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In this work we study the parallel coordinate descent method (PCDM) proposed by Richtárik and Takáč
[Parallel coordinate descent methods for big data optimization, Math. Program. Ser. A (2015), pp. 1–52]
for minimizing a regularized convex function. We adopt elements from the work of Lu and Xiao [On the
complexity analysis of randomized block-coordinate descent methods, Math. Program. Ser. A 152(1–2)
(2015), pp. 615–642], and combine them with several new insights, to obtain sharper iteration complexity
results for PCDM than those presented in [Richtárik and Takáč, Parallel coordinate descent methods
for big data optimization, Math. Program. Ser. A (2015), pp. 1–52]. Moreover, we show that PCDM is
monotonic in expectation, which was not confirmed in [Richtárik and Takáč, Parallel coordinate descent
methods for big data optimization, Math. Program. Ser. A (2015), pp. 1–52], and we also derive the first
high probability iteration complexity result where the initial levelset is unbounded.

Keywords: block coordinate descent; parallelization; iteration complexity; composite minimization;
convex optimization; rate of convergence; unbounded levelset; monotonic algorithm

Mathematics Subject Classification: 65K05; 90C05; 90C06; 90C25

1. Introduction

Block coordinate descent methods are being thrust into the optimization spotlight because of a
dramatic increase in the size of real world problems, and because of the ‘Big data’ phenomenon.
It is little wonder, when these seemingly simple methods, with low iteration costs and low mem-
ory requirements, can solve problems where the dimension is more than one billion, in a matter
of hours [24].

There is an abundance of coordinate descent variants arising in the literature including:
[2,6,9,11,12,15,16,22,26–28,31–38]. The main differences between these methods is the way in
which the block of coordinates to update is chosen, and also how the subproblem to determine the
update to apply a block of variables is to be solved. One of the current, state-of-the-art block coor-
dinate descent method is the Parallel (block) Coordinate Descent Method (PCDM) of Richtárik
and Takáč [24]. This method selects the coordinates to update randomly and the update is deter-
mined by minimizing an overapproximation of the objective function at the current point (see
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cited.
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2 R. Tappenden et al.

Section 3 for a detailed description). PCDM can be applied to a problem with a general convex
composite objective, it is supported by iteration complexity results to guarantee the method’s
convergence, and it has been tested numerically on a wide range of problems to demonstrate its
practical capabilities.

In this work we are interested in the following convex composite/regularized optimization
problem

min
x∈RN

F(x) = f (x)+�(x), (1)

where we assume that f (x) is a continuously differentiable convex function, and�(x) is assumed
to be a (possibly non-smooth) block separable convex regularizer.

The Expected Separable Overapproximation (ESO) assumption introduced in [24] enabled the
development of a unified theoretical framework that guarantees convergence of a serial [23], par-
allel [24] and even distributed [4,14,25] version of PCDM. To benefit from the ESO abstraction,
we derive all the results in this paper based on the assumption that f admits an ESO with respect
to a uniform block sampling Ŝ. This concept will be precisely defined in Section 3.2. For now it
is enough to say that updating a random set of τ coordinates (selected uniformly at random) is
one particular uniform sampling and the ESO enables us to overapproximate the expected value
of the function at the next iteration by a separable function, which is easy to minimize in parallel.

1.1 Brief literature review

Nesterov [17] provided some of the earliest iteration complexity results for a serial Randomized
Coordinate Descent Method (RCDM) for problems of the form (1), where � ≡ 0, or is the indi-
cator function for simple bound constraints. Later, Richtárik and Takáč generalized this work to
optimization problems with a composite objective of the form (1), where the function � is any
(possibly non-smooth) convex block separable function [23]; their algorithm is called the Uni-
form Coordinate Descent for Composite functions (UCDC) algorithm. Xiao and Lu [39] have
combined and extended some of the ideas from [17] and [23] to tighten the complexity results
for UCDC. In particular, they adopted the idea of a gradient mapping (developed in Nesterov
[17]) and married this with the technical analysis in [23] resulting in an improved constant in the
iteration complexity result for UCDC.

One of the main advantages of randomized coordinate descent methods is that each iteration is
extremely cheap, and can require as little as a few multiplications in some cases [22]. However,
a large number of iterations may be required to obtain a sufficiently accurate solution, and for
this reason, parallelization of coordinate descent methods is essential.

The SHOTGUN algorithm presented in [1] represents a naïve way of parallelizing RCDM,
applied to functions of the form (1) where � ≡ ‖ · ‖1. They also present theoretical results to
show that parallelization can lead to algorithm speedup. Unfortunately, their results show that
only a small number of coordinates should be updated in parallel at each iteration, otherwise
there is no guarantee of algorithm speedup.

The first true complexity analysis of Parallel RCDM (PCDM) was provided in [24] after the
authors developed the concept of an ESO assumption, which was central to their convergence
analysis. The ESO gives an upper bound on the expected value of the objective function after a
parallel update of PCDM has been performed, and depends on both the objective function, and
the particular ‘sampling’ (way that the coordinates are chosen) that was used. Moreover, several
distributed PCDMs were considered in [4,14,25] and their convergence was proved simply by
deriving the ESO parameters for particular distributed samplings.

In [3,10] the accelerated PCDM was presented and its efficient distributed implementation was
considered in [4]. Recently, there has also been a focus on PCDMs that use an arbitrary sampling
of coordinates [19–21,26].
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Optimization Methods & Software 3

One of the goals of this work is to incorporate some of the ideas from [17,39] and extend
them from a serial, to a parallel setting. We will provide improved iteration complexity results
for PCDM [24], through the development of a smaller constant in the complexity bound, which
reinforces the strength of PCDM.

1.2 Summary of contributions

In this section we summarize the main contributions of this paper (not in order of significance).

(1) No need to enforce ‘monotonicity’. PCDM in [24] was analysed (for a general convex com-
posite function of the form (1)) under a monotonicity assumption; if, at any iteration of
PCDM, an update was computed that would lead to a higher objective value than the objec-
tive value at the current point, then that update is rejected. Hence, PCDM presented in [24]
included a step to force monotonicity of the function values at each iteration. In this paper we
confirm that the monotonicity test is redundant, and can be removed from the algorithm. This
is crucial because computing function values can be prohibitively expensive in a large-scale
context, and our new monotonicity result means that no function values need be computed in
PCDM. Clearly, while this monotonicity result is interesting from a theoretical perspective,
it also leads to this significant practical implication as well.

(2) First high-probability results for PCDM without levelset information. Currently, the high
probability iteration complexity results for coordinate descent type methods require the lev-
elset to be bounded. In this paper we derive the first high-probability result which does not
rely on the size of the levelset.1 In particular, the analysis of PCDM in [24] assumes that the
levelset {x ∈ RN : F(x) ≤ F(x0)} is bounded for the initial point x0, and under this assump-
tion, convergence is guaranteed. However, in this paper we show that PCDM will converge
in expectation to the optimal solution even if the levelset is unbounded (see Section 5).

(3) Sharper iteration complexity results. In this work we obtain sharper iteration complexity
results for PCDM than those presented in [24], and Table 1 summarizes our findings. A thor-
ough discussion of the results can be found in Section 6.2. We briefly describe the variables
used in the table (all will be properly defined in later sections.) Variable c is a constant, k
is the iteration counter, α ∈ [0, 1] is the expected proportion of coordinates updated at each
iteration, ξ0 = F(x0)− F∗, and v is a (vector) parameter of the method. Also, μf and μ� are
the (strong) convexity constants of f and� respectively (both with respect to ‖ · ‖v for some
v) and ε and ρ are the desired accuracy and confidence level respectively. (C = Convex, SC
= Strongly Convex.)

(4) Improved convergence rates for PCDM. In this work we show that PCDM converges at a
faster rate than that given in [24] in both the convex and strongly convex cases. Table 2
provides a summary of our results and a thorough discussion can be found in Section 6.1.

1.3 Paper outline

The remainder of this paper is structured as follows. In Section 2 we introduce the notation and
assumptions that will be used throughout the paper. Section 3 describes PCDM of Richtárik and
Takáč [24] in detail. We also present a new convergence rate result for PCDM, which is sharper
than that presented in [24]. The proof of the result is given in Section 4 along with several
necessary technical lemmas.

In Section 5 we present several iteration complexity results, which show that PCDM will
converge to an ε-optimal solution with high probability. In Section 5.1 we provide the first iter-
ation complexity result for PCDM that does not require the assumption of a bounded levelset.
The results shows that PCDM requires O(1/ρ) iterations, so we have devised a ‘multiple run
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4 R. Tappenden et al.

Table 1. Comparison of the iteration complexity results for PCDM obtained in [24] and in this paper.

F Richtárik and Takáč [24] This paper Theorem

C
2c

αε

(
1+ log

(
1
ρ

))
+ 2− 2c

αξ0

2c

αε

(
1+ log

(
1
2 ||x0−x∗||2v+ξ0

2cρ

))
+ 2− 1

α
13(i)

SC
1+ μ�

α(μf + μ�) log
(
ξ0
ερ

) 1+ μf + 2μ�
2α(μf + μ�) log

(
1+μ�

2 ||x0−x∗||2v+ξ0
ερ

)
13(ii)

Note: The analysis used in this paper provides a sharper iteration complexity result in both the convex and strongly convex cases when ε
and/or ρ are small.

Table 2. Comparison of the convergence rates for PCDM obtained in [24] and in this paper. (C = Convex, SC =
Strongly Convex).

F Richtárik and Takáč [24] This paper Theorem

C
2cξ0

2c+ αkξ0

1

1+ αk

(
1

2
||x0 − x∗||2v + ξ0

)
3(i)

SC

(
1− α μf + μ�

1+ μ�

)k

ξ0

(
1− 2α(μf + μ�)

1+ μf + 2μ�

)k (1+ μ�
2
||x0 − x∗||2v + ξ0

)
3(ii)

Note: The analysis used in this paper provides a better rate of convergence in both the convex and strongly convex cases when ε and/or ρ
are small.

strategy’ that achieves the classical O(log(1/ρ)) result. Moreover, in Section 5.1 we present a
high probability iteration complexity result for PCDM, that assumes boundedness of the levelset,
which is sharper than the result given in [24].

In Section 6 we give a comparison of the results derived in this work, with the results given
in [24]. Then we present several numerical experiments in Section 7 to highlight the practical
capabilities of PCDM under different ESO assumptions. The ESO assumptions are given in the
appendix, where we also provide a new ESO for doubly uniform samplings (see Theorem A7).

2. Notation and assumptions

In this section we introduce block structure and associated objects such as norms and projections.
The parallel (block) coordinate descent method will operate on blocks instead of coordinates.

2.1 Block structure

The problem under consideration is assumed to have block structure and this is modelled by
decomposing the space RN into n subspaces as follows. Let U ∈ RN×N be a column permutation
of the N × N identity matrix and further let U = [U1, U2, . . . , Un] be a decomposition of U
into n submatrices, where Ui is N × Ni and

∑n
i=1 Ni = N . Note that UT

i Uj = INi when i= j and
UT

i Uj = 0 (where 0 is the Ni × Nj matrix of all zeros) when i �= j. Subsequently, any vector
x ∈ RN can be written uniquely as

x =
n∑

i=1

Uix
(i), (2)

where x(i) = UT
i x ∈ RNi . For simplicity we will write x = (x(1), x(2), . . . , x(n))T.
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Optimization Methods & Software 5

In what follows let 〈·, ·〉 denote the standard Euclidean inner product. Then we have

〈x, y〉 =
〈

n∑
i=1

Uix
(i),

n∑
j=1

Ujy
(j)

〉
=

n∑
i=1

n∑
j=1

〈UT
j Uix

(i), y(j)〉 ≡
n∑

i=1

〈x(i), y(i)〉. (3)

Norms. Further we equip RNi with a pair of conjugate Euclidean norms:

‖h‖(i) := 〈Bih, h〉1/2, ‖h‖∗(i) = 〈B−1
i h, h〉1/2, h ∈ RNi , (4)

where Bi ∈ RNi×Ni is a positive definite matrix. For fixed positive scalars v1, v2, . . . , vn, let v =
(v1, . . . , vn)

T and define a pair of conjugate norms in RN by

‖x‖2
v :=

n∑
i=1

vi‖x(i)‖2
(i), (‖y‖∗v)2 := max

‖x‖v≤1
〈y, x〉2 =

n∑
i=1

1

vi
(‖y(i)‖∗(i))2. (5)

Projection onto a set of blocks Let ∅ �= S ⊆ {1, 2, . . . , n}. Then for x ∈ RN we write

x[S] :=
∑
i∈S

Uix
(i) (6)

and we define x[∅] ≡ 0. That is, given x ∈ RN , x[S] is the vector in RN whose blocks i ∈ S are
identical to those of x, but whose other blocks are zeroed out.

2.2 Assumptions and strong convexity

Throughout this paper we make the following assumption regarding the block separability of the
function �.

Assumption 1 (Block separability) The non-smooth function � : RN → R ∪ {+∞} is
assumed to be block separable, that is, it can be decomposed as:

�(x) =
n∑

i=1

�i(x
(i)), (7)

where the functions �i : RNi → R ∪ {+∞} are proper, closed and convex.

In some of the results presented in this work F is assumed to be strongly convex and we use
μF > 0 to denote the (strong) convexity parameter of F, with respect to the norm ‖ · ‖v for some
v ∈ Rn

++. A function φ : RN → R ∪ {+∞} is strongly convex with respect to the norm ‖ · ‖v
with convexity parameter μφ ≥ 0 if for all x, y ∈ dom φ,

φ(y) ≥ φ(x)+ 〈φ′(x), y− x〉 + μφ
2
‖y− x‖2

v , (8)

where φ′ is any subgradient of φ at x. The case with μφ = 0 reduces to convexity.
Strong convexity of F may come from f or � or both and we will write μf (resp. μ�) for the

strong convexity parameter of f (resp. �). Following from (8)

μF ≥ μf + μ� . (9)

From the first order optimality conditions for (1) we obtain 〈F′(x∗), x− x∗〉 ≥ 0 for all x ∈ dom F.
Combining this with (8) used with y = x and x = x∗, yields the standard inequality

F(x)− F∗ ≥ μF

2
‖x− x∗‖2

v , x ∈ dom F. (10)
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6 R. Tappenden et al.

3. Parallel coordinate descent method

In this section we describe the PCDM (Algorithm 1) of Richtárik and Takáč [24]. We now present
the algorithm, and a detailed discussion will follow.

Algorithm 1 PCDM: Parallel Coordinate Descent Method [24]

1: choose initial point x0 ∈ RN

2: for k = 0, 1, 2, . . . do
3: randomly choose set of blocks Sk ⊆ {1, . . . , n}
4: for i ∈ Sk (in parallel) do

5: compute h(xk)
(i) = arg mint∈RNi

{
〈(∇f (xk))

(i), t〉 + vi
2 ‖t‖2

(i) +�i(x
(i)
k + t)

}
6: end for
7: apply the update: xk+1 ← xk +

∑
i∈Sk

Uih(xk)
(i)

8: end for

The algorithm can be described as follows. At iteration k of Algorithm 1, a set of blocks
Sk is chosen, corresponding to the (blocks of) coordinates that are to be updated. The set of
blocks is selected via a sampling, which is described in detail in Section 3.1. Then, in Steps
4–6, the updates h(xk)

(i), for all i ∈ Sk , are computed in parallel, via a small/low dimensional
minimization subproblem. (In Section 3.2, we describe the origin of this subproblem via an
ESO.) Finally, in Step 7, the updates h(xk)

(i) are applied to the current point xk , to give the new
point xk+1. Notice that Algorithm 1 does not require knowledge of objective function values.

We now describe the key steps of Algorithm 1 (Steps 3 and 4–6) in more detail.

3.1 Step 3: Sampling

At the kth iteration of Algorithm 1, a set of indices Sk ⊆ {1, . . . , n} (corresponding to the blocks
of xk to be updated) is selected. Here we briefly explain several schemes for choosing the set
of indices Sk; a thorough description can be found in [24]. Formally, Sk is a realization of a
random set-valued mapping Ŝ with values in 2{1,...,n}. Richtárik and Takáč [24] have coined the
term sampling in reference to Ŝ.

In what follows, we will assume that all samplings are proper. That is, we assume that pi > 0
for all blocks i, where pi is the probability that the ith block of x is updated.

We state several sampling schemes now.

(1) Uniform: A sampling Ŝ is uniform if all blocks have the same probability of being updated.
(2) Doubly uniform: A doubly uniform sampling is one that generates all sets of equal cardinality

with equal probability. That is P(S′) = P(S′′) whenever |S′| = |S′′|.
(3) Non-overlapping uniform: A non-overlapping uniform sampling is one that is uniform and

assigns positive probabilities only to sets forming a partition of {1, . . . , n}.

In fact, doubly uniform and non-overlapping uniform samplings are special cases of uni-
form samplings, so in this work all results are proved for uniform samplings. Other samplings,
which are also special cases of uniform samplings, are presented in [24], but we omit details
of all, except a τ -nice sampling, for brevity. We say that a sampling Ŝ is τ -nice, if for any
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Optimization Methods & Software 7

S ⊆ {1, 2, . . . , n} we have

P(Ŝ = S) =
⎧⎨
⎩

0, if |S| �= τ ,

τ !(n− τ)!
n!

, otherwise.
(11)

3.2 Step 3: Computing the step-length

The block update h(xk)
(i) is chosen in such a way that an upper bound on the expected function

value at the next iterate is minimized, with respect to the particular sampling Ŝ that is used.
The construction of the expected upper bound should be (block) separable to ensure efficient
parallelizability. Before focusing on how to construct the expected upper-bound on F we will
state a definition of an ESO.

Definition 2 (ESO; Definition 5 in [24]) Let v ∈ Rn
++ and Ŝ be a proper uniform sampling.

We say that f : RN → R admits an ESO with respect to the sampling Ŝ with parameter v, if, for
all x, h ∈ RN the following inequality holds:

E[f (x+ h[Ŝ])] ≤ f (x)+ E[|Ŝ|]
n

(
〈∇f (x), h〉 + 1

2
‖h‖2

v

)
. (12)

We say that the ESO is monotonic if ∀S ∈ Ŝ such that P(S = Ŝ) > 0 the following holds:

f (x+ h[S]) ≤ f (x).

In the appendix, a review of different smoothness assumptions on f and corresponding ESO
parameters v for a doubly uniform sampling, is given. In all that follows, we assume that f admits
an ESO with ESO parameter v, and Ŝ is a proper uniform sampling. Then

E[F(x+ h[Ŝ])]
DF= E[f (x+ h[Ŝ])]+ E[�(x+ h[Ŝ])]

(12)(25)≤ f (x)+ E[|Ŝ|]
n

(
〈∇f (x), h〉 + 1

2
‖h‖2

v

)
+
(

1− E[|Ŝ|]
n

)
�(x)

+ E[|Ŝ|]
n

�(x+ h), (13)

where we have used that fact that � is block separable and that Ŝ is a proper uniform sampling
(see [24, Theorem 4]).

Now, it is easy to see that minimizing the right-hand side of (13) in h is the same as minimizing
the function Hv in h, where Hv is defined to be

Hv(x, h) := f (x)+ 〈∇f (x), h〉 + 1
2‖h‖2

v +�(x+ h). (14)

In view of (2), (5), and (7), we can write

Hv(x, h) := f (x)+
n∑

i=1

{
〈(∇f (x))(i), h(i)〉 + vi

2
‖h(i)‖2

(i) +�i(x
(i) + h(i))

}
.

Further, we define

h(x) := arg min
h∈RN

Hv(x, h), (15)

which is the update used in Algorithm 1. Notice that the algorithm never evaluates function
values.

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
E

di
nb

ur
gh

] 
at

 0
5:

47
 1

5 
N

ov
em

be
r 

20
17

 



8 R. Tappenden et al.

3.3 Complexity of PCDM

We are now ready to present one of our main results, which is an improved iteration complexity
result for PCDM. Our result holds in the parallel case, so it is a generalization of Theorem 1 in
[39], which only applies in the serial case. The result shows that PCDM converges in expecta-
tion and provides a sharper convergence rate than that given in [24]. The proof is provided in
Section 4. Let us mention that a similar result was given independently2 in [15], but that result
only holds for the particular ESO described in Theorem A.9. However, even for that ESO, our
result (Theorem 3) is still much better because it depends on ‖x0 − x∗‖v and not on the size of
the initial levelset (see (34) and (40)), which could even be unbounded. We state our result now.

Theorem 3 Let F∗ be the optimal value of problem (1), and let {xk}k≥0 be the sequence of
iterates generated by PCDM using a uniform sampling Ŝ. Let α = E[|Ŝ|]/n and suppose that f
admits an ESO with respect to the sampling Ŝ with parameter v. Then for any k ≥ 0,

(i) the iterate xk satisfies

E[F(xk)− F∗] ≤ 1

1+ αk

(
1

2
‖x0 − x∗‖2

v + F(x0)− F∗

)
, (16)

(ii) if μf + μ� > 0, then the iterate xk satisfies

E[F(xk)− F∗] ≤
(

1− 2α(μf + μ�)
1+ μf + 2μ�

)k (1+ μ�
2
‖x0 − x∗‖2

v + F(x0)− F∗

)
. (17)

Remark 4 Notice that Theorem 3 is a general result, in the sense that any ESO can be used for
PCDM and the result holds.

4. Proof of the main result

In this section we provide a proof of our main convergence rate result, Theorem 3. However, first
we will present several preliminary results, including the idea of a composite gradient mapping,
and other technical lemmas.

4.1 Block composite gradient mapping

We now define the concept of a block composite gradient mapping [18,39]. By the first-order
optimality conditions for problem (15), there exists a subgradient s(i) ∈ ∂�i(x(i) + (h(x))(i))
(where ∂�i(·) denotes the subdifferential of �i(·)) such that

(∇f (x))(i) + viBi(h(x))
(i) + s(i) = 0. (18)

We define the block composite gradient mapping as

(g(x))(i) := −viBi(h(x))
(i), i = 1, . . . , n. (19)

From (18) and (19) we obtain

− (∇f (x))(i) + (g(x))(i) ∈ ∂�i(x
(i) + (h(x))(i)), i = 1, . . . , n. (20)
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Optimization Methods & Software 9

If we let g(x) :=∑n
i=1 Ui(g(x))(i) (compare (2) and (19)), then since � is separable, (20) can be

written as

− ∇f (x)+ g(x) ∈ ∂�(x+ h(x)). (21)

Moreover

‖h(x)‖2
v
(5)=

n∑
i=1

vi‖(h(x))(i)‖2
(i)

(19)=
n∑

i=1

1

vi
‖B−1

i (g(x))(i)‖2
(i)

(4)+(5)= (‖g(x)‖∗v)2, (22)

and

〈g(x), h(x)〉 (3)+(19)= −‖h(x)‖2
v
(22)= −(‖g(x)‖∗v)2. (23)

Finally, note that using (4), (5), (19) and (22), we get

‖x+ h(x)− y‖2
v = ‖x− y‖2

v + 2〈g(x), y− x〉 + (‖g(x)‖∗v)2. (24)

4.2 Main technical lemmas

The following result concerns the expected value of a block-separable function when a random
subset of coordinates is updated.

Lemma 5 (Theorem 4 in [24]) Suppose that �(x) =∑n
i=1�i(x(i)). For any x, h ∈ RN , if we

choose a uniform sampling Ŝ, then letting α = E[|Ŝ|]/n, we have

E[�(x+ (h(x))[Ŝ])] = α�(x+ h(x))+ (1− α)�(x). (25)

The following technical lemma plays a central role in our analysis. The result can be viewed
as a generalization of Lemma 3 in [39], which considers the serial case (α = 1), to the parallel
setting.

Lemma 6 Let x ∈ dom F and x+ = x+ (h(x))[Ŝ], where Ŝ is any uniform sampling. Then for
any y ∈ dom F,

E[F(x+)+ μ�+1
2 ‖x+ − y‖2

v] ≤ F(x)+ μ� + 1

2
‖x− y‖2

v

− α
(

F(x)− F(y)+ μf + μ�
2
‖x− y‖2

v

)
. (26)

Moreover,

(i)

E[F(x+)] ≤ F(x)− α
2
(μ� + 1)‖h(x)‖2

v = F(x)− α
2
(μ� + 1)(‖g(x)‖∗v)2, (27)

(ii)

E[F(x+)+ 1
2‖x+ − y‖2

v] ≤ F(x)+ 1
2‖x− y‖2

v − α(F(x)− F(y)). (28)

Proof We first note that

E[‖x+ − y‖2
v] = α‖x+ h(x)− y‖2

v + (1− α)‖x− y‖2
v . (29)

This is a special case of the identity E[ψ(u+ h[Ŝ])] = αψ(u+ h)+ (1− α)ψ(u) (see Lemma 5,
which holds for block separable functions ψ), with ψ(u) = ‖u‖2

v , u= x− y and h = h(x).
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10 R. Tappenden et al.

Further, for any h for which x+ h ∈ dom �, we have

E[F(x+ h[Ŝ])]
(30)≤ (1− α)F(x)+ αHv(x, h). (30)

This was established in [24, Section 5]. The claim now follows by combining (30), used with
h = h(x), and the following estimate of Hv(x, h(x)):

Hv(x, h(x))
(4)= f (x)+ 〈∇f (x), h(x)〉 + 1

2
‖h(x)‖2

v +�(x+ h(x))

(8)+(21)≤ f (y)+ 〈∇f (x), x− y〉 − μf

2
‖y− x‖2

v + 〈∇f (x), h(x)〉 + 1

2
‖h(x)‖2

v

+�(y)+ 〈−∇f (x)+ g(x), x+ h(x)− y〉 − μ�
2
‖x+ h(x)− y‖2

v

= F(y)+ 〈g(x), x− y〉 + 〈g(x), h(x)〉 − μf

2
‖y− x‖2

v

− μ�
2
‖x+ h(x)− y‖2

v +
1

2
‖h(x)‖2

v

(23)= F(y)+ 〈g(x), x− y〉 − μf

2
‖y− x‖2

v −
μ�

2
‖x+ h(x)− y‖2

v −
1

2
(‖g(x)‖∗v)2

(24)= F(y)+ 1− μf

2
‖y− x‖2

v −
μ� + 1

2
‖x+ h(x)− y‖2

v

29= F(y)+ 1− μf

2
‖y− x‖2

v −
μ� + 1

2α
(E[‖x+ − y‖2

v]− (1− α)‖x− y‖2
v).

Part (i) follows by letting x= y and using (29) and (23). Part (ii) follows as a special case by
choosing μf = μ� = 0. �

Property (i) means that function values F(xk) of PCDM are monotonically decreasing in
expectation when conditioned on the previous iteration.

4.3 Proof of Theorem 3

Proof Let x∗ be an arbitrary optimal solution of (1). Let r2
k = ‖xk − x∗‖2

v , gk = g(xk), hk =
h(xk) and Fk = F(xk). Notice that xk+1 = xk + (hk)[Sk ]. By subtracting F∗ from both sides of (28),
we get

E[ 1
2 r2

k+1 + Fk+1 − F∗ | xk] ≤ ( 1
2 r2

k + Fk − F∗)− α(Fk − F∗),

and taking expectations with respect to the whole history of realizations of Sl, l ≤ k gives us

E[ 1
2 r2

k+1 + Fk+1 − F∗] ≤ E[ 1
2 r2

k + Fk − F∗]− αE[Fk − F∗].

Applying this inequality recursively and using the fact that E[Fj] is monotonically decreasing for
j = 0, 1, . . . , k + 1 (27), we obtain

E[Fk+1 − F∗] ≤ E
[

1

2
r2

k+1 + Fk+1 − F∗

]
≤ 1

2
r2

0 + F0 − F∗ − α
k∑

j=0

(E[Fj]− F∗)

≤ 1

2
r2

0 + F0 − F∗ − α(k + 1)(E[Fk+1]− F∗),
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Optimization Methods & Software 11

which leads to (16).
We now prove (17) under the strong convexity assumption μf + μ� > 0. From (26) we get

E
[

1+ μ�
2

r2
k+1 + Fk+1 − F∗ | xk

]
≤
(

1+ μ�
2

r2
k + Fk − F∗

)
− α

(
μf + μ�

2
r2

k + Fk − F∗

)
.

(31)
Notice that for any 0 ≤ γ ≤ 1 we have

μf + μ�
2

r2
k + Fk − F∗ = γ

(
μf + μ�

2
r2

k + Fk − F∗

)
+ (1− γ )

(
μf + μ�

2
r2

k + Fk − F∗

)
(9)+(10)≥ γ

(
μf + μ�

2
r2

k + Fk − F∗

)
+ (1− γ )(μf + μ�)r2

k .

Choosing

γ ∗ := 2(μf + μ�)
1+ μf + 2μ�

∈ [0, 1] (32)

we obtain
μf + μ�

2
r2

k + Fk − F∗
(32)≥ γ ∗

(
1+ μ�

2
r2

k + Fk − F∗

)
.

Combining the inequality above with (31) gives

E
[

1+ μ�
2

r2
k+1 + Fk+1 − F∗ | xk

]
≤ (1− γ ∗α)

(
1+ μ�

2
r2

k + Fk − F∗

)
. (33)

It now only remains to take expectation in xk on both sides of (33), and (17) follows. �

5. High probability convergence result

Theorem 3 showed that Algorithm 1 converges to the optimal solution of (1) in expectation. In
this section we derive iteration complexity bounds for PCDM for obtaining an ε-optimal solution
with high probability. Let us mentioned that all existing [17,23,24,39] high-probability results for
serial or parallel CD require a bounded levelset, that is, they assume that

L(x0) = {x ∈ RN : F(x) ≤ F(x0)} (34)

is bounded. In Section 5.1 we present the first high probability result in the case when the
levelset can be unbounded (Corollaries 9 and 11). Then in Section 5.2 we derive a sharper
high-probability result for PCDM [24] if a bounded levelset is assumed (i.e. L(x0) is bounded).

5.1 Case 1: Possibly unbounded levelset

We begin by presenting Lemma 7, which will allow us to state the first high-probability result
(Corollary 9) for a PCDM applied to a convex function that does not require the assumption of a
bounded levelset.

Lemma 7 Let x0 be fixed and {xk}∞k=0 be a sequence of random vectors in RN such that the
conditional distribution of xk+1 on xk is the same as conditional distribution of xk+1 on the whole
history {xi}∞i=0 (hence we have Markov sequence). Define rk = φr(xk) and ξk = φξ (xk) where
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12 R. Tappenden et al.

φr,φξ : RN → R are non-negative functions. Further, assume that the following two inequalities
hold for any k

E[ 1
2 rk+1 + ξk+1 | xk] ≤ 1

2 rk + (1− ζ )ξk , (35)

E[ξk+1] ≤ ξk (36)

with some known ζ ∈ (0, 1). For stopping tolerance ε > 0 and confidence level ρ ∈ (0, 1), if

K ≥ 1

ζ

(
1
2 r0 + ξ0

ρε
− 1

)
, (37)

then

P(ξK < ε) ≥ 1− ρ.

Proof Using (35) we have

E[ξk] ≤ E
[

1

2
rk + ξk

]
≤ 1

2
r0 + ξ0 − ζ

k−1∑
j=0

E[ξj]
(36)≤ 1

2
r0 + ξ0 − kζE[ξk].

Hence

E[ξk] ≤
1
2 r0 + ξ0

1+ kζ
. (38)

Now, from the Markov inequality we have

P(ξK ≥ ε) ≤ E[ξK]

ε

(38)≤ 1

ε

1
2 r0 + ξ0

1+ Kζ

(37)≤ ρ.

�

Naturally, the result O(1/ερ) is very pessimistic and hence one may be concerned about
tightness of the lemma. The following example shows that Lemma 7 is, indeed, tight, that
is, the bound on K cannot be improved much. (We construct an example that, under the
assumptions (35) and (36) (i.e. using the analysis of [39]), requires O(1/ερ) iterations.)

Example 8 (Tightness of Lemma 7) Let ζ ∈ (0, 1) and ε > 0. Fix some small value of ρ ∈
(0, 1) and assume that (r1, ξ1) have following distribution:

(r1, ξ1) =
{
(0, 0), with probability 1− ρ
(2ϑ , ε), otherwise,

where ϑ is chosen in such a way that (35) is satisfied. Then, we can chose it as follows

ρ(ϑ + ε) = 1

2
r0 + (1− ζ )ξ0 ⇒ ϑ =

1
2 r0 + (1− ζ )ξ0

ρ
− ε.

Define, for k = 1, 2, 3, . . .

(rk+1, ξk+1) =
{
(rk − 2ζ ε, ε), if rk ≥ 2ζ ε

(0, 0), otherwise.
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Optimization Methods & Software 13

If

K :=
⌊
ϑ

ζε

⌋
= 1

ζ

⌊
1
2 r0 + (1− ζ )ξ0

ρε
− 1

⌋
,

then P(ξK ≥ ε) ≤ ρ.

Corollary 9 (High probability result without bounded levelset) Using Lemma 7 with 1
2 rk =

φr(xk) = 1
2‖xk − x∗‖2

v , ξk = φξ (xk) = F(xk)− F∗ and ζ = α = E|Ŝ|/n then we obtain that if

K ≥ n

E|Ŝ|

(
1
2‖x0 − x∗‖2

v + F(x0)− F∗
ρε

− 1

)
(39)

then P(F(xK)− F∗ < ε) ≥ 1− ρ.

The negative aspect of Corollary 9 is the fact that one needs O(1/ρ) iterations whereas
classical results under the bounded levelset assumption require only O(log(1/ρ)) iterations.

Multiple run strategy Now we present a restarting strategy (which uses some of the ideas in
[23]) that will give us a high probability result O(log(1/ρ)).

Lemma 10 Let {xk}∞k=0, {rk}∞k=0 and {ξk}∞k=0 be the same as in Lemma 7, with ζ ∈ (0, 1), ε > 0
and ρ ∈ (0, 1). Assume that we observe r = �log(1/ρ)� different random and independent real-
izations of this sequence always starting from x0, that is, for any k we have observed x1

k , x2
k , . . . , xr

k.
Then if each realization continues for

K ≥ 1

ζ

(
1
2 r0 + ξ0

ε(1/e)
− 1

)

iterations, then

P
(

min
l∈{1,2,...,r}

ξ l
K < ε

)
≥ 1− ρ.

Proof Because the realization are independent then for any l ∈ {1, 2, . . . , r} we have from
Lemma 7 that P(ξ l

K ≥ ε) ≤ 1/e. Hence

P
(

min
l∈{1,2,...,r}

ξ l
K ≥ ε

)
= P

(
ξ 1

K ≥ ε, ξ 2
K ≥ ε, . . . , ξ r

K ≥ ε
) = ∏

l∈{1,2,...,r}
P(ξ l

K ≥ ε) ≤
(

1

e

)r

≤ ρ.

�

Corollary 11 If we run PCDM r = �log(1/ρ)� many times for K ≥ (n/E[|Ŝ|])(( 1
2‖x0 − x∗‖2

v
+ F(x0)− F∗)/(ε(1/e)− 1)) each, then the best solution we get, indexed l ∈ {1, 2, . . . , r},
satisfies P(F(xl

K)− F∗ < ε) ≥ 1− ρ. Hence, in total we need �(n/E[|Ŝ|])(( 1
2‖x0 − x∗‖2

v +
F(x0)− F∗)/(ε(1/e)− 1))��log(1/ρ)� ∼ O(log(1/ρ)) iterations of PCDM.

Remark 12 In Lemma 10 and Corollary 11, each run in the multiple restart strategy must begin
from the same initial point x0; this allows us to establish the O(log(1/ρ)) complexity rate for
PCDM without a bounded levelset assumption. A natural question that arises is: ‘Can we remove
the assumption that all runs begin from the same initial point x0?’ It may be possible for one
to establish such a result, but this is an open problem. One of the issues with removing the
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14 R. Tappenden et al.

assumption that all runs begin at x0 is that the function values in PCDM reduce in expectation.
Thus, it is possible that a run could end at a point with a higher function value than F(x0), and if
a new run were to begin at this resulting point, the complication of beginning from a point with
a higher function value would need to be overcome.

5.2 Case 2: Bounded levelset

The next result, Theorem 13, obtains the rate O(log(1/ρ)), under the assumption that the levelset
is bounded. However, some results will hold only for a modified version of Algorithm 1. In
particular, we now present Algorithm 2.

Algorithm 2 PCDM-M: Parallel Coordinate Descent Method [24]

1: choose initial point x0 ∈ RN

2: for k = 0, 1, 2, . . . do
3: randomly choose set of blocks Sk ⊆ {1, . . . , n}
4: for i ∈ Sk (in parallel) do

5: compute h(xk)
(i) = arg mint∈RNi

{
〈(∇f (xk))

(i), t〉 + vi
2 ‖t‖2

(i) +�i(x
(i)
k + t)

}
6: end for
7: if F(xk +

∑
i∈Sk

Uih(xk)
(i)) ≤ F(x0) then

8: apply the update: xk+1 ← xk +
∑

i∈Sk
Uih(xk)

(i)

9: else
10: set xk+1 ← xk

11: end if
12: end for

Notice that the first 6 steps of Algorithm 2 are exactly the same as those of Algorithm 1.
However, Algorithm 2 forces the iterates to stay in L(x0) (steps 7–11).

Distance to the optimal solution set. In order to obtain some of the results in this Section we
need the distance to the optimal solution set, inside the levelset, to be finite, that is,

Rv,0 := max
x∈L(x0)

{
max
x∗∈X ∗
‖x− x∗‖v

}
<∞. (40)

Note that for any x∗ ∈ X ∗ (where X ∗ is a set of optimal solutions) it trivially holds that ‖x0 −
x∗‖v ≤ Rv,0. Moreover, for some problems the levelset can be unbounded, in which case Rv,0 is
infinite, whereas if X ∗ �= ∅ then ‖x0 − x∗‖ is always finite.

Theorem 13 Let {xk}k≥0 be a sequence of iterates generated by

• PCDM (Algorithm 1) if F is strongly convex with μf (w)+ μ�(w) > 0 or F is convex and a
monotonic ESO is used,
• PCDM-M (Algorithm 2) if F is convex and a non-monotonic ESO is used.

Let 0 < ε < F(x0)− F∗ and ρ ∈ (0, 1) be chosen arbitrarily. Define α = E[|Ŝ|]/n, and let

c := max{R2
v,0, F(x0)− F∗}. (41)

Then
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Optimization Methods & Software 15

(i) if F is convex and we choose

K ≥ 2c

αε

(
1+ log

(
1
2‖x0 − x∗‖2

v + F(x0)− F∗
2cρ

))
+ 2− 1

α
, (42)

(ii) or if F is strongly convex with μf + μ� > 0 and we choose

K ≥ 1+ μf + 2μ�
2α(μf + μ�) log

(
1+μ�

2 ‖x0 − x∗‖2
v + F(x0)− F∗
ερ

)
(43)

then

P(F(xK)− F∗ < ε) ≥ 1− ρ. (44)

Proof The proof is similar to that of [23, Theorem 1], so is omitted for brevity. �

In this section we have presented three new convergence results for PCDM. The first result
shows that, combining the analysis techniques in [17,24,39], PCDM obtains a O(1/ρ) rate when
the levelset is unbounded for a single run strategy. The second result shows that PCDM obtains
a O(log(1/ρ)) rate for a restarting strategy.

On the other hand, if the levelset is bounded, we have shown that PCDM achieves a rate
of O(log(1/ρ)). It is still an open problem to determine whether PCDM can achieve a rate of
O(log(1/ρ)) for a single run strategy when the levelset is unbounded. Note that Example 8
shows that we cannot achieve a rate of O(log(1/ρ)) using the approach in Lemma 7, but it is not
a general counterexample. Thus, it may be possible to prove a O(log(1/ρ)) rate for PCDM with
an unbounded levelset using different arguments from that made in Lemma 7, but currently we
are unsure how to show this.

6. Discussion

6.1 Comparison of the convergence rate results

We have the following remarks on comparing the results in Theorem 3 with those in [24].

6.1.1 Comparison in the convex case.

For problem (1), an expected-value type of convergence rate is not presented explicitly in [23],
although it can be derived from the following relation (that is stated in [24] and proved in [23,
Theorem 1]):

E[F(xk+1)− F∗ | xk] ≤ (F(xk)− F∗)− α (F(xk)− F∗)2

2c
, ∀k ≥ 0, (45)

where c is defined in (41). Taking expectation on both sides of (45) and using a similar argument
as that in [17], gives

E[F(xk)− F∗ | xk−1] ≤ 2c(F(x0)− F∗)
2c+ αk(F(x0)− F∗)

, ∀k ≥ 0. (46)

Let a and b denote the right-hand side of (16) and (46) respectively. By the definition of c and
the relation ‖x0 − x∗‖v ≤ Rv,0, we see that when k is sufficiently large,

b

a
≈ 4c

‖x0 − x∗‖2
v + 2(F(x0)− F∗)

≥ 4

3
. (47)
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16 R. Tappenden et al.

6.1.2 Comparison in the strongly convex case.

For the special case of (1) where at least one of f and � is strongly convex (i.e. μf + μ� > 0),
the authors of [24] showed that for all k ≥ 0,

E[F(xk)− F∗ | xk−1] ≤
(

1− αμf + μ�
1+ μ�

)
(F(x0)− F∗). (48)

It is not hard to show that
2(μf + μ�)

1+ μf + 2μ�
>
μf + μ�
1+ μ� . (49)

Recall that γ is defined in (32). Then it follows that for sufficiently large k one has

(1− αγ )k
(

1+ μ�
2

R2
0 + F(x0)− F∗

)
(9)≤ (1− αγ )k

(
1+ μf + μ�
μf + μ�

)
(F(x0)− F∗).

6.2 Comparison of the iteration complexity results

Here we compare the results in Theorem 13 with those in [24].

Comparison in the convex case For any 0 < ε < F(x0)− F∗ and ρ ∈ (0, 1), Richtárik and
Takáč [24] showed that (44) holds for all k ≥ K̃ where

K̃ := 2c

αε

(
1+ log

(
1

ρ

))
+ 2− 2c

α(F(x0)− F∗)
. (50)

Using the definition of c and the fact that ‖x0 − x∗‖v ≤ Rv,0 we observe that

τ := ‖x0 − x∗‖2
v + 2ξ0

4c
≤ 3

4
. (51)

By the definitions of K and K̃ we have that for sufficiently small ε > 0,

K − K̃ ≈ 2c log τ

αε
≤ −2c log(4/3)

αε
. (52)

In addition, ‖x0 − x∗‖v can be much smaller than Rv,0 and thus τ can be very small. It follows
from the above that K can be significantly smaller than K̃.

Comparison in the strongly convex case In the strongly convex case (i.e. μf (w)+ μ�(w) > 0),
[24] showed that (44) holds for all k ≥ K̂ where

K̂ := 1

α

1+ μ�(w)
μf (w)+ μ�(w) log

(
F(x0)− F∗

ερ

)
.

We can see that for ρ or ε sufficiently small we have

K

K̂
≤ 1+ μf (w)+ μ�(w)

2(1+ μ�(w)) ≤ 1, (53)

because μf ≤ 1, which demonstrates that K is smaller than K̂.
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Table 3. Approaches used in the numerical experiments.

Name v Note

BKBG vBKBG = L This is naïve approach, which was proposed in [1] and [22].
Note that this is not ESO.

RT-P vRT−P =
(

1+ (ω − 1)(τ − 1)

max{1, n− 1}
)

L Theorem A6, originally derived in [24].

RT-D vRT−D =
(

1+ (σ − 1)(τ − 1)

max{1, n− 1}
)

L Derived in [25] as a special case for C= 1.

FR vFR = L̂ Theorem A8, proposed in [3] and generalized in this paper
(Theorem A.7).

NC vNC = L̃ Theorem A9, proposed in [15].

7. Numerical experiments

In this Section we present preliminary computational results. The purpose of these experiments
is to provide a numerical comparison of the performance of PCDM, under the different ESOs
summarized in Appendix A.2.

Least squares. Consider the following convex optimization problem

min
x∈RN

1

2
‖Ax− b‖2

2, (54)

where A ∈ R8·103×2·103
. Each row has between 1 and ω = 20 non-zero elements (uniformly at

random). For simplicity, we normalize (in �2 norm) all the columns of A. The value of σ =
λmax(ATA) = 10.48. We have compared five different approaches which are given in Table 3.
Parameter τ = 512 and hence 1+ (ω − 1)(τ − 1)/max{1, n− 1} = 5.856 for RT-P (Richtárik-
Takáč-Parallel [24]) and 1+ (σ − 1)(τ − 1)/max{1, n− 1} = 3.424 for RT-D (Richtárik-Takáč-
Distributed [25]) approach. The distribution of vectors v can be found in Figure 1 (right). Figure 1
shows the evolution of F(xk)− F∗ for all five methods. Note that the BKBG [1,22] did not
converge. The speed of RT-P, RT-D and FR [3] is quite similar and NC [15] is approximately 3
times worse because vNC ≈ 3.22vFR.

SVM dual. In this experiment we compare 4 methods from Table 3 (we have excluded the naïve
approach because it usually diverges for large τ ) on a real-world data set astro-ph, which consists
of data from papers in physics [30]. This data set has 29,882 training samples and a total of 99,757
features. This data set is very sparse. Indeed, each sample uses on average only 77.317 features
and each sample belongs to one of two classes. Hence, one might be interested in finding a
hyperplane that separates the samples into their corresponding classes. The optimization problem
can be formulated as follows:

min
w

P(w) := λ

2
‖w‖2

2 +
1

n

N∑
i=1

max{0, 1− y(i)aT
(i)w}, (55)

where y(i) ∈ {−1, 1} is the label of the class to which sample a(i) ∈ Rm belongs.
While problem formulation (55) does not fit our framework (the non-smooth part is non-

separable) the dual formulation (see [5,29,31]) does:

max
x∈[0,1]N

D(x) := 1

N
1Tx− 1

2λN2
xTQx, (56)
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18 R. Tappenden et al.

where Q ∈ RN×N , Qi,j = y(i)y(j)〈a(i), a(j)〉. In particular, problem formulation (56) is the sum of a
smooth term, and the restriction x ∈ [0, 1]N can be formulated as a (block separable) indicator
function. In this data set, each sample is normalized, hence L = (1, . . . , 1)T.

For any dual feasible point x we can obtain a primal feasible point w(x) =
(1/λn)

∑N
i=1 x(i)y(i)a(i). Moreover, from strong duality we know that if x∗ is an optimal solu-

tion of (56), then w∗ = w(x∗) is optimal for problem (55). Therefore, we can associate a gap
G(x) = P(w(x))− D(x) to each feasible point x, which measures the distance of the objective
value from optimality. Clearly G(x∗) = 0.

Figure 2 (left) shows the evolution of G(xk) as the iterates progress, and the distribu-
tion of an ESO parameter v for different choice of τ ∈ {32, 256}. Naturally, as τ increases,
the distribution of v, v̂ shifts to the right, whereas the distribution of ṽ is not influenced
by changing τ . The value of important parameters for other methods are σ = 287.273
and ω = 29881. For τ = 32 we have 1+ (ω − 1)(τ − 1)/max{1, n− 1} = 31.998 for RT-
P and 1+ (σ − 1)(τ − 1)/max{1, n− 1} = 1.296 for RT-D, and for τ = 256 we have 1+
(ω − 1)(τ − 1)/max{1, n− 1} = 255.991 for RT-P and 1+ (σ − 1)(τ − 1)/max{1, n− 1} =
3.443 for RT-D. Again the best performance is given by RT-D which requires knowledge of
σ . If we do not want to estimate the parameter σ then we should use FR. If was shown in [3] that
for a quadratic objective function FR is always better than RT-P.

Underdetermined Least Squares. Here we perform a numerical experiment on an underde-
termined least squares problem; such problems have the property that the initial levelset is
unbounded. The work in Section 5.1 establishes iteration complexity results for PCDM applied
to problems with an unbounded levelset, which motivates us to investigate them here. In partic-
ular, we consider a problem of the form (54), where the sparse matrix A has m = 212 rows and
n = 213 columns, (so m<n), and there are approximately 20 non-zeros in each column. We also
suppose that we are in possession of a vector xt that is a solution of problem (54). That is, we
form a vector xt ∈ Rn and compute a (noiseless) data vector b = Axt ∈ Rm. This ensures that the
system of equations is consistent, so that F∗ = 0 here, and we note that there are infinitely many
solutions to this (convex) problem.

We investigate PCDM with a τ -nice sampling, so that the norm weighting vector v is as
described in Row 2 of Table 3 (see also Theorem A6) with L = (‖a1‖2

2, . . . , ‖an‖2
2)

T, where
a1, . . . , an are the columns of A. We simulated a parallel set-up where we vary the number of

Figure 1. Evolution of F(xk)− F∗ for 5 different methods (left) and distribution of v (right).
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Optimization Methods & Software 19

Figure 2. Comparison of evolution of G(xk) for various methods and the distribution of v.

processors available from τ = 512 to τ = 1. For a fixed number of τ processors, we form 100
problem instances (i.e. we form 100 matrices A and data vectors b) and we report the average
results in Table 4. In each case we use a randomly generated starting point x0.

The columns of Table 4 are as follows. In the first column we state the number of processors,
and in the second column we report the average degree of separability ω over the 100 runs (see
Definition A.1). In columns 3 and 4 we report the average values of F(x0) (recall that F∗ = 0, so

Table 4. Average results for the experiment investigating problems where the initial levelset is unbounded.

τ Average ω Average F0 Average ||x0 − x∗||2v Average k Theoretical K

512 38.12 4.84× 102 1.60× 103 1.66× 103 3.34× 108

256 37.84 4.97× 102 1.06× 103 2.23× 103 4.99× 108

128 38.09 4.87× 102 7.65× 102 3.34× 103 8.02× 108

64 38.07 5.09× 102 6.51× 102 5.87× 103 1.48× 109

32 37.75 5.02× 102 5.72× 102 9.83× 103 2.75× 109

16 38.13 4.94× 102 5.28× 102 1.94× 104 5.24× 109

8 37.97 4.96× 102 5.10× 102 3.73× 104 1.03× 1010

4 38.09 5.03× 102 5.09× 102 7.10× 104 2.01× 1010

2 37.89 4.98× 102 4.99× 102 1.44× 105 4.09× 1010

1 37.96 5.01× 102 5.02× 102 4.85× 105 8.22× 1010
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20 R. Tappenden et al.

ξ0 ≡ F(x0)− F∗ = F(x0)), and ‖x0 − x∗‖2
v , respectively. Column 5 gives the average number of

iterations k (over 100 runs) required by PCDM to converge to an ε = 10−4 accuracy solution. In
the final column we give the number of iterations K predicted by the theoretical bound (39). In
each run, a theoretical bound was computed using the values F0 and ‖x0 − x∗‖2

v and the average
theoretical bound over all 100 runs is reported. For simplicity we computed the bound using
ρ = 1.

Table 4 shows that, while we now have a theoretical bound for the number of iterations needed
by PCDM to obtain an ε-optimal solution (with probability exceeding 1− ρ), for this problem
set-up, the bound was pessimistic, and the actual number of iterations required was much smaller
than predicted.
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Notes
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2. A preliminary version of this paper was ready in August 2013.
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[23] P. Richtárik and M. Takáč, Iteration complexity of randomized block-coordinate descent methods for minimizing a
composite function, Math. Program. Ser. A 144 (2014), pp. 1–38.
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A. Appendix. Expected separable overapproximation

A.1 Smoothness assumptions

In this work we assume that the function f is partially separable and smooth, and the purpose of this section is to define
these two concepts. We begin with the definition of partial separability for a smooth convex function, introduced by
Richtárik and Takáč [24].

Definition A.1 (Partial separability [24]) A smooth convex function f : RN → R is partially separable of degree ω if
there exists a collection J of subsets of {1, 2, . . . , n} such that

f (x) =
∑
J∈J

fJ (x) and max
J∈J
|J | ≤ ω, (A1)

where for each J, fJ is a smooth convex function that depends on x(i) for i ∈ J only.

Now we introduce different types of smoothness assumptions for the function f. Each smoothness type gives rise to a
different ESO. Note that all of the following smoothness assumptions are equivalent. That is, if a given function satisfies
one of the assumptions, then there exist constants such that the other assumptions also hold.

The first type of assumption is a classical assumption in the literature [22–24].

Assumption A.2 ((Block) Coordinate-wise Lipschitz continuous gradient) The gradient of f is block Lipschitz,
uniformly in x, with positive constants L1, . . . , Ln. That is, for all x ∈ RN , i = 1, . . . , n and h ∈ RNi we have

‖(∇f (x+ Uih))
(i) − (∇f (x))(i)‖∗(i) ≤ Li‖h‖(i), (A2)

where ∇f (x) denotes the gradient of f and

(∇f (x))(i) = UT
i ∇f (x) ∈ RNi . (A3)

The second type of assumption we make is that each function in the sum (A1) has a Lipschitz continuous gradient.
Such an assumption is made, for example, in [7,8,13,15]. Moreover, we allow each function to have Lipschitz continuous
gradient with a different constant (which was also assumed in [15]).

Assumption A.3 (Lipschitz continuous gradient of sub-functions) The gradient of fJ , J ∈ J has a Lipschitz continuous
gradient, uniformly in x, with positive constant L̃J with respect to some Euclidean norm ‖ · ‖(J̃). That is, for all x ∈ RN ,

J ∈ J and h ∈ RN we have
‖∇fJ (x+ h)− ∇fJ (x)‖∗(J̃) ≤ L̃J‖h‖(J̃). (A4)

Note that this smoothness assumption is more general than that made in [15] because of the possibility of choosing
general norms of the form ‖ · ‖(J̃). Further, Assumption A.3 generalizes the smoothness assumptions imposed in [1,25].

The third type of assumption we make is that each function in the sum (A1) has coordinate-wise Lipschitz continuous
gradient.

Assumption A.4 ((Block) Coordinate-wise Lipschitz continuous gradient of sub-functions) The gradient of fJ , J ∈ J
is block Lipschitz, uniformly in x, with non-negative constants L̂J ,1, . . . , L̂J ,n. That is, for all x ∈ RN , i = 1, . . . , n, J ∈ J
and h ∈ RNi we have

‖(∇fJ (x+ Uih))
(i) − (∇fJ (x))

(i)‖∗(i) ≤ L̂J ,i‖h‖(i). (A5)

One can think of Assumptions A.2 and A.3 as being ‘opposite’ to each other in the following sense. If we associate
the block coordinates with the columns, and the functions with the rows, we see that Assumption A.2 captures the
dependence columns-wise, while Assumption A.3 captures the dependence row-wise. Hence, Assumption A.4 can be
thought of as an element-wise smoothness assumption.

To make this more concrete, we present an example that demonstrates how to compute the Lipschitz constants for a
quadratic function, under each of the three smoothness assumptions stated above.

Example A.5 Let the function f (x) = 1
2 ‖Ax− b‖22 = 1

2

∑m
j=1(b

(i) −∑n
i=1 aj,ix(i))2, where A ∈ Rm×n and aj,i is (j, i)th

element of the matrix A. Let us fix all the norms ‖ · ‖(J̃) from Assumption A.3 to be standard Euclidean norms. Then one
can easily verify that Equations (A2), (A4) and (A5) are satisfied with the following choice of constants

Li =
m∑

j=1

a2
j,i, L̃j =

n∑
i=1

a2
j,i, L̂j,i = a2

j,i.

In words, Li is equal to square of the �2 norm of i th column, L̃j is equal to the square of the �2 norm of the j th row and
L̂j,i is simply the square of the (j, i) th element of the matrix A.
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One could be misled into believing that Assumption A.4 is the best because it is the most restrictive. However, while
this is true for the quadratic objective shown in Example A.5, for a general convex function, Assumption A.4 can give
Lipschitz constants that lead to worse ESO bounds (see Example A.10 for further details).

A.2 Expected separable overapproximation

Now, it is clear that the update h in Algorithm 1 depends on the ESO parameter v. This shows that the ESO is not just
a technical tool; the parameters are actually used in Algorithm 1. Therefore we must be able to obtain/compute these
parameters easily. We now present the following three theorems, namely Theorems A6, A8 and A9, that explain how to
obtain the v parameter for a τ -nice sampling, under different smoothness assumptions.

Theorem A.6 (ESO for a τ -nice sampling, Theorem 14 in [24]) Let Assumption A.2 hold with constants L1, . . . , Ln

and let Ŝ be a τ -nice sampling. Then f : RN → R admits an ESO with respect to the sampling Ŝ with parameter

v =
(

1+ (ω − 1)(τ − 1)

max{1, n− 1}
)

L,

where L = (L1, . . . , Ln)
T.

The obvious disadvantage of Theorem A.6 is the fact that v in the ESO, depends on ω. (When ω is large, so too is v.)
One can imagine a situation in which ω is much larger than the average cardinality of J ∈ J , resulting in a large v. For
example, if |J | for J ∈ J is small for all but one function.

With this in mind, we introduce a new theorem that shows how the ESO in Theorem A.6 can be modified if we know
that Assumption A.4 holds. In this case, the role of ω is slightly suppressed.

Theorem A.7 (ESO for a doubly uniform sampling) Let Assumption A.4 hold with constants L̂J ,i, J ∈ J , i ∈
{1, . . . , n} and let Ŝ be a doubly uniform sampling. Then f : RN → R admits an ESO with respect to the sampling Ŝ
with parameter

v̄ =
∑
J∈J

⎛
⎜⎝1+

(
E[|Ŝ|2]
E[|Ŝ|] − 1

)
(|J | − 1)

max{1, n− 1}

⎞
⎟⎠ (L̂J ,1, . . . , L̂J ,n)

T. (A6)

Proof From Theorem 15 in [24] we know that for each function fJ , J ∈ J we have

(fJ , Ŝ) ∼ ESO

⎛
⎜⎝1+

(
E[|Ŝ|2]
E[|Ŝ|] − 1)(|J | − 1)

max{1, n− 1} , (L̂J ,1, . . . , L̂J ,n)
T

⎞
⎟⎠ .

Now, using Theorem 10 in [24], which deals with conic combinations of functions, we have⎛
⎝∑

J∈J
fJ , Ŝ

⎞
⎠ ∼ ESO

⎛
⎜⎝1,

∑
J∈J

⎛
⎜⎝1+

(
E[|Ŝ|2]
E[|Ŝ|] − 1)(|J | − 1)

max{1, n− 1}

⎞
⎟⎠ (L̂J ,1, . . . , L̂J ,n)

T

⎞
⎟⎠ .

�

The following Theorem is a special case of Theorem A.7 for a τ -nice sampling.

Theorem A.8 (ESO for a τ -nice sampling, Theorem 1 in [3]) Let Assumption A.4 hold with constants L̂J ,i, J ∈ J , i ∈
{1, . . . , n} and let Ŝ be a τ -nice sampling. Then f : RN → R admits an ESO with respect to the sampling Ŝ with parameter

v̂ =
∑
J∈J

(
1+ (τ − 1)(|J | − 1)

max{1, n− 1}
)
(L̂J ,1, . . . , L̂J ,n)

T. (A7)

Proof Notice that, if Ŝ is τ -nice sampling, then E[|Ŝ|] = τ and E[|Ŝ|2] = τ and the result follows from Theorem
A.7. �

The following theorem explains how to compute an ESO if Assumption A.3 holds. This ESO was proposed and
proved in [15].
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Theorem A.9 (ESO for τ -nice sampling, Lemma 1 in [15]) Let Assumption A.3 hold with constants L̃J , J ∈ J and let
Ŝ be a τ -nice sampling. Then f : RN → R admits an ESO with respect to the sampling Ŝ with parameter

ṽ =
∑
J∈J

L̃J e[J],

where e = (1, . . . , 1)T ∈ Rn. Moreover, this ESO is monotonic.

As it is shown in Theorem 3 the speed of the algorithm (number of iterations needed to solve the problem) depends on
ESO parameter v via the term ‖x0 − x∗‖2v . Moreover, for a given objective function and sampling Ŝ, there may be more
than one ESO that could be chosen. Suppose that we have two ESOs to choose from, characterized by two parameters
va and vb respectively, and let va < vb. In this case, the ESO characterized by va will give us (theoretically) faster
convergence, and so it is obvious that this ESO should be used. Furthermore, va is used as a parameter in Algorithm 1,
and so, intuitively, this faster theoretical convergence, is expected to lead to fast practical performance.

In Section 6.1 in [3] it was shown that for a quadratic objective, the ESO in Theorem A.6 is always worse than the
ESO from Theorem A.8. However, for a general objective the opposite can be true. The following simple example shows
that the ESO from Theorems A.8 and A.9 can be m times worse than the ESO from Theorem A.6.

Example A.10 Consider the function

f (x) =
m∑

j=1

log(1+ e−x+ζ j)︸ ︷︷ ︸
fj(x)

,

where ζ is large. It is clear that Lj is

Lj = max
x
(fj(x))

′′ = max
x

ex+ζ j

(eζ + ex)2
= 1

4
.

Therefore, from Theorem A.9, we obtain ṽ = L̃ = m/4.
On the other hand, Theorem A.6 produces an ESO with

v = max
x
(f (x))′′ ≈ 1

4
,

provided that ζ is large, for example, ζ = 100. Hence, in this case, the ESO from Theorem A.6 will lead to an algorithm
that is approximately m times faster than if the ESOs from Theorems A8 or A9 were used.

Remark A thorough discussion of the ESO is presented in [24, Section 4]. Moreover, [24, Section 5.5] presents a list of
parameters v associated with a particular f and sampling scheme Ŝ that give rise to an ESO. Indeed, each of samplings
described in Section 3.1 in this work gives rise to a v for which an ESO exists.
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