions of tectonic features and bottom currents.

Channels and canyons visible in the swIOBC indicate pathways of focused sediment transport on the African
and Madagascan continental slope and in the Mozambique Channel (Figure 1). The most prominent chan-
nel system covered by the swIOBC is the Zambezi Channel (Figures 1 and 3c). This prominent feature within
the central Mozambique Channel is now better constrained by the swIOBC. It highlights the complex geo-
morphological details of the Zambezi Channel that set it apart from other low-latitude submarine channels.
Zambezi Channel appears more comparable to high-latitude systems controlled by the sporadic influx of
sediment laden melt waters (Wiles et al., 2017). A landward continuation of the Zambezi Cannel across the
East African continental slope and shelf cannot be identified in the swIOBC (Figures 1 and 3c). In summary,
the new high-resolution swIOBC shows details of the seafloor that have been unresolved before, thus pro-
viding basic information for future studies.

4. Conclusions

The swIOBC uses the current most comprehensive database of multibeam and singlebeam data to picture
the bathymetry of the southwest Indian Ocean in highest detail that again provide important base informa-
tion for a variety of scientific approaches. Because of the increased resolution (250 m) in areas of multibeam
data coverage, sedimentary landforms are now visible and larger submarine features are resolved in more
detail. In addition, the swIOBC-DBM gives an indication how improved maps of the seafloor can foster
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scientific knowledge. Nevertheless, large areas of the southwest Indian Ocean still lack high-resolution mul-
tibeam coverage. Concerted efforts in the future hold the potential to further increase data coverage. Full
coverage maps would then allow for quantitative geo-morphological analyses of seafloor landforms as for
example comprehensive mapping of the sediment waves in the southwest Indian Ocean. A data set like
this provides proxy-information on past and recent bottom current directions and intensities. In this regard,
we would like to stress that regional compilations represent ongoing efforts that live from the contribution
of the international seafloor mapping community. Consequently, the swIOBC supports the Nippon
Foundation-GEBCO Seabed 2030 Project and will be included in GEBCO to improve our knowledge of the
world’s oceans.
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