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Abstract A Lie ideal of a division ring A is an additive subgroup L of A such that the Lie product
[l, a] = la − al of any two elements l ∈ L, a ∈ A is in L, or [l, a] ∈ L. The main concern of this paper is to
present some properties of Lie ideals of A which may be interpreted as being dual to known properties of
normal subgroups of A∗. In particular, we prove that if A is a finite-dimensional division algebra with center
F and charF 6= 2, then any finitely generated Z-module Lie ideal of A is central. We also show that the
additive commutator subgroup [A,A] of A is not a finitely generated Z-module. Some other results about
maximal additive subgroups of A and Mn(A) are also presented.
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1 Preliminary

Let A be an associative algebra over a field F with dimension [A : F ]. If we replace the usual multiplication
ab of two elements a and b of A by their Lie product [a, b] = ab − ba, then at the same time we have a non-
associative structure of a Lie ring on A, usually denoted by A. A Lie ideal in A is a regular ideal of A with its
Lie multiplication; in other words, an additive subgroup I of A is called a Lie ideal if for all i ∈ I, a ∈ A we
have [i, a] ∈ I. The main concern of this paper is to present some dual properties of these two structures on
A: considering A as an associative algebra and as a Lie ring. These properties represent very similar roles of
normal subgroups in A∗ (the multiplicative group of unit elements) and (Lie) ideals in A. In particular, when A
is a division ring we give some properties of Lie ideals of A which are analogous to similar properties of normal
subgroups of A∗.

A derivation on A is an additive group homomorphism d : A → A satisfying d(ab) = d(a)b + ad(b). A
derivation da : A → A that is defined by da(b) = ab − ba, for some fixed a ∈ A is called inner derivation; the
set {da|a ∈ A} of all inner derivations of A is denoted by InnDer(A). In group theory, the normal subgroups
of a group G usually are defined as the subgroups which are invariant under all inner automorphisms of G
(denoted by Inn(G)). Equivalently, in the theory of Lie algebras, Lie ideals of an algebra A are defined as the
submodules which are invariant under all inner derivations of A. Let Z(A) denote the center of A; then we have
the following similar isomorphisms: Inn(A∗) ' A∗/Z(A∗) and as a dual version InnDer(A) ' A/Z(A) [10, p.
73].

The following two main theorems give some more important signs in identifying a connection between the
concepts of normal subgroups and Lie ideals: Let F be a field, then the SkolemNoether theorem (in particular)
states that if A is a finite-dimensional central simple F -algebra, then any F -automorphism of A is inner [3, p.
93]. A dual version of this theorem states that if A is a finite-dimensional central simple F -algebra, then any
F -linear derivation of A is inner [3, p. 105].

The other one is the CartanBrauerHua theorem which states that if A is a division ring and B is a subdivision
ring of A such that B∗ is a normal subgroup of A∗, then either B = A or B ⊆ Z(A) [6, p. 211]. A dual version
of this theorem states that if A is a division ring and B is a subdivision ring of A such that B is a Lie ideal in
A and charA 6= 2, then either B = A or B ⊆ Z(A) [6, p. 205].

We consider some results about the structure of normal subgroups of a division ring and examine their
dual versions in terms of Lie ideals of the division ring. As an example, Akbari et al. [1, 2] proved that “If
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A is a finite-dimensional division algebra with center F, then any finitely generated normal subgroup of A∗

is central”. Also, they proved that “If A is an infinite division ring with center F such that [A : F ] < ∞,
then A∗ contains no finitely generated maximal subgroups”. Here, as an analogous statement, we show that
“If A is a finite-dimensional division algebra with center F such that charF 6= 2, then any finitely generated
Z-module Lie ideal of A is central”. We also show that “If A is an infinite division ring with center F such that
[A : F ] < ∞, then A contains no finitely generated Z-module maximal additive subgroup”. We show that the
additive commutator subgroup [A,A] of A is not a finitely generated Z-module. To sum up, the applicability of
similar arguments we used to prove these dual properties reveals similar roles of these two substructures: the
normal subgroups and Lie ideals in division rings [7, 8, 9].

2 Main Results

We begin by recalling the following theorem:

Theorem 1.[4, p. 5] Let A be a division algebra with center F and char(A) 6= 2. Assume that L is a Lie ideal
of A. Then either L ⊆ F or [A,A] ⊆ L.

This result allows us to present our first main result:

Theorem 2. Let A be a division ring which is finite-dimensional over its center F and charF 6= 2. If A contains
a non-central Lie ideal which is a finitely generated Z-module, then F is finitely generated over its prime subfield
P.

Proof. Let L be a non-central finitely generated Z-module Lie ideal of A. By Theorem 1, [A,A] ⊆ L. Let T be
the F -subdivision algebra generated by L. Since any non-commutative division ring is generated as a division
ring by all of its additive commutators together with its center [6, p. 205], we conclude that T = A. Note that
since A is a finite-dimensional division ring, L generates A as an algebra, too. If [A : F ] = n, then A has a
faithful matrix representation θ of degree n [5, p. 82] (usually called the regular representation). Since L is a
finitely generated Z-module, there exist a finite number k of matrices M1, . . . ,Mk in GLn(F ) which generate
θ(L) in Mn(F ) as a Z-module. Let Γ ⊆ F be the set of elements of F that appear as entries in the matrices
M1, . . . ,Mk. Since L builds A as an algebra, invoking θ one can see that this set of matrices first builds θ(L)
and then builds A ' θ(A) in Mn(F ). Since θ is an embedding, we may consider A = T ⊆Mn(P (γ)) ⊆Mn(F ),
where P (Γ) is the subfield of F generated by P ∪ Γ. Consequently, for all a ∈ F, its representation aI is in
Mn(P (Γ)), where I is the identity matrix and so a ∈ P (Γ) or F = P (Γ). 2

We need the following lemma to present our next results.

Lemma 3. Let D be a UFD with infinitely many prime ideals and let T be its field of fractions. Let A be a
T -subalgebra of Mn(T ). Then any Lie ideal of A which is finitely generated as a Z-module is central.

Proof. For the sake of contradiction, assume that L is a non-central Lie ideal of A which is finitely generated
as a Z-module. Let a ∈ A and l ∈ L be such that [a, l] 6= 0. Since L is finitely generated as a Z-module, there is
a nonzero d ∈ D such that L ⊆Mn(D[ 1d ]). Since T is a field, for any x ∈ T we have x[a, l] = [xa, l] ∈ L. Hence
x[a, l] ∈ Mn(D[ 1d ]). Since [a, l] ∈ Mn(T ) is a nonzero matrix, one of its entries is nonzero, say b. Therefore,
xb ∈ D[ 1d ] for all x ∈ T, which is a contradiction, for if p is a prime element such that p - d, then b/pn /∈ D[ 1d ]
for enough large positive integer n. 2

Theorem 4. Let A be a finite-dimensional division algebra with center F such that charF 6= 2. Then any
finitely generated Z-module Lie ideal of A is central.

Proof. By Theorem 2, F is finitely generated over its prime subfield P. Hence we may write F as a finite
extension of a purely transcendental extension P (x1, . . . , xd) of P, where d is the transcendence degree of F
over P. We consider two cases:

Case 1. d = 0. If P = Fp, then F is a finite field. Hence by the Wedderburns Little Theorem, A is
commutative [6, p. 203]. If P = Q, then [F : Q] < ∞ allows us to view A ∈ Mn(Q) via the regular
representation. Now, using the above lemma, we are done.

Case 2. d > 0. Then P [x1, . . . , xd] is a UFD with infinitely many prime ideals. Let T be the field of fractions
of D. Since [F : T ] < ∞, again we may view A ∈ Mn(T ) via the regular representation. Now, applying the
above Lemma completes the proof 2

The following is our main result:

Corollary 5. Let A be a non-commutative division algebra of finite dimension over its center F and charF 6= 2.
Then the additive commutator subgroup [A,A] of A is not finitely generated as a Z-module.
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The Lie ideal structure we have considered above really is a kind of additive subgroup of algebras. In what
follows, we turn our attention to another kind of additive subgroups. By a maximal additive subgroup of an
algebra, we mean an additive subgroup which is maximal under inclusion among proper ones. Clearly, by a
maximal Lie ideal, we mean a Lie ideal which is maximal under inclusion among Lie ideals.

Corollary 6. Let A be a division ring with center F and charF 6= 2. Assume that L is a proper maximal
additive subgroup of A containing F. If the additive group index [L : F ] of L over F is finite, then A = F.

Proof. First, consider the case [A : F ] < ∞ and let x1, . . . , xt be the representations of the finite number of
cosets of F in L, so L = (F + x1) ∪ · · · ∪ (F + xt). We have L = F + 〈{x1, . . . , xt}〉, where 〈{x1, . . . , xt}〉 is
the additive subgroup generated by x1, . . . , xt in A. Suppose that x ∈ A \ L. By maximality of L, we obtain
that A = F + 〈{x1, . . . , xt, x}〉. Put H = 〈{x1, . . . , xt, x}〉. Thus, A = F + H and consequently [A,A] =
[H,H]. This means that [H,H] is a Lie ideal of A which is finitely generated as a Z-module by the finite set
{xixj − xjxi, xxi − xix; i, j = 1, . . . , t}. By Theorem 4, we conclude that [A,A] = [H,H] ⊆ F or A = F as
desired. Now, consider the case [A : F ] =∞. As in the above case, let L = (F + x1) ∪ · · · ∪ (F + xt) and take
x ∈ A \ L. Let V be the vector space generated by the set {1, x1, . . . , xt, x} over F. Clearly [V : F ] < ∞ and
L $ V. Now, maximality of L implies that V = A, a contradiction. This completes the proof. 2

We continue our study with the following two lemmas:

Lemma 7. Let A be an F -algebra and L be a maximal Lie ideal of A. Then

(i) L contains either F or [A,A].

(ii) If A is a division ring, then either A = F (L) or L \ {0} is the multiplicative group F (L) \ {0}, where F (L)
is the division ring generated by F ∪ L.

Proof. (i) Assume that L does not contain F. By maximality of L and since F + L is a Lie ideal containing
L, we have A = F + L. Consequently, we have [A,A] = [L,L] ⊆ L.

(ii) Consider the division ring F (L) generated by L and F. By maximality of L and since F (L) is a Lie ideal
containing L, we have either A = F (L) or L = F (L). In the latter case, we obtain F (L)∗ = F (L)\{0} = L\{0}
is a multiplicative group. 2

Lemma 8. Let A be a division ring with center F and assume that L is a maximal Lie ideal of A. Then either
the multiplicative center of L is equal to F ∩ L or L is a maximal division subring of A.

Proof. By first part of the previous lemma, either F ⊆ L or [A,A] ⊆ L. If [A,A] ⊆ L, then Z(L) = CL(L) ⊆
CA(L) ⊆ CA([A,A]) = F, where the latter inclusion is by [6, p. 205]. In other words, Z(L) ⊆ F ∩ L and so
Z(L) = F ∩L. If F ⊆ L and [A,A] is not contained in L, then consider the division ring F (L). Since F (L) is a
Lie ideal containing L, we have either A = F (L) or L = F (L) by the maximality of L in A. In the first case, it
is easily checked that Z(L) = Z(A) = F ∩ L. Otherwise, L = F (L) which means that L is a maximal division
subring of A. 2

Now, we can show that Theorem 4 has an analogous statement which applies to maximal additive subgroups.

Theorem 9. Let A be a non-commutative division ring with center F. Then A contains no finitely generated
Z-module maximal additive subgroup.

Proof. Assume that L is a maximal additive subgroup of A that is finitely generated as a Z-module. For
each element x ∈ A \ L, we have A = L+ Zx which means that A is a finitely generated Z-module and this is
impossible: If charF 6= 0, then A would be finite and so commutative. If charF = 0, this condition makes A
to be finite-dimensional over the center. So A is a finitely generated Z-module Lie ideal of a finite-dimensional
division ring A which by Theorem 4 is contained in F and thus is commutative, contradicting our assumption
that A is non-commutative. 2

Theorem 10. Let A be a division algebra algebraic over its center F with charF 6= 2 and let n be a natural
number. Assume that L is a maximal Lie ideal of Mn(A). If L is finite, then A = F.

Proof. Let I ∈ Mn(A) be the identity matrix. By Lemma 7(i), either FI ⊆ L or [Mn(A),Mn(A)] ⊆ L. The
latter case implies that [A,A] is finite, so A = F by Corollary 6. If FI ⊆ L, then F is finite and so A a division
algebra algebraic over a finite field would be commutative and thus A = F. 2
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