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Abstract We describe parallel Markov chain Monte Carlo
methods that propagate a collective ensemble of paths, with
local covariance information calculated from neighbouring
replicas. The use of collective dynamics eliminates multi-
plicative noise and stabilizes the dynamics, thus providing
a practical approach to difficult anisotropic sampling prob-
lems in high dimensions. Numerical experiments with model
problems demonstrate that dramatic potential speedups,
compared to various alternative schemes, are attainable.
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1 Introduction

A popular family of methods for Bayesian parameteriza-
tion in data analytics are derived as Markov chain Monte
Carlo (MCMC) methods, including Hamiltonian (or hybrid)
Monte Carlo (HMC)(Duane et al. 1987; Neal 2011; Mon-
nahan et al. 2016), or the Metropolis adjusted Langevin
algorithm (MALA)(Rossky et al. 1978; Bou-Rabee and
Vanden-Eijnden 2010; Roberts and Tweedie 1996). These
methods involve proposals that are based on approximating a
continuous-time (stochastic) dynamics that exactly preserves
the target (posterior) density π , followed by an accept/reject
step to correct for approximation errors.

Efficient parameterization of the stochastic differential
equations used in these procedures has the potential to greatly
accelerate their convergence, particularly when the target
density is poorly scaled, i.e. when the Hessian matrix of
the logarithm of the density has a large condition number
(an example is given in “Appendix 1”). In precise analogy
with well-established strategies in optimization (see e.g. Sun
and Yuan 2006), the solution to conditioning problems in the
sampling context is to find a well-chosen change of variables
(preconditioning) for the system, such that the natural scales
of the transformed system are roughly commensurate.

In this article, we discuss an approach to dynamic pre-
conditioning based on simultaneously evolving an ensemble
of parallel MCMC simulations, each of which is referred to
as a “walker” or “particle”. As we will show, the walkers
provide information that can greatly improve the efficiency
of MCMC methods. There is a long history of using multi-
ple parallel simulations to improve MCMC calculations (see
e.g. (Gilks et al. 1994; ter Braak 2006; Goodman and Weare
2010;AndrésChristen andFox 2010; Jasra et al. 2007;Cappé
et al. 2004; Iba 2001; Hairer and Weare 2014; Hammers-
ley and Morton 1954; Liu 2002; Rosenbluth and Rosenbluth
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1955)). Many of these methods rely on occasional duplica-
tion or removal of walkers and reweighting of samples to
speed sampling of densities with multiple modes or to com-
pute tail averages. The schemes proposed in this article are
more similar to methods introduced in (Gilks et al. 1994; ter
Braak 2006; Andrés Christen and Fox 2010; Goodman and
Weare 2010) that address conditioning issues using walker
proposal moves informed by the positions of other walkers
in the ensemble. These methods are not designed to directly
address multimodality and do not involve any reweighting
of samples. Our approach differs in that proposal moves are
derived from time discretization of an SDE whose solutions
exactly preserve π (or more precisely the joint density of
an ensemble of independent random variables drawn from
π ). This results in ensemble MCMC schemes that converge
rapidly on poorly conditioned distributions even in relatively
high-dimensional sample spaces and when the details of the
conditioning problems depend on position in sample space.

Our startingpoint is the discrete approximationof a system
of SDEs for a state vector x ∈ D ⊂ R

D ,

ẋ = (J (x) + S(x))∇ logπ(x)

+ div(J (x) + S(x)) + √
2S(x) η(t) (1)

where J (x) and S(x) are skew-symmetric and symmetric
positive semi-definite D × D matrices, respectively, with
η(t) representing a vector of independent Gaussian white
noise components. In our sampling schemes, each walker
generates a discrete-time approximation of (1) with its own
particular choice of J which corresponds to a notion of the
localized and regularized sample covariance matrix across
the ensemble of walkers and incorporates information about
the target density π into the evolution of each walker.

Many existing sampling methods can be characterized as
time discretizations of (1) (Ma et al. 2015). The matrix S is
sometimes referred to as a mass matrix (though we reserve
that term for a different matrix) and is often chosen to be
diagonal. More general modifications of S (with J = 0)
to improve convergence have been considered in the Monte
Carlo literature, dating at least to (Bennett 1975). This idea
has been the focus of renewed attention in statistics, and
several recent approaches concerning this or related ideas
have been proposed (Martin et al. 2012;Girolami andCalder-
head 2011a). Though modification of S appears to be much
more common in practice, several authors have considered
the effect that the choice of J and S has on the ergodic proper-
ties of the solution to (1) from a more theoretical perspective
(see e.g. (Rey-Bellet and Spiliopoulos 2015; Duncan et al.
2016; Hwang et al. 2005, 1993)). In this paper, we are con-
cerned with motivating and presenting a particular choice of
S and J based on the ensemble framework mentioned above
and yielding practical and efficient sampling schemes. We

demonstrate that the choice of J and S has important ramifi-
cations for the stability of the discretization scheme as well
as for the overall sampling efficiency. This interplay will be
explored in future work

2 Preconditioning strategies for sampling

As in anyMCMC scheme, the goal is to estimate the average
E[ f ] = ∫

f (x)π(x)dx by a trajectory average of the form

f N = 1

N

N−1∑

n=0

f (x (n)),

for large N . In many cases, we can expect the error
in an MCMC scheme to satisfy a central limit theorem:√
N

(
f N − E[ f ]) dist−−→ N (0, τσ 2), where σ 2 is the vari-

ance of f under π (and is independent of the particular
MCMC scheme), the τ the integrated autocorrelation time
(IAT) which is often used to quantify the efficiency of an
MCMC approach (see “Appendix 1”).

To emphasize an analogy with optimization, for the
moment assume that J = 0. The steepest descent algo-
rithm of optimization corresponds to an Euler–Maruyama
discretization of the so-called overdamped Langevin (or
Brownian) dynamics (Milstein and Tretyakov 2004; Pavli-
otis 2014),

x (n+1) = x (n) + δt ∇ log(π(x (n))) + √
2δt R(n) (2)

where R ∼ N (0, I ). Discretization introduces an O(δt)
error in the sampled invariant distribution so a Metropolis–
Hastings accept/reject step may be incorporated in order
to recover the correct statistics (see the MALA algorithm
(Rossky et al. 1978)) when time discretization error dom-
inates sampling error. Reducing δt gives a more accurate
approximation of the evolution of the dynamics and boosts
the acceptance rate.

When π is Gaussian with covariance Σ , one can easily
show that the cost to achieve a fixed accuracy depends on the
condition number κ = λmax/λmin where λmax and λmin are
the largest and smallest eigenvalues of Σ . Indeed, one finds
that the worst-case IAT τ for the scheme in (2) over observ-
ables of the form v Tx is τ = κ − 1 (see “Appendix 1”). In
this formula, the eigenvalue λmin arises due to the discretiza-
tion stability constraint on the stepsize parameter δt and λmax

appears because the direction of the corresponding eigenvec-
tor is slowest to relax for the continuous-time process. The
presence of λmin in this formula indicates that analysis of the
continuous-time scheme (1) (i.e. neglect of the discretization
stability constraint) can be misleading when considering the
effects of poor conditioning on sampling efficiency. Since
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the central limit theorem suggests that the error after N steps
of the scheme is roughly proportional to

√
τ/N , the cost to

achieve a fixed accuracy is again roughly proportional to κ .
Continuing touse J=0, taking S(x)=−(∇2 log(π(x)))−1

in (1) and discretizing with timestep δt > 0, we obtain a
stochastic analogue of Newton’s method:

x (n+1) = x (n) + δt S(x (n))∇ log(π(x (n)))

+ δt div
(
S(x (n))

)
+

√
2δt S(x (n))R(n). (3)

Schemes of a similar form though neglecting the div(S) term
(and therefore requiringMetropolization) havebeen explored
recently in (Martin et al. 2012). Metropolization may also be
used to correct the O(δt) sampling bias introduced by the dis-
cretization. It can be shown that the scheme is affine invariant
in the sense that when it is applied to sampling πA,v it gen-
erates a sequence of samples y(n) so that x (n) = Ay(n) + v

has exactly the same distribution as the sequence of samples
generated by the method when applied to π (see Goodman
andWeare 2010 for a detailed discussion of the role of affine
invariance in the design ofMCMCmethods for poorly condi-
tioned problems).We therefore expect that when this method
can be applied (e.g. when the Hessian is positive definite),
it should be effective on poorly scaled problems. This affine
invariance property is shared by the deterministic Newton’s
method (obtained from (3) by dropping the noise and matrix
divergence terms) and is responsible for its good perfor-
mance when applied to optimizing poorly scaled functions
(e.g. when the condition number of the Hessian is large). We
stress that the key to the usefulness of either the deterministic
or stochastic Newton’s method is that one does not need to
make an explicit choice of the matrix A or the vector v. As
the performance is independent of the choice of A and v, we
can assume that A or v is chosen to improve the conditioning
of the problem.

Due to the presence of the divergence term in the continu-
ous dynamics, discretization will require evaluation of first-,
second- and third-order derivatives of log(π(x)), making it
prohibitively expensive for many models. To avoid this dif-
ficulty, one can estimate the divergence term using an extra
evaluation of the Hessian (see “Appendix 6”), or omit the
divergence term and rely on a Metropolization step to ensure
correct sampling. Regardless of how this term is handled,
the system (3), unlike (2), is based on multiplicative noise
(where the magnitude of the noise process depends upon the
state of the system) which is known to introduce complexity
(and reduce accuracy) in numerical discretization (Milstein
and Tretyakov 2004).

More fundamentally, complex sampling problems will
exhibit regions of substantial probability where the Hessian
fails to be positive definite. A simple (and often more robust
alternative) is S = Σ , whereΣ is the covariance matrix of π

(even when π is not Gaussian) and is positive definite. It can
be shown that the iteration in (3) is again affine invariant. The
resulting scheme, which can be regarded as a simple quasi-
Newton type approach, is closely related to adaptive MCMC
approaches (Roberts andRosenthal 2007;Haario et al. 2001).
On the other hand, because this choice of S does not depend
on position, the scheme can be expected to perform poorly
on problems for which the conditioning is dramatically dif-
ferent in different regions of space (e.g. the Hessian has high
condition number and its eigenvectors are strongly position
dependent), see Fig. 1. These observations suggest a choice
of S corresponding to a notion of local covariance.

While a notion of local covariance will be central to the
schemes we eventually introduce, we choose to incorporate
that information not through S in (1), but through the skew-
symmetric matrix J in that equation. In the remainder of this
section, we discuss how the choices of S described so far,
and the corresponding properties of (3), have analogues in
choices of J and a family of so-called underdampedLangevin
schemes that we next introduce Pavliotis (2014), Leimkuhler
and Matthews (2015).

Apopularway toobtain anMCMCschemewith decreased
IAT relative to the overdamped scheme in (2) is to intro-
duce “inertia”. We extend the space by writing our state
x = (q, p) T ∈ D × R

D ⊂ R
2D , with the target distribu-

tion

π̂(x) = π̂(q, p) = π(q)ϕ(p),
∫

π̂(q, p)dp = π(q). (4)

The distribution of interest π(q) is recovered from π̂(q, p)
as the marginal distribution of the position vector q. For the
distribution ϕ(p) we will follow common practice and use
ϕ(p) ∝ exp(−‖p‖2/2). With this extension of the space, we
recover the standard underdamped form of Langevin dynam-
ics using

Fig. 1 We plot three examples of posterior distribution functions that
might be described as poorly scaled. The distribution a has a scaling that
can be removed through a linear change of variables, whereas useful
scaling information in distributions b and c depends on the location
in space. Proposals can benefit from taking into account local scaling
behaviour over the global covariance information (the condition number
of their covariance matrices in both b and c are unity)
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J =
[
0 −ID
ID 0

]
, S =

[
0 0
0 γ ID

]
(5)

in equation (1), where ID is the D × D identity matrix
and γ is a positive constant (Milstein and Tretyakov 2004).
Recent workDalalyan (2016), Durmus andMoulines (2016),
especially in connectionwithmolecular dynamics (Leimkuh-
ler et al. 2015), has examined efficient ways to discretize
Langevin dynamics while minimizing the error in sampling
π(q) .

To incorporate information such as the Hessian matrix or
the covariance matrix (or local covariance matrices) in the
underdamped Langevin scheme, we focus on choices of J
and S as follows:

J (x) =
[

0 −B(q)

B(q) T 0

]
, S =

[
0 0
0 γ ID

]
,

where B(q)BT (q) is a symmetric positive definite matrix,
resulting in the system

q̇ = B(q)p,

ṗ = B(q) T∇ log(π(q)) + div(B(q) T) − γ p + √
2γ η(t).

(6)

Discretization of the stochastic system may be derived by
mimicking the BAOAB scheme (Leimkuhler et al. 2015).
Given a stepsize δt > 0, define α = exp(−γ δt) and approx-
imate the step from tn to tn+1 = tn + δt by the formulas

p(n+1/2) = p(n) + δt

2
F(q(n)), (7a)

q(n+1/2) = q(n) + δt

2
B

(
q(n+1/2)

)
p(n+1/2) (7b)

p̂(n+1/2) = αp(n+1/2) + (α + 1)δt

2
div

(
B

(
q(n+1/2)

)T)

+
√
1 − α2R(n) (7c)

q(n+1) = q(n+1/2) + δt

2
B

(
q(n+1/2)

)
p̂(n+1/2) (7d)

p(n+1) = p̂(n+1/2) + δt

2
F(q(n+1)) (7e)

where R ∼ N (0, ID) and F(q) = B(q) T∇ logπ(q), with an
implicit equation in (7b). The choice of matrix BB T intro-
duced in the next section will be a sum of the identity and a
small (relative to the dimension D) number of rank 1 matri-
ces, alleviating storage demands and reducing the cost of
all calculations involving B to linear in D. As described in
“Appendix 2”, schemes of the form in (7) can also be used to
generate proposals in a Metropolis–Hastings framework to
strictly enforce a condition that, like detailed balance, guar-
antees that π is exactly preserved.

Suppose that, when applied to sampling the density πA,v ,
an underdamped Langevin scheme of the form in (7) gener-
ates a sequence (q(n), p(n)). The schemewill be referred to as
affine invariant if the transformed sequence (Aq(n)+v, p(n))

has the same distribution as the sequence generated by the
methodwhen applied to sampleπ . As for (3) one can demon-
strate that the choices B(q)B T(q) = −(∇2 log(π(q)))−1 and
B(q)B T(q) = Σ , yield affine invariant sampling schemes
(see “Appendix 5” for details). Recall that the choice of
S(x) = −(∇2 log(π(x)))−1 in (3) also gave an affine invari-
ant scheme, but that there the S matrix appears multiplying
the noise (making it multiplicative).

Before proceeding to the important issue of selecting a
practically useful choice of B, we observe the following
important properties of our formulation: (i) the stochastic
dynamical system (6) exactly preserves the target distribu-
tion (seeMaet al. 2015) and thus, if discretization error iswell
controlled, Metropolis correction is not necessarily needed
for the computation, and (ii) the formulation, with appropri-
ate choice of B, is affine invariant, even under discretization
(see “Appendix 5”), a property which ensures the stability
of the method under change of coordinates. By contrast, we
emphasize that schemes that modify S (instead of J ) in (5) or
that are based on a q-dependent normal distribution ϕ in (4)
(e.g. within HMC as in (Girolami and Calderhead 2011a)),
cannot be made affine invariant in the same sense, though
they can be made to satisfy an alternative notion of affine
invariance (see “Appendix 5”).

With the general stochastic quasi-Newton form in (7)
as a template, one may consider many possible choices of
B. Just as in optimization, in MCMC the question is not
whether one should precondition, but rather how can one
precondition in an affordable and effective way. Unfortu-
nately, practical and effective quasi-Newton approaches for
optimization do not have direct analogues in the sampling
context, leaving a substantial gap between un-preconditioned
methods and often impractical preconditioning approaches.
In the next section, we suggest an alternative strategy
to fill this gap: using multiple copies of a simulation
to incorporate local scaling information in the B matrix
in (7).

3 Ensemble quasi-Newton (EQN) schemes

We next describe an efficient MCMC approach in which
information from an ensemble of walkers provides an esti-
mate of a modified local covariance matrix. We consider a
system of L walkers (independent copies evolving under
the same dynamics) with state xi = (qi , pi ) T, where sub-
scripts now indicate the walker index. Each walker has
position qi and momentum pi for i = 1, · · · , L , and we
define the vectors Q = (q1, q2, . . . , qL) T ∈ DL and P =
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(p1, p2, . . . , pL) T ∈ R
DL . We seek to sample the product

measure π̄ whose marginals give copies of the distribution
of interest π :

π̄(Q, P) =
L∏

i=1

π̂(qi , pi ),
∫

π̄(Q, P)dP =
L∏

i=1

π(qi ).

A simple strategy is for each walker to sample π̄ by evolv-
ing each xi independently using an equation such as (2) or
(5). Such a method scales perfectly in parallel when ini-
tial conditions are drawn from the target distribution, but no
use is made of the local observed geometry or inter-walker
information. Alternatively we may use the dynamics (6) to
introduce walker information through the B(q) precondi-
tioning matrix in order to scale the dynamics based upon
information from the other walkers. This preconditioning
enters into the dynamics but not the invariant distribution
which remains π̄ . A popular alternative preconditioning
strategy is to modify the mass matrix, i.e. the covariance
of the Gaussian distribution ϕ in (4) (see e.g. Girolami
and Calderhead 2011a or “Appendix 5”). In our context of
ensemble-based schemes, this strategy would introduce sub-
stantial (and costly) communication between walkers at each
evolution step.

Using L walkers, the global state x = (Q, P) consists of
2DL total variables and B(Q) is a DL×DL matrix.Wewill
use B(Q) = diag(B1(Q), B2(Q), . . . , BL(Q)) with each
Bi (Q) ∈ R

D×D so that the position and momentum (qi , pi )
of walker i evolve according to (7) with B(q) replaced by
Bi (Q). Note that the divergence and gradient terms in the
equation for each walker are taken with respect to the qi
variable.

Within this quasi-Newton framework, there are many
potential choices for the Bi matrix, with Bi = ID reducing
to the simulation of L independent copies of underdamped
Langevin dynamics. Before exploring the possibilities, we
remark that, in order to exploit parallelism,wewill divide our
L walkers into several groups of equal size in an approach
similar to the emcee package (Foreman-Mackey et al. 2013).
Walkers in the same group g(i) as walker i will not appear
in Bi so that the walkers in any single group can be advanced
in parallel independently. The fact that Bi is independent
of walkers in the same group as walker i is vital when we
introduce the Metropolis step to exactly preserve the target
distribution (see “Appendix 2”).

We setQ[i] = {q j | g( j) 
= g(i)} and let K be the common
size of these sets. For example, if we have 16 cores available
we may wish to use ten groups of 16 walkers (so L = 160
and K = 144). If walker j is designated as belonging to
group 1, it evolves under the dynamics given in equation (7)
but the set Q[ j] only includes walkers in groups 2, . . . , 10.
We may then iterate over the groups of walkers sequentially,

moving all the walkers in a particular group in parallel with
the others.

One choice for the preconditioningmatrix (not yet the one
we employ) is to use the sample covariance of the ensemble

Bi (Q) = √
cov(Q[i]), (8)

where the square root of a matrix is taken in the Cholesky
sense. Note that div(Bi (Q) T) ≡ 0, simplifying the
Metropolization of the scheme. In order for Bi (Q) to be pos-
itive definite, we need at least D linearly independent walker
positions, which at minimum requires that L > D.

With the choice of Bi in (8), the ensemble scheme applied
to the density

π̄A,v(Q, P) =
∏

π̂A,v(qi , pi ) =
∏

π̂(Aqi + v, p), (9)

for some invertible matrix A and vector v, generates a
sequence of vectors (q(n)

1 , . . . , q(n)
L , p(n)

1 , . . . , p(n)
L ) with the

property that the transformed sequence (Aq(n)
1

+v, . . . , Aq(n)
L +v, p(n)

1 , . . . , p(n)
L ) has exactly the same dis-

tribution as the sequence generated by the ensemble scheme
applied to π̄ (see “Appendix 5”). Just as choosing B as
the square root of global covariance of π in (6) yields an
affine invariant scheme, choosing the Bi as the square root of
the ensemble covariance yields an affine invariant ensemble
scheme. This affine invariance property suggests that ensem-
ble schemes with Bi chosen as in (8) should perform well
when the covariance of π has a large condition number. A
related choice in the context of an overdamped formulation
appears in Greengard (2015) and is shown to be affine invari-
ant. An ensemble version of the HMC scheme using a mass
matrix inspired by the BFGS optimization scheme appears
in Zhang and Sutton (2011) though the relationship between
that mass matrix and an approximation of the Hessian of
log(π) or its inverse seems unclear because the method does
not evaluate the derivative of log(π) at nearby points.

Using (8) in our ensemble schemes is problematic for
several reasons. For high-dimensional problems, the require-
ment that L > D may render the memory demands of the
methods prohibitive. This problem can be easily remedied
by only approximating and rescaling in the space spanned
by the eigenvectors corresponding to the largest eigenvalues
of the ensemble covariance matrix. While such a scheme can
be implemented in a reasonably efficient manner, we find
that simply blending the sample covariance matrix with the
identity via the choice

Bi (Q) = √
ID + η cov(Q[i]), (10)

for some fixed parameter η ≥ 0 is just as effective and much
simpler. There are several other ways to combine the identity
and sample covariance matrix (e.g. a convex combination),
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but our choice in (10) means that we do not need to addi-
tionally scale the stepsize with η, as for modest η the slowest
motions of the system are not dramatically altered. The com-
bination with the identity allows L ≤ D but destroys affine
invariance. On the other hand as demonstrated in Sect. (4),
the method is still capable of dramatically alleviating scaling
issues.

Having resolved the rank deficiency issue by moving to
the choice of Bi in (10), one difficulty remains. As described
in the previous section, for many problems we might expect
that the global covariance of π is reasonably well scaled but
that the sampling problem is still poorly scaled (the Hessian
of − logπ has large condition number in highly probable
regions of the sample space). To address problems of this
type, we define a localized covariance matrix that better
approximates the Hessian at a point qi while retaining full
rank. We weight samples in the covariance matrix based on
their distance (scaled by the global covariance) to a walker’s
current position, i.e. we use

Bi (Q) = √
ID + ηwcov(Q[i], ωλ(Q[i], qi )), (11)

for parameters η, λ > 0, where now wcov(x, w) is a
weighted covariance matrix of K < L samples q ∈ R

K×D

with potentially unnormalized weights w ∈ R
K+ :

(wcov(q, w))i j =
K∑

k=1

wk

W
(qk,i − q̄i )(qk, j − q̄ j ),

q̄i =
K∑

k=1

wk

W
qk,i

with W = ∑
k wk and

(ωλ(Q, q)) j = exp

(
−λ

2
‖Q j − q‖2

)
.

Note that using Q[i] and not Q in (11) is essential for pre-
serving the validity of the scheme. Choosing λ = 0 reduces
(11) to (10), whereas a large value of λ gives more refined
estimation of the local scaling properties of the system.
The divergence term in (7) can be computed explicitly by
computing partial derivatives of Bi (q), making use of the
formula for the derivative of the square root of a matrix:
∂i M(x) = M�(M−1(∂i (MMT ))M−T ), where �(M) =
lower(M) + diag(M)/2. Note that the matrices Bi B T

i for Bi
in (11) are sums of the identity and L rank one matrices
so that all manipulations involving Bi can be accomplished
in linear cost in the dimension D. In “Appendix 2”, we
detail aMetropolis–Hastings step that can be implemented (if
needed) to correct any introduced bias. Because our ensem-
ble scheme preserves π exactly when δt is small, one can
also use the scheme absent of any Metropolis–Hastings step,

improving the prospects for it to scale to very high dimension.
Omission of theMetropolis–Hastings step for Langevin type
methods is common practice in molecular dynamics MCMC
simulations (see Leimkuhler and Matthews 2015 ) and has
been considered in the context of computational statistics in
(Dalalyan 2016; Durmus and Moulines 2016; Welling and
Teh 2011).

We write out explicit pseudocode for the scheme in Algo-
rithm1.Weconsider dividing L walkers intoG groups,where
walkerw is in group number g(w). We also choose the num-
ber of steps to take between parallel communication, T ≤ N ,
and initialize the momentum vector for each walker w so
pw ∼ N (0, ID).

Algorithm 1 Ensemble Quasi-Newton
1: n = 0
2: while n < N do
3: // Loop over each group in serial
4: for i from 1 to G do
5: // Loop over each group’s walkers in parallel
6: parfor w from 1 to L such that g(w) = i do
7: // We take T steps using information from the
8: // walkers in the other groups Q[w]
9: for t from 1 to T do
10: (qw, pw) ← step(qw, pw; Q[w])
11: // The step function takes one step of
12: // the discretization (see (7) or Appendix 2)
13: end for
14: end parfor
15: // Communicate the changes to the overall state Q
16: Broadcast new positions of the walkers in group i
17: end for
18: // Move time forward by T steps
19: n ← n + T
20: end while

Typically it is most efficient to choose the size of each
group to be a multiple of the number of available cores, in
order to make the parfor loop efficient. The step function
uses one new evaluation of the force ∇ log(π) each time it
is called, as well as a new evaluation of the B matrix and
its derivative. We can minimize parallel communication by
setting T large to infrequently broadcast the newwalker data.

4 Numerical tests

We consider two numerical experiments to demonstrate the
potential improvements that this method offers. A python
package with example implementations of the code is avail-
able at Matthews (2016).

4.1 Gaussian mixture model

We use the model presented in Chopin et al. (2012) which
involves fitting the distribution of a dataset y to a univariate
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Fig. 2 Weplot amaximum likelihood state (left) with the three compo-
nent densities coloured as red, green and blue, with their sum in black,
along with the original stamp data y as a histogram. The six modes due
to label switching can be seen when looking at the log posterior plot
(right) in μ1 and μ2. (Color figure online)

mixture model as the sum of three Gaussian distributions.
The state vector is described by the means, precisions and
weights of the three Gaussian distributions, denoted μi , λi
and zi , respectively. Due to the sum of the weights equalling
unity, this gives us eight variables describing the mixture
model. We also include a hyperparameter β that describes
the rate parameter in the prior distribution on the precisions,
giving D = 9 for the state overall. A full description of the
problem is available in “Appendix 3”.

We consider the Hidalgo stamps benchmark dataset, stud-
ied in (Izenman and Sommer 1988), as the data y with 485
datapoints. This example is well suited to the local covari-
ance approach we present above, due to the invariance of
the likelihood under a permutation of components (the label-
switching problem). Thus, the system admits sets of 3! = 6
equivalent modes, see Fig. 2, each with a local scaling matrix
that has the same eigenvalues with permuted eigenvectors.

Though strictly speaking the problem is multimodal, the
high barriers between modes make hopping between the
basins extremely unlikely (we did not observe any switching
in any simulations). Thus, this problem effectively tests the
exploration rate within one well, with the symmetry between
the modes guaranteeing the same challenges in each basin.
The walkers may initialize in the neighbourhood of different
local modes so that using a “global” preconditioning strategy
would be sub-optimal. The best preconditioning matrix for
the current position of a walker depends on which mode is
closest to the walker. Instead, we use the covariance infor-
mation from proximal walkers as in (11) to determine the
optimal scaling.

We test the EQN scheme against the standard HMC
scheme and a Metropolized version of Langevin dynamics.
We used L = 64 walkers for the each scheme and compare
the computed integrated autocorrelation times for an ensem-
blemean of quantities that vary slowly, shown in Table 1. The
autocorrelation times are computed using theACORpackage
(Goodman 2009).

We consider all threemethods as equivalent in cost, as they
require the same number of evaluations of∇ log(π) per step,

Table 1 Computed autocorrelation times for slow variables, with the
variable with the slowest motion marked in bold for each method

Scheme min(z) max(λ) min(μ) β

HMC 21495 42935 27452 7148

Langevin dynamics 6825 13279 8384 4641

Ensemble Q-N 69 83 98 115

and scale similarly with the size of the data vector y. Com-
paring the slowest motions of the system, the EQN scheme is
about 100 timesmore efficient compared toLangevin dynam-
ics and 350 times more efficient than HMC. We found that
removing the divergence term in the EQN scheme had no
significant impact on the results.

4.2 Log Gaussian Cox model

To illustrate the method in a high-dimensional setting, we
compare results for inference in the Log Gaussian Cox point
process as in (Christensen et al. 2005). We aim to infer the
latent variable field X from given observation data Y .

We make use of the RMHMC Matlab code template in
our experiments (Girolami and Calderhead 2011b). In the
model, we discretize the unit square into a 32 × 32 grid,
with the observed intensity in each cell denoted Yi, j and
Gaussian field Xi, j .We use two hyperparameters σ 2 and β to
govern the priors, making the dimensionality of the problem
D = 322 + 2 = 1026 dimensions. Full details of the model
are provided in “Appendix 4”.

As the evaluation of the derivative of the likelihood is
significantly cheaper with respect to the latent x variables
(tests showed computing the hyperparameter’s derivatives to
be about one hundred times slower), we employ a partial
resampling strategy to first sample the latent variables using
multiple steps and then perform one iteration for the hyper-
parameter distribution.

We generate synthetic test data Y , plotted in Fig. 3, and
compare the HMC and Langevin dynamics schemes to EQN

Observed frequency data  Y

:3
:2
:1
:0

Underlying Gaussian field X

Fig. 3 The synthetic observed intensity Y (left) and the true Gaussian
field X (right)
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Table 2 Maximum autocorrelation times for each variable using each
scheme

Scheme x σ 2 β Efficiency

HMC 800.7 1041.6 1318.7 1.0

RMHMC 2158.9 34.0 1502.0 0.15

LD 405.1 140.6 435.3 3.5

· · · (no Metropolis) 81.6 20.5 136.5 11.2

EQN 71.9 49.2 239.5 5.4

· · · (no Metropolis) 64.4 8.8 47.8 26.8

(using 160 walkers) and the RMHMC scheme (Girolami
and Calderhead 2011a). We additionally compare the results
using the Langevin dynamics and EQN scheme without
Metropolization, as the dynamics themselves sample π , and
theMetropolis step only serves to remove discretization error
(which is dominated by the sampling error in this example).
RMHMC uses Hessian information to obtain scaling data for
the distribution. This gives it a significant increase in cost,
but improves the rate at which the sampler decorrelates. For
themodel, the RMHMC scheme requires approximately 2.2s
per step, whereas the other schemes require approximately
0.35s per step.

In Table 2, we give the integrated autocorrelation times for
ensemble averages of the hyperparameters β and σ 2, along
with the autocorrelation time for the slowest component of
the x variables. The efficiency is also shown, calculated as
the wall time required per step divided by the autocorrelation
time for the slowest hyperparameter (then normalized with
respect to the HMC result). The slowest hyperparameter is
compared instead of the slowest component of x because
evolving the x dynamics requires less computation, hence
it is trivial to reduce the autocorrelation time of x without
significantly impacting the wall time.

In the results, the EQN scheme significantly outperforms
the other methods, with the slowest motion of the system (the
β hyperparameter) decorrelating more rapidly than the HMC
or Langevin schemes for approximately the same cost. The
RMHMC scheme’s requires significant extra computation,
making it much less efficient than the standard HMC scheme
in this example.

5 Conclusion

We have presented a sampling algorithm that utilizes infor-
mation from an ensemble of walkers to make more efficient
moves through space, by discretizing a continuous ergodic
quasi-Newton dynamics sampling the target distribution
π(x). The information from the other walkers can be intro-
duced in several ways, andwe give two examples using either
local or global covariance information. The two forms of the

Bi preconditioning matrix are then tested on benchmark test
cases, where we see significant improvement compared to
standard schemes.

The EQN scheme is cheap to implement, requiring no
extra evaluations of ∇ logπ(x) compared to schemes like
MALA, and needing no higher derivative or memory terms.
The scheme is also easily parallelizable,with communication
between walkers being required infrequently. The dynamics
(6) is novel in their approach to the introduction of the scaling
information, and we build on previous work using walkers
running in parallel to provide a cheap alternative to Hessian
data.

The full capabilities of the EQN method, in the context
of complex data science challenges, remain to be explored.
It is likely that more sophisticated choices of Bi are merited
for particular types of applications. The propagation of an
ensemble of walkers also suggests natural extensions of the
method to sensitivity analysis and to estimation of the sam-
pling error in the MCMC scheme. Also left to be explored
is the estimation of the convergence rate as a function of
the number of walkers, which may be possible for simplified
model problems.
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Appendix 1: Autocorrelation times for poorly con-
ditioned problems

For comparisons of efficiency in MCMC methods, the inte-
grated correlation time (IAT) τ is often used as a rough
measure of the rate of convergence of the chain, giving the
approximate time between independent samples. For a func-
tion of interest f (x) with mean zero, its IAT τ f is

τ f = 1 + 2

var[ f (x)]
∞∑

n=1

cov[ f (x (n)), f (x (0))],

where Ex0 denotes the expectation with respect to the initial
conditions x (0). We shall consider sampling the distribution
π(x) ∝ exp(−xT M−1x/2) for some symmetric positive def-
inite matrix M , in order to investigate the efficiency of the
scheme (2)

x (n+1) = x (n) + δt ∇ log(π(x (n))) + √
2δt R(n).
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As in Section VIII of Goodman and Sokal (1989), we will
use the worst-case IAT for functions of form f (x) = vT x .

Suppose that λmax is the largest eigenvalue of M−1 with
corresponding eigenvector vmax. Then if we choose x (0) =
vmax

E[x (n)] = (1 − δtλmax)
nvmax,

and hence we must choose δt such that |1 − δtλmax| < 1 to
ensure convergence to the invariant mean vector zero. This
gives the linear stability condition δt < 2/λmax.

We would expect that using a larger value of δt would
lead to a more rapid decorrelation between samples. We can
quantify this by computing the covariance between samples,
where

cov[x (n), x (0)] = (I − δtM−1)cov[x (n−1), x (0)]
= (I − δtM−1)nM

from the definition of the update scheme. Similarly for a test
function f (x) = vT x , we have

cov[ f (x (n)), f (x (0))] = vT (I − δtM−1)nMv,

with integrated autocorrelation time

τ f = 1 + 2

vT Mv
vT

( ∞∑

n=1

(I − δtM−1)n

)

Mv.

Assuming the linear stability condition is satisfied, we can
rewrite this expression as

τ f = 1+ 2

δt vT Mv
vT (M − δt I )Mv = 2vT M2v

δt vT Mv
−1. (12)

Plugging in v = vmin, the eigenvector corresponding to the
minimum eigenvalue of M−1 (with eigenvalue λmin) we find
that for the particular observable f∗(x) = vTminx

τ f∗ = 2

δt λmin
− 1,

and given the constraint δt < 2/λmax this gives

τ f∗ >
λmax

λmin
− 1,

so that even choosing the largest timestep possible, the rate
of convergence will be slow whenever M has a wide range
of eigenvalues.

Appendix 2: Metropolization of discretized scheme

In order to improve stability of the scheme, or to correct
for numerical bias, we may seek to impose a Metropolis
condition on the discretization of the dynamics (6). The dis-
cretization we use is given in (7), which we rewrite here for
clarity:

p(n+1/4) = p(n) + δt

2
F(q(n)), (13a)

q(n+1/2) = q(n) + δt

2
B

(
q(n+1/2)

)
p(n+1/4) (13b)

p(n+2/4) = p(n+1/4) + δt

2
div

(
B

(
q(n+1/2)

) T)
(13c)

p̂(n+2/4) = αp(n+2/4) +
√
1 − α2R(n) (13d)

p(n+3/4) = p̂(n+2/4) + δt

2
div

(
B

(
q(n+1/2)

)T)
(13e)

q(n+1) = q(n+1/2) + δt

2
B

(
q(n+1/2)

)
p(n+3/4) (13f)

p(n+1) = p(n+3/4) + δt

2
F(q(n+1)), (13g)

with α = exp(−γ δt), R(n) ∼ N (0, I ) and F(q) =
B(q) T∇ logπ(q). Note that the step in (13b) must be solved
implicitly, likely requiring many evaluations of the matrix
B. However, as this requires no communication between
walkers and no evaluations of ∇ logπ(q), we consider this a
“cheap” operation.

The ratio of transition probabilities necessary for the
acceptance rule is

T ((q(n), p(n)) → (q(n+1), p(n+1)))

T ((q(n+1),−p(n+1)) → (q(n),−p(n)))

= fα(R(n))

fα(α p̂(n+2/4)−p(n+2/4))

|I + 1
2 δt∇ ⊗ B(q(n+1/2))p(n+3/4)|

|I − 1
2 δt∇ ⊗ B(q(n+1/2))p(n+1/4)| ,

with derivatives taken with respect to q and where

fα(x) = exp

(
− ‖x‖2
2(1 − α2)

)
.

In an efficient implementation, the calculation of the deriva-
tives of B(q) (needed for the transition probabilities and the
divergence term) is only required once per step, between
(13b) and (13c), while the evaluation of the F(q) term is
also once per step (after initialization) between lines (13f)
and (13g). A single step can then be Metropolized using

– Set (q∗, p∗) ← Upd(q(n), p(n))

– Draw u ∼ U (0, 1)
– Compute

U = min

(

1,
π̂(q∗, p∗)

π̂(q(n), p(n))

T ((q(n), p(n)) → (q∗, p∗))

T ((q∗, −p∗) → (q(n),−p(n)))

)
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– Then ifu < U weaccept themove and set (q(n+1), p(n+1))

← (q∗, p∗), otherwise we reject the move and flip
the sign of the momentum, so set (q(n+1), p(n+1)) ←
(q(n),−p(n)).

where the Upd function corresponds to a step of the dis-
cretization in (13). Similarly we can perform multiple steps
and then accept/reject the trajectory by multiplying the asso-
ciated transition probabilities. An example implementation
in Python is available at Matthews (2016). For Metropoliza-
tion of overdamped schemes such as (3), see Bou-Rabee et al.
(2014).

It is important to note that in Algorithm 1, though we
evolve all walkers inside a group in parallel, we iterate over
the groups in serial. This is because, by construction, the
preconditioning matrix for walker i in group g is a function
of the positions of other walkers not in group g, which are
fixed while we evolve walkers in group g. Thus, we preserve
the Markov property by making sure that no two walkers
who require each other’s information are evolved simulta-
neously. The approach in Algorithm 1 reduces to partial
resampling over the groups, ensuring we sample the product
distribution π̄ .

Appendix 3: Details of the Gaussian mixture exper-
iment

In this section, we provide the details of theGaussianmixture
experiment for fitting the Hidalgo stamp data y to the density

ρ(x | θ) =
3∑

k=1

zk N (x | μk, λ−1
k ),

where μk and λk are the centre and precision of the com-
ponent Gaussians, respectively, with weights zk > 0 such
that

∑
zk = 1. Let θ be the parameter/hyperparameter vec-

tor for this model. The target distribution for θ is π(θ) ∝
p(θ)ρ(y | θ).

We use the prior distribution p(θ) such that for k ∈
{1, 2, 3}

μk ∼ N (m, κ−1), λk ∼ Gamma(α, β),

(z1, z2, z3) ∼ Dirichlet3(1, 1, 1),

with hyperparameter β ∼ Gamma(g, h) and constants m =
mean(y), r = range(y), κ = 4/r2, α = 2, g = 0.2, h =
100g/(αr2).

We compare the standard HMC scheme, with a
Metropolized Langevin dynamics scheme and the EQN
scheme presented in the paper. For each of the schemes, we
tweak the stepsize until the acceptance is on average about

75 − −80%. The HMC and Langevin schemes are run by
taking 50 steps per single iteration, and using a Metropolis
step on the obtained trajectory, while the EQN scheme takes
5 steps per iteration. The Langevin and EQN scheme used a
friction of γ = 0.01.

All schemes used 64 walkers, which amounts to 64 inde-
pendent runs for the HMC and Langevin schemes. The EQN
run used four groups of 16 walkers with the localized form
of the covariance matrix, with η = 100 and λ = 12 in (11),
however with the weighting kernel only using the Euclidean
distance in the μi space rather than the entirety of θ . We
observed that increasing η further reduced the acceptance
probability significantly.

We verified that the autocorrelation function was well
resolved given the number of samples that we had computed,
in order that the computed IAT made sense. The experiment
was run on an Intel Xeon Processor E5-2670 using 16 threads
in Python, utilizing theMPI4PYpackage. This gives efficient
parallelization in the EQN experiment, as each walker per
group is mapped to one thread (the Langevin and HMC runs
are already embarrassingly parallel).

Appendix 4: Details of the log Gaussian Cox exper-
iment

We run a larger experiment with 1024+2 total parameters
to estimate. In the model, we discretize a unit square into a
32×32 grid, with the observed intensity in each cell denoted
Yi, j and Gaussian field Xi, j .

The intensities are assumed to be conditionally inde-
pendent and Poisson distributed with means m�(i, j) =
m exp(Xi, j ) for latent intensity process �(i, j) and m =
1/322. X = {Xi, j } is a Gaussian process, where x = vec(X)

we have its mean E(x) = m and covariance matrix

Σ(i, j),(i ′, j ′) = σ 2 exp(δ(i, i ′, j, j ′)/32β),

δ(i, i ′, j, j ′) =
√

(i − i ′)2 + ( j − j ′)2,

with parameters m, σ 2 and β.
Our goal is to sample likelihoods for the latent variables

X but also sample values for the hyperparameters β and σ 2,
whose priors we assume are exponentially distributed.

We generate synthetic data Y from a field X , created using
β = 1/33, σ 2 = 1.91 andm = log(126)−σ 2/2 . We aim to
infer X from our synthetic Y , alongwith the hyperparameters
used for the model, using the HMC, RMHMC, Langevin
dynamics and ensemble quasi-Newton methods. We make
use of the RMHMC template code for the problem, available
at http://www.ucl.ac.uk/statistics/research/rmhmc.

In order to run multiple highly-resolved simulations, we
use a 32 × 32 grid rather than the 64 × 64 grid used in the
original version of the problem. This reduces the dimension
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of the latent variables from 4096 to 1024, which we still
consider large enough for a significant test of the samplers’
abilities, but this reduction allows us to run for longer and
recover more accurate statistical information. However, the
change in the model requires us to alter some parameters
used in the RMHMC method, for example the timestep, in
order to recover good efficiency. The timestep is increased
until we reach 75% acceptance (though we do not claim our
choice is optimal).

We implement all of the schemes in MATLAB, with each
walker running on a single thread. For all methods, one itera-
tion uses 50 latent variable steps for each one hyperparameter
step. The ergodic property of the Langevin-dynamics-based
schemes allows us to run without Metropolization, if we are
willing to endure some discretization bias that is not removed
with further sampling. We argue that in most practical cases,
when using a sensible discretization parameter sampling
error should always dominate the discretization bias.

For the ensemble quasi-Newton sampler, we run using
160 walkers using the global covariance formulation for Bi
(effectively λ = 0). We use a partial resampling approach
to sample the latent variables and hyperparameters, with the
schemes using a Bi for each partition of variables. For the
hyperparameters, we used η = 1, and for the latent variables,
we used η = 7. We use five groups of 32 walkers with the
walkers within each group running in parallel for ten thou-
sand steps before switching to the next group. The cost of this
communication is negligible as it is done so infrequently.

We verified that the autocorrelation function was well
resolved given the number of samples that we had computed,
in order that the computed IAT made sense. All experi-
ments were run on an Intel Xeon Processor E5-2670 using
16 threads and Matlab’s parallel toolbox.

Appendix 5: Affine invariance

We can extend our notion of affine invariance to the under-
damped case, where the system state is x = (q, p), with
target distribution π̂(x) ∝ π(q) exp(−‖p‖2/2). We con-
sider affine transformations exclusively of the form ψ̂(x) =
(ψ(q), p) = (Aq +v, p), defining the transformed distribu-
tion

π̂
ψ̂

∝ πψ(q) exp(−‖p‖2/2), πψ(q) ∝ π(ψ(q)),

for any invertible matrix A and fixed vector v. We may apply
the discretization (13) to the density π̂ψ , using some scaling
matrix Bπψ (q) that we shall choose later, with Bπψ (q) =
Bπ (ψ(q)). The first computation (13a) for this density is

p(n+1/4) = p(n) + δt

2
Bπψ (q) T∇ logπψ(q(n)),

which is equivalent to, when writing y = ψ(q),

p(n+1/4) = p(n) + δt

2
Bπ (y(n)) TA T∇ logπ(y(n)). (14)

whereas writing q = A−1(y − v) in line (13b) and multiply-
ing by A we have

y(n+1/2) = y(n) + δt

2
ABπ

(
y(n+1/2)

)
p(n+1/4). (15)

Finally, line (13c) becomes

p(n+2/4) = p(n+1/4) + δt

2
g

(
y(n+1/2)

)
(16)

where g(x) = div(Bπ (x) TA).
Line (13d) remains unchanged, given our choice of affine

invariant map ψ̂ does not affect the momentum p. Suppose
now that we choose

Bπψ (q)Bπψ (q)T = A−1C(q)A−T ,

for some symmetric positive definite matrix C , and thus
Bπψ (q) = A−1√C(q). For this choice, the discretization
steps in (14)–(16) become independent of the scale factor A,
and hence we obtain a scale-independent sampler when we
use (13). One such choice is to use the square root of the
(constant) covariance matrix covπψ (q) as the B(q) matrix,
as

Bπψ B
T
πψ

= covπψ (q) = covπ (ψ−1(x))

= A−1covπ (x)A−T , (17)

satisfying the invariance property as the covariance is auto-
matically symmetric positive definite. Alternatively, onemay
choose B to be the inverse square root of the Hessian matrix
of logπψ , which shares this property (subject to some con-
ditions on the Hessian).

We have shown that the discretization using this choice of
B is affine invariant only up to affine transformations in the
q variables. However, we may consider dynamics that are
invariant under a transformation

ψ̃(q, p) = (Aq + v, A−T p),

which acts in both components, where as before Ai is any
invertiblematrix and vi is a vector. The dynamicswe consider
sample the distribution π̃(q, p) ergodically, where

π̃(q, p) ∝ π(q)ϕ̃(q, p),

ϕ̃(q, p) = exp(−pT M−1
π (q)p/2 − log |Mπ (q)|/2),
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so that the marginal distribution of π̃(q, p) in the momenta
is π(q). The mass matrix M−1

π (q) is a symmetric positive
definite matrix that may be dependent on position q. For the
choice of

J =
[
0 −I
I 0

]
S =

[
0 0
0 γ I

]

in (1) we obtain the standard underdamped Langevin dynam-
ics, and applying it to π̃(q, p) with γ = 1 gives

dq = M−1
π (q)pdt,

dp = ∇ logπ(q)dt + ∇ log ϕ̃(q, p)dt

− pdt + √
2Mπ (q)dWt ,

where the gradient ∇ is taken with respect to the position q.
Now applying this dynamics to the transformed distribution
instead

π̃ψ̃ (q, p) ∝ πψ(q)ϕ̃ψ(q, p)=π(Aq + v)ϕ̃(Aq + v, A−T p)

we obtain

dq = M−1
πψ

(q)p dt, (18)

dp = ∇ logπψ(q)dt − 1
2∇ log |Mπψ (q)|dt

− 1
2∇(pT M−1

πψ
(q)p)dt − pdt +

√
2Mπψ (q)dWt ,

(19)

where ∇ denotes gradient with respect to the position coor-
dinates. Changing variables r = A−T p gives

dq = M−1
πψ

(q)AT r dt,

dr = A−T∇ logπψ(q)dt − 1
2 A

−T∇ log |Mπψ (q)|dt
− 1

2 A
−T∇(rT AM−1

πψ
(q)AT r)dt

− rdt + A−T
√
2Mπψ (q)dWt .

Then writing y = Aq + v we have πψ(q) ∝ π(y), and if we
assume M is chosen such that

M−1
πψ

(q) = A−1C(y)A−T (20)

for some symmetric positive definite matrix C(q), then the
dynamics become

dy = C(y)r dt,

dr = ∇ logπ(y)dt + 1
2∇ log |C(y)|dt

− 1
2∇(rT C(y)r)dt − rdt + √

2C(y)dWt ,

eliminating the A scaling term in the dynamics and yielding
affine invariance with respect to the transformations ψ̃ .

Using the inverse covariance matrix as the mass is one
such choice for the M matrix, as similar to (17) we have

Mπψ = covπψ (q) = covπ (ψ−1(x)) = A−1covπ (x)A−T

satisfying (20). The inverse Hessian is another such matrix
with this property.

This result applies directly to the RMHMC scheme (Giro-
lami and Calderhead 2011a) which uses a position dependent
massmatrix; however, it periodically redraws themomentum
and sets γ = 0. If the inverse Hessian is used (assuming it
remains symmetric positive definite), or another matrix such
that (20) holds, then the resulting dynamics will be affine
invariant under transformations ψ̃(q, p) = (Aq+v, A−T p).

Computationally there is no obvious benefit to including
a p-scaling term in the affine transformation, as sampling
π(q) is the ultimate goal of our sampling, and the inclusion
of momentum is to increase efficiency. However, the usage
of (18) may become practically inefficient in the case of
ensemble sampling, as the joint distribution will be

π̄(Q, P) =
L∏

i=1

π(qi )

exp(−pTi M
−1
i (Q)p/2 − log |Mi (Q)|/2).

In the target joint distribution, the walker positions are no
longer independent. This complicates Metropolization of
the scheme which will now require calculations involving
all walkers when any one walker’s position is changed.
Additionally in each walker’s dynamics (18), evaluating the
∇qi π̄(Q, P) term requires computing derivatives of each of
the L-many Mi matrices, causing a significant amount of
additional computational overhead per step.

Appendix 6:Noisy estimation of the divergence term

The divergence of a positive definite matrix appears in many
of the schemes we consider above; however, the deriva-
tive is sometimes prohibitively computationally expensive to
obtain, or infeasible to compute analytically. AMetropoliza-
tion condition can be enforced to recover the correct sampling
without this term, but we may instead approximate the diver-
gence of a matrix M(x) using a random update. Formally,
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for a small constant ε > 0 and vector R ∈ R
D we have

Z = [M(x + εR) − M(x)]R

= ε

D∑

i=1

Ri∂i M(x)R

+ ε2
D∑

i=1

D∑

j=1

Ri R j∂i∂ j M(x)R + O(ε3).

If R ∼ N (0, I ), then taking the expectation of Z yields

(E[Z ])i = ε

D∑

j=1

∂i Mi, j (x) + O(ε3),

and so E[Z ] = ε div(M(x)) + O(ε3). This gives a cheap
“noisy” approximation of the divergence term that will intro-
duce some small bias into the system (depending on the
spectrum of M(x)).
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