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Summary: A novel nonparametric regression model is developed for evaluating the covariate-specific accuracy of a

continuous biological marker. Accurately screening diseased from nondiseased individuals and correctly diagnosing

disease stage are critically important to health care on several fronts, including guiding recommendations about

combinations of treatments and their intensities. The accuracy of a continuous medical test or biomarker varies

by the cuto↵ threshold (c) used to infer disease status. Accuracy can be measured by the probability of testing

positive for diseased individuals (the true positive probability or sensitivity, Se(c), of the test) and the true negative

probability (specificity, Sp(c)) of the test. A commonly used summary measure of test accuracy is the Youden index,

YI = max{Se(c) + Sp(c) � 1 : c 2 R}, which is popular due in part to its ease of interpretation and relevance to

population health research. In addition, clinical practitioners benefit from having an estimate of the optimal cuto↵

that maximizes sensitivity plus specificity available as a byproduct of estimating YI. We develop a highly flexible

nonparametric model to estimate YI and its associated optimal cuto↵ that can respond to unanticipated skewness,

multimodality and other complexities because data distributions are modeled using dependent Dirichlet process

mixtures. Important theoretical results on the support properties of the model are detailed. Inferences are available

for the covariate-specific Youden index and its corresponding optimal cuto↵ threshold. The value of our nonparametric

regression model is illustrated using multiple simulation studies and data on the age-specific accuracy of glucose as

a biomarker of diabetes.
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1. Introduction

Evaluating and ranking the performance of medical tests for screening and diagnosing disease

greatly contributes to the health promotion of individuals and communities. The ability of a

medical test to distinguish diseased from nondiseased individuals must be thoroughly vetted

before the test can be widely used in practice. Throughout this paper we use the terms

“medical test” and “test” to broadly include any continuous classifier (e.g., a single biological

marker or a composite score from a combination of biomarkers) for a well-defined condition

(termed “disease,” with “nondiseased” used to indicate absence of the condition). The ability

of a test that produces outcomes on a continuous scale to correctly di↵erentiate between

diseased (D) and nondiseased (D̄) individuals is characterized by the separation between the

distributions of test outcomes for the D and D̄ populations. A common parametric approach

to data analysis assumes that data from the D and D̄ populations vary according to separate

normal distributions. As a safeguard against model misspecification and to permit robustness

from the sharp constraints of parametric models (e.g., the normal-normal model) that can fail

to accommodate increasingly complex distributions of data from modern medical tests, many

contemporary methods for estimating test accuracy are based on flexible statistical models

that use nonparametric or semiparametric structures (e.g., Erkanli et al., 2006; Wang et al.,

2007; Branscum et al., 2008; Hanson et al., 2008; Gonzalez-Manteiga et al., 2011; Inácio

et al., 2011; Inácio de Carvalho et al., 2013; Rodŕıguez and Mart́ınez, 2014; Zhao et al.,

2015). We develop a nonparametric Bayesian regression modeling framework that allows for

data-driven flexibility from the confines of parametric models by using dependent Dirichlet

process mixtures to estimate the covariate-specific Youden index of a medical test and the

covariate-specific optimal threshold to screen individuals in practice.

The Youden index (Youden, 1950) is a popular summary measure of the accuracy of

continuous tests. Let y

D

and y

D̄

denote (possibly transformed) data from the D and D̄
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populations, respectively, and let F

D

/f

D

and F

D̄

/f

D̄

denote the corresponding continuous

distribution/density functions. Without loss of generality, we assume that a subject is classi-

fied as diseased (nondiseased) if the test value is greater (less) than a threshold c 2 R. Then,

the probability of a positive test for a diseased subject (i.e., the sensitivity of the test) is

Se(c) = Pr(y
D

> c) = 1 � F

D

(c), and the test’s specificity to correctly classify nondiseased

subjects is Sp(c) = Pr(y
D̄

6 c) = F

D̄

(c). The Youden index (YI) is given by

YI = max
c2R

{Se(c) + Sp(c)� 1} = max
c2R

{F
D̄

(c)� F

D

(c)},

and thus combines sensitivity and specificity over all thresholds into a single numeric sum-

mary. To qualify as a bona fide medical test, it is required that Se(c) + Sp(c) > 1 for all c.

Therefore, YI ranges from 0 to 1, with YI = 0 corresponding to complete overlap of the data

distributions for the D and D̄ populations (i.e., F
D

(c) = F

D̄

(c) for all c) and YI = 1 when the

distributions are completely separated; values of YI between 0 and 1 correspond to di↵erent

levels of stochastic ordering between F

D̄

and F

D

, with values closer to one indicating better

discriminatory ability.

In addition to providing a global measure of test accuracy, YI provides a criterion to select

an optimal threshold to screen subjects in clinical practice. The criterion is to choose the

cuto↵ value for which sensitivity plus specificity is maximized, i.e.,

c

⇤ = argmax
c2R

{F
D̄

(c)� F

D

(c)}.

It is worth noting that the Youden index corresponds to the maximum vertical distance

between the receiver operating characteristic (ROC) curve and the chance diagonal line,

with c

⇤ being the cuto↵ that achieves this maximum. This criterion to select the optimal

cuto↵ has been found to be superior to another popular approach for selecting an optimal

threshold, namely using the value of c for which the ROC curve is closest to the point (0, 1)

in R2. Specifically, the ROC-based criterion can lead to an increased rate of misclassification

compared to the YI-based criterion (Perkins and Schisterman, 2006). The Youden index
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continues to be successfully used in practice across a variety of scientific fields (e.g., Hawass,

1997; Demir et al., 2002; Castle et al., 2003; Larner, 2015), resulting in a demand for increased

research to develop flexible and robust methods that can reliably estimate it (e.g., Fluss et

al., 2005; Molanes-López and Léton, 2011; Bantis et al., 2014; Zhou and Qin, 2015).

Although it is well known that the discriminatory power of a medical test is often a↵ected

by covariates, such as age or sex, past research has mostly been devoted solely to estimat-

ing the unadjusted Youden index rather than covariate-specific Youden indices and their

associated optimal cuto↵s. To the best of our knowledge, the only literature on estimat-

ing the covariate-specific YI has involved normal linear regression models (Faraggi, 2003),

heteroscedastic kernel-based methods (Zhou and Qin, 2015), and a model-free estimation

method (Xu et al., 2014). In this paper, we develop a nonparametric Bayesian regression

model that is based on dependent Dirichlet process mixtures, which provide a very flexible

tool that can capture a wide variety of functional forms. In contrast with most of the

aforementioned models for the Youden index, where only one or two characteristics (mean

and/or variance) of the distributions of test outcomes in each group depend on covariates,

our modeling framework allows the entire distributions to smoothly change as a function of

covariates by using B-splines regression. Therefore, our new procedure successfully combines

two sources of nonparametric flexibility, namely (i) arbitrary and unspecified distributions

for test outcome data from the D and D̄ populations in place of standard parametric

distributions and (ii) nonparametric regression B-splines in place of the standard linearity

assumption in multiple regression.

The remainder of the paper is organized as follows. In the next section we introduce our new

approach to nonparametric Bayesian estimation of the Youden index via a flexible mixture

model. The performance of our methods is assessed in Section 3 using multiple simulation
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studies. Section 4 applies our methods to estimate the age-specific accuracy of glucose as a

biomarker of diabetes. Concluding remarks are provided in Section 5.

2. Models and Methods

We develop a nonparametric regression model to estimate the covariate-specific Youden index

and optimal threshold by using dependent Dirichlet process (DDP) mixtures. The Dirichlet

process (Ferguson, 1973) is a prior probability model for an unknown distribution function

F and is characterized by a baseline distribution F

⇤ (the prior mean; E{F (·)} = F

⇤(·)) and

a positive precision parameter ↵ that is related to the prior variance, with larger values of ↵

resulting in prior realizations of F that are stochastically closer to F

⇤. Let F ⇠ DP(↵, F ⇤)

denote that F follows a Dirichlet process prior with parameters ↵ and F

⇤. We will use the

following constructive definition of the Dirichlet process developed by Sethuraman (1994):

F (·) =
1X

`=1

p

`

�

✓

`

(·).

Here, �
✓

denotes a point mass at ✓, and ✓1, ✓2, . . . are independently distributed according to

F

⇤ and they are independent of the weights, which are generated by a stick-breaking scheme

wherein p1 = q1 and for ` = 2, 3, . . ., p
`

= q

`

Q
`�1
r=1(1 � q

r

), with q1, q2, . . .
iid⇠ Beta(1,↵).

MacEachern (2000) proposed the DDP, a generalization of the DP, as a prior for a collection

of covariate-dependent random distributions {F
x

: x 2 X ✓ Rp}. Because of the full support

properties it obtains (Barrientos et al., 2012), we consider a ‘single-weights’ DDP (De Iorio

et al., 2009) in which

F

x

(·) =
1X

`=1

p

`

�

✓

x`

(·). (1)

The random support locations ✓

x`

= {✓
l

(x) : x 2 X} are, for ` = 1, 2, . . ., independent

and identically distributed realizations from a stochastic process over the covariate space

X and the weights {p
`

}1
`=1 match those from a standard DP. We begin by describing a

nonparametric model for medical test data in the absence of covariates and build up to
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our new nonparametric DDP mixture model that contains nonlinear regression B-splines

for capturing unforeseen complex covariate trends and that provides robust subpopulation-

specific inference about YI.

2.1 Nonparametric Model

In the absence of covariates, we consider nonparametric data analysis using separate Dirichlet

process mixture (DPM) models for data y

D1, . . . , yDn

D

from population D and y

D̄1, . . . , yD̄n

D̄

from population D̄. That is, we consider normal mixture models with a DP prior placed on

the mixing distribution, namely

y

Di

|F
D

iid⇠ F

D

, F

D

(c) =

Z
�(c;µ, �2)dG

D

(µ, �2), G

D

⇠ DP(↵
D

, G

⇤
D

),

where �(c;µ, �2) denotes the normal distribution function with mean µ and variance �2 that

is evaluated at c. We select the baseline distribution G

⇤
D

(µ, �2) to be N(µ | m
D

, s

2
D

)�(��2 |

a

D

, b

D

) (i.e., G⇤
D

(µ, �2) is the product of independent normal and gamma distribution func-

tions). A similar model is posited for data from the D̄ population. The stick-breaking

representation of the Dirichlet process leads to specifying the sampling models as infinite

normal mixtures given by

F

D

(c) =
1X

`=1

p

D`

�(c;µ
D`

, �

2
D`

) and F

D̄

(c) =
1X

`=1

p

D̄`

�(c;µ
D̄`

, �

2
D̄`

),

with the aforementioned Sethuraman construction used to define the weights and priors (e.g.,

µ

D`

iid⇠ N(m
D

, s

2
D

) and �

�2
D`

iid⇠ �(a
D

, b

D

)). The Youden index under this nonparametric model

is YI = max
c2R{

P1
`=1(pD̄`

�(c;µ
D̄`

, �

2
D̄`

)�p

D`

�(c;µ
D`

, �

2
D`

))} and c

⇤ is the input that returns

the maximum value. Following the popular computational approach by Ishwaran and James

(2002), we fit the model by accurately approximating the infinite mixtures that characterize

F

D

and F

D̄

by finite mixtures with many components (details in Section 2.2).
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2.2 Nonparametric Regression Model

We develop a robust nonparametric model that can be used to determine if and how the

accuracy of a medical test varies across subpopulations defined by di↵erent covariate values.

For ease of exposition, we assume that p = 1 (i.e., one covariate); an extension to the multiple

covariate case is outlined at the end of this section. In this setting, sensitivity and specificity

depend on a single covariate x, so that Se(c | x) = Pr(y
D

> c | x) = 1�F

D

(c | x) and Sp(c |

x) = Pr(y
D̄

6 c | x) = F

D̄

(c | x). The data from populationD are {(y
Di

, x

Di

) : i = 1, . . . , n
D

}

and from population D̄ we have {(y
D̄j

, x

D̄j

) : j = 1, . . . , n
D̄

}, where x

Di

, x

D̄j

2 X ✓ R for

all i, j. Test outcomes are assumed to be independent with y

Di

| x
Di

ind.⇠ F

D

( · | x
Di

) and

y

D̄j

| x
D̄j

ind.⇠ F

D̄

( · | x
D̄j

). For x 2 X , the covariate-specific Youden index and optimal cuto↵

are given by

YI(x) = max
c2R

{F
D̄

(c | x)� F

D

(c | x)} and c

⇤(x) = argmax
c2R

{F
D̄

(c | x)� F

D

(c | x)}. (2)

Note that we can also estimate YI(x
D

, x

D̄

) and c

⇤(x
D

, x

D̄

), the Youden index and optimal

cuto↵ for diseased subjects with covariate x

D

and nondiseased subjects with covariate x

D̄

.

We specify a prior probability model for the entire collection of conditional distributions

F
d

= {F
d

( · | x) : x 2 X} for d 2 {D, D̄}, where the conditional distributions in each

population are characterized by covariate-dependent mixtures of normals

F

d

(c | x) =
Z

�(c;µ, �2)dG
dx

(µ, �2), d 2 {D, D̄}, (3)

with the single weights DDP prior in (1) placed on the mixing measure G

dx

(·). Specifically,

we set ✓
d`

(x) = (µ
d`

(x), �2
d`

), where the potentially nonlinear function µ

d`

(x) is approximated

by a linear combination of cubic B-spline basis functions over a sequence of knots ⇠
d0 < ⇠

d1 <

· · · < ⇠

dK

< ⇠

d,K+1. The knots ⇠d0 and ⇠

d,K+1 are boundary knots and ⇠

d1, . . . , ⇠dK are interior

knots. Thus,

µ

d`

(x) =

QX

q=1

�

d`q

B

dq

(x), Q = K + 4, (4)
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where B
dq

(x) corresponds to the qth cubic B-spline basis function in group d evaluated at x.

For simplicity, we have assumed the same number of interior knots for the D and D̄ groups.

An important issue regarding the application of regression splines is the selection of interior

knots, i.e., the number of inner knots and their location. As stated in Durrleman and Simon

(1989), in practice often only a few knots are needed to adequately describe most of the

phenomena likely to be observed in medical studies. A maximum of three or four interior

knots will often su�ce. The selection of K can be assisted by a model selection criterion,

e.g., the log pseudo marginal likelihood (LPML) (Geisser and Eddy, 1979). We use empirical

percentiles of x
d

to determine knot locations. Specifically, following Rosenberg (1995), the

covariate space is partitioned in accordance with the goal of having each interval containing

approximately the same number of observations, which leads to setting ⇠

dk

equal to the

k/(K + 1) percentile of x
d

, for d 2 {D, D̄} and k = 1, . . . , K. The boundary knots are set

equal to the minimum and maximum of x
d

.

We proceed by noting that µ
d`

(x) can be written as

µ

d`

(x) =

QX

q=1

�

d`q

B

dq

(x) = z

T
d

�
d`

,

where z

T
d

= (B
d1(x), . . . , BdQ

(x)) and �
d`

= (�
d`1, . . . , �d`Q

)T. Thus, under this formulation,

the base stochastic processes are replaced with a group-specific base distribution G

⇤
d

that

generates the component specific regression coe�cients and variances. The B-splines DDP

mixture model can therefore be represented as a DP mixture of Gaussian regression models

where the component means vary nonlinearly with the predictors, namely

F

d

(c | x) =
Z

�(c; zT
d

�, �2)dG
d

(�, �2), G

d

⇠ DP(↵
d

, G

⇤
d

), d 2 {D, D̄}. (5)

To complete model (5), we takeG⇤
d

(�, �2) to be N
Q

(� | m
d

,S
d

)�(��2 | a
d

, b

d

), with conjugate

hyperpriors m
d

⇠ N
Q

(m
d0,Sd0) and S�1

d

⇠ Wishart
Q

(⌫
d

, (⌫
d

 
d

)�1) (a Wishart distribution

with degrees of freedom ⌫

d

and expectation  �1
d

).

We use the blocked Gibbs sampler of Ishwaran and James (2002) for posterior sampling.
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The blocked Gibbs sampler relies on truncating the stick-breaking representation to a finite

number of components. Hence,

F

D

(c | x) =
L

DX

`=1

p

D`

�(c; zT
D

�
D`

, �

2
D`

) and F

D̄

(c | x) =
L

D̄X

`=1

p

D̄`

�(c; zT

D̄

�
D̄`

, �

2
D̄`

), (6)

with L

D

and L

D̄

being upper bounds on the number of components used for the ap-

proximations. The conditional distribution in each group is then estimated by a finite

mixture of Gaussian regression models with the mixing weights automatically determined

by the data. The weights p

d`

are generated from the stick-breaking representation, while

�
d`

iid⇠ N
Q

(m
d

,S
d

) and �

�2
d`

iid⇠ �(a
d

, b

d

). The full conditional distributions have the conjugate

forms detailed in Appendix A of the Supplementary Materials. The level of truncation can

be guided by properties of U
d

=
P1

`=L

d

+1 pd`. Ishwaran and Zarepour (2000) demonstrated

that E(U
d

) = ↵

L

d

d

/(1+↵

d

)Ld and var(U
d

) = ↵

L

d

d

/(2+↵

d

)Ld �↵

2L
d

d

/(1+↵

d

)2Ld . For example,

setting L

d

= 20 and ↵

d

= 1 (d 2 {D, D̄}) as in our simulation study and application, results

in E(U
d

) = 10�6 and var(U
d

)
.

= 10�10, which is more than adequate for our data analysis.

Posterior inference for YI(x) is obtained by using (2) and (6), and the covariate-specific

optimal cuto↵ c

⇤(x) is the input that returns the maximum. A grid search was used to

identify the maximum.

Finally, in the case of multiple covariates (so that x 2 Rp), a possibility would be to use the

additive structure µ
d`

(x) = f

d`1(x1)+ · · ·+ f

d`p

(x
p

). The model can therefore be regarded as

a DDP mixture of additive models. Each function could be approximated by basis functions

as in (4).

2.3 Theoretical Properties

In this section we characterize the support properties of our nonparametric models, with

and without covariates. The overarching goal is to construct extremely flexible models for

F

D

and F

D̄

that support any collection of Youden indexes with positive probability. Roughly

speaking, the following results are an a�rmation of the theoretical resilience of the model, in
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the sense that the model can successfully adapt to and support very complex distributions

of data. We have the following theorem about the nonparametric model in Section 2.1.

Theorem 1: Let (⌦,A, P ) be the probability space associated with the DPM model,

which induces the Youden index YI = max
c2R{F

D̄

(c) � F

D

(c)}. For almost every ! 2 ⌦,

let YI

!

be a realization of the Youden index under the proposed DPM. Then, for every " > 0,

it holds that P (! 2 ⌦ : |YI
!

� YI| < ") > 0.

The following analogous result holds for the covariate-dependent nonparametric regression

setting in Section 2.2.

Theorem 2: Let (⌦,A, P ) be the probability space associated with the general DDP

mixture of Gaussian distributions in (3) with the single weights DDP prior in (1) placed on

the mixing measure and with trajectories given by YI(x) = max
c2R{F

D̄

(c | x) � F

D

(c | x)}.

For almost every ! 2 ⌦ and every x 2 X , let YI

!

(x) be a trajectory of the Youden index

under the DDP mixture model. Then, for x1, . . . ,xn

2 X , for every positive integer n and

" > 0, it holds that P (! 2 ⌦ : |YI
!

(x
i

)� YI(x
i

)| < ", i = 1, . . . , n) > 0.

Proofs are given in Appendix B of the Supplementary Materials.

3. Simulation Study

To evaluate the performance of our nonparametric regression model for estimating the

covariate-specific Youden index and optimal cuto↵ value, we analyzed simulated data under

the following four scenarios: linear mean, a mixture of linear means, nonlinear mean with con-

stant variance, and nonlinear mean with covariate-dependent variance. For each scenario, 100

data sets were generated using sample sizes of (n
D

, n

D̄

) = (100, 100), (n
D

, n

D̄

) = (100, 200),

and (n
D

, n

D̄

) = (200, 200). For all scenarios, covariate values were independently generated

from a uniform distribution, namely x

Di

⇠ U(0, 1) and x

D̄j

⇠ U(0, 1).
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3.1 Simulation Scenarios

In Scenario 1, we consider di↵erent homoscedastic linear mean regression models for the

diseased and nondiseased groups. Specifically, independent data were generated as

y

Di

| x
Di

⇠ N(2+4x
Di

, 22), y

D̄j

| x
D̄j

⇠ N(0.5+x

D̄j

, 1.52), i = 1, . . . , n
D

, j = 1, . . . , n
D̄

.

The primary purpose of including this scenario is to investigate the loss of e�ciency of our

covariate-specific Youden index and optimal cuto↵ estimators when standard parametric

assumptions hold.

The popular normal-normal regression model for data from the D and D̄ populations is

violated in Scenarios 2-4. Data for Scenario 2 are governed by the following mixtures of

homoscedastic linear mean regression models:

y

Di

| x
Di

ind.⇠ 0.5N(2 + 3x
Di

, 12) + 0.5N(6 + 2.5x
Di

, 12),

y

D̄j

| x
D̄j

ind.⇠ 0.5N(2 + x

D̄j

, 1.252) + 0.5N(�2.5 + x

D̄j

, 12).

Scenario 3 involves the homoscedastic nonlinear mean regression models given by

y

Di

| x
Di

ind.⇠ N(9+1.15x2
Di

, 2.52) and y

D̄j

| x
D̄j

ind.⇠ N(5.5+1.75x2
D̄j

+1.5 sin(⇡(x
D̄j

+1)), 1.52),

for i = 1, . . . , n
D

, and j = 1, . . . , n
D̄

. Finally, in Scenario 4, the most complex scenario

considered, we use the following heteroscedastic nonlinear mean regression models for the

diseased and nondiseased groups:

y

Di

| x
Di

ind.⇠N(5 + 1.5x
Di

+ 1.5 sin(x
Di

), 1.5 + �(10x
Di

� 2)),

y

D̄j

| x
D̄j

ind.⇠N(3 + 1.5 sin(⇡x
D̄j

), 0.2 + exp(x
D̄j

)).

3.2 Models

For each simulated data set we fit the B-splines DDP mixture model with Q = 4, thus

corresponding to K = 0 (no interior knots). We set ↵

d

(d 2 {D, D̄}) equal to one, which

according to Hanson (2006) is the default value in the absence of prior information on the

number of components needed to adequately describe F
d

( · | x). Using results from Antoniak
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(1974) and Escobar (1994), this choice leads to a prior expected number of components of 5

when n

d

= 100 and 6 when n

d

= 200. For the normal-gamma prior we set m
d0 = 0

Q

,S
d0 =

100I
Q

, ⌫
d

= Q + 2,  �1
d

= I

Q

, where I

Q

denotes the Q ⇥ Q identity matrix, and we used

a

d

= b

d

= 0.1. The normal prior for �
d`

is relatively di↵use since variances in S
d0 are large

and the degree of freedom in the Wishart prior is small. Although the gamma prior for �2
d`

has a peak at 0+, we found that estimates of the Youden index and optimal cuto↵ were robust

to moderate departures from this prior distribution. We capped the maximum number of

mixture components at L
d

= 20 and, thus, a maximum of 20 regression models was used to

approximate the conditional distributions in (5).

We compared our estimator to results from ordinary linear regression analysis, i.e., where

F

D

(c | x⇤) = �(c;x⇤T�⇤
D

, �

2⇤
D

) and F

D̄

(c | x⇤) = �(c;x⇤T�⇤
D̄

, �

2⇤
D̄

)

with x

⇤T = (1, x) and �⇤
d

= (�⇤
d0, �

⇤
d1)

T, d 2 {D, D̄}. We used the following priors that align

with those from the nonparametric analysis:

�⇤
d

⇠ N2(m
⇤
d

,S⇤
d

), �

�2⇤
d

⇠ �(a⇤
d

, b

⇤
d

), m⇤
d

⇠ N2(m
⇤
d0,S

⇤
d0), S⇤�1

d

⇠ Wishart(⌫⇤
d

, (⌫⇤
d

 ⇤
d

)�1),

with

m⇤
d0 = 02, S⇤

d0 = 100I2, ⌫

⇤
d

= 4, ( ⇤
d

)�1 = I2, and a

⇤
d

= b

⇤
d

= 0.1.

This model can be regarded as a Bayesian version of the model considered by Faraggi (2003).

In both cases 1000 samples were kept after a burn-in period of 500 iterations of the Gibbs

sampler. In addition, we compared our model to the nonparametric kernel-based method of

Zhou and Qin (2015) (details appear in Section C of the Supplementary Materials).

3.3 Results

The estimated covariate-specific Youden index and optimal cuto↵ functions along with the

2.5 and 97.5 percentiles in Figures 1 and 2 illustrate the ability of our model to accurately and

precisely capture complex functional forms dynamically. Specifically, for the case (n
D

, n

D̄

) =
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(100, 200), which is similar to the diabetes application in Section 4, the minor loss in e�ciency

for our nonparametric estimator when a parametric normal linear regression holds (panels

(a) and (e) in Figures 1 and 2) is a small price to pay for the benefit of the extreme robustness

that leads to accurate data-driven estimates under increasingly complex scenarios (remaining

panels in Figures 1 and 2). Similar conclusions were found for the other sample sizes (Figures

1–8 in Appendix C of the Supplementary Materials). As indicated by these figures, our

estimator is able to successfully recover the true functional form of both the Youden index

and optimal cuto↵ for all scenarios considered. As expected, the estimator based on the

normality assumption has the best performance in Scenario 1, but it is unsuitable for the

remaining scenarios and, unlike our nonparametric estimator, its performance fails to improve

as the sample size increases. It is noteworthy that, in all scenarios considered, posterior

uncertainty decreases as sample size increases and that even with a relatively low sample

size combination of (n
D

, n

D̄

) = (100, 100), our method performs very well. The kernel-based

estimator is also able to successfully recover the true functional form of the Youden index

and optimal cuto↵.

The discrepancy between estimated and true Youden index and optimal cuto↵ was assessed

using the empirical global mean squared error (EGMSE)

EGMSEYI =
1

n

x

n

xX

r=1

{cYI(x
r

)� YI(x
r

)}2,

where n
x

= 11 and the x
r

’s are evenly spaced over [0, 1]. An analogous expression follows for

EGMSE
c

⇤ . Boxplots summarizing the distribution of EGMSE are presented in Figures 9 and

10 of the Supplementary Materials. For most sample sizes considered under these scenarios,

our B-splines DDP estimator produced smaller EGMSE compared to the kernel estimator

(especially for the optimal cuto↵).

The mean LPML values and 90% intervals presented in Table 1 of the Supplementary

Materials highlight the performance of our model compared to the normal regression model.
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The conditional predictive ordinate (CPO) was calculated using M post burn-in Gibbs

sampler iterates (each of which is indexed by the superscript (k) in the following formula for

CPO):

LPML
D

=

n

DX

i=1

log(CPO
Di

), CPO�1
Di

=
1

M

MX

k=1

(
L

DX

`=1

p

(k)
D`

�

⇣
y

Di

; zT
Di

�(k)
D`

, (�
(k)
D`

)2
⌘)

.

An analogous formula holds for LPML
D̄

.

As suggested by a referee, we also fit the B-splines DDP model using multiple interior knots

(Q = 7). The estimated Youden index and optimal cuto↵ functions are shown in Figures 1–8

of the Supplementary Materials. The true functional form is recovered successfully for both

YI(x) and c

⇤(x), although with higher posterior uncertainty than with Q = 4. The model

with Q = 4 was clearly favored by LPML for the majority of the scenarios and sample sizes

considered (results not shown).

[Figure 1 about here.]

[Figure 2 about here.]

4. Application

Diabetes mellitus, a chronic disease characterized in part by high levels of blood sugar

(glucose), is an increasingly serious global health concern, with the estimated worldwide

prevalence of 8% expected to continue to rise (Shi and Hu, 2014). A population-based survey

of diabetes in Cairo, Egypt collected data on postprandial blood glucose measurements that

were obtained from a finger stick on 286 adults. Our primary goal is to evaluate the age-

specific accuracy of glucose to serve as a biomarker of diabetes. Based on the World Health

Organization diagnostic criteria for diabetes, 88 subjects were classified as diabetic and 198

as nondiabetic (Smith and Thompson, 1996).

Density estimates from an unadjusted analysis of data from the diabetic and nondiabetic

groups using histograms of glucose levels and the DPM mixture of normal models described
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in Section 2.1 are presented in Figures 11 (a) and (b) of the Supplementary Materials;

Figure 11 (c) presents estimates of the distribution functions and optimal cuto↵ value. The

Bayesian nonparametric estimate of the unadjusted Youden index (95% probability interval)

of 0.66 (0.56, 0.75) illustrates the reasonably strong overall discriminatory ability of glucose

to correctly classify diabetes status. The optimal cuto↵ that maximizes test accuracy occurs

at a glucose level of 127 mg/dL (118, 142).

The aging process may be associated with relative insulin resistance among those who

are nondiabetic (Smith and Thompson, 1996). Thus, there is a need to accurately estimate

the Youden index and optimal cuto↵ value adjusted for age. Our B-splines DDP mixture

model was applied to the glucose data with Q = 4, 5, 6, and 7 and the same di↵use prior

specification described in Section 3.2. Posterior inference was based on estimates calculated

from 3500 Gibbs sampler iterates after a burn-in of the first 1500 realizations was discarded.

Glucose levels were scaled by dividing by the standard deviation to fit the model, but we

transformed back to the original scale to present the results (hyperparameter specification

was made on the scaled data). Plots of the B-splines basis functions in each group are

presented in Figure 12 of the Supplementary Materials.

Figure 3 presents the posterior mean of the Youden index and the optimal cuto↵ for

the di↵erent values of Q as a function of age, along with a band constructed using the

pointwise 2.5% and 97.5% posterior quantiles. To enable comparisons across Q, Figure 13

of the Supplementary Materials shows the 4 posterior means together on the same graph.

Our analysis found that glucose is a more accurate biomarker of diabetes in younger adult

populations, with its accuracy decreasing with age and the optimal cuto↵ increasing with

age. Also, as expected, posterior uncertainty increases with Q. The LPML values for models

applied to the nondiabetic data are �878, �880, �881, and �887 for Q = 4, 5, 6, and 7,
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respectively, while for the diabetic population the corresponding LPML values are �530,

�532, �531, and �532.

Age-specific nonparametric estimates of the Youden index and optimal cuto↵ (posterior

mean and 95% probability bands) when Q = 4 along with unadjusted estimates of YI and

c

⇤ are presented in Figures 4 (a) and (b). The probability band for the optimal cuto↵ from

the unadjusted analysis is not completely contained in the age-adjusted band, which gives

some additional support for estimating the age-specific accuracy of glucose for diagnosing

diabetes. We compared estimates from our B-splines DDP model to those from the Gaussian

linear regression model in Section 3.2 (Figures 4 (c) and (d)). To facilitate comparisons,

Figures 4 (e) and (f) present the estimates together for both methods. While the estimates

of the Youden index are similar, the di↵erent methods provide di↵erent estimates of the

optimal age-specific cuto↵ values. For the nondiabetic group, the B-splines DDP model has

LPML equal to -878 compared to -935 under the normal model, while for the diabetic group

the corresponding LPML values are -530 and -532. The pseudo Bayes factors, which are

larger than 1020 and 7, support the nonparametric model for both groups, although just

slightly for the diabetic group. A log transformation made the normal model slightly more

competitive, although the B-splines DDPmixture model was still preferred in the nondiseased

group; for the diabetic group the comparison was roughly unchanged. We also highlight the

important finding that our nonparametric analysis did not produce a substantial increase

in the uncertainty associated with the estimates of the Youden index and optimal cuto↵

in this setting. A comparison with the kernel approach is presented in Figure 14 in the

Supplementary Materials. A sensitivity analysis with a data-driven prior (Section D and

Figure 15 of the Supplementary Materials) resulted in similar inferences as the primary

analysis.

[Figure 3 about here.]
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[Figure 4 about here.]

5. Concluding Remarks

We developed a Bayesian nonparametric regression model to estimate the covariate-specific

Youden index and the corresponding optimal cuto↵ value. The flexibility of our model arises

from using dependent Dirichlet process mixtures combined with B-splines regression. Our

simulation study illustrated the ability of the model to dynamically respond to complex

data distributions in a variety of scenarios, with little price to be paid in terms of decreased

posterior precision for the extra generality of our nonparametric estimator when compared

with parametric estimates (even when the parametric model holds). Our investigation into

the potential of glucose to serve as a biomarker of diabetes found that its classification

accuracy decreases with age and the optimal cuto↵ to screen subjects in practice increases

with age. It is important to underscore that, although the Youden index gives equal weight to

sensitivity and specificity, a weighted Youden index can also be used. For instance, weighting

by the prevalence of disease in the population would emphasize test sensitivity over specificity

when the disease is common. An interesting avenue for future research is variable selection

in the diseased and nondiseased subpopulations; spike and slab priors could be a possible

approach to this problem.

6. Supplementary Materials

Supplementary Materials describing the Gibbs sampling algorithm for fitting the nonpara-

metric regression model, proofs of Theorems 1 and 2, details on the nonparametric kernel

method of Zhou and Qin (2015), and the additional figures referenced in Sections 3 and 4

are available at the Biometrics website on Wiley Online Library.
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Figure 1: True (solid black lines) and the average value over 100 simulated data sets (dashed
blue lines) of the posterior mean (for the Bayesian estimators) of the Youden index function
for the sample size (n

D

, n

D̄

) = (100, 200). A band constructed using the pointwise 2.5% and
97.5% quantiles across simulations is presented in gray. Row 1: B-splines DDP estimator.
Row 2: Normal estimator. Row 3: Kernel estimator . Panels (a), (e), and (i) show the results
under Scenario 1, panels (b), (f), and (j) under Scenario 2, panels (c), (g), and (k) under
Scenario 3, and panels (d), (h), and (l) under Scenario 4.
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Figure 2: True (solid black lines) and the average value over 100 simulated data sets (dashed
blue lines) of the posterior mean (for the Bayesian estimators) of the optimal cuto↵ function
for the sample size (n

D

, n

D̄

) = (100, 200). A band constructed using the pointwise 2.5% and
97.5% quantiles across simulations is presented in gray. Row 1: B-splines DDP estimator.
Row 2: Normal estimator. Row 3: Kernel estimator . Panels (a), (e), and (i) show the results
under Scenario 1, panels (b), (f), and (j) under Scenario 2, panels (c), (g), and (k) under
Scenario 3, and panels (d), (h), and (l) under Scenario 4.
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Figure 3: Estimated Youden index and optimal cuto↵ as a function of age for Q = 4, Q = 5,
Q = 6, and Q = 7. Solid lines represent posterior means and the gray areas correspond to
pointwise 95% posterior bands.
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Figure 4: Estimated Youden index and optimal cuto↵ as a function of age. Panels (a)
and (b) present results from the B-splines DDP estimator (along with the results obtained
when ignoring the e↵ect of age), while panels (c) and (d) present results obtained under the
normal linear model. Solid lines represent posterior means and the gray areas correspond
to pointwise 95% posterior bands. For ease of comparison, panels (e) and (f) display the
posterior means together.
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In this supplement to the main paper we present computational and technical details, along

with supporting figures and other results. Specifically, the full conditional distributions for

the Gibbs sampler used to fit the nonparametric regression model are presented in Section A;

we fit the unconditional (i.e., without covariates) nonparametric model in Section 2.1 of the

paper using analogous computational methods. Section B contains proofs of Theorems 1 and

2. Details on the nonparametric kernel based method of Zhou and Qin (2015) and additional

figures are provided in Section C. Finally, in Section D we give details on a data-driven prior

and provide additional figures.

Let D and D̄ denote the diseased and nondiseased populations, respectively. For d 2

{D, D̄}, the cumulative distribution functions are denoted Fd(·) in the absence of covariates

and Fd(·|x) in the regression model with covariates. Following the notation used in the

main paper, we write YI = maxc2R{FD̄(c) � FD(c)} to denote the Youden index induced

by the Dirichlet Process Mixture (DPM) model in Section 2.1, and YI(x) = maxc2R{FD̄(c |

x)� FD(c | x)} to denote the covariate-dependent Youden index induced by the Dependent

Dirichlet Process (DDP) model in Section 2.2. Below, we use the notations k ·k1 and k ·k1 to

denote the sup-norm and the L1-norm, respectively, so that kFD̄ � FDk1 = supc2R |FD̄(c)�

FD(c)| and kfD̄ � fDk1 =
R
R |fD̄(u)� fD(u)|du.

For the proof of Theorem 1 in Appendix B we use the following auxiliary lemma often

know in mathematical language as the reverse triangle inequality.

Lemma 1: Let V be a normed vector space. Then, | kak � kbk | 6 ka� bk, for all a, b

in V .

Proof. See Christensen (2010, Lemma 2.1.2).
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Section A: Blocked Gibbs sampler algorithm

The Gibbs sampling algorithm that we used to fit our nonparametric DDP regression model

is essentially a covariate-dependent version of the Blocked Gibbs sampler algorithm in

Ishwaran and James (2002), where iterative sampling is conducted using the full conditional

distributions catalogued below. We omit the subscripts D and D̄ in order to present a general

setting that is applicable to both the diseased and nondiseased populations. We describe an

algorithm for the non-spline version in which the sampling models for the data from both

populations have the form F (·|x) =
R
�(·|xT

�, �

2) dG(�, �2), where G ⇠ DP(↵, G⇤) and

G

⇤(�, ��2) = Np(m�,S�)�(a, b) with m� ⇠ Np(m0,S0) and S

�1
� ⇠ Wishartp(⌫, (⌫ )�1).

The truncation

G

L(·) =
LX

`=1

p`�(�`,�
2

` )
(·)

is used to approximate G (Ishwaran and James, 2001; Ishwaran and Zarepour, 2000, 2002),

where L is chosen to be large, e.g., L = 20 (Chung and Dunson, 2009). The weights are

obtained from the stick-breaking equation

p` = q`

Y

r<`

(1� qr),

where q1, . . . , qL�1 | ↵

iid
⇠ Beta(1,↵) and qL = 1. Upon introducing membership indicators

(Diebolt and Robert, 1994) such that zi = ` when yi comes from N(xT

i �`, �
2
` ), the full

conditional distributions are as follows:

q` | else ⇠ Beta

 
n` + 1,↵ +

LX

r=`+1

nr

!
,

where n` =
Pn

i=1 I(zi = `) is the number of observations from component `; in addition, note

that P (zi = ` | else) / p`�(yi|xT

i �`, �
2
` ) and

8
>>><

>>>:

�` | else ⇠ Np

⇣
V `

⇣
S

�1
� m� + �

�2
`

P
{i:zi=`} xiyi

⌘
,V `

⌘
, V ` =

✓
S

�1
� + �

�2
`

P
{i:zi=`} xix

T

i

◆�1

,

�

�2
` | else ⇠ �

⇣
a+ n`

2
, b+ 1

2

P
{i:zi=`}(yi � x

T

i �`)
2
⌘
,
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where8
>>><

>>>:

m� | else ⇠ Np

⇣
V

⇣
S

�1
0 m0 + S

�1
�

PL
`=1 �`

⌘
,V

⌘
, V = (S�1

0 + LS

�1
� )�1

,

S

�1
� | else ⇠ Wishartp

✓
⌫ + L,

⇣
⌫ +

PL
`=1(�` �m�)(�` �m�)T

⌘�1
◆
,

and

↵ | else ⇠ Gamma

 
a+ L, b�

L�1X

`=1

log(1� q`)

!
.

The full conditional distributions for the spline version follows immediately by replacing x

T

by z

T = (B1(x), . . . , BQ(x)) and by using �l = (�l1, . . . , �lQ)T.

Section B: Proofs of Theorems 1 and 2

Proof of Theorem 1. The proof entails simple manipulations and a result from Lijoi et al.

(2004, §3). Note that

|YI! � YI| =
��max

c2R
{F

!
D̄(c)� F

!
D(c)}�max

c2R
{FD̄(c)� FD(c)}

��

= | kF

!
D̄ � F

!
Dk1 � kFD̄ � FDk1 |

6 k(F !
D̄ � F

!
D)� (FD̄ � FD)k1

= k(F !
D̄ � FD̄)� (F !

D � FD)k1

(1)

where the penultimate step follows from the reverse triangle inequality. It follows from (1)

that

|YI! � YI| 6 kF

!
D̄ � FD̄k1 + kF

!
D � FDk1 6 kf

!
D̄ � fD̄k1 + kf

!
D � fDk1, (2)

where the last step follows from

kF

!
D̄ � FD̄k1 = sup

c2R

����
Z c

�1
{f

!
D̄(u)� fD̄(u)} du

���� 6 sup
c2R

Z c

�1
|f

!
D̄(u)� fD̄(u)| du

=

Z 1

�1
|f

!
D̄(u)� fD̄(u)| du = kf

!
D̄ � fD̄k1,

and analogously kF

!
D � FDk1 6 kf

!
D � fDk1.

Hence, as it can be noticed from (2), to have |YI! � YI| < ", it would su�ce having

kf

!
D̄ � fD̄k1 < "/2 and kf

!
D � fDk1 < "/2, thus implying that

{! 2 ⌦ : |YI! � YI| < "} ◆ {! 2 ⌦ : kf!
D̄ � fD̄k1 < "/2, kf!

D � fDk1 < "/2},



4 Biometrics, 000 0000

from where it finally follows that

P (! 2 ⌦ : |YI!�YI| < ") > P (! 2 ⌦ : kf!
D̄�fD̄k1 < "/2)⇥P (! 2 ⌦ : kf!

D�fDk1 < "/2) > 0,

for every " > 0, given that as a consequence of Lijoi et al. (2004, §3), it holds that for every

" > 0,

P (! 2 ⌦ : kf!
D̄ � fD̄k1 < "/2) > 0, P (! 2 ⌦ : kf!

D � fDk1 < "/2) > 0.

⌅

Proof of Theorem 2. The proof is analogous to that of Theorem 1, but we need to use

Theorem 4 in Barrientos et al. (2012), which is essentially a predictor-dependent version of

the results in Lijoi et al. (2004, §3). Similar arguments as in the proof of Theorem 1 yield,

|YI!(xi)� YI(xi)| 6 kf

!
D̄( · | xi)� fD̄( · | xi)k1 + kf

!
D( · | xi)� fD( · | xi)k1, i = 1, . . . , n.

Hence, to have |YI!(xi)� YI(xi)| < ", it would su�ce having

kf

!
D̄( · | xi)� fD̄( · | xi)k1 < "/2, kf

!
D( · | xi)� fD( · | xi)k1 < "/2, i = 1, . . . , n.

By similar arguments as in the proof of Theorem 1,

P (! 2 ⌦ : |YI!(xi)� YI(xi)| < ", i = 1, . . . , n)

> P (! 2 ⌦ : kf!
D̄( · | xi)� fD̄( · | xi)k1 < "/2, i = 1, . . . , n)

⇥ P (! 2 ⌦ : kf!
D( · | xi)� fD( · | xi)k1 < "/2, i = 1, . . . , n) > 0,

for every " > 0, given that as a consequence of results on the Hellinger support of the DDP

(Barrientos et al., 2012, Theorem 4), it holds that for every " > 0,
8
>>><

>>>:

P (! 2 ⌦ : kf!
D̄( · | xi)� fD̄( · | xi)k1 < "/2, i = 1, . . . , n) > 0,

P (! 2 ⌦ : kf!
D( · | xi)� fD( · | xi)k1 < "/2, i = 1, . . . , n) > 0.

⌅
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Section C: Simulation study details and figures

In this section we present additional details and supporting figures to the statistical analysis

conducted in the simulation study section of the main paper.

Nonparametric kernel method (Zhou and Qin, 2015). This method is based on modeling

test outcomes through nonparametric heteroscedastic regression models

yD = µD(x) + �D(x)"D, yD̄ = µD̄(x) + �D̄(x)"D̄,

where µD and µD̄ are the regression functions and �

2
D and �

2
D̄ are the variance functions. Here

"D and "D̄ are independent random variables with zero mean, variance one, and distribution

functions F"D and F"
¯D
, respectively. Both the regression and variance functions in each group

are estimated using local constant estimators; that is, using Nadaraya–Watson estimators

(Fan and Gijbels, 1996, Section 2). The bandwidths involved in the computation of these

estimators were selected sequentially and by expected Kullback–Leibler cross-validation

(Hurvich et al., 1998) as implemented in the R function npregbw from the np package.

Once we have the estimates bµd(x) and b�2
d(x), d 2 {D, D̄}, we can estimate the standardized

residuals

b"Di =
yDi � bµD(xDi)

b�D(xDi)
, b"D̄j =

yD̄j � bµD̄(xD̄j)

b�D̄(xD̄j)
, i = 1, . . . , nD, j = 1, . . . , nD̄.

Denoting by bFb"D and b
Fb"

¯D
, the empirical distribution functions of "̂D and b"D̄, respectively,

we have

cYIkernel(x) = max
c2R

⇢
b
Fb"

¯D

✓
c� bµD̄(x)

b�D̄(x)

◆
�

b
Fb"D

✓
c� bµD(x)

b�D(x)

◆�
,

ĉ

⇤
kernel(x) = argmaxc2R

⇢
b
Fb"

¯D

✓
c� bµD̄(x)

b�D̄(x)

◆
�

b
Fb"D

✓
c� bµD(x)

b�D(x)

◆�
.

To obtain pointwise confidence bands, a bootstrap of the residuals (see, for instance, Gonzalez-

Manteiga et al., 2011, Section 5) is employed.

[Figure 1 about here.]

[Figure 2 about here.]
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[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

[Table 1 about here.]

Section D: Application—Data-driven prior and supplementary figures

A sensitivity analysis was conducted using the following prior specification suggested by

Inácio de Carvalho et al. (2013) and Zhou et al. (2015)

ad = 3, bd = b�2
d,

md0 = (z0dzd)
�1
z

0
dyd, Sd0 = b�2

d(z
0
dzd)

�1
,

⌫d = Q+ 2,  d = 30Sd0,

with b�2
d = kyd � zdmd0k

2
/(nd �Q� 1). The results are presented in Figures 15 and 16 and

in Table 2.

[Figure 11 about here.]

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]
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[Figure 15 about here.]

[Table 2 about here.]

Section E: R code for implementing our methods

Below, we discuss some R code for illustrating how to implement the nonparametric Bayes

estimator for the covariate-adjusted youden index and corresponding optimal cuto↵. Before

running the code chunks below, start by cleaning workspace and install the following packages

(if not installed).

rm(list = ls())
if (!require("splines")) install.packages("splines")
if (!require("Hmisc")) install.packages("Hmisc")
if (!require("MASS")) install.packages("MASS")

For reproducibility reasons, this pdf file has been prepared using knitr (Xie, 2015); we fix

setseed and list below the information about R, the OS, and loaded packages:

set.seed(1)
sessionInfo()

## R version 3.3.2 (2016-10-31)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: macOS Sierra 10.12.1
##
## locale:
## [1] en_US.UTF-8/C/en_US.UTF-8/C/C/en_US.UTF-8
##
## attached base packages:
## [1] splines stats graphics grDevices utils datasets base
##
## other attached packages:
## [1] MASS_7.3-45 Hmisc_3.17-4 ggplot2_2.1.0 Formula_1.2-1
## [5] survival_2.39-5 lattice_0.20-34 knitr_1.15
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.5 cluster_2.0.5 magrittr_1.5
## [4] munsell_0.4.3 colorspace_1.2-6 highr_0.6
## [7] stringr_1.0.0 plyr_1.8.4 tools_3.3.2
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## [10] nnet_7.3-12 grid_3.3.2 data.table_1.9.6
## [13] gtable_0.2.0 latticeExtra_0.6-28 Matrix_1.2-7.1
## [16] gridExtra_2.2.1 RColorBrewer_1.1-2 acepack_1.3-3.3
## [19] rpart_4.1-10 evaluate_0.10 stringi_1.1.1
## [22] methods_3.3.2 scales_0.4.0 chron_2.3-47
## [25] foreign_0.8-67

In the code chunks below, we follow the 80 characters per line standard. The key function

for fitting the covariate-adjusted Youden index is:

bsplinesddp <- function(y, x, grid, xpred, m, S, nu, psi, atau, btau,
alpha, L, nsim, knots) {

yt <- y / sd(y)
n <- length(y)
ngrid <- length(grid)
npred <- length(xpred)
X <- bs(x, degree = 3, knots = knots, intercept = TRUE)
k <- ncol(X)
Xpred <- predict(bs(x, degree = 3, knots = knots, intercept = TRUE),

xpred)

p <- ns <- rep(0, L)
v <- rep(1 / L, L)
v[L] <- 1

beta <- matrix(0, nrow = L, ncol = k)
tau <- rep(1 / var(yt), L)

prop <- prob <- matrix(0, nrow = n, ncol = L)

P <- Tau <- Sigma2 <- matrix(0, nrow = nsim, ncol = L)
Beta <- Beta1 <- array(0, c(nsim, L, k))
Beta[1, , ] <- beta
Tau[1, ] <- tau

mu <- matrix(0, nrow = nsim, ncol = k)
Sigmainv <- array(0, c(nsim, k, k))
mu[1, ] <- mvrnorm(1, mu = m, Sigma = S)
Sigmainv[1, , ] <- rWishart(1, df = nu, solve(nu * psi))

Dens <- array(0, c(nsim, ngrid, L, npred))
Densm <- array(0, c(nsim, ngrid, npred))
Fdist <- array(0, c(nsim, ngrid, L, npred))
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Fdistm <- array(0, c(nsim, ngrid, npred))

## 1) ALLOCATE EACH OBSERVATION TO A COMPONENT MIXTURE
for(i in 2:nsim) {

cumv <- cumprod(1 - v)

p[1] <- v[1]
for(l in 2:L)

p[l] <- v[l] * cumv[l - 1]
for(l in 1:L)

prop[, l] <- p[l] * dnorm(yt, mean = X %*% beta[l, ],
sd = sqrt(1 / tau[l]))

prob <- prop / apply(prop, 1, sum)
z <- rMultinom(prob, 1)
P[i, ] <- p

for(l in 1:L)
ns[l] <- length(which(z == l))

## 2) UPDATE STICK-BREAKING WEIGHTS
for(l in 1:(L - 1))

v[l] <- rbeta(1, 1 + ns[l], alpha + sum(ns[(l + 1):L]))

## 3) UPDATE PARAMETERS OF EACH COMPONENT MIXTURE
for(l in 1:L) {

tX <- matrix(t(X[z == l, ]), nrow = k, ncol = ns[l])
V <- solve(Sigmainv[i - 1, ,] + tau[l] * tX %*% X[z == l, ])
mu1 <- V %*% (Sigmainv[i - 1, , ] %*% mu[i - 1, ] + tau[l] *

tX %*% yt[z == l])
Beta[i, l, ] <- beta[l,] <- mvrnorm(1, mu = mu1, Sigma = V)
Beta1[i, l, ] <- sd(y) * Beta[i, l, ]

Tau[i, l] <- tau[l] <- rgamma(1, shape = atau + (ns[l] / 2),
rate = btau + 0.5 * (t(yt[z == l] -
X[z == l, ] %*% beta[l, ]) %*%
(yt[z == l] - X[z == l, ]
%*% beta[l, ])))

Sigma2[i, l] <- var(y) * (1 / Tau[i, l])
}

Vaux <- solve(solve(S) + L * Sigmainv[i - 1, , ])
meanmu <- Vaux %*% (solve(S) %*% m + Sigmainv[i - 1, , ] %*%

t(t(apply(Beta[i, , ], 2, sum))))
mu[i, ] <- mvrnorm(1, mu = meanmu, Sigma = Vaux)
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Vaux1 <- 0
for(l in 1:L)

Vaux1 <- Vaux1 + (Beta[i, l, ] - mu[i, ]) %*%
t((Beta[i, l, ] - mu[i, ]))

Sigmainv[i, , ] <- rWishart(1, nu + L, solve(nu * psi + Vaux1))

## 4) COMPUTE DENSITY AND DISTRIBUTION FUNCTION TRAJECTORIES
for(l in 1:L) {

for(j in 1:npred) {

Dens[i, ,l , j] <- P[i, l] * dnorm(grid, Xpred[j, ] %*%
Beta1[i, l, ],
sqrt(Sigma2[i, l]))

Fdist[i, , l, j] <- P[i, l] * pnorm(grid, Xpred[j, ] %*%
Beta1[i, l, ],
sqrt(Sigma2[i, l]))

}

}

for(j in 1:ngrid) {

for(l in 1:npred) {

Densm[i, j, l] <- sum(Dens[i, j, , l])
Fdistm[i, j, l] <- sum(Fdist[i, j, , l])

}

}

}

return(list(P, Beta1, Sigma2, Densm, Fdistm))
}

The arguments of the bsplinesddp function are self-explanatory from the article. To analyze

the diabetes data we proceed as follows:

## setwd("Add your working directory here")
load("diabetes.Rdata")
ind0 <- which(diabetes[, 2] == 0)
ind1 <- which(diabetes[, 2] == 1)
n0 <- length(ind0)
n1 <- length(ind1)
y0 <- diabetes[ind0, 1]
y1 <- diabetes[ind1, 1]
x0 <- diabetes[ind0, 3]
x1 <- diabetes[ind1, 3]
var0 <- var1 <- 1
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knots0 <- c()
knots1 <- c()
nk <- length(knots0)

Next, we apply the workhorse function bsplinesddp to the pair (glucose levels, age) for

diseased (x1, y1) and nondiseased subjects (x0, y0):

res0np <- bsplinesddp(y = y0, x = x0, grid = seq(50, 500, len = 200),
xpred = seq(32, 76, by = 2), m = rep(0, nk + 4),
S = 100 * diag(nk + 4), nu = nk + 6,
psi = diag(nk + 4), atau = 0.1, btau = 0.1, alpha = 1,
L = 20, nsim = 5000, knots = knots0)

res1np <- bsplinesddp(y = y1, x = x1, grid = seq(50, 500, len = 200),
xpred = seq(32, 76, by = 2), m = rep(0, nk + 4),
S = 100 * diag(nk + 4), nu = nk + 6,
psi = diag(nk + 4), atau = 0.1, btau = 0.1, alpha = 1,
L = 20, nsim = 5000, knots = knots1)

We compute the covariate-adjusted optimal cuto↵ and corresponding Youden index as fol-

lows:

grid <- seq(50, 500, len = 200)
xpred <- seq(32, 76, by = 2)
ngrid <- length(grid)
npred <- length(xpred)
nsim <- 5000
nburn <- 1500

difcnp <- array(0, c(nsim - nburn, ngrid, npred))
for(k in 1:npred)

for(j in 1:ngrid)
difcnp[, j, k] <- res0np[[5]][(nburn + 1):nsim, j, k] -

res1np[[5]][(nburn + 1):nsim, j, k]

coptcnp <- matrix(0, nrow = nsim - nburn, ncol = npred)
for(k in 1:npred)

for(j in 1:(nsim - nburn))
coptcnp[j, k] = mean(grid[which(difcnp[j, , k] == max(difcnp[j, , k]))])

coptcrnp <- matrix(nrow = npred, ncol = 3)
for(j in 1:npred) {
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coptcrnp[j, 1] <- quantile(coptcnp[, j], 0.025)
coptcrnp[j, 2] <- mean(coptcnp[, j])
coptcrnp[j, 3] <- quantile(coptcnp[, j], 0.975)

}

yicnp <- matrix(0, nrow = nsim - nburn, ncol = npred)
for(k in 1:npred)

for(j in 1:(nsim - nburn))
yicnp[j,k] <- max(difcnp[j, , k])

yicrnp <- matrix(nrow = npred,ncol = 3)
for(j in 1:npred) {

yicrnp[j, 1] <- quantile(yicnp[, j], 0.025)
yicrnp[j, 2] <- mean(yicnp[, j])
yicrnp[j, 3] <- quantile(yicnp[, j], 0.975)

}

The first column of Figure 3 in the paper can then be produced using the following lines of

code.

par(mfrow = c(1, 2))
plot(xpred, coptcrnp[, 2], type = "l", xlim = c(32, 76), ylim = c(100, 200),

xlab = "Age", ylab = "Optimal cutoff", lwd = 2)
polygon(x = c(rev(xpred), xpred), y = c(rev(coptcrnp[, 1]), coptcrnp[, 3]),

border = NA, col = "lightgray")
lines(xpred, coptcrnp[, 1], lwd = 0.3)
lines(xpred, coptcrnp[, 2], lwd = 2)
lines(xpred, coptcrnp[, 3], lwd = 0.3)

plot(xpred, yicrnp[, 2], type = "l", xlim = c(32, 76), ylim = c(0, 1),
xlab = "Age", ylab = "Youden index", lwd = 2)

polygon(x = c(rev(xpred), xpred), y = c(rev(yicrnp[, 1]), yicrnp[, 3]),
border = NA, col = "lightgray")

lines(xpred, coptcrnp[, 1], lwd = 0.3)
lines(xpred, yicrnp[, 2], lwd = 2)
lines(xpred, yicrnp[, 3], lwd = 0.3)
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The Log PseudoMarginal Likelihood (LPML) was computed as follows:

L <- 20
X0 <- bs(x0, degree = 3, knots = knots0, intercept = TRUE)

term0 <- array(0, c(nsim - nburn, L, n0))
for(i in 1:n0)

for(k in 1:(nsim-nburn))
for(l in 1:L)

term0[k, l, i] <- res0np[[1]][k + nburn,l] *
dnorm(y0[i], mean = X0[i,] %*%
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res0np[[2]][k + nburn, l,],
sd = sqrt(res0np[[3]][k + nburn, l]))

termsum0 <- matrix(0, nrow = nsim - nburn, ncol = n0)
for(i in 1:n0)

for(k in 1:(nsim-nburn))
termsum0[k, i] <- sum(term0[k, , i])

cpoinv0 <- numeric(n0)
for(i in 1:n0)

cpoinv0[i] <- mean(1 / termsum0[, i])

cpo0 <- 1 / cpoinv0
lpml0 <- sum(log(cpo0))

And we thus get that the value of lpml0 is �878.18.
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Figure 1. True (solid black line) and mean across simulations (dashed blue line) of the posterior mean (for the Bayesian

estimators) of the Youden index function under Scenario 1. A band constructed using the pointwise 2.5% and 97.5% quantiles

across simulations is presented in gray. Row 1: B-splines DDP estimator with Q = 4. Row 2: B-splines DDP estimator with

Q = 7. Row 3: Normal estimator. Row 4: Kernel estimator. Panels (a), (d), (g), and (j) show the results for (nD, n
¯D) = (100, 100),

panels (b), (e), (h), and (k) for (nD, n
¯D) = (100, 200), and panels (c), (f), (i), and (l) for (nD, n

¯D) = (200, 200).
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Figure 2. True (solid black line) and mean across simulations (dashed blue line) of the posterior mean (for the Bayesian

estimators) of the optimal cuto↵ function under Scenario 1. A band constructed using the pointwise 2.5% and 97.5% quantiles

across simulations is presented in gray. Row 1: B-splines DDP estimator with Q = 4. Row 2: B-splines DDP estimator with

Q = 7. Row 3: Normal estimator. Row 4: Kernel estimator. Panels (a), (d), (g), and (j) show the results for (nD, n
¯D) = (100, 100),

panels (b), (e), (h), and (k) for (nD, n
¯D) = (100, 200), and panels (c), (f), (i), and (l) for (nD, n

¯D) = (200, 200).
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Figure 3. True (solid black line) and mean across simulations (dashed blue line) of the posterior mean (for the Bayesian

estimators) of the Youden index function under Scenario 2. A band constructed using the pointwise 2.5% and 97.5% quantiles

across simulations is presented in gray. Row 1: B-splines DDP estimator with Q = 4. Row 2: B-splines DDP estimator with

Q = 7. Row 3: Normal estimator. Row 4: Kernel estimator. Panels (a), (d), (g), and (j) show the results for (nD, n
¯D) = (100, 100),

panels (b), (e), (h), and (k) for (nD, n
¯D) = (100, 200), and panels (c), (f), (i), and (l) for (nD, n

¯D) = (200, 200).
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Figure 4. True (solid black line) and mean across simulations (dashed blue line) of the posterior mean (for the Bayesian

estimators) of the optimal cuto↵ function under Scenario 2. A band constructed using the pointwise 2.5% and 97.5% quantiles

across simulations is presented in gray. Row 1: B-splines DDP estimator with Q = 4. Row 2: B-splines DDP estimator with

Q = 7. Row 3: Normal estimator. Row 4: Kernel estimator. Panels (a), (d), (g), and (j) show the results for (nD, n
¯D) = (100, 100),

panels (b), (e), (h), and (k) for (nD, n
¯D) = (100, 200), and panels (c), (f), (i), and (l) for (nD, n

¯D) = (200, 200).
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Figure 5. True (solid black line) and mean across simulations (dashed blue line) of the posterior mean (for the Bayesian

estimators) of the Youden index function under Scenario 3. A band constructed using the pointwise 2.5% and 97.5% quantiles

across simulations is presented in gray. Row 1: B-splines DDP estimator with Q = 4. Row 2: B-splines DDP estimator with

Q = 7. Row 3: Normal estimator. Row 4: Kernel estimator. Panels (a), (d), (g), and (j) show the results for (nD, n
¯D) = (100, 100),

panels (b), (e), (h), and (k) for (nD, n
¯D) = (100, 200), and panels (c), (f), (i), and (l) for (nD, n

¯D) = (200, 200).
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Figure 6. True (solid black line) and mean across simulations (dashed blue line) of the posterior mean (for the Bayesian

estimators) of the optimal cuto↵ function under Scenario 3. A band constructed using the pointwise 2.5% and 97.5% quantiles

across simulations is presented in gray. Row 1: B-splines DDP estimator with Q = 4. Row 2: B-splines DDP estimator with

Q = 7. Row 3: Normal estimator. Row 4: Kernel estimator.Panels (a), (d), (g), and (j) show the results for (nD, n
¯D) = (100, 100),

panels (b), (e), (h), and (k) for (nD, n
¯D) = (100, 200), and panels (c), (f), (i), and (l) for (nD, n

¯D) = (200, 200).
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Figure 7. True (solid black line) and mean across simulations (dashed blue line) of the posterior mean (for the Bayesian

estimators) of the Youden index function under Scenario 4. A band constructed using the pointwise 2.5% and 97.5% quantiles

across simulations is presented in gray. Row 1: B-splines DDP estimator with Q = 4. Row 2: B-splines DDP estimator with

Q = 7. Row 3: Normal estimator. Row 4: Kernel estimator. Panels (a), (d), (g), and (j) show the results for (nD, n
¯D) = (100, 100),

panels (b), (e), (h), and (k) for (nD, n
¯D) = (100, 200), and panels (c), (f), (i), and (l) for (nD, n

¯D) = (200, 200).
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Figure 8. True (solid black line) and mean across simulations (dashed blue line) of the posterior mean (for the Bayesian

estimators) of the optimal cuto↵ function under Scenario 4. A band constructed using the pointwise 2.5% and 97.5% quantiles

across simulations is presented in gray. Row 1: B-splines DDP estimator with Q = 4. Row 2: B-splines DDP estimator with

Q = 7. Row 3: Normal estimator. Row 4: Kernel estimator. Panels (a), (d), (g), and (j) show the results for (nD, n
¯D) = (100, 100),

panels (b), (e), (h), and (k) for (nD, n
¯D) = (100, 200), and panels (c), (f), (i), and (l) for (nD, n

¯D) = (200, 200).
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Figure 9. Boxplots of the empirical global mean squared error (EGMSE) of the Youden index across simulations for the

B-splines DDP estimator (Q = 4), kernel estimator, and normal estimator. Panels (a)–(c), (d)–(f), (g)–(i), and (j)–(l) display

the results under Scenario 1, 2, 3, and 4, respectively. Panels (a), (d), (g), and (j) show the results for (nD, n
¯D) = (100, 100),

panels (b), (e), (h), and (k) for (nD, n
¯D) = (100, 200), and panels (c), (f), (i), and (l) for (nD, n

¯D) = (200, 200).
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Figure 10. Boxplots of the empirical global mean squared error (EGMSE) of the optimal cuto↵ across simulations for

the B-splines DDP estimator (Q = 4), kernel estimator, and normal estimator. Panels (a)–(c), (d)–(f), (g)–(i), and (j)–(l) display

the results under Scenario 1, 2, 3, and 4, respectively. Panels (a), (d), (g), and (j) show the results for (nD, n
¯D) = (100, 100),

panels (b), (e), (h), and (k) for (nD, n
¯D) = (100, 200), and panels (c), (f), (i), and (l) for (nD, n

¯D) = (200, 200).
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Figure 11. Histogram of the glucose levels in the non-diabetic (panel a) and diabetic group (panel b) along with

the posterior mean and 95% pointwise probability interval of the density for each group under (independent) Dirichlet process

mixtures of normals. Panel (c) presents the estimated distribution functions and optimal cuto↵ with its 95% probability interval.
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Figure 12. Basis functions for the diabetes data. Panels (a) and (e): Q = 4. Panels (b) and (f): Q = 5. Panels (c) and

(g): Q = 6. Panels (d) and (h): Q = 7.
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Figure 13. Diabetes data: posterior means of the Youden index (a) and optimal cuto↵ (b) for the di↵erent values of Q

considered.
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Figure 14. Estimated Youden index and optimal cuto↵ as a function of age. Panels (a) and (b) present results from the

B-splines DDP estimator (Q = 4), panels (c) and (d) present results obtained under the normal linear model, while panels (e)

and (f) show the results obtained under the nonparametric kernel model. For ease of comparison, panels (g) and (h) display

the three estimators together.
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Figure 15. Estimated Youden index and optimal cuto↵ as a function of age, using the data-driven prior (Section D),

for Q = 4, Q = 5, Q = 6, and Q = 7. Solid lines represent posterior means and the gray areas correspond to pointwise 95%

posterior bands.
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Prior 1 Prior 2
LPMLD̄ LPMLD LPMLD̄ LPMLD

Q = 4 �878 �530 �880 �530
Q = 5 �880 �532 �881 �531
Q = 6 �881 �531 �883 �531
Q = 7 �887 �532 �886 �532

Table 2
Diabetes data: LPML for the di↵erent values of Q considered under prior configuration 1 (the one used on the main

manuscript) and under prior configuration 2 (the one described in Section D of this Supplementary Material).


