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Abstract
The three-class Youden index serves both as a measure of medical test accuracy and a criterion to choose the optimal pair of
cutoff values for classifying subjects into three ordinal disease categories (e.g., no disease, mild disease, advanced disease).
We present a Bayesian nonparametric approach for estimating the three-class Youden index and its corresponding optimal
cutoff values based on Dirichlet process mixtures, which are robust models that can handle intricate features of distributions
for complex data. Results from a simulation study are presented and an application to data from the Trail Making Test to
assess cognitive impairment in Parkinson’s disease patients is detailed.
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1 Introduction
Accurate diagnosis of disease is of fundamental importance in clinical practice and medical research. The ability of a screening or
diagnostic test to distinguish between different stages or conditions (e.g., disease versus non-disease) should be rigorously evaluated
before a test is routinely used in practice. The receiver operating characteristic (ROC) curve is a popular tool for evaluating the
discriminatory ability of continuous tests. Two commonly used summary indices of medical test accuracy are the area under the
ROC curve (AUC) and the Youden index (Youden 1950). A useful advantage of the Youden index over the AUC is that, besides
serving as a summary measure of test accuracy, it provides a criterion for choosing the optimal cutoff to screen subjects in practice.
A vast amount of research has been devoted to the ROC curve, AUC, and the Youden index for the case of two diagnostic outcome
categories (for an overview see, for instance, Pepe 1997 and Zhou et al. 2011).

Disease progression is a dynamic process. In clinical practice, physicians often face situations that require decisions among
three (or more) diagnostic alternatives. One or more intermediate transitional stages might exist prior to full disease onset, as is
the case for many neurological disorders. For instance, Nakas et al. (2004) used the average score on 8 neuropsychological tests
as a marker of the presence of HIV-related cognitive dysfunction to discriminate between HIV patients with clinical symptoms of
cognitive dementia, patients exhibiting minor neurological symptoms, and neurologically unimpaired patients. Xiong et al. (2006)
used a battery of psychometric tests to distinguish between subjects with cognitive changes due to normal aging, subjects with
mild cognitive impairment or early stage Alzheimer’s disease, and subjects with severe dementia caused by Alzheimer’s disease. In
this paper we are concerned with the discriminatory ability of the Trail Making Test (a visual search test that has been extensively
used since the 1950s for neuropsychological assessment) to discriminate between Parkinson’s disease subjects who present normal
cognition, mild cognitive impairment, and dementia/severe impairment.
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The focus of this paper is the three-class Youden index and its associated pair of optimal cutoff values, which can be used to place
subjects into one of three disease classes. Parametric and empirical estimators of the three-class Youden index were developed
by Nakas et al. (2010). Luo and Xiong (2013) proposed a kernel-based estimator of the three-class Youden index. We use a
Bayesian nonparametric approach to obtain data-driven inference for the three-class Youden index and its optimal cutoffs, based on
a flexible Dirichlet process mixture (DPM) model. DPMs are robust models that can adapt to intricate distributional features, such as
multimodality, skewness, and/or extreme variability, without the need to know of their existence in advance. Hence, the DPM model
we present is a widely applicable approach to inference for the three-class Youden index that can be used for many populations
and for a large number of diseases and continuous diagnostic measures. Markov chain Monte Carlo (MCMC) simulation is used
to generate samples from posterior distributions and statistical inference does not depend on asymptotic theory or the bootstrap.
Recent developments of Bayesian nonparametric models that have been successfully applied in medical diagnostic research abound
(e.g., Erkanli et al. 2006; Branscum et al. 2008; Gu et al. 2008; Inácio et al. 2011; Inácio de Carvalho et al. 2013; Rodrı́guez and
Martı́nez 2014; Branscum et al. 2015; Hwang and Chen 2015; Inácio de Carvalho et al. 2017).

The remainder of the paper is organised as follows. In the next section we introduce preliminary concepts and terminology.
Section 3 presents our novel approach to estimating the three-class Youden index based on DPM models. The performance of our
method is assessed in Section 4 using simulated data, and Section 5 applies our approach to data from a Trail Making Test of
cognitive impairment in Parkinson’s disease patients. Concluding remarks are provided in Section 6.

2 Preliminaries
We assume that there exists three ordered diagnostic groups (e.g., no disease, mild disease, advanced disease) and that each subject
in the population belongs to one of the groups. A diagnostic test with continuous-scale outcomes is used for classification. Without
loss of generality, we assume that subjects from group 3 tend to have higher test outcomes than subjects in group 2 who tend to have
higher test outcomes than group 1 subjects. Let Y1, Y2, and Y3 be continuous random variables denoting test outcomes in groups
1, 2, and 3, respectively, with F1, F2, and F3 being the corresponding cumulative distribution functions. For any pair of ordered
thresholds (c1, c2), with c1 < c2, the probabilities of correct classification into each group are given by

p1(c1, c2) = Pr(Y1 ≤ c1) = F1(c1),

p2(c1, c2) = Pr(c1 < Y2 ≤ c2) = F2(c2)− F2(c1), and
p3(c1, c2) = Pr(Y3 > c2) = 1− F3(c2).

The three-class Youden index (Nakas et al. 2010; Luo and Xiong 2013) is

YI3 = max
c1<c2

{p1(c1, c2) + p2(c1, c2) + p3(c1, c2)− 1}

= max
c1<c2

{F1(c1) + F2(c2)− F2(c1)− F3(c2)}. (1)

The pair of cutoff values that correspond to the Youden index,

(c∗1, c
∗
2) = arg max{F1(c1) + F2(c2)− F2(c1)− F3(c2)},

is considered optimal and can be used to aid classifying subjects in practice. The three-class Youden index, as defined in (1),
falls in the range of [0, 2]. For a useless diagnostic test in which the three distributions completely overlap, p1(c1, c2) + p2(c1, c2) +
p3(c1, c2) = 1 and thus, YI3 = 0. The other extreme case involves a perfect classifier in which the three distributions are completely
separated and YI3 = 2. Values between 0 and 2 correspond to different degrees of stochastic ordering between F1, F2, and F3 (see
Figure 1 of the Supplementary Material); the closer YI3 is to 2, the better the classification accuracy.

As noted by Nakas et al. (2010), YI3 can be interpreted as the maximum overall correct classification level when equal weight is
given to the three correct classification probabilities. In general, unequal weights can be used to reflect the relative importance of
the three classes, yielding

YIω3 = max
c1<c2

{ω1p1(c1, c2) + ω2p2(c1, c2) + ω3p3(c1, c2)},

where ω1, ω2, and ω3 are weights associated with the classification probabilities. The focus of the rest of the paper is on YI3, but
the methods presented easily extend to YIω3 .
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3 Methods
From equation (1), it follows that an accurate estimate of YI3 can be obtained by accurately estimating the distribution functions
of test outcomes for each group. Therefore, the models used for F1, F2, and F3 must be flexible enough to encompass a wide
range of biomarker distributions. In general, models based on Dirichlet process mixtures of normal distributions are successful at
flexibly representing distribution functions of complex data. To motivate the Bayesian nonparametric mixture model, we start with
a formulation based on finite mixtures of normal distributions, which are known to approximate any continuous distribution (Lo
1984).

Let (y11, . . . , y1n1
), (y21, . . . , y2n2

), and (y31, . . . , y3n3
) be independent (within and between groups) samples of size n1, n2,

and n3 from groups 1, 2, and 3, respectively, with

y11, . . . , y1n1 | F1
iid∼ F1, y21, . . . , y2n2 | F2

iid∼ F2, y31, . . . , y3n3 | F3
iid∼ F3.

A finite normal mixture model posits

Fd(·) =

K∑
k=1

pdkΦ(· | µdk, σ2
dk) for d ∈ {1, 2, 3}, (2)

where Φ(z | µ, σ2) denotes the cumulative distribution function of the normal distribution with mean µ and variance σ2 evaluated
at z. Under this framework, each continuous test outcome arises from one of K mixture components, which each have a specific
mean and variance. For ease of presentation, we assume the number of components K is the same across groups. The model in (2)
can be equivalently written as

Fd(·) =

∫
Φ(· | µ, σ2)dGd(µ, σ2),

where Gd is a discrete (mixing) distribution given by

Gd(·) =

K∑
k=1

pdkδ(µdk,σ2
dk)

(·), (3)

and where δa denotes a point mass at a. To proceed with Bayesian inference, prior distributions are required for the weights, means,
and variances. The vector of weights (pd1, . . . , pdK) is often assigned a Dirichlet prior distribution and, leveraging conjugacy
properties, the prior for (µdk, σ

2
dk), say G∗d(µ, σ

2), often is a normal-inverse-gamma distribution. Placing a prior distribution on
{(pdk, µdk, σ2

dk) | k = 1, . . . ,K} is equivalent to placing a prior distribution on the mixing distributionGd. Finite mixture modeling
provides a very flexible framework for density and distribution function estimation. However, choosing the number of mixture
components K is not a trivial task in general. It is common to use the value that optimizes a selection criterion across candidate
models with different numbers of components. Another approach is to place a prior on K, but this can be computationally difficult
to implement efficiently in practice (e.g., involving reversible jump MCMC).

The powerful alternative we use involves a Bayesian nonparametric Dirichlet process (Ferguson 1973) prior forGd, which induces
a DPM of normal distributions on Fd. In addition to the theoretical and practical advantage of the Dirichlet process (DP) mixture
of normal model having full support on the space of absolutely continuous distributions (Lo 1984), the DP prior has the practical
advantage of automatically determining the number of components that best fits a given data set. We write Gd ∼ DP(αd, G

∗
d) to

indicate that Gd follows a DP prior. The prior mean E(Gd) = G∗d is a parametric base/centering distribution. The positive precision
parameter αd determines, among other important characteristics, the variation ofGd around the prior meanG∗d, with smaller (larger)
values of αd implying higher (lower) uncertainty. According to Sethuraman (1994), the DP prior can be represented as

Gd(·) =

∞∑
k=1

pdkδ(µdk,σ2
dk)

(·), (4)

where (µdk, σ
2
dk)

iid∼ G∗d and pd1 = vd1, pdk = vdk
∏k−1
m=1(1− vdm) for k ≥ 2, with vdk

iid∼ Beta(1, αd), independently of
{(µdk, σ2

dk) | k ≥ 1}. Notice that under Sethuraman’s representation, uncertainty about each weight parameter pdk is induced
from uncertainty about the vdk’s.
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The proposed model for the distribution function of test outcomes in group d is thus given by a DPM of normals, namely

Fd(·) =

∫
Φ(· | µ, σ2)dGd(µ, σ2), Gd ∼ DP(αd, G

∗
d), d ∈ {1, 2, 3}. (5)

Due to conjugacy properties, we takeG∗d(µ, σ
2) = N(µ | aµd

, b2µd
)IG(σ2 | aσ2

d
, bσ2

d
). For ease of posterior simulation and because it

provides a highly accurate approximation, we used a truncated version of the DPM model (Ishwaran and James 2001). Specifically,
the mixing distribution Gd in (4) is replaced with

GLd (·) =

L∑
k=1

pdkδ(µdk,σ2
dk)

(·),

with L being pre-specified and where the pdk’s result from a truncated version of the stick-breaking construction: pd1 = vd1,
pdk = vdk

∏k−1
m=1(1− vdm) for k = 2, . . . , L, vd1, . . . , vd,L−1

iid∼ Beta(1, αd), and vdL = 1. An appropriate value of L can be
determined by considering the properties of the high order weight values in the infinite sum representation (4). For instance,
E
(∑∞

k=L+1 pdk | αd
)

= αLd (1 + αd)
−L (Ishwaran and Zarepour 2000). Setting αd = 1 and L = 20, as in our simulation study

and application, leads to E(
∑∞
k=L+1 pdk)

.
= 0. The truncated DPM model for test outcomes can be expressed as

Fd(·) =

L∑
k=1

pdkΦ(· | µdk, σ2
dk), (6)

where µdk
iid∼ N(aµd

, b2µd
) and σ2

dk
iid∼ IG(aσ2

d
, bσ2

d
) for k = 1, . . . , L, and the weights pdk arise from the truncated stick-breaking

representation described above. Note that L is not the exact number of components we expect to observe but instead an upper bound
on the number of components.

We use configuration variables to identify the label of the mixture component to which the ith subject from group d belongs. Let
Sdi = k denote that the ith subject in group d is allocated to component k (for d = 1, 2, 3, i = 1, . . . , nd, and k = 1, . . . , L). Then,
the model can be written as

ydi | µd,σ2
d,Sd

ind.∼ N(µd,Sdi
, σ2
d,Sdi

), i = 1, . . . , nd, d ∈ {1, 2, 3},
Pr(Sdi = k | vd) = pdk, k = 1, . . . , L,

(µdk, σ
2
dk)

iid∼ N(aµd
, b2µd

)IG(aσ2
d
, bσ2

d
),

where µd = (µd1, . . . , µdL), σ2
d = (σ2

d1, . . . , σ
2
dL), Sd = (Sd1, . . . , Sdnd

), and vd = (vd1, . . . , vdL). The blocked Gibbs sampler
was used to simulate draws from the posterior distribution; computational details are provided in the Appendix.

Posterior estimates of YI3 were obtained by using (1) and (6), and the pair of optimal cutoffs (c∗1, c
∗
2) is the input that returns the

maximum. A grid search was used to identify the maximum.

4 Simulation study

A simulation study was conducted to evaluate the performance of our nonparametric approach to estimating the three-class Youden
index and its associated optimal cutoff values. For each of four scenarios, 100 data sets were generated using sample sizes of
(n1, n2, n3) = (50, 50, 50), (n1, n2, n3) = (100, 100, 100), and (n1, n2, n3) = (200, 200, 200).

4.1 Simulation scenarios
We considered the four scenarios listed in Table 1. Scenario 1 corresponds to the simple situation where test outcomes from the three
groups follow normal distributions. In Scenario 2, data from the three groups follow different gamma distributions, while in Scenario
3, test outcomes arise from different distributional families. Scenario 4 considers the common setting of mixture distributions for
test outcome data.
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4.2 Models
Regarding prior information, αd (d ∈ {1, 2, 3}) was set equal to one, which according to Hanson (2006) is the default value in the
absence of prior information on the number of components needed to adequately describe Fd. To facilitate prior specification of the
hyperparameters associated with the centering distribution, data were scaled by dividing by the standard deviation when fitting the
model. We transformed back to the original scale when presenting the results. For the normal-inverse-gamma prior, we set aµd

= 0,
b2µd

= 100, aσ2
d

= 2, and bσ2
d

= 0.5. This configuration leads to relatively vague prior distributions for the µdk’s and σ2
dk’s. Note

that the variance b2µd
is large and that aσ2

d
= 2 leads to a prior with infinite variance (hence, in some sense, vague) that is centered

around a finite mean (bσ2
d

= 0.5). The prior on σ2
dk therefore favours variances less than one; note that the scaled data has a marginal

variance of one, so the within-component variance σ2
dk is expected to be smaller than the marginal variance. Finally, we capped the

maximum number of components at L = 20 and, thus, a maximum of 20 normal distributions were used to approximate Fd.
As suggested by a referee, we included a comparison with the Bayesian bootstrap (BB)(Rubin 1981). Briefly, the BB corresponds

to the limit of a Dirichlet process when the precision parameter αd converges to zero (Gasparini 1995). The BB we implemented
used 1000 resampled values. Additional details about the BB are given in Section 1 of the Supplementary Material.

We also compared the performance of the DPM estimator to a nonparametric frequentist kernel estimator and an empirical
estimator. Specifically, for the kernel method, we used

F̂d(c) =
1

nd

nd∑
i=1

Φ

(
c− ydi
hd

)
, d ∈ {1, 2, 3}.

We set hd = 0.9 min{SD(yd), IQR(yd)/1.34}n−0.2d , where SD(yd) and IQR(yd) are the standard deviation and interquantile
range, respectively, of yd = (yd1, . . . , ydnd

). The empirical method estimates Fd by its empirical distribution function. In addition,
for Scenario 1 (where test outcomes in each group follow a normal distribution), we also included a comparison to a model involving
independent parametric normal distributions in order to assess the efficiency of our nonparametric estimator in this context. The
prior distributions used in the parametric normal model aligned with those used in the DPM model. Specifically, the normal model
was

ydi
iid∼ N(µ̃d, σ̃

2
d), µ̃d ∼ N(aµ̃d

, b2µ̃d
), σ̃2

d ∼ IG(aσ̃2
d
, bσ̃2

d
), i = 1, . . . , nd, d ∈ {1, 2, 3},

with aµ̃d
= 0, b2µ̃d

= 100, aσ̃2
d

= 2, and bσ̃2
d

= 0.5. For both the DPM and normal models, 1000 posterior samples were retained
after a burn-in period of 500 iterations of the Gibbs sampler.

4.3 Results
The estimated Youden index and associated optimal cutoff values for Scenarios 1-4 are presented in Figures 1–4. Specifically, for
each scenario and sample size considered, we present a boxplot of the estimates produced by each method (posterior means in
the case of the DPM estimator) along with the true value. In Scenario 1, we can appreciate the minor loss in efficiency of our
nonparametric estimator when the normal model holds (Figure 1), which is a small price to pay for the benefit of the robustness that
leads to accurate data-driven estimates under increasingly complex scenarios (Figures 2–4). The DPM estimator outperformed the
empirical estimator for most of the scenarios and sample sizes considered. The DPM estimator was on par with the kernel estimator,
outperforming it in several cases; exceptions occurred in Scenario 3 for c∗1 with a sample size of 200 and c∗2 with a sample size of
50, and in Scenario 4 for YI3 with a sample size of 50. The BB method accurately estimated most of the optimal cutoff values, but
in many cases it had similar poor performance as the empirical method in terms of estimating the Youden index. Lastly, as expected,
posterior uncertainty associated with the DPM estimator decreased as the sample size increased.

5 Application
The trail making test (TMT) is a multifactorial, neuropsychological assessment of motor speed, visual speed, executive functioning,
and scanning, sequencing and cognitive ability. The TMT is commonly used as a diagnostic indicator of cognitive deficiency and
brain impairment. The TMT comprises two parts. Part A involves drawing lines to connect circled numbers in an increasing sequence
(1–2–3 etc). Part B involves drawing lines to connect circled numbers and letters in an alternating numerical and alphabetical
sequence (1–A–2–B etc). The goal of the test is for the subject to finish both parts as quickly as possible. Completion times are used
as the primary performance metrics.

We analysed completion time data from Part A of the TMT for 245 subjects with Parkinson’s disease (Bantis et al. 2017). Based
on a battery of cognitive tests used for the characterisation of cognitive impairment, 170 subjects were classified as unimpaired (U),
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52 subjects were classified as having mild cognitive impairment (MCI), and 23 subjects were classified as having dementia (D).
Parkinson’s disease patients who have dementia were expected to have slower completion times than those with MCI, and patients
with MCI were expected to have slower completion times than those with no cognitive impairment. In symbols, the anticipated
ordering of completion times is U < MCI < D. Figure 2 of the Supplementary Material presents histograms and variable-width
boxplots of the completion times for each group.

We estimated the three-class Youden index and optimal cutoff values using the same DPM model and prior information as in the
simulation study. Posterior inference was based on estimates calculated from 3500 Gibbs sampler iterates after a burn-in of 1500
realisations was discarded. Completion times were scaled by dividing by the standard deviation to fit the model, but the results are
presented on the original scale of the data.

Density estimates (posterior means and 95% pointwise probability bands) track the histograms for each group (Figure 5). The
estimated Youden index (95% posterior interval) is 1.2 (1.0, 1.4), which suggests that Part A TMT completion times have reasonable
discriminatory capacity to distinguish between U, MCI, and D patients. The estimated optimal cutoff values (in seconds) are 47
(43, 50) and 81 (73, 91). Based on this analysis, Parkinson’s disease patients with Part A TMT completion times less than 47 seconds
would be classified as unimpaired, patients with completion times between 47 and 81 seconds would be classified as having MCI,
and patients with completion times greater than 81 seconds would be classified in the D group.

Estimates of the Youden index under the parametric normal model, BB, kernel, and empirical method were similar to the estimate
of YI3 from the DPM model. However, estimates of the optimal cutoff values varied for these approaches. Estimates of c∗1 and c∗2
were 51 (48, 52) and 90 (84, 97) from the parametric normal model, 48 (39, 53) and 74 (62, 88) from the BB method, 48 (42, 52)
and 81 (72, 89) from kernel density estimation, and 50 (39, 53) and 70 (62, 90) from the empirical method. The DPM model and
kernel method gave similar estimates of c∗1 and c∗2. However, the normal model, BB, and empirical method gave different estimates
of c∗2 than the DPM model. Compared to the DPM, the percent difference in the point estimates of c∗2 were 11% (normal), 9% (BB),
and 14% (empirical). Note that the confidence intervals for the kernel and empirical estimates were computed using a nonparametric
bootstrap method with 500 resampled values, whereas the BB estimates were based on 1000 replicates.

A sensitivity analysis to prior specification was conducted and results are presented and discussed in Section 2 of the
Supplementary Material. In short, while inferences for c∗1 and YI3 remained essentially unchanged, estimates of c∗2 were slightly
more sensitive to prior input in a predictable manner (higher prior variance led to higher posterior variance).

6 Conclusion
We applied a Bayesian nonparametric approach based on Dirichlet process mixtures to estimate the three-class Youden index and
the corresponding pair of optimal cutoff values. Our simulation study illustrated the ability of our approach to produce accurate
estimates for a variety of data-generating distributions. The DPM methodology can be readily extended to estimate the Youden
index and associated cutoff values in the case where more than three disease categories exist. In addition, Attwood et al. (2014)
presented alternative criteria to the Youden index for estimating optimal cutoff values and our approach can be directly applied to
those criteria.

As an alternative to the ‘pure’ Bayesian bootstrap of Rubin (1981) that we used in Sections 4 and 5, note that equation (1) can be
written as

YI3 = max
t1≥t2

{R3(t2)− t1 −R2(t2) +R2(t1)},

where t1 = 1− F1(c1), t2 = 1− F1(c2), and R2 and R3 are ROC functions, namely

R2(t) = 1− F2{F−11 (1− t)}, R3(t) = 1− F3{F−11 (1− t)}.

Estimation can proceed according to the method presented in Gu et al. (2008). However, the results in the simulation study (not
presented but available from the authors) did not show substantial improvement over the BB method used in this paper.
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Scenario Y1 Y2 Y3
1 N(0, 1) N(1, 1) N(2, 1)
2 Gamma(2, 1) Gamma(3, 1) Gamma(5, 2)
3 t2 Beta(2, 2) χ2

1

4 1
2N(−1.5, 0.52) + 1

2N(0.5, 1) 1
2N(1, 1) + 1

2N(4, 1.52) N(5, 22)

Table 1. Scenarios considered for the simulation study.
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Figure 1. Boxplots summarising simulation results for estimates ĉ1 (row 1), ĉ2 (row 2), and ŶI3 (row 3) of the optimal cutoff values and Youden index in
Scenario 1. The dotted blue line corresponds to the true value. Panels (a), (d), and (g): n1 = n2 = n3 = 50. Panels (b), (e), and (h): n1 = n2 = n3 = 100.
Panels (c), (f), and (i): n1 = n2 = n3 = 200. DPM=Dirichlet process mixture, BB=Bayesian bootstrap, Emp=Empirical estimator.
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Figure 2. Boxplots summarising simulation results for estimates ĉ1 (row 1), ĉ2 (row 2), and ŶI3 (row 3) of the optimal cutoff values and Youden index in
Scenario 2. The dotted blue line corresponds to the true value. Panels (a), (d), and (g): n1 = n2 = n3 = 50. Panels (b), (e), and (h): n1 = n2 = n3 = 100.
Panels (c), (f), and (i): n1 = n2 = n3 = 200. DPM=Dirichlet process mixture, BB=Bayesian bootstrap, Emp=Empirical estimator.
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Figure 3. Boxplots summarising simulation results for estimates ĉ1 (row 1), ĉ2 (row 2), and ŶI3 (row 3) of the optimal cutoff values and Youden index in
Scenario 3. The dotted blue line corresponds to the true value. Panels (a), (d), and (g): n1 = n2 = n3 = 50. Panels (b), (e), and (h): n1 = n2 = n3 = 100.
Panels (c), (f), and (i): n1 = n2 = n3 = 200. DPM=Dirichlet process mixture, BB=Bayesian bootstrap, Emp=Empirical estimator.
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Figure 4. Boxplots summarising simulation results for estimates ĉ1 (row 1), ĉ2 (row 2), and ŶI3 (row 3) of the optimal cutoff values and Youden index in
Scenario 4. The dotted blue line corresponds to the true value. Panels (a), (d), and (g): n1 = n2 = n3 = 50. Panels (b), (e), and (h): n1 = n2 = n3 = 100.
Panels (c), (f), and (i): n1 = n2 = n3 = 200. DPM=Dirichlet process mixture, BB=Bayesian bootstrap, Emp=Empirical estimator.
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Figure 5. Panels (a), (b), and (c): Density estimates (posterior means and 95% pointwise posterior bands) from Dirichlet process mixture of normal
modeling of trail making test completion times for Parkinson’s disease patients who have dementia (D), mild cognitive impairment (MCI), or are cognitively
unimpaired (U). Panel (d): Estimated densities (solid line for the U group, dashed line for the MCI group, and dotted line for the D group) along with the
estimated optimal cutoff values.
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