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RING-THEORETIC BLOWING DOWN: I

D. ROGALSKI, S. J. SIERRA, AND J. T. STAFFORD

Abstract. One of the major open problems in noncommutative algebraic geometry is the classification

of noncommutative projective surfaces (or, slightly more generally, of noetherian connected graded

domains of Gelfand-Kirillov dimension 3). Earlier work of the authors classified the connected graded

noetherian subalgebras of Sklyanin algebras using a noncommutative analogue of blowing up. In order

to understand other algebras birational to a Sklyanin algebra, one also needs a notion of blowing down.

This is achieved in this paper, where we give a noncommutative analogue of Castelnuovo’s classic

theorem that (−1)-lines on a smooth surface can be contracted. The resulting noncommutative blown-

down algebra has pleasant properties; in particular it is always noetherian and is smooth if the original

noncommutative surface is smooth.

In a companion paper we will use this technique to construct explicit birational transformations

between various noncommutative surfaces which contain an elliptic curve.

1. Introduction

Throughout the paper, k will denote an algebraically closed field and all rings will be k-algebras. A

k-algebra R is connected graded or cg if R =
⊕

n≥0Rn is a finitely generated, N-graded algebra with

R0 = k. For such a ring R, the category of graded noetherian right R-modules will be denoted gr-R with

quotient category qgr-R obtained by quotienting out the Serre subcategory of finite dimensional modules.

An effective intuition is to regard qgr-R as the category of coherent sheaves on the (nonexistent) space

Proj(R).

The classification of noetherian, connected graded domains R of Gelfand-Kirillov dimension 3 (or the

corresponding noncommutative surfaces qgr-R) is one of the major open problems in noncommutative

algebraic geometry. This has been solved in many particular cases and those solutions have lead to some

fundamental advances in the subject; see, for example, [ATV, RSS2, KRS, SV, VdB1, VdB2] and the

references therein. In [Ar], Artin conjectured that, birationally at least, there is a short list of such

surfaces, with the generic case being a Sklyanin algebra. Here, the graded quotient ring Qgr(R) of R is

obtained by inverting the non-zero homogeneous elements and two such domains R,S are birational if

Qgr(R)0 ∼= Qgr(S)0. Sklyanin algebras are defined in Example 4.2.

In earlier work of the authors the connected graded noetherian subalgebras of any Sklyanin algebra

were classified [Rg, RSS2] and this was achieved through a noncommutative variant of blowing up.
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However, if one wishes to classify more general algebras birational to a Sklyanin algebra one certainly also

needs an analogue of blowing down (contracting) exceptional lines. This is achieved in this paper. Before

describing these results in detail we set the stage by reviewing key classical results from commutative

algebraic geometry. Thus, let x be a closed point on a smooth projective surface X over k, and let

π : Blx(X) → X be the blowup of X at x. These maps, also known as monoidal transformations, are of

course fundamental to the birational geometry of surfaces.

It is well-known that:

Proposition 1.1. Blx(X) is also a smooth projective surface. If L = π−1(x) is the exceptional locus of

π, then L ∼= P1 with self-intersection L•L = −1.

A celebrated theorem of Castelnuovo says that the properties of L given in the proposition also

characterise curves that can be contracted to smooth points.

Theorem 1.2 (Castelnuovo). Let Y be a smooth projective surface, and let L be a curve on Y with

L ∼= P1 and L•L = −1. Then there are a smooth projective surface X and a birational morphism

π : Y → X so that L is the exceptional locus of π; in fact Y ∼= Blx(X), where x = π(L).

The main aim of this paper is to give noncommutative versions of Proposition 1.1 and Theorem 1.2.

These results apply to a class of algebras known as elliptic algebras that occur naturally among algebras

birational to the Sklyanin algebras and are defined as follows. An elliptic algebra is a connected graded

domain R containing a central g ∈ R1 so that R/(g) is isomorphic to a twisted homogeneous coordinate

ring B(E,M, τ), where E is an elliptic curve, with an ample invertible sheaf M and infinite order

automorphism τ . We say that E is the elliptic curve associated to R and define the degree of R to be

the degree of the line bundle M. (See Section 4 for more details.) For example, the third Veronese

ring T = S(3) of a Sklyanin algebra S is elliptic; the Veronese ring is needed to ensure that the central

element has degree one, but this is a fairly harmless change since qgr-S ∼= qgr-T . Likewise, if S′ is a

3-dimensional cubic Sklyanin algebra, as discussed in Example 4.2, then T ′ = (S′)(4) is elliptic. The

space qgr-S should be thought of as a noncommutative P2, while qgr-S′ ∼= qgr-T ′ should be thought of

as a noncommutative version of P1 × P1.

An appropriate noncommutative analogue of a monoidal transformation of an elliptic algebra R is

known. In more detail, R1/gk ∼= B(E,M, τ)1 may be identified with global sections of the invertible

sheaf M. If p ∈ E and degM ≥ 3, the blowup of R at p is defined to be the subalgebra P = Blp(R)

of R generated by those elements of R1 whose images mod g vanish at p. By [Rg, Theorem 1.1], P is

again an elliptic algebra and, moreover, has properties analogous to those of a (commutative) blowup. In

particular, it has an analogue of an exceptional line. To be precise, a graded P -module L =
⊕

n∈Z
Ln is

a line module if L is cyclic with Hilbert series hilbL =
⊕

n∈Z
(dimk Ln)s

n = 1/(1−s)2. Then P = Blp(R)

does indeed have a distinguished line module L, called the exceptional line module and characterised by

the fact that R/P ∼=
⊕

i≥1 L[−i] as P -modules. Inducting on this procedure one can blow up as many as

seven points on the noncommutative projective plane qgr-T (one can even blow up eight points although

the definition is more subtle since the ring is no longer generated in degree one [RSS1]).
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We would like to reverse this procedure. For a noncommutative version of Castelnuovo’s Theorem 1.2,

we need not only an analogue of a line but also an analogue of self-intersection. If qgr-P is a smooth

noncommutative scheme in the sense that the category qgr-P has finite homological dimension, then an

appropriate notion of intersection number is

(M •
MSN) =

∑

n≥0

(−1)n+1 dimk Ext
n
qgr-P (M,N),

for line modules M and N (see [MS]). Unfortunately even if qgr-R is smooth, if P = Blp(R) then

the blowup qgr-P need not be smooth, in which case the self-intersection (L •
MSL) of a line module L

can be undefined. (See Section 10, where an example is constructed by blowing up an elliptic algebra

twice at the same point.) So, we use a weaker notion of intersection number, defined as follows. Let

grk denote the torsion-free rank of a finitely generated k[g]-module. Then, it is not hard to show that

(M •
MSN) =

∑
n≥0(−1)n+1 grkExtnP (M,N) (combine Proposition 6.7 and Lemma 6.3, in the notation

from the beginning of Section 2). Moreover, as is discussed in Sections 6 and 7, the simpler sum

(M •N) = − grkHomP (M,N) + grkExt1P (M,N)

is a satisfactory alternative to (M •
MSN).

It will actually be convenient to use the following, still weaker concept. Assume that L is a line

module over an elliptic algebra P and write L = P/J for the line ideal J . We say two graded, locally

finite dimensional vector spacesM and N are numerically equivalent if they have the same Hilbert series:

hilbM = hilbN . Then the relevant condition is:

(*) For a line module L = P/J , the rings P and EndP (J) are numerically equivalent.

This notion is appropriate, as the next result shows.

Proposition 1.3 (Theorems 7.10 and 8.9). (1) Let P be an elliptic algebra such that qgr-P has finite

homological dimension, and let L be a line module over P . Then (L •
MSL) = −1 ⇐⇒ (L•L) = −1

⇐⇒ (∗) holds.

(2) If P = Blp(R) is the blowup of an elliptic algebra R, then (∗) holds for the exceptional line

module L.

Our definition of self-intersection leads to a noncommutative version of Castelnuovo’s Theorem 1.2,

as we next show.

Theorem 1.4 (Theorems 8.5 and 8.9). (1) Let P be an elliptic algebra with associated elliptic curve

E and let L be a line module with (L•L) = −1 or, more generally, one that satisfies (∗). Then

one can blow down the line L.

More precisely, there are an elliptic algebra R = P̃ ⊇ P , again associated to E, and a point

p ∈ E so that P ∼= Blp(R), with exceptional line L.

(2) Conversely, if Q is an elliptic algebra of degree ≥ 4, then blowing Q up at a point p of the

associated elliptic curve E and blowing down the exceptional line of Blp(Q) returns the algebra Q.
3



Definition. The ring P̃ from part (1) of the theorem is called the blowdown of P at L.

The key step in the proof of part (1) of the theorem is to show that there exists a right P -module M

with Qgr(P ) ⊃ M ⊃ P for which M/P ∼=
⊕

i≥1 L[−i]. One then shows that M is actually a ring with

the properties specified by the theorem.

Elliptic algebras have a number of pleasant properties; for example they are automatically noetherian

and satisfy the Artin-Schelter Gorenstein and Cohen-Macaulay conditions (see Proposition 4.3). Thus,

in particular, these conditions hold for the blowdown of an elliptic algebra. More subtly we have an

analogue of the smoothness part of Castelnuovo’s Theorem 1.2.

Theorem 1.5 (Corollary 9.2). Let P be an elliptic algebra and suppose that L is a line module satisfying

(∗), with blowdown P̃ . Assume, moreover, that L[g−1]0 has finite projective dimension over P [g−1]0.

Then the noncommutative scheme qgr-P̃ is smooth if and only if qgr-P is smooth.

Our eventual goal is to classify graded algebras birational to a Sklyanin algebra. Using the commu-

tative geometry of surfaces as a guide, one would presumably need to classify “minimal models” (in the

appropriate sense) and to show that any reasonable algebra in this class can be blown down to a minimal

model. Clearly, the noncommutative versions of P2 and Van den Bergh’s quadrics [VdB2] should be

minimal, and in forthcoming work we show that this is true [RSS4]. We do not yet know whether these

are the only minimal models.

We also do not know how to show that any algebra birational to a Sklyanin algebra can be blown

down to give a minimal model. In the birational theory of commutative surfaces, this is proved using

the following consequence of Zariski’s Main Theorem:

Theorem 1.6 (Zariski). Let X 99K Y be a birational map of smooth projective surfaces. Then there are

a smooth projective surface Z and compositions of monoidal transformations Z → X, Z → Y so that

Z

��
❅❅

❅❅
❅❅

❅

~~⑦⑦
⑦⑦
⑦⑦
⑦

X //❴❴❴❴❴❴❴ Y

commutes.

As yet, there is no noncommutative analogue of Theorem 1.6 although in the companion paper [RSS3],

we do prove:

Theorem 1.7. Let E be the elliptic curve associated to the cubic Sklyanin algebra S′, as defined above,

and let r ∈ E be generic. Then there is a Sklyanin algebra S associated to E and points p, q ∈ E so that

Blr((S
′)(4)) ∼= Blp,q(S

(3)).

In fact this theorem also holds when S′ is replaced by any generic noncommutative quadric surface

in the sense of [VdB2]. This theorem is a noncommutative version of the isomorphism Blp,q(P2) ∼=

Blr(P1×P1) arising from Theorem 1.6. The birationality of S and S′ was first proved by Van den Bergh,

with a detailed proof given in [PV].
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The paper is organised as follows. In Section 2 we review background on twisted homogeneous

coordinate rings of elliptic curves. In Section 3 we study point modules over such a ring. In Section 4 we

define elliptic algebras and give their basic properties, and in section 5 we define and study line modules

over elliptic algebras. In Sections 6 and 7 we develop noncommutative intersection theory and prove part

(1) of Proposition 1.3. In Section 8 we prove our main blowing down Theorem 1.4, and in Section 9 we

prove Theorem 1.5. Finally, in Section 10 we study the effect of blowing up the same point twice.
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2. Basic concepts

In this section we review some basic material, including twisted homogeneous coordinate rings, that

will be used frequently and without particular comment throughout the paper.

Throughout we work over an algebraically closed field k, and rings will be k-algebras unless oth-

erwise noted. Given a noetherian N-graded k-algebra A, let Gr-A be the category of Z-graded right

A-modules, with morphisms HomGr-A preserving degree. Write gr-A for the full subcategory of noether-

ian modules. Let [1] : Gr-A → Gr-A be the shift functor : the autoequivalence sending M =
⊕
Mi →

M [1] =
⊕
M [1]i, where M [1]n =Mn+1. For M,N ∈ Gr-A the graded Hom groups are HomA(M,N) =

⊕
n∈Z

HomGr-A(M,N [n]), with derived functors ExtA(M,N) =
⊕

n∈Z
ExtiGr-A(M,N [n]). If A and

M are noetherian, then HomA(M,N) equals the usual ungraded Hom which will always be writ-

ten HomA(M,N). Similarly, ExtiA(M,N) = ExtiA(M,N), see [AZ, Proposition 3.1]. Finally, set

EndA(M) = HomA(M,M). We will frequently use the fact that

(2.1) ExtrGr-A(M [−n], N) = ExtrGr-A(M,N [n]) = ExtrGr-A(M,N)[n], for any M,N, n and r.

Let A =
⊕

n≥0An be a cg noetherian algebra, and note that A is necessarily locally finite in the sense

that dimkAn <∞ for all n. Let tors-A be the category of modules in gr-A which are finite-dimensional

over k, and let Tors-A be the subcategory of Gr-A consisting of direct limits of finite-dimensional modules.

Write Qgr-A for the quotient category Qgr-A/Tors-A, with quotient functor π : Gr-A → Qgr-A. Then

qgr-A = gr-A/ tors-A is identified with the noetherian objects in Qgr-A. Following [AZ], the pair

(Qgr-A, π(A)) is called the noncommutative projective scheme associated to A. The autoequivalence [1]
5



of Gr-A induces an autoequivalence, again written [1], of Qgr-A. We again have graded Hom groups

HomQgr-A(M,N ) =
⊕

n∈Z
HomQgr-A(M,N [n]).

We emphasise here that a graded module is called torsionfree provided it has no finite dimensional

submodules. In contrast a module M (graded or not) over a prime ring R is called Goldie torsionfree if

no element of the module is killed by a regular element of the ring.

Next we review some important homological conditions.

Definition 2.2. A ring A is called Auslander-Gorenstein if

(i) injdim(A) <∞, in the sense that A has finite injective dimension on both left and right;

(ii) if 0 ≤ p < q and M is a finitely generated A-module, then ExtpA(N, A) = 0 for every submodule

N of ExtqA(M, A).

Write GKdim(M) for the Gelfand-Kirillov dimension of an A-module M , as in [KL]. An R-module

M is called d-pure if GKdimN = d = GKdimM for all nonzero submodules N of M , and is d-critical if

GKdimM/N < d for all all nonzero submodules N of M . Let A be a noetherian Auslander-Gorenstein

k-algebra with GKdim(A) < ∞. For an A-module M , write j(M) = min{r : ExtrA(M,A) 6= 0} for

the homological grade of M . The algebra A is called Cohen-Macaulay (or CM), provided that j(M) +

GKdim(M) = GKdim(A) holds for every finitely generated A-module M . The module M is then called

Cohen-Macaulay (or CM) if ExtrA(M,A) = 0 for all r 6= j(M).

Finally, a cg noetherian k-algebra A is called Artin-Schelter (AS) Gorenstein if d = injdim(A) < ∞

and ExtjA(k, A)
∼= δj,dk[ℓ], where k = A/A≥1 is the trivial module, and ℓ is some shift of grading.

Let X,Y be k-schemes. Write QcohX for the category of quasi-coherent sheaves on X , with cohX the

subcategory of coherent sheaves. Given a morphism of k-schemes φ : X → Y and F ∈ QcohY , we write

Fφ for the pullback φ∗(F). If L is an invertible sheaf on X , and τ ∈ Autk(X) is a k-automorphism,

one defines the TCR or twisted homogeneous coordinate ring B(X,L, τ) =
⊕

n≥0H
0(X,Ln), where

Ln = L ⊗ Lτ ⊗ · · · ⊗ Lτn−1

. This is a N-graded k-algebra with multiplication defined as follows: for

x ∈ Bm, y ∈ Bn, then x ⋆ y = µ(x⊗ yτ
m

), where µ : H0(E,Lm)⊗H0(E,Lτm

n ) → Bn+m = H0(E,Ln+m)

is the obvious map.

In this paper we are primarily concerned with the TCR B(E,L, τ) of an elliptic curve E. In this case,

the following result is well-known:

Lemma 2.3. Let E be an elliptic curve over k and L,M be invertible sheaves on E of degree ≥ 2.

(1) The natural map

µ : H0(E,L)⊗H0(E,M) → H0(E,L ⊗M)

is surjective unless L ∼= M has degree 2, in which case dimCokerµ = 1.

(2) Let τ ∈ Autk(X) have infinite order. Then B = B(E,L, τ) is generated as an algebra in degree 1.

(3) If B is as in (2), then B is a noetherian domain which is Auslander-Gorenstein, CM, and

AS-Gorenstein, with injdimBB = 2 and ExtjB(k, B) = δ2jk.

(4) If B is as in (2), the map F 7→ π(
⊕

n≥0H
0(E,F ⊗ Ln)) defines an equivalence of categories

QcohE → Qgr-B.
6



Proof. Parts (1) and (2) are [Rg, Lemma 3.1]. That B is a domain follows immediately from the

definition, and the noetherian property is [AV, Theorem 1.4], while part (4) is [AV, Theorem 1.3]. The

remaining homological properties follow from [Le, Theorems 6.3 and 6.6]. (Levasseur assumes that

degL ≥ 3, but the proof only uses that L is ample). �

Notation 2.4. The quotient functor π : Gr-B → Qgr-B has a right adjoint ω : Qgr-B → Gr-B called

the section functor, which may be described more explicitly as follows. If M =
⊕

n≥0H
0(E,F ⊗ Ln)

for a coherent sheaf F , then ωπ(M) =
⊕

n∈Z
H0(E,F ⊗ Ln), where we define Ln for n < 0 by Ln =

(Lτn

⊗ · · · ⊗Lτ−1

)−1. We say that a graded B-module M is saturated if it is in the image of the section

functor ω. By[AZ, (2.2.3)], this is equivalent to Ext1B(k,M) = 0.

Given an N-graded noetherian domain A, the localisation of A at the set of nonzero homogeneous

elements exists and is called the graded quotient ring Q = Qgr(A) of A. Given noetherian graded A-

submodules M,N of Q, we identify HomA(M,N) with {x ∈ Q : xM ⊆ N}. In particular, HomA(M,A)

is identified with M∗ = {x ∈ Q : xM ⊆ A} and M is reflexive if M = M∗∗. If A = B = B(E,L, τ)

as in Lemma 2.3, then Qgr(B) ∼= k(E)[t, t−1; τ ] where k(E) is the function field of E with the induced

action of τ . We sometimes fix an isomorphism Qgr(B) ∼= Q = k(E)[t, t−1; τ ], and write B as the explicit

subalgebra B =
⊕

n≥0H
0(E,Ln)t

n of Q, where each H0(E,Ln) is then given a fixed embedding into

k(E). The following result will be useful in calculating Homs between B-submodules of Q.

Lemma 2.5. Let B = B(E,L, τ) =
⊕

n≥0H
0(E,Ln)t

n ⊆ Q = k(E)[t, t−1; τ ] for an elliptic curve E

over k, with invertible sheaf L of degree ≥ 2 and infinite order automorphism τ ∈ Autk(E). Let F

and G be invertible OE-subsheaves of the constant sheaf k(E), and let M =
⊕

n∈Z
H0(E,F ⊗ Ln)t

n,

N =
⊕

n∈Z
H0(E,G ⊗ Ln)t

n be saturated B-submodules of Q. Then

HomB(M,N) =
⊕

n∈Z

H0(E, (Fτn

)−1 ⊗ G ⊗ Ln)t
n ⊆ Q.

Proof. This is similar to the proof of [RSS2, Lemma 6.14(i)], but since we use the result frequently we

give the details.

Write H = HomB(M,N), and X =
⊕

n∈Z
H0(E, (Fτn

)−1⊗G⊗Ln)t
n both of which can be identified

with subspaces of Q. For each n, let Hn be the subsheaf of the constant sheaf k(E) generated by

Hnt
−n ⊆ k(E). Let Mn = F ⊗Ln; thus Mn = H0(E,Mn), and Mn generates the sheaf Mn, for n≫ 0,

say for n ≥ n0, because L is τ -ample by [AV, Proposition 1.5]. Similarly, write Nn = G ⊗ Ln for all n.

For n ≥ n0 and r ≥ 0, the equation HrMn ⊆ Nn+r forces HrMτr

n ⊆ Nn+r and so

Hr ⊗
(
F ⊗ Ln

)τr

⊆ G ⊗ Ln+r.

Equivalently Hr ⊆ (Fτr

)−1 ⊗ G ⊗ Lr and so H ⊆
⊕
H0(E,Hr)t

r ⊆ X . Another calculation shows

that
(
(Fτr

)−1 ⊗ G ⊗ Lr

)
Mτr

n = Nn+r for r, n ≥ 0 and taking sections for n ≥ n0 shows that X ⊆

HomB(M≥n0
, N).

To complete the proof we need to prove that H = HomB(M≥n0
, N). Clearly, H ⊆ HomB(M≥n0

, N).

However, if θ ∈ HomB(M≥n0
, N)t for some t, then we may consider θ as an element of Q. We see that

7



Z = (θM +N) is a B-submodule of Q such that ZB≥n0
⊆ N . Since N is saturated, this forces Z ⊆ N

and θ ∈ H , as desired. �

Notation 2.6. Let A be connected graded. A Z-graded A-module M is left respectively right bounded

if Mn = 0 for n ≪ 0, respectively for n ≫ 0. Obviously right bounded modules are in Tors-A, and

finitely generated graded modules M are left bounded. Importantly, if A is noetherian and M and N

are finitely generated graded A-modules, then by considering a free resolution of M , each ExtiA(M,N)

is left bounded and locally finite. If M is locally finite, the Hilbert series of M is the formal Laurent

series hilbM = hM (s) =
∑

n∈Z
dimkMns

n ∈ Z((s)). Note that we use the notations hilbM and hM

interchangeably. Given two Hilbert series g(s) =
∑
ans

n and h(s) =
∑
bns

n we write g(s) ≤ h(s) if

an ≤ bn for all n ∈ Z.

3. Point modules

In this section we study some homological properties of point modules over a twisted homogeneous

coordinate ring. Throughout the section, we fix an elliptic curve E, an automorphism τ ∈ Autk(E)

of infinite order and an invertible sheaf M with degM ≥ 3, although many of the results hold more

generally. Corresponding to this data, set B = B(E,M, τ). Points of E will always mean closed points.

Definition 3.1. Let A be a cg k-algebra that is generated in degree one. Then a point module over A

is a graded cyclic module M with Hilbert series hM (s) = 1/(1 − s). If M is an A-point module, then

there is a graded isomorphism M ∼= A/I for a unique right ideal I, called a (right) point ideal. Now let

B = B(E,M, τ) be a TCR as defined in the last section; thus B is generated in degree 1 by Lemma 2.3.

By Lemma 2.3(4), the isomorphism classes of B-point modules are in one-to-one correspondence with the

closed points of E; explicitly, if p ∈ E with skyscraper sheafOp and ideal sheaf Ip, then p ∈ E corresponds

to the point module Mp =
⊕

n≥0H
0(E,Op ⊗Mn), with point ideal Ip =

⊕
n≥0H

0(E, Ip ⊗Mn) ⊆ B.

It is easy to see that Ip is a saturated right ideal in the sense of Notation 2.4.

When considering shifts of point modules, the following formula will be useful.

(3.2) Mp[n]≥0
∼=Mτnp for any p ∈ E and n ≥ 0

(see, for example, [RSS1, Lemma 4.8(1)]). In particular, (Mp)≥n
∼= (Mτnp)[−n] for all p ∈ E and n ≥ 0.

Remark 3.3. We occasionally work with left point modules over B = B(E,M, τ). Of course there

are left-sided versions of all of the results above; in particular, the left B-point modules are again in

bijection with the points of E. In this case the equivalence of categories QcohE → B-Qgr is induced

by the functor F 7→
⊕

n≥0H
0(E,Fτn−1

⊗Mn). In particular, the left point module corresponding to

p ∈ E is M ℓ
p =

⊕
n≥0H

0(E, (Op)
τn−1

⊗ Mn). Moreover, M ℓ
p
∼= B/Jp for the left point ideal Jp =

⊕
n≥0H

0(E, (Ip)τ
n−1

⊗Mn). Note that the correspondence is set up so that if Ip is the right point ideal

corresponding to p, and Jp the left point ideal, then (Ip)1 = (Jp)1 = H0(E, Ip ⊗M). We also have the

following analogue of (3.2):

(3.4) (M ℓ
q )[n]≥0

∼=M ℓ
τ−nq for any q ∈ E and n ≥ 0.
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Lemma 3.5. Let B = B(E,M, τ) as above with a right point module M = Mp. Then M is CM and

Ext1B(Mp, B)[1] ∼=M ℓ
τ−2(p) is a left point module. The analogous result holds for left point modules.

Proof. We freely use the properties of B given by Lemma 2.3. Set Epq(M) = ExtpB(Ext
q
B(M,B), B).

We first show that M is CM, which will be a routine consequence of the spectral sequence

(3.6) Ep,−q
2 = Epq(M) ⇒ Hp−q(M) =




M if p = q

0 otherwise,

as described in [Le, Theorem 2.2(a)] or [Bj, §I.1]. Note that, as B is generated in degree one, every

proper factor module of M is finite dimensional, and so M is 1-critical. Now B is Auslander-Gorenstein

of injective dimension 2. Therefore, by the 1-criticality ofM and [Le, Theorem 2.4(b)], and in the notation

of that result, F j(M) = 0 for j > 1. Hence M = E11(M) but E22(M) = 0 by [Le, Theorem 2.2(b)].

In particular, Ext2B(M,B) = 0 by the Gorenstein property while Ext0B(M,B) = 0 since B is a domain.

Thus M is indeed CM.

It is almost immediate from (3.6) that Ext1B(M,B)[1] is a point module, but as we need to identify

the corresponding point, we take a different approach. Write M = Mp = B/Ip. Applying HomB(−, B)

to the exact sequence 0 → Ip → B → Mp → 0 shows that Ext1B(Mp, B) ∼= I∗p/B. By Lemma 2.5

I∗p
∼=

⊕

n≥0

H0(E, (Iτn

p )−1 ⊗Mn) =
⊕

n≥0

H0(E,Mn(τ
−n(p))),

and so I∗p/B has Hilbert series s/(1− s). It follows from Lemma 2.3 that B(I∗p )1 = (I∗p )≥1, and so I∗p/B

is cyclic. In other words, Ext1B(Mp, B)[1] is a point module. The fact that this point module is indeed

M ℓ
τ−2(p) now follows from Remark 3.3 and (3.4). The result for left modules is left to the reader. �

We next want to compute the Ext groups between point modules over B = B(E,M, τ). As the next

result shows, in qgr-B this follows easily from the equivalence qgr-B ≃ cohE. When there is no chance

of confusion, given M ∈ gr-B, the object π(M) ∈ qgr-B will also be written as M .

Lemma 3.7. Let B = B(E,M, τ) as before. Then Extmqgr-B(Mp, Mq) = 0 for m ≥ 2 and

Homqgr-B(Mp,Mq) ∼= Ext1qgr-B(Mp,Mq) ∼=




0 for p, q on distinct orbits

k[−j] if p = τ j(q), for j ∈ Z.

Remark: This result and its proof also hold when degM = 2.

Proof. As noted in Definition 3.1, the point module Mp corresponds to the skyscraper sheaf Op at p.

Thus, by (3.2),

Extmqgr-B(Mp, Mq) =
⊕

n∈Z

Extmqgr-B(Mp, Mq[n]) =
⊕

n∈Z

ExtmE (Op, Oτn(q))

for all m. Since E is a smooth curve, ExtmE (Op, Or) = 0 for any closed point r ∈ E and m ≥ 2. On the

other hand, working locally gives

HomE(Op, Or) = Ext1E(Op, Or) =




0 if p 6= r

k if p = r.
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Now apply (2.1). �

We next want to prove the analogue of Lemma 3.7 for homomorphisms in gr-B, for which we need

several elementary observations.

Lemma 3.8. Let q ∈ E. Then the following hold.

(1) The only torsionfree extensions of Mq by finite dimensional graded B-modules are the shifted

point modules Mτ−n(q)[n] for n ≥ 0.

(2) Ext1B(k[−n],Mq) = k[n+ 1] for all n ∈ Z.

(3) For all p, q ∈ E, one has Ext1B(Mp,Mq)−1 6= 0.

(4) Ext1Gr-B(Mp,Mp) 6= 0.

Proof. (1) Note first that, by (3.2), the module X =Mτ−n(q)[n] satisfies X≥0 =
(
(Mτ−n(q))≥n

)
[n] =Mq,

and so X is an extension of the required form. Conversely, any such extension is necessarily a 1-critical

module, and so uniqueness follows, for example, from [RSS2, Corollary 3.7(1)].

(2) Since any non-trivial extension of Mq by a shift of k is necessarily torsionfree, it follows from (1)

that the only such extension is 0 →Mq →Mτ−1q[1] → k[1] → 0. Thus Ext1B(k[−n],Mq) = k[n+ 1].

(3) Consider B/J , where J is the right ideal
⊕

n≥0H
0(E,Mn(−p − τ−1(q))). Then the point ideal

Ip =
⊕

n≥0H
0(E,Mn(−p)) contains J , with Ip/J ∼= (Mτ−1(q))≥1

∼= Mq[−1]. It is clear that this

extension of Ip/J by B/Ip ∼=Mp is nonsplit, since B/J is cyclic.

(4) By Lemma 2.3(4), the nonsplit extension of Op by itself in cohE gives a nonsplit extension

0 → π(Mp) → F → π(Mp) → 0 in qgr-B, for some F ∈ qgr-B. Note that the section functor ω from

Notation 2.4 satisfies ω(π(N)) = Homqgr-B(π(B), π(N)). In particular, applying ω to our exact sequence

gives an exact sequence

(3.9) 0 → ω(π(Mp)) → ω(F) → ω(π(Mp)) → Ext1qgr-B(π(B), π(Mp)) → . . .

Now

Ext1qgr-B(π(B), π(Mp)) =
⊕

m

Ext1qgr-B(π(B), π(Mp[m])) =
⊕

m

Ext1cohE(OE ,Oτm(p)) = 0,

using the equivalence of categories between qgr-B and cohE and the fact that sheaves with zero-

dimensional support have vanishing higher cohomology. However, ω(π(Mp))≥0 = Mp by construction

and so (3.9) becomes the exact sequence 0 →Mp → ω(F)≥0 →Mp → 0. This is nonsplit since applying

π yields the original nonsplit extension. �

Proposition 3.10. Let p, q ∈ E. Then

(1) HomB(Mp,Mq) =




k[−j] if p = τ jq for some j ≥ 0

0 otherwise,

while

(2) Ext1B(Mp,Mq) =




k[1]⊕ k[−j] if p = τ jq for some j ≥ 0

k[1] otherwise.
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Proof. (1) Using (3.2), we have HomB(Mp,Mq)j 6= 0 ⇐⇒ Mp[−j] ∼= (Mq)≥j
∼= (Mτ jq)[−j]. Clearly

this happens if and only if j ≥ 0 and p = τ jq; in particular it can happen for at most one value of j.

(2) Now consider the Ext groups. Note that Extiqgr-B(Mp,Mq) = limn→∞ Extigr-B
(
(Mp)≥n, Mq), by

[AZ, Proposition 7.2]. Thus the exact sequences 0 → (Mp)≥n →Mp →M/(Mp)≥n → 0 induce the exact

sequence

(3.11) 0 −→ HomB(Mp,Mq) −→ Homqgr-B(Mp,Mq)
α

−→ lim
n→∞

Ext1B(Mp/(Mp)≥n,Mq)

β
−→ Ext1B(Mp,Mq) −→ Ext1qgr-B(Mp,Mq) −→ . . .

We claim that X = limn→∞ Ext1B(Mp/(Mp)≥n,Mq) is zero in degrees ≥ 0 while dimkX−1 = 1. To

see this, apply HomB(−,Mq) to the exact sequence

0 → k[−n] −→Mp/(Mp)≥n+1 −→Mp/(Mp)≥n −→ 0.

This gives

0 −→ Ext1B(Mp/(Mp)≥n,Mq) −→ Ext1B(Mp/(Mp)≥n+1,Mq)
φ

−→ Ext1B(k[−n],Mq) −→ . . . .

Since Ext1B(k[−n],Mq) = k[n+ 1] by Lemma 3.8, it follows from this sequence and induction on n that

Ext1B(Mp/(Mp)≥n,Mq) lives in negative degrees, and that dimk Ext
1
B(Mp/(Mp)≥n,Mq)−1 = 1 for all n.

The claim follows.

Next, write Mp = B/Ip, where Ip =
⊕

n≥0H
0(E, Ip ⊗Mn). Since deg(Ip ⊗M) ≥ 2, it follows from

Lemma 2.3(1) that Ip is generated in degree one. Thus the graded free resolution of Mp begins

· · · →
m⊕

i=1

B[−1] −→ B −→Mp −→ 0.

Using this to calculate Ext1B(Mp,Mq) shows that Ext
1
B(Mp,Mq)n = 0 for n ≤ −2.

Combining this with the conclusion of the previous paragraph shows that, in (3.11), Imβ is concen-

trated entirely in degree −1, and is either 0 or k[1]. In fact we can be more precise. By comparing

Lemma 3.7 with Part (1), it follows that α = 0 except when p = τ j(q) for some j < 0 and in the latter

case Im(α) = k[−j]. We conclude that

(3.12) Imβ =




0 if p = τ−1(q)

k[1] otherwise.

To complete the proof, we consider several cases. First, if p, q lie on different orbits then Lemma 3.7

implies that Extqgr-B(Mp,Mq) = 0. Thus, (3.12) shows that Ext1B(Mp,Mq) = Imβ ∼= k[1].

Next, suppose that p = τ−1(q). Then, β = 0 by (3.12) and so in this case Lemma 3.7 implies that

Ext1B(Mp,Mq) →֒ Ext1qgr-B(Mp,Mp) ∼= k[1]. Since k[1] →֒ Ext1B(Mp,Mq) by Lemma 3.8(3), we conclude

that Ext1B(Mp,Mq) ∼= k[1], as required.

It remains to consider the case when p = τ j(q) for some −1 6= j ∈ Z. Comparing (3.12) with

Lemma 3.7 gives an exact sequence

0 −→ k[1] −→ Ext1B(Mp,Mq) −→ k[−j] −→ . . . .
11



If j ≤ −2, we have shown above that Ext1B(Mp,Mq)j = 0. Hence Ext1B(Mp,Mq) ∼= k[1]. If j ≥ 0, then

we must show that Ext1B(Mp,Mq) ∼= k[1]⊕k[−j], for which it suffices to show that 0 6= Ext1B(Mp,Mq)j =

Ext1B(Mp,Mq[j])0. From the exact sequence

0 = Homgr-B(Mp,Mq[j]/Mq[j]≥0) −→ Ext1gr-B(Mp,Mq[j]≥0) −→ Ext1gr-B(Mp,Mq[j])

it suffices to show that Ext1B(Mp,Mq[j]≥0)0 6= 0 or, equivalently by (3.2), that Ext1B(Mp,Mp)0 6= 0. In

other words, we can reduce to the case j = 0, where the result is just Lemma 3.8(4). �

4. Elliptic algebras

In this section, we define elliptic algebras, which are the main objects of interest in this paper, and

describe some of their more basic properties.

Definition 4.1. A connected N-graded algebra R is called an elliptic algebra if there is a central nonze-

rodivisor g ∈ R1 such that R/gR ∼= B(E,M, τ) for some elliptic curve E, invertible sheaf M, and infinite

order automorphism τ . We call degM the degree of the elliptic algebra. In this paper, we will always

assume that an elliptic algebra has degree at least 3 unless otherwise stated.

Example 4.2. Some of the most important elliptic algebras arise from the (quadratic) Sklyanin algebra

S = Skl(a, b, c) = k{x1, x2, x3}/(axixi+1 + bxi+1xi + cx2i+2 : i ∈ Z3),

where (a, b, c) ∈ P2 r S for a (known) finite set S. Here, S contains a canonical central element g ∈ S3

such that S/gS ∼= B(E,L, σ) for an elliptic curve E. In this paper we restrict attention to the case when

|σ| = ∞ since the 3-Veronese ring T = S(3) is then an elliptic algebra, with T/gT ∼= B(E,M, τ) for

M = L ⊗ Lσ ⊗ Lσ2

and τ = σ3.

Another, related example of an elliptic algebra can be obtained by taking the fourth Veronese ring

T ′ = (S′)(4) of the cubic Sklyanin algebra S′ from [ATV]. More generally, there are the (second Veroneses

of the) quadrics constructed in [VdB2]. As discussed in [SV, Example 8.5], these algebras can all be

written as factors of a certain 4-dimensional Sklyanin algebra, although as they will not be needed

explicitly in this paper we will omit the definitions.

An elliptic algebra R automatically has a number of good properties, basically because the same

properties hold for the factor ring B = R/Rg. Before stating the result we need one more definition.

Given a noetherian cg k-algebra A, regard k = A/A≥1 as a right A-module. Then A satisfies the

Artin-Zhang χ-condition (on the right) provided dimk Ext
j
A(k,M) <∞ for all M ∈ gr-R and all j ≥ 0.

Proposition 4.3. Let R be an elliptic algebra with B = R/gR. Then both R and B are noetherian

domains generated in degree 1. In addition, R and B are Auslander-Gorenstein, CM, AS-Gorenstein,

and satisfy the Artin-Zhang χ-condition.

Proof. By Lemma 2.3, R/gR and hence R are generated in degree one. Now the noetherian, Auslander-

Gorenstein and CM properties as well as the χ condition hold for B by [Rg, Lemma 2.2] and for R by

[Rg, Theorem 6.3]. The proofs of these results also easily imply that GKdim(B) = 2 and GKdim(R) = 3,

so that by [Le, Theorem 6.3], both B and R are also AS-Gorenstein. �
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Notation 4.4. Let R be an elliptic algebra with factor ring B = R/gR. For a graded R-module M or,

indeed a k[g]-module M , its g-torsion submodule is t(M) = {m ∈M : gnm = 0 for n≫ 1}. Then M is

g-torsion if M = t(M) and g-torsionfree if t(M) = 0. Write R(g) for the homogeneous localisation of R

at the completely prime ideal gR; thus R(g) = RC−1, for C the set of homogeneous elements in RrgR. As

in [RSS2, Notation 2.5], R(g)/gR(g)
∼= Qgr(B) ∼= k(E)[t, t−1; τ ]. We say that a k[g]-submodule M ⊆ R(g)

is g-divisible when M ∩ gR(g) = Mg. It is easy to see that M is g-divisible if and only if R(g)/M is g-

torsionfree. The fact that R/gR ∼= B is a domain forces R itself to be g-divisible. When M is g-divisible,

we can and will identify M/Mg with

M = (M + gR(g))/gR(g) ⊆ R(g)/gR(g).

The following properties of graded modules over an elliptic algebra will be useful.

Lemma 4.5. Let R be an elliptic algebra.

(1) IfM,N ⊆ R(g) are g-divisible graded R-submodules, then HomR(M,N) ⊆ R(g) is also g-divisible.

(2) If M is a g-torsionfree finitely generated graded right R-module with GKdimM ≤ 1, then I =

AnnR(M) is a nonzero graded ideal of R with GKdimR/I ≤ 1.

Proof. (1) See [RSS2, Lemma 2.12(2)].

(2) As M/Mg is finite dimensional, M◦ =M [g−1]0 is a finite dimensional module over R◦ = R[g−1]0.

Hence J = AnnR◦(M◦) 6= 0. Therefore, 0 6= Ĵ =
⋃

n{a ∈ Rn : ag−n ∈ J} and certainly Ĵ ⊆

AnnRM ; whence I = AnnRM 6= 0. As M is g-torsionfree, I 6⊆ gR. Hence, by [RSS2, Lemma 2.15(3)],

GKdimR/I ≤ 1. �

Lemma 4.6. Let R be an elliptic algebra with R/Rg = B.

(1) Let J ∈ gr-R with J ⊆ Q = Qgr(R). Then J∗∗ is the unique largest R-submodule of Q such that

GKdim J∗∗/J ≤ 1. In particular, J is reflexive if and only if Qgr(R)/J is 2-pure.

(2) Let J ⊆ R(g) be a finitely generated, g-divisible graded right R-submodule. If J = J/Jg is

saturated as a B-module, then J is reflexive as a right R-module.

Proof. (1) This follows from the CM property; see, for example, [Le, (4.6.6) and Remark 5.8(4)].

(2) We know that J is reflexive if and only if Qgr(R)/J is 2-pure. This is equivalent to R(g)/J being

2-pure, since Qgr(R)/R(g) =
⋃

n≥1 g
−nR(g)/R(g) is 2-pure.

If J is not reflexive, there exists a finitely generated module J ( N ⊆ R(g) with GKdim(N/J) ≤ 1.

By Lemma 4.5(2) and the fact that R(g)/J is g-torsionfree, NI ⊆ J for some graded ideal I of R with

GKdimR/I ≤ 1. Let N̂ = {y ∈ R(g) : yg
n ∈ N, some n ≥ 0}. Then N̂ is g-divisible, with N̂I ⊆ J . Since

N̂ ⊆ HomR(I, J), clearly N̂ is left bounded. Since J ( N̂ and both are left bounded and g-divisible, we

must have J ( N̂ ; otherwise J/Jg = N̂/N̂g and the graded Nakayama lemma would imply that J = N̂ .

Moreover, N̂I ⊆ J . But dimkB/I < ∞, since all nonzero ideals of B have finite codimension (see, for

example, [AS, Lemma 4.4]). Hence dimk N̂/J <∞, showing J is not saturated, a contradiction. �

The next few lemmas provide useful homological properties for modules over an elliptic algebra. First

however we prove an elementary result that will be used several times.
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Lemma 4.7. Let H be a locally finite, left bounded, graded k[g]-module. If the multiplication map •g

has a finite dimensional kernel on H, then the g-torsion submodule of H is also finite dimensional.

Proof. By hypothesis, AnnH(g) is finite-dimensional, say contained in degrees ≤ d. Now if 0 6= x ∈ H

is g-torsion, then pick n ≥ 1 minimal with gnx = 0; thus 0 6= gn−1x ∈ AnnH(g). It follows that

deg x ≤ d− n+ 1. In particular, the g-torsion submodule of H is entirely contained in degrees ≤ d, and

so is finite dimensional as H is left bounded and locally finite. �

Lemma 4.8. Let R be an elliptic algebra, with B = R/gR. Suppose that M ∈ Gr-R is g-torsionfree and

that N ∈ Gr-B. Then, for all i ≥ 0, one has ExtiR(M,N) ∼= ExtiB(M/Mg,N) and

ExtiQgr-R(π(M), π(N)) ∼= ExtiQgr-B(π(M/Mg), π(N)).

Proof. Both parts are essentially the same easy exercise; cf. [VdB1, Proposition 5.1.2(1)]. �

Lemma 4.9. Let R be an elliptic algebra with R/Rg = B = B(E,M, τ). Let I and J be non-zero

g-divisible, reflexive finitely generated graded right R-submodules of R(g). Then

(1) The natural inclusion HomR(I, J) ⊆ HomB(I, J) has a finite-dimensional cokernel.

(2) The g-torsion subspace of Ext1R(I, J) is finite-dimensional over k.

Proof. (1) The proof is a variant of [RSS2, Prop. 6.12]. First, replacing I and J by xI and yJ , for some

homogeneous elements x, y ∈ R \ gR, we can assume without loss that I, J ⊆ R. Note that R/I and

R/J are g-torsionfree modules and hence, by Lemma 4.6, are either 2-pure or 0.

By Lemma 4.8 we may identify ExtiR(R/I, J) = ExtiB(B/I, J). Thus, applying HomR(R/I,−) to the

sequence 0 → J
•g
−→ J → J → 0 gives the exact sequence

HomB(B/I, J) −→ Ext1R(R/I, J)[−1]
•g
−→ Ext1R(R/I, J)

β
−→ Ext1B(B/I, J)(4.10)

α
−→ Ext2R(R/I, J)[−1]

•g
−→ Ext2R(R/I, J) −→ Ext2B(B/I, J) −→ . . .

Moreover, HomB(B/I, J) = 0 since B is a domain.

We claim that dimk Ext
2
B(B/I, J) < ∞. Indeed, since B is a domain with GKdim(B) = 2, [KL,

Proposition 5.1(e)] implies that GKdimB/I ≤ 1 and so B/I has a finite filtration by point modules

and finite-dimensional modules. By Proposition 4.3 B satisfies the Artin-Zhang χ-condition and so

dimk Ext
2
B(k, J) < ∞. Thus in order to prove the claim, using the usual long exact sequences in

cohomology, it suffices to show that dimk Ext
2
B(Mp, J) <∞ for a point module Mp. Consider the exact

sequence

· · · → Ext1B(Mp, B/J) → Ext2B(Mp, J) → Ext2B(Mp, B) → . . .

Here, Ext2B(Mp, B) = 0 by Lemma 3.5. AlsoB/J is again filtered by point modules and finite-dimensional

modules. Obviously dimk Ext
1
B(Mp, k) < ∞, while dimk Ext

1
B(Mp,Mq) < ∞ for a point module Mq by

Proposition 3.10. Thus dimk Ext
1
B(Mp, B/J) <∞ and so dimk Ext

2
B(Mp, J) <∞, as claimed.

Equation 4.10 now shows that if N = Ext2R(R/I, J), then the map Nn−1
•g
−→ Nn is surjective for

n ≫ 0. Since N is left bounded and locally finite (see Notation 2.6) this forces dimkNn = d for some

constant d and any n ≫ 0. Hence Nn−1
•g
−→ Nn is an isomorphism for n ≫ 0 and so Coker(β) ∼= Im(α)
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is finite-dimensional. Identifying Ext1R(R/I, J)
∼= HomR(I, J)/J and Ext1B(B/I, J)

∼= HomB(I, J)/J ,

this means that the natural map HomR(I, J)/J → HomB(I, J)/J has a finite-dimensional cokernel. As

in the proof of [RSS2, Prop 6.12], it easily follows that the natural map HomR(I, J) → HomB(I, J) also

has a finite-dimensional cokernel.

(2) From the exact sequence

0 −→ HomR(I, J)[−1]
•g
−→ HomR(I, J) −→ HomB(I, J) −→ Ext1R(I, J)[−1]

•g
−→ Ext1R(I, J)

and part (1), the map •g on H = Ext1R(I, J) has finite-dimensional kernel. Now apply Lemma 4.7. �

5. Line modules

The main aim of this paper is to create an algebraic analogue of contracting lines of self intersection

−1. To this end, in this section we discuss line modules—the appropriate analogues of lines—while in

the next section we discuss their intersection theory. Throughout the section, we fix an elliptic algebra

R of degree ≥ 3 with R/Rg = B = B(E,M, τ).

Definition 5.1. A (right) line module over the elliptic algebra R is a cyclic graded R-module L ∈ gr-R

with Hilbert series hilbL = 1/(1 − s)2. Because Homgr-R(R,L) = k for such a module L, there is a

unique right ideal J of R with L ∼= R/J . We refer to J as the line ideal of L.

Lemma 5.2. Let L be a right line module over the elliptic algebra R. Then L is g-torsionfree and

2-critical, and L/Lg is a point module.

Proof. This follows from [Rg, Lemma 8.9]. �

Recall from Lemma 2.3 the equivalence of categories QcohE → Qgr-B. Since the simple objects in

QcohE are the skyscraper sheaves Op for points p ∈ E, following Definition 3.1 the simple objects in

qgr-B are the images π(Mp) of the point modulesMp, and so these are also parametrised by closed points

p ∈ E. By a slight abuse of notation we will often write π(Mp) = Op to emphasise the correspondence.

Definition 5.3. LetM be a right line module or, more generally, a finitely generated g-torsionfree right

R-module with GKdimM = 2. Then GKdimM/Mg = 1, and so π(M/Mg) ∈ qgr-B has finite length.

Thus π(M/Mg) has a filtration with simple factors Op1
, . . . ,Opn

, for some pi ∈ E. We define the divisor

of M to be DivM = p1 + · · ·+ pn. In particular, if L is a line module then L/Lg ∼= Mp and DivL = p

for some point p ∈ E. The analogous notation will be used for left modules.

Lemma 5.4. Let M ∈ gr-R be g-torsionfree and assume that M/Mg has a filtration with shifted point

module factors {Mpi
[mi] : 1 ≤ i ≤ d}.

(1) M is 2-pure and CM, with DivM =
∑
τmi(pi) and hilbM =

∑d
i=1 s

−mi/(1− s)2.

(2) Let N = Ext1R(M,R). Then N ∈ R-gr and is g-torsionfree, 2-pure, and CM. Moreover, N/gN

has a finite filtration with shifted left point module factors {M ℓ
τ−2(pi)

[−mi − 1] : 1 ≤ i ≤ d}. In

particular, DivN =
∑
τmi−1(pi), and hilbN =

∑d
i=1 s

mi+1/(1− s)2.
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Proof. (1) IfM is not 2-pure, then it has a submodule H with GKdimH < 2. Necessarily GKdimH = 1

since finite-dimensional modules are g-torsion. Also, as M is g-torsionfree, H(n) = {f ∈ M : fgn ∈ H}

satisfies GKdimH(n) = 1 for any n. Thus, after replacing H by some such H(n) we can assume

that H 6⊆ Mg. In this case, dimkH/Hg < ∞ and hence (H +Mg)/Mg ∼= H/H ∩Mg is a nonzero,

finite-dimensional submodule of M/Mg, contrary to assumption. Thus M is 2-pure.

Recall from Lemma 4.8 that ExtjR(M,B) ∼= ExtjB(M/Mg,B). Thus, applying HomR(M,−) to the

exact sequence 0 → R[−1]
g
→ R → B → 0, gives the long exact sequence

(5.5) · · · −→ Extj−1
B (M/Mg,B) −→ ExtjR(M,R)[−1]

•g
−→ ExtjR(M,R) −→ ExtjB(M/Mg,B) −→ · · ·

Given a point module Mp, then Lemma 3.5 implies that ExtjB(Mp, B) = 0 for j 6= 1. Since M/Mg is

filtered by point modules, standard long exact sequences show that ExtjB(M/Mg,B) = 0 for j 6= 1. In

particular if j 6= 1, then the map •g in (5.5) is surjective. Since ExtjR(M,R) is left bounded, this can

only happen if ExtjR(M,R) = 0. Thus M is Cohen-Macaulay.

The computations of hilbM and DivM follow routinely from the hypotheses, using (3.2).

(2) By the proof of part (1), the sequence (5.5) collapses to give the short exact sequence

0 −→ Ext1R(M,R)[−1]
•g
−→ Ext1R(M,R) −→ Ext1B(M/Mg,B) −→ 0.

Hence N = Ext1R(M,R) is a g-torsionfree left R-module with N/gN ∼= Ext1B(M/Mg,B). Clearly N is

finitely generated. Given a point moduleMp, then Lemma 3.5 implies that Ext1B(Mp, B) ∼=M ℓ
τ−2(p)[−1].

Since M/Mg is filtered by the {Mpi
[mi]}, it follows that N/gN is filtered by the left point modules

{M ℓ
τ−2(pi)

[−mi − 1]}. The values of hilbN and DivN follow, as they did for M , but using (3.4) in place

of (3.2). Similarly, N is 2-pure and CM by the arguments from part (1). �

We now consider some properties of line modules.

Lemma 5.6. Let L,L′ be right line modules over an elliptic algebra R, with DivL = p and DivL′ = p′.

(1) If p 6= τ j(p′) for any j ≥ 0, then HomR(L,L
′) = 0.

(2) If p = τ j(p′) for some j ≥ 0, then either HomR(L,L
′) = 0 or else hilbHomR(L,L

′) = sj/(1− s).

(3) EndR(L)
∼= k[g]; in particular hilbEndR(L) = 1/(1− s).

Proof. By definition, L/Lg = Mp and L′/L′g = Mp′ . By Lemma 4.8, ExtiR(L,Mp′) ∼= ExtiB(Mp,Mp′)

for all i ≥ 0. Applying HomR(L,−) to the short exact sequence 0 → L′g → L′ →Mp′ → 0 gives

(5.7) 0 −→ HomR(L,L
′)[−1]

•g
−→ HomR(L,L

′)
γ

−→ HomB(Mp,Mp′) −→ · · · .

(1) In this case, Proposition 3.10 implies that HomB(Mp,Mp′) = 0 and so •g is surjective in (5.7).

Since HomR(L,L
′) is left bounded, this forces HomR(L,L

′) = 0.

(2) Here, Proposition 3.10 implies that HomB(Mp,Mp′) = k[−j]. Thus if HomR(L,L
′) 6= 0 then γ is

surjective in (5.7). As HomR(L,L
′) is left bounded, this forces hilbHomR(L,L

′) = sj(1 − s)−1.

(3) As there is a natural graded inclusion k[g] →֒ EndR(L), part (2) implies that hilbHomR(L,L) =

(1− s)−1 and hence that EndR(L) = k[g]. �

16



Lemma 5.8. Let R be an elliptic algebra, with R/Rg = B = B(E,M, τ). Let L and L′ be right line

modules over R.

(1) L is CM, and L∨ = Ext1R(L,R)[1] is a left line module.

(2) Under the natural morphism, L = L∨∨. Further, if J is the line ideal of L, then J = J1R is

g-divisible, CM and reflexive, while J = J/Jg is saturated.

(3) Up to isomorphism, there is a unique non-split exact sequence 0 → R → M → L[−1] → 0.

Explicitly, if L∨ = R/J∨, then M = (J∨)∗. This M is g-divisible, CM and reflexive.

(4) For j = 0, 1 one has ExtjR(L
′, L) ∼= ExtjR(L

∨, (L′)∨) as graded vector spaces.

(5) Ext1R(k, L) = 0.

Proof. (1) Write L/Lg = Mp for some p ∈ E. Then Lemma 5.4 shows that L is CM, and that N =

Ext1R(Mp, R) has Hilbert series s/(1 − s)2, with N/gN ∼= M ℓ
τ−2(p). In particular, since N/gN is cyclic,

N is cyclic by the graded Nakayama lemma, and since L∨ = N [1] has the Hilbert series of a line module,

it is a left line module.

(2) Mimicking the notation from Lemma 3.5, set Eij(N) = ExtiR(Ext
j
R(N,R), R) for a graded R-

module N . We first note that the natural morphism, L→ E11(L) = L∨∨ is obtained as follows: applying

Hom(−, R) to 0 → R → J∗ → ExtiR(L,R) → 0 gives the exact sequence 0 → J∗∗ → R → E11(L). Since

J∗∗ ⊇ J this induces a homomorphism from L = R/J to R/J∗∗ ⊆ E11(L).

By Lemma 5.4(2) L∨ is CM. Thus the Gorenstein spectral sequence (3.6) collapses to show that the

natural morphism L → L∨∨ is an isomorphism. Since L = R/J is g-torsionfree, and R is g-divisible,

J must be g-divisible. Since R/J ∼= Mp, necessarily J =
⊕

n≥0H
0(E,Mn(−p)). In particular, J is

saturated, and so J is reflexive by Lemma 4.6(2). Similarly, J is generated in degree one by Lemma 2.3(1)

and hence J is generated in degree one by the graded Nakayama lemma. Since L = R/J is CM by part

(1), it follows routinely that ExtiR(J,R) = 0 for i ≥ 1 and hence that J is CM.

(3) We have an exact sequence 0 → R → (J∨)∗ → L∨∨[−1] → 0. Since (J∨)∗ is contained in the graded

quotient ring Qgr(R), the inclusion R→ (J∨)∗ is essential; in particular, the exact sequence is nonsplit.

Now L∨∨ = L by part (2) and Ext1gr-R(L[−1], R) = k, by part (1). Thus up to isomorphism there is a

unique nonsplit degree 1 extensionM of R by L, and it is given byM = (J∨)∗. Since J∨ is g-divisible by

part (2), M = HomR(J
∨, R) is g-divisible by Lemma 4.5. Finally, as J∨ is CM by the left-sided analogue

of part (2), the spectral sequence (3.6) collapses for J∨ and shows that ExtiR(M,R) = Ei0(J∨) = 0 for

i > 0. In other words, M is CM.

(4) We begin with Ext1. Define a map (−)∨ : Ext1R(L
′, L) → Ext1R(L

∨, (L′)∨) as follows: let

E : 0 −→ L
α

−→ M
β

−→ L′[j] −→ 0

be an exact sequence corresponding to an element of Ext1R(L
′, L)−j . Applying HomR(−, R) to E and

using the fact that L and L′ are CM gives the dual extension

E
∨ : 0 −→ (L′)∨[−j]

β∨

−→ Ext1R(M,R)[1]
α∨

−→ L∨ −→ 0.

We leave to the reader the verification using Baer sums [Ma, Theorem III.2.1] that (−)∨ is a linear

transformation.
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The double dual of E is

E
∨∨ : 0 −→ L

α∨∨

−→ E11(M)
β∨∨

−→ L′[j] −→ 0.

Since L and L′ are CM, so is M and hence (3.6) implies that M ∼= E11(M). The functoriality of (3.6)

then ensures that α∨∨ = α and β∨∨ = β, whence E
∨∨ ∼= E.

Thus (−)∨ induces linear maps f : Ext1R(L
′, L) → Ext1R(L

∨, (L′)∨) and g : Ext1R(L
∨, (L′)∨) →

Ext1R(L
′, L) such that g ◦f is the identity. The same argument starting with the sequence E∨ shows that

f ◦ g is the identity. Thus (−)∨ is an isomorphism of graded vector spaces.

In order to prove the result for Hom, suppose that 0 6= f ∈ HomR(L
′, L). Then L and L′ are GK-

critical by Lemma 5.2 and hence f is an injection. Now applying Ext1(−, R) produces a monomorphism

f∨ ∈ HomR(L
∨, (L′)∨) and so the map f 7→ f∨ defines an injection Hom(L′, L) →֒ Hom(L∨, (L′)∨). The

fact that this is an isomorphism then follows by applying parts (1, 2).

(5) The exact sequence 0 → R → (J∨)∗ → L[−1] → 0 from part (3) induces the exact sequence

Ext1R(k, (J
∨)∗) → Ext1R(k, L)[−1] → Ext2R(k, R).

As R is AS-Gorenstein of dimension 3 by Proposition 4.3, the last term is zero. The first term is 0 by

reflexivity of (J∨)∗, and the result follows. �

6. Intersection theory

There is a general notion of intersection product on a noncommutative scheme, due to Mori and

Smith [MS], that reduces to the usual definition for a commutative scheme but is more convenient

when working in a noncommutative setting. In this section we give several alternative formulæ for the

intersection product of line modules over elliptic algebras. One drawback of the definition is that it is

not always defined for schemes of infinite homological dimension, so we also give a variant that is always

defined.

Definition 6.1. Let R be a connected noetherian N-graded algebra. Then the intersection number of

M,N ∈ qgr-R is defined to be

(M •
MSN ) =

∑
(−1)n+1 dimk Ext

n
qgr-R(M, N ),

where we declare that the intersection is undefined if infinitely many terms are non-zero.

Given M,N ∈ gr-R, we define (M •
MSN) = (π(M) •

MSπ(N)), although as above since the category

will be clear from the context we will usually write M for the image in qgr-R of M ∈ gr-R.

Notation 6.2. Given an elliptic algebra R, set R◦ = R[g−1]0. Similarly, for M ∈ Gr-R, set M◦ =

M [g−1]0 ∈ R◦-Mod. Since R[g−1] is strongly graded, R[g−1] ∼= R◦⊗kk[g, g−1], and there is an equivalence

of categories F : Mod-R◦ → Gr-R[g−1], given by F (N) = N ⊗k k[g, g−1].

Finally, write grkM = grkk[g]M for the torsionfree rank of a k[g]-module M .

18



Lemma 6.3. Let R be an elliptic algebra, with M,N ∈ gr-R. Then, for each m ≥ 0, Extmqgr-R(M, N) is

a right k[g]-module with

Extmqgr-R(M, N)⊗k[g] k[g, g
−1] ∼= ExtmR (M,N)⊗k[g] k[g, g

−1] ∼= ExtmR◦(M◦, N◦)⊗k k[g, g
−1].

In particular, grkExtmqgr-R(M,N) = grkExtmR (M,N) = dimk Ext
m
R◦(M◦, N◦).

Proof. The first assertion follows from the fact that g is central.

By Proposition 4.3 and [AZ, Corollary 7.3(2)], there is a map θ : ExtmR (M,N) → Extmqgr-R(M,N) with

right bounded kernel and cokernel. As g is central, θ is a map of k[g]-modules, and so the kernel and

cokernel of θ are g-torsion. This proves the first isomorphism in the display.

Next, using that Ext commutes with central localisation, we calculate that

ExtmR (M, N)⊗k[g] k[g, g
−1] ∼= ExtmR[g−1](M [g−1], N [g−1]) ∼= ExtmR◦(M◦, N◦)⊗k k[g, g

−1],

where the final isomorphism uses the equivalence of categories gr-R[g−1] ≃ mod-R◦. This gives the

second isomorphism in the display, from which the final equation is an easy consequence. �

We now consider in more detail the homological properties of line modules over the elliptic algebra R.

Lemma 6.4. Let L and L′ be line modules over the elliptic algebra R, with point factors L/Lg = Mp

and L′/L′g =Mp′ . Then there is a long exact sequence

0 −→ Homqgr-R(L,L
′)[−1]

•g
−→ Homqgr-R(L,L

′) −→ F −→ Ext1qgr-R(L,L
′)[−1](6.5)

•g
−→ Ext1qgr-R(L,L

′) −→ F −→ Ext2qgr-R(L,L
′)[−1]

•g
−→ Ext2qgr-R(L,L

′) −→ 0,

where F ∼= k[−j] if p = τ j(p′) for some j ∈ Z, and F = 0 if p and q lie on different orbits.

For m ≥ 3, multiplication by g induces isomorphisms Extmqgr-R(L,L
′)[−1] ∼= Extmqgr-R(L,L

′).

Proof. Applying Homqgr-R(L,−) to 0 −→ L′[−1]
•g
−→ L′ −→Mp′ −→ 0 gives the long exact sequence

(6.6) · · · → Extn−1
qgr-R(L, Mp′) → Extnqgr-R(L,L

′g) → Extnqgr-R(L,L
′) → Extnqgr-R(L, Mp′) → · · ·

The lemma now follows by using Lemma 4.8 to identify Extnqgr-R(L, Mp′) = Extnqgr-B(Mp,Mp′) and then

applying Lemma 3.7. �

Proposition 6.7. Let R be an elliptic algebra and let L,L′ ∈ gr-R be line modules, with p = DivL,

p′ = DivL′. Assume that (L •
MSL

′) is defined.

(1) (L •
MSL

′[m]) = (L •
MSL

′) for all m ∈ Z.

(2) (L •
MSL

′) =
∑

(−1)n+1 grk Extnqgr-R(L,L
′) =

∑
(−1)n+1 dimk Ext

n
R◦(L◦, (L′)◦).

Proof. (1) Restrict the morphisms in Lemma 6.4 to some degree j and take the alternating sum of the

dimensions of the resulting vector spaces in these equations. Since the contributions from F cancel, this

gives
∑

n≥0

(−1)n+1 dimk Ext
n
qgr-R(L,L

′[−1])j =
∑

n≥0

(−1)n+1 dimk Ext
n
qgr-R(L,L

′)j .

Thus, by (2.1), (L •
MSL

′[j−1]) = (L •
MSL

′[j]) and, by induction, (L •
MSL

′[m]) = (L •
MSL

′) for all m ∈ Z.
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(2) By Lemma 6.3, we only need to prove that (L •
MSL

′) =
∑

(−1)n+1 grk Extnqgr-R(L,L
′). Suppose

first that p = τ j(p′) for some j ∈ Z. Then (L •
MSL

′[j]) = (L •
MSL

′) by part (1), and

∑
(−1)n+1 grk Extnqgr-R(L,L

′) =
∑

(−1)n+1 grk Extnqgr-R(L,L
′[j])

is obvious since shifting does not affect the rank. Thus it suffices to prove that

(6.8) (L •
MSL

′[j]) =
∑

(−1)n+1 grk Extnqgr-R(L,L
′[j]).

So, consider N = Extmqgr-R(L,L
′[j]) = Extmqgr-R(L,L

′)[j], for some m ≥ 0. Then after shifting by [j],

Lemma 6.4 shows that N fits into an exact sequence 0 → K → N [−1]
•g
→ N → K ′ → 0 where K and

K ′ can be zero or k, depending on the choice of m. Thus the kernel of •g on N is contained in N−1

and so N≥0 is g-torsionfree. Similarly, since K ′ is concentrated in degree 0, •g gives an isomorphism

Nn
∼
−→ Nn+1 for all n ≥ 0. Since N is locally finite, it follows that N≥0

∼= k[g]⊕r for some r ≥ 0. In

particular, dimkN0 = r = grkN and so (6.8) follows.

If p and p′ lie on distinct orbits then the same argument works, since now Lemma 6.4 implies that

N = Extmqgr-R(L,L
′) ∼= N [−1] for each m. �

The projective dimension of an R-module L will be written pdimR(L). We make the following easy

observation.

Lemma 6.9. Let R be an elliptic algebra and let L be a line module with pdimR◦(L◦) < ∞. Then

pdimR◦(L◦) = 1.

Proof. By Lemma 5.8(1), ExtnR(L,R) = 0 for n 6= 1 and so Lemma 6.3 implies that ExtnR◦(L◦, R◦) = 0

for n 6= 1. If m = pdimR◦(L◦) < ∞ then it is easy to see that ExtmR◦(L◦, R◦) 6= 0, and it follows that

m = 1. �

Corollary 6.10. Let R be an elliptic algebra with line modules L and L′. Assume that either L◦ or

(L′)◦ has finite projective dimension. Then

(L •
MSL

′) = grkExt1qgr-R(L, L
′)− grkHomqgr-R(L, L

′)

= grkExt1R(L, L
′)− grkHomR(L, L

′)

= dimk Ext
1
R◦(L◦, (L′)◦)− dimk Hom

1
R◦(L◦, (L′)◦).

Proof. If L◦ has finite projective dimension, by Lemma 6.9 we have pdimR◦(L◦) = 1. Thus, by

Lemma 6.3, for i ≥ 2 we have 0 = ExtiR◦(L◦, (L′)◦) = grkExtiqgr-R(L,L
′) = grkExtiR(L,L

′) and the

result follows from Proposition 6.7 and Lemma 6.3.

If instead (L′)◦ has finite projective dimension, then again (L′)◦ has projective dimension 1, which

forces its line ideal (J ′)◦ to be projective. Lemmas 5.8(1) and 6.3 still imply that ExtiR◦(L◦, R◦) = 0 for

i ≥ 2. Thus, as (J ′)◦ is a direct summand of a free module, ExtiR◦(L◦, (J ′)◦) = 0 for i ≥ 2 as well. Then

ExtiR◦(L◦, (L′)◦) ∼= Exti+1
R◦(L◦, (J ′)◦) = 0 for i ≥ 2, and again the result follows from Lemma 6.3 and

Proposition 6.7. �
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Unfortunately, when a (localised) line module L◦ has infinite projective dimension, the corollary can

fail and, indeed, (L •
MSL) can even be undefined; see Corollary 10.17 for an example of this phenomenon.

However, the higher Ext groups are not really relevant to our applications of self-intersection and so we

can define a modified intersection number using just the first two terms in the alternating sum.

Definition 6.11. Let L and L′ be line modules over an elliptic algebra R. Then define

(L•L′) = − grkHomR(L,L
′) + grkExt1R(L,L

′).

Corollary 6.10 shows that (L•L′) = (L •
MSL

′) provided one of (L)◦ or (L′)◦ has finite projective

dimension. In general, the geometric interpretation of (L•L′) is more obscure, but as we see in Section 7,

our definition still correlates nicely with several other useful properties of the lines L and L′.

In fact, the main examples we consider in the last part of the paper are elliptic algebras R whose

corresponding noncommutative projective schemes are smooth in the sense that qgr-R has finite homo-

logical dimension. A geometric way of thinking about R◦ is to note that the noncommutative scheme

qgr-R has a closed subscheme qgr-B ≃ cohE which is a smooth elliptic curve. The category mod-R◦

then represents the open complement of E. Thus the following result is natural.

Lemma 6.12. Let R be an elliptic algebra. Then qgr-R is smooth if and only if R◦ has finite global

dimension.

Proof. If qgr-R is smooth then R◦ has finite global dimension by Lemma 6.3, so suppose that qgr-R has

infinite homological dimension. Thus, for any t ≥ 3 there existM,N ∈ gr-R such that Extsqgr-R(M,N) 6=

0 for some s ≥ t. By taking the beginning of a free resolution 0 → K → F → M → 0 and replacing M

by K we can assume, possibly after increasing s, that M is g-torsionfree. Similarly we may assume that

N is g-torsionfree.

Set B = R/gR. Then qgr-B ∼= cohE has homological dimension 1. Thus Lemma 4.8 implies that

Extiqgr-R(M,N/Ng) ∼= Extiqgr-B(M/Mg,N/gN) = 0 for i ≥ 2. Using cohomology arising from the exact

sequence 0 −→ N [−1]
•g
−→ N −→ N/Ng −→ 0 it follows that •g is injective on Extiqgr-R(M,N) for all

i ≥ 3. In other words, Extsqgr-R(M,N) is g-torsionfree (and non-zero). Finally, by Lemma 6.3 this implies

that ExtsR◦(M◦, N◦) 6= 0. Since t was arbitrary, it follows that R◦ has infinite global dimension. �

7. Intersections of lines

Fix an elliptic algebra R with R/gR = B(E,M, τ), and let L = R/J and L′ = R/J ′ be two right R-

line modules, possibly isomorphic, with DivL = p and DivL′ = p′. In this section, we study alternative

characterisations of the intersection number (L•L′), as defined in Definition 6.11. In particular, we show

that (L•L) = −1 if and only if Ext1R(L,L) = 0, and give similar conditions for when (L•L′) = 0.

We begin with a number of useful observations. First, consider the exact sequences

0 → HomR(L,L
′) → HomR(R,L

′) → HomR(J, L
′) → Ext1R(L,L

′) → 0,

and

0 → HomR(J, J
′) → HomR(J,R) → HomR(J, L

′) → Ext1R(J, J
′) → 0.
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(The second sequence is exact because J is CM, by Lemma 5.8.) We know that hilbHomR(J,R) =

hilbR+s/(1−s)2 by the left-sided version of Lemma 5.8(3), and of course HomR(R,L
′) = L′ has Hilbert

series 1/(1− s)2. Thus we obtain the useful equation:

(7.1) hilbExt1R(L,L
′)− hilbHomR(L,L

′) = hilbHomR(J, L
′)−

1

(1− s)2

= hilbExt1R(J, J
′) + hR −

1

(1 − s)
− hilbHomR(J, J

′).

The power series on the left of (7.1) will recur often, so we define:

(7.2) X(L,L′) = hilbExt1R(L,L
′)− hilbHomR(L,L

′).

Next, by applying HomR(L,−) to the short exact sequence 0 → L′[−1]
•g
→ L′ → Mp′ → 0, and using

Lemma 4.8 one obtains the exact sequence:

(7.3) 0 −→ HomR(L,L
′)[−1]

•g
−→ HomR(L,L

′) −→ HomB(Mp,Mp′)

−→ Ext1R(L,L
′)[−1]

•g
−→ Ext1R(L,L

′)
δ

−→ Ext1B(Mp,Mp′).

This gives the Hilbert series equation

(7.4) X(L,L′) =
C −H

(1− s)
for H = hilbHomB(Mp,Mp′) and C = hilb Im δ.

The possibilities forH,C and E = hilbExt1B(Mp,Mp′) are quite limited: by Proposition 3.10, if p = τ j(p′)

for some j ≥ 0, then H = sj and E = s−1 + sj ; otherwise H = 0 and E = s−1. In any case 0 ≤ C ≤ E.

Note that (7.3) implies that HomR(L,L
′) is g-torsionfree. Moreover, by Proposition 3.10(1) the map •g

on Ext1R(L,L
′) has a finite-dimensional kernel. By Lemma 4.7, this implies that the g-torsion submodule

of Ext1R(L,L
′) is also finite-dimensional. Since dimk Im δ < ∞ and Ext1R(L,L

′) is left bounded, (7.3)

implies that dimk Ext
1
R(L,L

′)n is constant for n ≫ 0. Thus grkExt1R(L,L
′) = dimk Ext

1
R(L,L

′)n for all

n≫ 0. Obviously the analogous result holds for HomR(L,L
′), and combined with (7.4) this implies that

(L•L′) = grkExt1R(L,L
′)− grkHomR(L,L

′)(7.5)

= dimk Ext
1
R(L,L

′)n − dimk HomR(L,L
′)n, for n≫ 0

= the sum of the coefficients of C −H.

We may think of X(L,L′) as a refined version of (L•L′), since (L•L′) = (1− s)X(L,L′)|s=1 by (7.4) and

(7.5).

As a consequence of these calculations, we can already see that the intersection number of two lines

on an elliptic algebra lies in a quite limited range. If p = τ j(p′) for some j ≥ 0, then H = sj and

C ≤ s−1 + sj , while otherwise H = 0 and C ≤ s−1. From (7.5) we conclude that

(7.6) (L•L′) ∈ {−1, 0, 1},

where the value −1 can only occur if p = τ j(p′) for some j ≥ 0. In Lemma 7.14 we will refine this

observation to show that in fact (L•L′) = −1 forces L to be isomorphic to L′.
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Next, since J and J ′ are g-divisible by Lemma 5.8(2), we may use Lemma 4.8 to get the exact sequence

(7.7)

0 −→ HomR(J, J
′)[−1]

•g
−→ HomR(J, J

′) −→ HomB(J, J
′)

α
−→ Ext1R(J, J

′)[−1]
•g
−→ Ext1R(J, J

′) −→ · · · .

The calculation of the Hilbert series of HomB(J, J
′) is straightforward. Since J =

⊕
n≥0H

0(E,Mn(−p))

and similarly for J ′, by Lemma 2.5 we get HomB(J, J
′) =

⊕
n≥0H

0(E,Mn(−p′ + τ−n(p))). Thus

(7.8) hilbHomB(J, J
′) = hilbB − 1 + ǫp,p′ where ǫp,p′ =




1 p = p′

0 p 6= p′
.

From (7.7) and Lemma 4.5(1) we have HomR(J, J
′) ⊆ HomB(J, J

′) with cokernel isomorphic to Imα.

Thus we conclude that

(7.9) hilbHomR(J, J
′) =

hilbB − 1 + ǫp,p′ − hilb Imα

(1− s)
= hilbR+

(ǫp,p′ − 1)

(1− s)
−

(hilb Imα)

(1− s)
.

We next want to characterise when the various intersection numbers occur in (7.6). We begin with

(L•L) for a single line ideal L and are mostly interested in when (L•L) = −1.

Theorem 7.10. Let L = R/J be a line module of an elliptic algebra R. Consider the following condi-

tions:

(1) Ext1R(J, J) = 0.

(2) Ext1R(L,L) = 0.

(3) hilbEndR(J) = hilbR.

(4) hilbHomR(J, L) = s(1− s)−2.

(5) (L•L) = −1.

Then:

(a) (1) ⇐⇒ (2) ⇐⇒ (4) ⇐⇒ (5) ⇒ (3).

(b) If J◦ is projective then all five are equivalent.

Proof. (a) By Lemma 5.6(2), hilbHomR(L,L) = (1 − s)−1. Thus adding (1 − s)−1 to (7.1) we obtain

(7.11) hilbExt1R(L,L) = hilbHomR(J, L)−
s

(1 − s)2
= hilbExt1R(J, J) + [hR − hilbHomR(J, J)].

This shows immediately that (2) ⇐⇒ (4). The final term [hR − hilbHomR(J, J)] of (7.11) is non-

negative by (7.9). Since hilbExt1R(J, J) is obviously non-negative, it follows that (2) implies both (1)

and (3).

Now if (1) holds, then α = 0 in (7.7) and so (7.9) immediately implies (3). But (7.11) again shows

that (1) and (3) together imply (2).

If (2) holds, then since HomR(L,L) = k[g] by Lemma 5.6, we certainly have

(L•L) = grkExt1R(L,L)− grkHomR(L,L) = −1

and (5) holds. Conversely, if (5) holds then using (7.5) we see that H = 1 and C = 0 in (7.4). Thus the

map Ext1R(L,L)[−1]
•g
−→ Ext1R(L,L) is surjective, and since Ext1R(L,L

′) is left bounded it must therefore

be zero. Thus (2) holds, which completes the proof of (a).
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(b) Suppose that J◦ is projective and that (3) holds. From (7.9) we conclude that α = 0 in (7.7)

and so Ext1R(J, J) is g-torsionfree. But Ext
1
R◦(J◦, J◦) = 0 and so Ext1R(J, J) is g-torsion by Lemma 6.3.

Thus Ext1R(J, J) = 0 and (1) holds. �

Remark 7.12. (1) Suppose that R◦ has finite global dimension, or, equivalently by Lemma 6.12, that

qgr-R is smooth. Then J◦ is automatically projective by Lemma 6.9 and so part (b) of the theorem

applies.

(2) We know of no example of a line module L of an elliptic algebra R, with qgr-R smooth, for which

(L•L) 6= −1 and we actually conjecture that none exist. For a (non-smooth) example with (L•L) 6= −1,

see Corollary 10.10.

In the rest of the section, we consider the intersection number of two distinct line modules. Although

these results will not be directly relevant for this paper, they will be useful in [RSS3], and as the proofs

are similar to that of Theorem 7.10, it is appropriate to include them here.

The following easy lemma will be used a number of times.

Lemma 7.13. Let R be an elliptic algebra with two line modules L = R/J and L′ = R/J ′. Then

HomR(J, J
′)0 ⊆ R0 = k. Moreover HomR(J, J

′)0 = k ⇐⇒ J = J ′ ⇐⇒ L ∼= L′.

Proof. Certainly HomR(J, J
′) ⊆ HomR(J,R) = J∗. By the left-handed analogue of Lemma 5.8(3),

(J∗)0 = R0 = k. Furthermore, if J = J ′ then k ⊆ HomR(J, J
′)0 and so HomR(J, J

′)0 = k. Conversely,

if k ⊆ HomR(J, J
′) then J ⊆ J ′ and so J = J ′ since J and J ′ have the same Hilbert series. The last

equivalence is immediate since a line module is determined up to isomorphism by its line ideal. �

We next refine (7.6) by showing that there are only two possible values of (L•L′) for non isomorphic

lines.

Lemma 7.14. Let L 6∼= L′ be line modules over an elliptic algebra R. Then X = X(L,L′) is equal to

either 0, s−1(1 − s)−1, or s−1 + · · ·+ sj−1 for some j ≥ 0. In particular, (L•L′) ∈ {0, 1}.

Proof. Adopt the notation of (7.4). If H = 0 then (7.4) and Proposition 3.10 imply that C ≤ s−1 and

X is either 0 or s−1(1− s)−1.

So suppose that H 6= 0. Then by Proposition 3.10(1), H = sj for some j > 0 and this happens

precisely when p = DivL = τ j(p′) for p′ = DivL′. By Proposition 3.10(2) and (7.3), C ≤ E = s−1 + sj .

Let J, J ′ be, respectively, the line ideals of L and L′ and note that J 6= J ′ since L 6∼= L′. Thus

HomR(J, J
′)0 = 0 by Lemma 7.13. It follows from (7.9) that hilbHomR(J, J

′) ≤ hR − (1 − s)−1. From

(7.1), X ≥ hilbExt1R(J, J
′) ≥ 0. This forces C 6= 0, and so C is one of sj , s−1 or s−1 + sj . Now use (7.4)

again to get the desired possibilities for X .

The possibilities for (L•L′) are an immediate consequence. �

Lemma 7.15. Let R be an elliptic algebra. Let J,K be finitely generated g-divisible reflexive right

R-submodules of R(g). Assume that either

(a) J◦ is projective; or
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(b) J is CM and K◦ is projective.

Then Ext1R(J,K) is finite-dimensional.

Proof. Consider H = Ext1R(J,K). By Lemma 4.9(2), the g-torsion subspace of H is finite dimen-

sional. It therefore suffices to prove that H is g-torsion. By Lemma 6.3, it is then enough to show

that Ext1R◦(J◦,K◦) = 0. This is trivial if J◦ is projective. If K◦ is projective, then Ext1R◦(J◦,K◦) is

a direct summand of a sum of copies of Ext1R◦(J◦, R◦). As J is CM, Lemma 6.3 again implies that

Ext1R◦(J◦, R◦) = 0 and hence Ext1R◦(J◦,K◦) = 0. �

We next characterise distinct lines with (L•L′) = 1.

Theorem 7.16. Let L = R/J , L′ = R/J ′ be line modules over an elliptic algebra R, with L 6∼= L′.

Consider the following conditions:

(1) hilbExt1R(J, J
′) = s−1 + 1.

(2) X(L,L′) = s−1(1− s)−1.

(3) hilbR− hilbHomR(J, J
′) = (1 + s)(1 − s)−1.

(4) hilbHomR(J, L
′) = s−1(1 − s)−2.

(5) (L•L′) = 1.

Then:

(a) (1) ⇒ (2) ⇐⇒ (4) ⇐⇒ (5), while (1) ⇒ (3).

(b) If either J◦ is projective with (L•L) = −1, or (J ′)◦ is projective with (L′
•L′) = −1, then all five

conditions are equivalent.

Proof. (a) Once again (7.1) implies that (2) ⇐⇒ (4), while Lemma 7.14 gives (2) ⇐⇒ (5).

(1) ⇒ (3). Suppose that (1) holds and consider the part of the exact sequence (7.7) given by

HomR(J, J
′) −→ HomB(J, J

′)
α

−→ Ext1R(J, J
′)[−1]

•g
−→ Ext1R(J, J

′).

By assumption Ext1R(J, J
′) = k + k[1] is g-torsion, and so the kernel of •g on Ext1R(J, J

′) contains at

least the highest degree piece Ext1R(J, J
′)0. Thus hilb Imα equals either s or 1 + s.

Let p = DivL and p′ = DivL′. If p 6= p′, then HomB(J, J
′)0 = 0 and so hilb Imα = s. If p = p′ then

HomB(J, J
′)0 = k, whereas HomR(J, J

′)0 = 0 by Lemma 7.13. Thus hilb Imα = 1 + s. In either case,

hilb Imα = ǫp,p′ + s, in the notation of (7.8). Thus (3) follows from (7.9).

(1) ⇒ (2). If (1) and therefore (3) hold, then (2) follows from (7.1).

(b) (3) ⇒ (1). Suppose that (3) holds. Recall that J and J ′ are CM, g-divisible, and reflexive,

by Lemma 5.8(2). Thus the assumption in (b) ensures that the hypothesis of Lemma 7.15 holds. Then

dimk Ext
1
R(J, J

′) <∞ by that lemma, and so (7.1) implies that dimk Ext
1
R(L,L

′)n−dimk HomR(L,L
′)n =

1 for n ≫ 0. Hence (L•L′) = 1 by (7.5). Thus (3) implies (5) and hence (2). But (2) and (3) together

force hilbExt1R(J, J
′) = s−1 + 1 by (7.1), and so (1) holds.

(2) ⇒ (3). Finally, assume that (2) holds. Then, as dimk Ext
1
R(J, J

′) < ∞, (7.1) and (7.9) together

imply that dimk Imα = 1 + ǫp,p′ . We claim that this forces hilb Imα = ǫp,p′ + s. First note that
25



dim(Imα)0 = ǫp,p′ . So if hilb Imα 6= ǫp,p′ + s, the cokernel of HomR(J, J
′) → HomB(J, J

′) is one-

dimensional in some degree > 1. Thus HomR(J, J
′) ⊇ HomB(J, J

′)1 = H0(E,Mn(−p′ + τ−1(p))),

and it is also an
(
EndR(J

′, J ′), EndR(J, J)
)
-bimodule. By hypothesis, either L or L′ satisfies the

equivalent conditions in Theorem 7.10; say it is L. Then EndR(J, J) = EndB(J, J) is a full TCR, say

B′ = B(E,M(−p), τ). By Lemma 2.5, HomB(J, J
′)≥1 is generated in degree 1 as a right B′-module and

thus HomR(J, J
′) = HomB(J, J

′)≥1, a contradiction. Similarly, if EndR(J
′, J ′) is a full TCR we get a

contradiction by viewing HomB(J, J
′)≥1 as a left module. This proves the claim that hilb Imα = ǫp,p′+s

which, by (7.9), implies (3). �

Finally, we characterise lines L and L′ with (L•L′) = 0, although here we need to assume that

DivL 6= DivL′.

Theorem 7.17. Let L = R/J and L′ = R/J ′ be line modules over an elliptic algebra R with divisors

DivL = p 6= p′ = DivL′. Consider the following conditions.

(1) Ext1R(J, J
′) = 0.

(2) hilbExt1R(L,L
′) = hilbHomR(L,L

′).

(3) hilbR− hilbHomR(J, J
′) = (1− s)−1.

(4) hilbHomR(J, L
′) = (1− s)−2.

(5) (L•L′) = 0.

Then:

(a) (1) ⇐⇒ (2) ⇐⇒ (4) ⇐⇒ (5) ⇒ (3).

(b) If J◦ or (J ′)◦ is projective then all five are equivalent.

Proof. The proof of this result is very similar to the proof of Theorem 7.10. Recall (7.1):

X(L,L′) = hilbHomR(J, L
′)−

1

(1 − s)2
= hilbExt1R(J, J

′) + H ,

where H = hR − (1− s)−1 − hilbHomR(J, J
′). In this case, since p 6= p′, (7.9) shows that H ≥ 0. Thus

just as in the proof of Theorem 7.10, (2) ⇐⇒ (4) is immediate, and (2) implies (1) and (3). Again, by

(7.9), (3) is equivalent to α = 0 in (7.7), and so (1) implies (3); thus (1) implies (2) by (7.1).

If (2) holds, so X(L,L′) = 0, then certainly (L•L′) = 0, by (7.5), and so (5) holds.

Finally, if (5) holds, then (7.5) implies that dimk Ext
1
R(L,L

′)n−dimk HomR(L,L
′)n = 0 for all n≫ 0.

This shows that, in (7.1), the non-negative Hilbert series H and hilbExt1R(J, J
′) must be polynomials in

s. But (7.9) shows that H is either 0 or a multiple of 1/(1− s). Thus H = 0, and so (3) holds. As we

already saw, (3) implies that α = 0 in (7.7), which in turn implies that Z = Ext1R(J, J
′) is g-torsionfree.

But as we have already shown that dimk Z < ∞, this forces Z = 0. Thus (5) implies (1). This finishes

the proof of (a).

(b) In this case, Lemma 5.8(2) and Lemma 7.15 imply that Z = Ext1R(J, J
′) is finite-dimensional.

Since we just saw that (3) implies that Z is g-torsionfree, (3) ⇒ (1) holds in this case. �

26



8. Blowing down elliptic algebras and their modules

As mentioned in the introduction (see Proposition 1.1 and Theorem 1.2) two fundamental and inverse

constructions in birational geometry are the concepts of blowing up a closed point p on a smooth projec-

tive surface and, conversely, blowing down lines of self-intersection −1. In the noncommutative universe

one again has a notion of blowing up, coming from [VdB1] and [Rg] and at least if the set-up is “smooth

enough” then one obtains an exceptional line module L with (L•L) = −1. In this section we prove one of

the main results of the paper by giving a noncommutative analogue of Castelnuovo’s Theorem: if R is an

elliptic algebra with a line module L satisfying (L•L) = −1, then one can blow L down to get a second

elliptic algebra. Moreover, this operation is the inverse of blowing up. In fact we can do a little better

and also obtain a result that works without smoothness assumptions, by replacing the requirement that

(L•L) = −1 by the assumption that the corresponding line ideal J satisfies hilbEndR(J) = hilbR. The

details are given in Theorems 8.5 and 8.9.

We will need the following technical result about images of direct sums of a single line module.

Proposition 8.1. Let L be a right line module over an elliptic algebra R. Let I be an index set, and for

each i ∈ I choose an integer ai ∈ Z. Assume {ai : i ∈ I} is bounded below. Let A ⊆ L =
⊕

i∈I
L[−ai] be

any submodule such that N = L/A is GK-2 pure. Then there is J ⊆ I such that L is an internal direct

sum L = A⊕
⊕

i∈J
L[−ai]. In particular, N ∼=

⊕
i∈J

L[−ai].

Proof. We claim first that there exists a subset J ⊆ I which is minimal under inclusion in the family

S =
{
K ⊆ I : L = A+

⊕
i∈K

L[−ai]
}
. Indeed, since N is left bounded, the graded Nakayama lemma

(which does not require finite generation) applies and shows that K ∈ S if and only if the induced map

ψ :
⊕

i∈K
L[−ai]/L[−ai]R≥1 → N/NR≥1 is surjective. Since L is cyclic, dimk L[−ai]/L[−ai]R≥1 = 1.

Thus any J for which ψ is an isomorphism of k-spaces will be minimal in S, proving the claim.

Fix some such J. We will prove that L = A ⊕
⊕

i∈J
L[−ai]. Suppose that this fails; thus 0 6= A ∩

⊕
i∈J

L[−ai]. Write L[−ai] = αiR, for homogeneous αi and choose 0 6= u = (αixi) ∈ A ∩
⊕

i∈J
L[−ai],

for some homogeneous elements xi ∈ R. Let I1 be the (finite) set {i ∈ J : αixi 6= 0}. Without loss of

generality, we may choose such u so that |I1| is minimal. Let L1 =
⊕

i∈I1
L[−ai].

Let J = AnnR(u) and, for i ∈ I1, set Ji = AnnR(αixi). If r ∈ Ji, then ur has strictly more zero

entries than u, and so the choice of u forces ur = 0. So Ji ⊆ J ⊆ Ji. Thus Ji = J is independent of

the choice of i ∈ I1. Fixing an arbitrary i ∈ I1, we have uR ∼= R/J = R/Ji ∼= αixiR ⊆ L[−ai]. By [Rg,

Lemma 8.9(2)], there is a (shifted) line module L′ ⊆ L[−ai], containing αixiR, for which L
′/(αixiR) = F

is finite-dimensional. Since uR ∼= αixiR, there is an injective homomorphism uR →֒ L′ with a finite-

dimensional cokernel. Since Ext1R(F,L
1) = 0 by Lemma 5.8(5), the canonical injection uR →֒ L1 lifts

to an injection L′ →֒ L1 ⊆ L. In other words, there is some u′ = (αix
′
i) so that uR ⊆ u′R ∼= L′, where

u′R/uR is finite-dimensional. As L1 is torsionfree, αix
′
i 6= 0 if and only if i ∈ I1. The argument from

the beginning of the paragraph shows that AnnR(αℓx
′
ℓ) = AnnR(u

′), and hence that αℓx
′
ℓR

∼= L′, for all

ℓ ∈ I1.

Choose j ∈ I1 such that aj = max{ai : i ∈ I1} and write L′ = βR for some homogeneous β. For any

other i ∈ I1, by Lemma 5.6(3) we may identify k · gaj−ai = Homgr-R(L[−aj], L[−ai]), where gaj−ai maps
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αj 7→ αig
aj−ai . Now consider the following two maps in Homgr-R(L

′, L[−ai]):

f : βx 7→ αix
′
ix, and f ′ : βx 7→ αjx

′
jx 7→ αig

aj−aix′jx.

Since Homgr-R(L
′, L[−ai]) 6= 0, by Lemma 5.6(2) it is one-dimensional. Thus there is λi ∈ k∗ so that

f = λif
′; that is αix

′
i = λiαig

aj−aix′j . Thus u′ = (λiαig
aj−ai)x′j , whence L

′ ∼= u′R ⊆ K = vR, where

v = (λiαig
aj−ai). Clearly K ∼= L[−aj]. Since L is 2-critical, GKdimK/uR ≤ 1. Since uR ⊆ A and L/A

is 2-pure, we must have K ⊆ A. Now it is easy to see that L1 =
⊕

i∈I1
L[−ai] = K ⊕

⊕
i∈I1\{j} L[−ai].

This implies that A+
⊕

i∈J\{j} L[−ai] = L, contradicting the choice of J. Hence L = A⊕
⊕

i∈J
L[−ai],

as required. �

If L is a line module over an elliptic algebra R, we now use it to define the largest extension K̃ of a

reflexive module K ⊂ R(g) by sums of shifts of L.

Lemma 8.2. Let R be an elliptic algebra, and let L = R/J be a right R-line module with DivL = p ∈ E.

Let K ⊆ R(g) be a graded finitely generated g-divisible reflexive right R-module. Set

(8.3) K̃ = K̃L =
∑

α

{
Nα : K ⊆ Nα ⊂ Qgr(R) with Nα/K ∼= L[−iα] for some iα ∈ Z

}
.

Then the following hold.

(1) K̃ = HomR(J,K)R and K̃ ⊆ R(g).

(2) As right R-modules, K̃/K ∼=
⊕

i∈Z
L[−i]⊕ai for some ai ≥ 0. Hence hilb K̃/K = p(s)(1 − s)−2

for p(s) =
∑

i∈Z
ais

i.

(3) Moreover, hilbExt1R(L,K) = p(s)(1− s)−1.

(4) If Ext1R(L,L) = 0 then Ext1R(L, K̃) = 0.

Proof. Throughout the proof Nα will denote a module satisfying the properties defined by (8.3).

(1) If Nα ⊆ Qgr(R) satisfies Nα/K ∼= L[−i], then Nα = xR+K for some x ∈ Qgr(R)i. Then xJ ⊆ K

and so Nα ⊆ HomR(J,K)R. Thus K̃ ⊆ HomR(J,K)R. Conversely, if x ∈ HomR(J,K)i ⊂ Qgr(R) then

(xR+K)/K is a homomorphic image of (R/J)[−i] = L[−i]. As K is reflexive, (xR+K)/K is either 0 or

2-pure by Lemma 4.6(1). Therefore, because L is 2-critical, either x ∈ K or else (xR +K)/K ∼= L[−i].

In either case, x ∈ K̃ by the definition of K̃. Thus HomR(J,K)R ⊆ K̃ since K̃ is a right R-module.

Since J and K are g-divisible, HomR(J,K) ⊆ R(g) by Lemma 4.5(1), and so K̃ ⊆ R(g).

(2) Clearly K̃/K is a homomorphic image of
⊕

αNα/K ∼=
⊕

α L[−iα]. Once again, Lemma 4.6(1)

implies that K̃/K is either 2-pure or 0. Since J and K are left bounded and locally finite, so is

HomR(J,K)R = K̃. Thus there is a lower bound d such that d ≤ iα for all α. Then Proposition 8.1

applies, and shows that K̃/K ∼=
⊕

i∈Z
L[−i]⊕ai, where ai = 0 for i < d. Also, the ai are finite since

HomR(J,K)R is locally finite. Since hilbL = (1− s)−2, it is immediate that hilb K̃/K = p(s)(1− s)−2.

(3) Consider the exact sequence

(8.4) 0 −→ HomR(L, K̃/K)
α

−→ Ext1R(L,K)
β

−→ Ext1R(L, K̃)
γ

−→ Ext1R(L, K̃/K) −→ · · ·

We will show that β = 0. So, suppose that 0 6= θ ∈ Ext1R(L,K)−j , corresponding to a nonsplit extension

0 → K
ι
→ N

π
→ L[j] → 0. We claim that ι : K → N is an essential extension. If not, choose 0 6= G ⊆ N
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maximal such that ι(K) ∩ G = 0. Then there is an exact sequence 0 → K → N/G → L[j]/π(G) → 0

where K → N/G is now essential. But GKdimL[j]/π(G) ≤ 1 since L is 2-critical, and as K is reflexive

this forces L[j]/π(G) = 0. Thus N = K ⊕G, giving the required contradiction. This proves the claim.

Since ι is essential, we may take the extension K ⊆ N inside Qgr(R). As such, N ⊆ K̃ by definition

and so θ cannot induce a nontrivial extension of K̃ by L. Thus, β = 0.

As LR is finitely generated, HomR(L,
⊕

i∈Z
L[−i]⊕ai) =

⊕
i∈Z

HomR(L,L[−i])
⊕ai. Therefore, since

hilbHomR(L,L) = 1/(1− s) by Lemma 5.6, this implies that hilbHomR(L, K̃/K) = (
∑

i∈Z
ais

i)/(1− s).

Applying α shows that hilbExt1R(L,K) = (
∑

i∈Z
ais

i)/(1− s), as well.

(4) If Ext1R(L,L) = 0, then Ext1R(L, K̃/K) = 0 in (8.4). Since β = 0, this forces Ext1R(L, K̃) = 0. �

We now come to one of the main results of the paper by showing that, under mild conditions, in

applying the tilde operation to R itself one obtains a ring R̃ = R̃L. As we show later in the section,

this operation is a good non-commutative analogue of blowing down a line of self-intersection −1. In

fact, the self-intersection condition is not quite the right concept when qgr-R is not smooth, and so the

theorem is stated under the weaker condition (8.6).

Theorem 8.5. Let R be an elliptic algebra with R/gR ∼= B(E,M, τ). Let L = R/J be a right line

module with DivL = p, satisfying

(8.6) hilbEndR(J) = hilbR.

Then the module R̃ = R̃L constructed in Lemma 8.2 is a connected graded subalgebra of R(g). It is also

equal to HomR(J, J)R and satisfies the following properties.

(1) As right R-modules, R̃/R ∼=
⊕

i≥1 L[−i].

(2) As left R-modules, R̃/R ∼=
⊕

i≥1 L
∨[−i], where L∨ = Ext1R(L,R)[1] is the dual line module.

(3) R̃ is an elliptic algebra with R̃/gR̃ ∼= B(E,M(τ−1(p)), τ).

Remark 8.7. (1) In the notation of the theorem, we say that R̃L is obtained by blowing down or

contracting L (or alternatively its dual L∨).

(2) Note that by Theorem 7.10, if (L•L) = −1 then (8.6) holds and so Theorem 8.5 gives a method of

contracting a line of self-intersection (−1) on an elliptic algebra.

(3) If qgr-R is smooth then the conditions (L•L) = −1 and (8.6) are equivalent (see Remark 7.12).

However, when qgr-R is not smooth the later condition can definitely be weaker and there do exist line

modules L with (L•L) 6= −1 that can still be blown down by the theorem. See Corollary 10.10 for one

such example.

Proof. Lemma 5.8(1) implies that hilbExt1R(L,R) = s/(1−s)2 = (s+s2+ . . . )/(1−s). Thus (1) holds by

comparing parts (2) and (3) of Lemma 8.2. Also, by Lemma 8.2(1) we have R̃ = HomR(J,R)R ⊆ R(g).

Indeed, since HomR(J,R) is automatically a left R-module, R̃ is actually an R-bimodule. Note that, to

this point, we have not used (8.6).

The main part of the proof will be to prove that R̃ is a subalgebra of Qgr(R), the first step in which

will be to prove that R̃ = EndR(J)R.
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Certainly EndR(J)R ⊆ HomR(J,R)R = R̃. Since J is g-divisible, Lemma 4.5(1) implies that EndR(J)

is g-divisible. By hypothesis, R =
⊕

n≥0H
0(E,Mn)t

n and J =
⊕

n≥0H
0(E,Mn(−p))tn and so, by

Lemma 2.5,

EndR(J) =
⊕

n≥0

H0(E,Mn(−p+ τ−n(p))) = B(E,M′, τ) for M′ = M(−p+ τ−1(p)).

Let B = B(E,M, τ). Clearly EndR(J) ⊆ EndB(J). Conversely, (8.6) and g-divisibility imply that

hilbEndR(J) = hilbR = hilbB(E,M′, τ) = hilbEndB(J). Hence, EndR(J) = EndB(J) = B(E,M′, τ).

This in turn implies that EndR(J)R = EndR(J) · R = B′B, where B′ = B(E,M′, τ).

We claim next that B′B = B′′, where B′′ = B(E,N , τ) for N = M(τ−1(p)). Indeed, by Lemma 2.3

and the fact that all the relevant invertible sheaves are generated by their global sections,

n∑

i=0

B′
iBn−i =

n∑

i=0

H0
(
E,Mi

(
−p+ τ−i(p)

))
·H0

(
E,Mτ i

n−i

)
=

n∑

i=0

H0
(
E,Mn

(
−p+ τ−i(p)

))

= H0
(
E,

n∑

i=0

Mn

(
−p+ τ−i(p)

) )
= H0

(
E,Mn

(
τ−1(p) + · · ·+ τ−n(p)

))
= B′′

n,

proving the claim.

Although we do not know a priori that EndR(J)R is g-divisible, the previous paragraph at least

gives the inequality hilbEndR(J)R ≥ (hilbB′′)/(1 − s). Since Riemann-Roch gives hilbB′′ = hilbB +
∑

i≥1 s
i/(1−s), this implies that (hilbB′′)/(1−s) = hilb R̃. This forces EndR(J)R = HomR(J,R)R = R̃

as desired at the beginning of the proof. It follows that R̃/R̃g = B′′ and so R̃ is indeed g-divisible.

Consequently,

R · EndR(J) ⊆ R · HomR(J,R) = HomR(J,R) ⊆ EndR(J)R.

Thus (EndR(J)R)
2
= (EndR(J))

2
R = EndR(J)R and so R̃ is indeed a subalgebra of Qgr(R). Moreover,

since R̃/R̃g = B′′, it follows that R̃ is an elliptic algebra.

Finally, all of the above arguments hold for the left line module L∨ = R/J∨, and so one obtains a

elliptic subalgebra R̃ℓ of Qgr(R) with R(R̃
ℓ/R) ∼=

⊕
i≥1 L

∨[−i].

By Lemma 5.8(3), M = HomR(J
∨, R) is a right R-module such that M/R ∼= L[−1]. Dually,

M∨ = HomR(J,R) is a left R-module with M∨/R ∼= L∨[−1]. In particular, M1J ⊆ R and so M1 ⊆

HomR(J,R)1 =M∨
1 . By symmetry, M1 =M∨

1 . Now by construction, R̃1 = [HomR(J,R)R]1 =M∨
1 and

so, dually, R̃ℓ
1 =M1. Thus R̃

ℓ
1 = R̃1. Since R̃ and R̃ℓ are both generated in degree 1 by Proposition 4.3,

it follows that they are equal. This proves part (2) and completes the proof. �

Corollary 8.8. Let R be an elliptic algebra with a line module L = R/J satisfying (8.6), and let

K ⊆ R(g) be a reflexive g-divisible finitely generated R-module. Then K̃L is a right R̃L-module.

Proof. By the proof of Theorem 8.5, R̃ = R̃L = EndR(J)R, while K̃ = K̃L = HomR(J,K)R by

Lemma 8.2. We also saw that R · EndR(J) ⊆ EndR(J)R in the proof of Theorem 8.5. Thus

K̃R̃ = HomR(J,K)R · EndR(J)R ⊆ HomR(J,K)EndR(J)R ⊆ HomR(J,K)R = K̃

as required. �
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To conclude this section, we explain how the above construction of ring-theoretic blowing down is

formally the inverse of noncommutative blowing up. When R is an elliptic algebra of degree µ ≥ 3 with

R/Rg = B(E,M, τ), then for any p ∈ E one may define the ring-theoretic blowup of R at p to be the

subring R′ = R(p) ⊆ R generated by R′
1 = {x ∈ R : x ∈ H0(E,M(−p))} (see [Rg] and [RSS1] for the

basic properties of these blowups). Then [RSS1, Theorem 1.1] implies that R′ is also elliptic, of degree

µ − 1, with R′/R′g ∼= B(E,M(−p), τ). The ring R′ automatically has an exceptional line module L

satisfying (R/R′) ∼=
⊕∞

i=1 L[−i] as right R′-modules. As we show in the next theorem, one can then

recover R by blowing down this line.

As an aside, we note that one can also allow elliptic algebras to have degree 1 or 2 (though in this

paper the definition excludes them) and the ring-theoretic blowup at a point of an elliptic algebra of

degree µ = 2 can still be defined. However, such a blowup will not now be generated in degree one and

so a more complicated definition is necessary (see [RSS1] for the details).

Theorem 8.9. (1) Let R be an elliptic algebra, of degree at least 4, with R/Rg = B(E,M, τ). If p ∈ E,

then the exceptional line module L = R(p)/J of the ring-theoretic blowup R(p) satisfies (8.6); in fact,

EndR(p)(J) = R(τ(p)). Thus the blowdown R̃(p)L of R(p) along L is defined, and it equals R.

(2) Conversely, suppose that R′ is an elliptic algebra with a line module L satisfying (8.6) and set

R̃′ = R̃′
L. If DivL = τ(p), then the ring-theoretic blowup R̃′(p) equals R′.

Proof. We remark that the apparent shift p 7→ τ(p) between parts (1) and (2) comes from the fact that,

by [Rg, Lemma 9.1], the line module L in part (1) has DivL = τ(p).

(1) We first claim that R(p)1R1 = R1R(τ(p))1. Indeed, since gR1 ⊆ R(p)1R1, it follows that

R(p)1R1 = {x ∈ R2 : x ∈ R(p)1R1 = H0(E,M2(−p))}.

A similar calculation shows that R1R(τ(p))1 is equal to the same subspace of R2, proving the claim.

Since R/R(p) ∼=
⊕

i≥1 L[−i], clearly R≤1R(p)/R(p) ∼= L[−1] and so J = {x ∈ R(p) : R1x ⊆ R(p)}.

Thus R1R(τ(p))1J1 = R(p)1R1J1 ⊆ R(p)1R(p)2 ⊆ R(p), and so R(τ(p))1J1 ⊆ J . By Lemma 5.8(2),

the line ideal J is generated in degree 1. Thus R(τ(p))1J1R(p) ⊆ J implies R(τ(p))1J ⊆ J . Since

R(τ(p)) is also generated in degree 1 it follows that R(τ(p)) ⊆ EndR(p)(J), and so hilbEndR(p)(J) ≥

hilbR(τ(p)) = hilbR(p). Conversely, hilbEndR(p)(J) ≤ hilbR(p) follows, for example, from (7.9). Thus

hilbEndR(p)(J) = hilbR(τ(p)) and hence EndR(p)(J) = R(τ(p)).

Now Theorem 8.5 applies to define the blowdown R̃(p) of R(p) along L. By that theorem, R̃(p) =

EndR(p)(J)R(p) = R(τ(p))R(p). Since R1 = R(τ(p))1 + R(p)1 = R̃(p)1 and both R and R̃(p) are

generated in degree 1 as algebras, necessarily R̃(p) = R.

(2) In this case, the blowdown R̃′ satisfies R̃′/R̃′g = B(E,M(p), τ), by Theorem 8.5. The blowup of

R̃′ at the point p is thus the subring of R′ generated in degree 1 by {x ∈ R̃′
1 : x ∈ H0(E,M)}. This is

precisely R′. �
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9. Smoothness

A key feature of the commutative geometry described in Proposition 1.1 and Theorem 1.2 is that if

π : Y → X is a birational morphism of surfaces where the exceptional locus is a (−1) line, then Y is

nonsingular if and only if X is nonsingular. In this section we will prove a natural analogue of this result

(see Theorem 9.1). Recall that for a graded ring R we say that qgr-R is smooth if this category has finite

homological dimension.

Theorem 9.1. Let T be an elliptic algebra of degree ≥ 4 associated to the elliptic curve E, and let

p ∈ E. Let L be the exceptional line module for the blowup T (p) ⊆ T . The following are equivalent:

(1) qgr-T (p) is smooth.

(2) qgr-T is smooth and pdimT (p)◦ L
◦ <∞.

We remark that by Lemma 6.9, we have pdimT (p)◦ L
◦ <∞ ⇐⇒ pdimT (p)◦ L

◦ = 1. Note also that we

will show later that blowing up the point p in the blowup T (p) leads to a non-smooth noncommutative

scheme (see Corollary 10.17 for the details) and so the extra conditions of the theorem are necessary.

As an immediate corollary of Theorem 9.1, we obtain:

Corollary 9.2. Let R be an elliptic algebra of degree ≥ 3 and suppose that L is a line module with

pdimL◦ <∞ and (L•L) = −1. Let R̃ = R̃L be the blowdown of R constructed by Theorem 8.5.

Then qgr-R̃ is smooth if and only if qgr-R is smooth.

Proof of Corollary 9.2. By Theorem 8.9 R = R̃(q), where q = τ−1(DivL). Thus the result is a direct

application of Theorem 9.1. �

The rest of the section is devoted to the proof of Theorem 9.1. We work mostly in the localised category

of modules over U = T ◦; note that, by Lemma 6.12, qgr-T is smooth if and only if gldimT ◦ <∞.

Proposition 9.3. Let U be a noetherian domain with division ring of fractions D = Q(U) and a

projective right ideal J . Set L = U/J and L∨ = Ext1U (L,U). Let U ⊂ V ⊂ D be an overring satisfying:

(a) (V/U)U ∼= L⊕J for some index set J;

(b) HomU (L, V ) = Ext1U (L, V ) = 0 and the same for L∨.

Then:

(1) L⊗U V = 0 = TorU1 (L, V ).

(2) Let L⊥ be the full subcategory of Mod-U consisting of modules M satisfying HomU (L,M) =

Ext1U (L,M) = 0. Then L⊥ ≃ Mod-V .

(3) gldimV ≤ gldimU . In particular, if gldimU <∞ then gldimV <∞.

Proof. (1) We first compute J ⊗U V . Since V ⊂ D, there is an exact sequence

TorU2 (L,D/V ) → TorU1 (L, V ) → TorU1 (L,D).

Using that pdim(L) = 1 and that D is a flat U -module, the outside terms are zero in this sequence and

so TorU1 (L, V ) = 0. Thus the natural map φ : J⊗U V → U ⊗U V = V is injective and we identify J⊗U V

with JV = Imφ.
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From the exact sequence 0 → U → J∗ → L∨ → 0 and (b), the natural map HomU (J
∗, V ) →

HomU (U, V ) = V is an isomorphism. In particular, the inclusion U ⊆ V lifts to an inclusion J∗ ⊆ V

and so, by the Dual Basis Lemma, JV ⊇ JJ∗ ∋ 1. So J ⊗U V = V . It follows by tensoring the exact

sequence 0 → J → U → L→ 0 with V that L⊗U V = 0.

(2) Consider the functors F = HomU (V,−) : Mod-U → Mod-V and G = resU : Mod-V → Mod-U .

We claim that F and G give inverse equivalences between L⊥ and Mod-V .

Let M ∈ L⊥, and consider the exact sequence

HomU (L
⊕J,M) → HomU (V,M) → HomU (U,M) → Ext1U (L

⊕J,M)

induced from (a). As the outside terms are zero, this provides a natural isomorphism of U -modules:

GF (M) = HomU (V,M)
∼
−→ M . Hence M carries a natural right V -action. Similarly, if M ′ ∈ L⊥ as

well then a U -module homomorphism θ :M →M ′ induces a V -module homomorphism HomU (V,M) →

HomU (V,M
′), from which it follows that θ is already a V -module map. Thus GF ∼= IdL⊥ .

Now let N ∈ Mod-V . From the spectral sequence ExtpV (Tor
U
q (L, V ), N) ⇒ Extp+q

U (L,N) [Rt, Theo-

rem 10.74], we have HomU (L,N) = 0 = Ext1U (L,N), and so G(N) ∈ L⊥. There is a natural V -module

map N → HomU (V,N) given by n 7→ (s 7→ ns), which is the inverse of the natural isomorphism

HomU (V,N) → N discussed above and so it is also an V -module isomorphism. Thus FG ∼= IdMod-V on

objects. It is routine to check that this respects morphisms and so F,G are indeed inverse equivalences.

(3) Let M,N ∈ Mod-V , which we identify with L⊥, using (2). It is clearly sufficient to prove that

(9.4) ExtiV (M,N) ∼= ExtiU (M,N) for i ≥ 1.

To prove this we will use the spectral sequence (2)4 from [CE, Section XVI.5, p349] for the injection

φ : U → V . We begin with a couple of observations.

By part (2) and the fact that LU has projective dimension pdimU (L) ≤ 1, we have ExtjU (L,N) = 0

for all j ≥ 0. Now consider the long exact sequence obtained by applying HomU (−, N) to the exact

sequence 0 → U → V → L⊕J → 0 arising from (a). Then certainly ExtqU (V,N) = 0 for q ≥ 1. Moreover,

HomU (V,N) = HomU (U,N) = N ; thus (φ)N = N in the notation of [CE]. Therefore, as explained in

[CE], the cited spectral sequence collapses and the edge homomorphism (3)4 from [CE, Section XVI.5,

Case 4, p.349] becomes the desired isomorphism ExtiV (M,N) = ExtiV (M, (φ)N) ∼= ExtiU (M,N). �

We next prove a partial converse to Proposition 9.3(3), for which we need the following result on

universal extensions.

Lemma 9.5. Let U be a noetherian k-algebra and let L be a finitely generated right U -module satisfying

EndU (L) = k and Ext1U (L,L) = 0. For any right U -module Q such that HomU (L,Q) = 0, there is a

short exact sequence

0 → Q→ N → Ext1U (L,Q)⊗k L→ 0,

for some N ∈ L⊥.

Proof. Let E = Ext1U (L,Q) and choose a basis {ei}i∈I for E as a k-vector space. As in [EH, Lemma 4.2],

construct a short exact sequence 0 → Q → N → E ⊗k L → 0 such that the pullback under ei ⊗ IdL :
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L→ E ⊗k L is the extension 0 → Q→ Ni → L→ 0 corresponding to ei. (It can be shown by a diagram

chase that N is the element of Ext1U (E ⊗k L,Q) corresponding to IdE via the natural isomorphism

α : Homk(E,E) → Ext1U (E ⊗k L,Q).) By construction, the diagram

0 // Q // Ni

��

// L

ei⊗IdL

��

// 0

0 // Q // N // E ⊗k L // 0

commutes. Applying HomU (L,−), we obtain a commutative diagram:

(9.6) 0 // HomU (L,Q) // HomU (L,Ni)

��

// HomU (L,L)

(ei⊗IdL)◦(−)

��

δi
// E

0 // HomU (L,Q) // HomU (L,N) // HomU (L,E ⊗k L)
δ

// E.

Thus δ(ei⊗ IdL) = δ((ei⊗ IdL) ◦ IdL) = δi(IdL), and this equals ei from the standard way that elements

of Ext1U (L,Q) correspond to extensions. Since L is finitely generated and EndU (L) ∼= k, it follows that

δ is an isomorphism.

We now use that HomU (L,Q) = 0 = Ext1U (L,L). Extending the bottom row of (9.6) gives the long

exact sequence

0 → HomU (L,N) → HomU (L,E ⊗k L)
δ
→ E → Ext1U (L,N) → Ext1U (L,E ⊗k L).

But Ext1U (L,E ⊗k L) ∼= E ⊗k Ext
1
U (L,L) = 0. Since δ is an isomorphism, it follows that N ∈ L⊥. �

Proposition 9.7. Suppose that U , V and L satisfy the hypotheses of Proposition 9.3 and, in addition,

that HomU (L,L) = k and injdimU = d <∞. If gldimV <∞ then gldimU <∞.

Proof. Let M,M ′ ∈ Mod-U . We need to prove that ExtiU (M,M ′) = 0 for i ≫ 0. Take exact sequences

0 → Q → F → M → 0 and 0 → Q′ → F ′ → M ′ → 0 for free modules F, F ′ and consider the

induced long exact sequences of Ext groups. Using that injdimF = injdimU = d, it follows that

ExtiU (M,M ′) ∼= Exti+1
U (M,Q′) ∼= ExtiU (Q,Q

′) for i > d. Thus, it suffices to prove that ExtjU (Q,Q
′) = 0

for j ≫ 0. Since Q and Q′ are Goldie torsionfree as defined on page 6, Lemma 9.5 applies and produces

exact sequences 0 → Q→ N → E ⊗k L→ 0 and 0 → Q′ → N ′ → E′ ⊗k L→ 0, where N,N ′ ∈ L⊥.

Once again, from the induced long exact sequences for Ext groups, it suffices to prove that

(9.8) ExtkU (H,H
′) = 0 for k ≫ 0, where H ∈ {L,N} and H ′ ∈ {L,N ′}.

Since L = U/J , with J projective, injdim(L) < ∞ and pdim(L) = 1. So certainly (9.8) holds if either

H = L or H ′ = L. The remaining case, where H and H ′ ∈ L⊥, follows from (9.4). �

We now prove Theorem 9.1.

Proof of Theorem 9.1. Suppose first that qgr-T (p) is smooth. Recall that, by Lemma 6.12, if R is an el-

liptic algebra then qgr-R is smooth if and only if gldimR◦ <∞. Thus gldimT (p)◦ <∞, and in particular

pdimT (p)◦ L
◦ < ∞ (and thus pdimT (p)◦ L

◦ = 1 by Lemma 6.9). By Theorem 8.9, T is the blowdown of
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T (p) along L, and J satisfies the condition hilbEndT (p)(J) = hilbT (p) as in (8.6). Since L◦ = T (p)◦/J◦,

the right ideal J◦ is projective, and by Theorem 7.10 it follows that Ext1T (p)(L,L) = 0. By Lemma 8.2(3),

Ext1T (p)(L, T ) = 0. Since by Lemma 5.8(4) Ext1T (p)(L
∨, L∨) = 0, applying Lemma 8.2(3) on the left gives

that Ext1T (p)(L
∨, T ) = 0. Finally, it is obvious that HomT (p)(L, T ) = 0 = HomT (p)(L

∨, T ). Now using

Lemma 6.3, it follows from the above observations that the hypotheses of Proposition 9.3 hold with

V = T ◦, U = T (p)◦. Thus gldimU <∞, Proposition 9.3 implies gldimV <∞, and so qgr-T is smooth.

Conversely, suppose that qgr-T is smooth and that pdimT (p)◦ L
◦ < ∞, so again pdimT (p)◦ L

◦ =

1. All of the arguments in the previous paragraph then go through to show that the hypotheses of

Proposition 9.3 hold with V = T ◦, U = T (p)◦. We also have HomT (p)(L,L) = k[g] by 5.6(3), and

injdim T (p) < ∞ is part of the Auslander-Gorenstein condition which holds by Proposition 4.3. Thus

applying Lemma 6.3, the hypotheses of Proposition 9.7 hold. Thus gldimV < ∞ implies gldimU < ∞,

and so qgr-T (p) is smooth. �

We do not know how to characterise when pdimL◦ = 1 (equivalently, pdimL◦ < ∞), although we

conjecture:

Conjecture 9.9. Let T be an elliptic algebra with deg T ≥ 4 and let T (p) be the blowup of T at p ∈ E

with exceptional line L. If there is no T -line module L′ with DivL′ = τ(p), then pdimT (p)◦ L
◦ = 1.

10. An example of undefined self-intersection

In this section we describe an elliptic algebra R with an exceptional line module L for which the

self-intersection (L •
MSL) is undefined. Moreover, (L•L) 6= −1 yet the associated line ideal J does satisfy

hilbEndR(J) = hilbR. Thus one can still use Theorem 8.5 to blow down the line L. This justifies the

comments made in Remark 8.7 concerning that theorem and also gives the example promised before

Definition 6.11.

In a way that will shortly be made precise, the ring R is obtained by blowing up the same point p ∈ E

twice in the Veronese ring T = S(3) of the Sklyanin algebra S. The key property, here, is that the resulting

scheme qgr-R is not smooth. This may be explained by analogy with the commutative situation: iterated

ring-theoretic blowups of T are analogs of commutative rings of the formA =
⊕

n≥0H
0(P2, (I⊗O(9))⊗n),

where I is an ideal sheaf defining a zero-dimensional subscheme Z of P2. When Z is not reduced, a

failure of ampleness means that ProjA need not be isomorphic to the blow-up of P2 at Z and, moreover,

ProjA need not be smooth. Of course, this also shows that the analogy between commutative and

noncommutative blowups is less precise in the non-generic situation.

Notation 10.1. We start with the relevant notation, which will be fixed throughout the section. Let

T = S(3) be a Sklyanin elliptic algebra, as defined in Example 4.2 for an automorphism σ of infinite

order, with quotient ring T/gT = B = B(E,M, τ). Fix a point p ∈ E. Following [Rg] we blow up p

once to get a ring R′ = T (p) and then blow up R′ at p again to give the ring R = R′(p) = T (2p).

Let L = R/J be the exceptional R-line module, with line ideal J , corresponding to the extension

R ⊂ R′; this exists by [Rg, Lemma 9.1]. Similarly, let L′ be the exceptional R′-line module corresponding
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to the extension R′ = T (p) ⊂ T . Finally, write

X = R′
≤1R ⊆ Y = T≤1R ⊆ Z = T≤1R

′ ⊆ T.

The following fact, due to Simon Crawford, will be used several times.

Proposition 10.2 ([Cr]). The localised algebra R◦ = R[g−1]0 is simple.

We note the following useful facts about the line ideals L and L′.

Lemma 10.3. (1) The line module L has no proper g-torsionfree factor R-modules; equivalently, L◦ is

a simple R◦-module.

(2) As R-modules, Z/R′ = (Y +R′)/R′ ∼= L[−1] and hence L ∼= L′.

Proof. (1) By Proposition 10.2, R◦ has no finite-dimensional modules. The simplicity of L◦ is then a

consequence of the 1-criticality of L◦, which follows from Lemma 5.2.

(2) We first make some calculations in the Sklyanin algebra S. Recall that S1 may be identified with

H0(E,L) for some invertible sheaf L on E of degree 3. For r ∈ E, let W (r) = H0(E,L(−r)) ⊂ S1. Then

S1W (r) = W (σ−1(r))S1, by [Rg, Lemma 4.1], while R′
1 = W (p)S2 by [Rg, Lemma 4.2]. We also have

R1 =W (p)W (σ(p))S1 by [Rg, Lemma 4.6].

Let V =W (σ3(p))W (σ(p))W (σ2(p)). We show next that J1 = V . We calculate that

R′
1V =W (p)S2W (σ3(p))W (σ(p))W (σ2(p)) =W (p)W (σ(p))S1W (p)W (σ(p))S1 = R2.

We have X/R = R′
≤1R/R

∼= L[−1] ∼= (R/J)[−1], as a consequence of Theorem 8.5, since R′ is the

blowdown of R along L by Theorem 8.9. Thus J = {x ∈ R : R′
1x ⊆ R} and so V ⊆ J1. The Hilbert

series of J is known, and dimk J1 = 6. On the other hand, using Lemma 2.3 we calculate in B(E,M, τ)

that dimk V = 6. Thus V = J1.

We now claim that

(10.4) T1J ⊆ X.

This follows from the calculation

(10.5) T1J1 = S3W (σ3(p))W (σ(p))W (σ2(p)) =W (p)S2W (p)W (σ(p))S1 = R′
1R1 = X2

and the fact that by Lemma 5.8(2), J is generated in degree one as a right R-ideal.

Now since T is the blowdown of R′ along L′ = R′/J ′, similarly to the above we obtain Z/R′ =

(T≤1R
′)/R′ ∼= L′[−1] and J ′ = {x ∈ R′ : T1x ⊆ R′}. Since X ⊆ R′, (10.4) gives J ⊆ J ′. By

construction, dimk T1/R
′
1 = 1, so write T1 = R′

1 ⊕ ka for some a ∈ T1. As J ⊆ J ′, there is a nonzero

homomorphism π : L[−1] ∼= (R/J)[−1] → Z/R′ ∼= L′[−1] sending 1 to a. Since L◦ is simple, L has no

proper g-torsionfree factors, and so π is injective. By comparing Hilbert series, it is an isomorphism. �

We further have:

Lemma 10.6. As R◦-modules, Y ◦ is projective, while J◦ is not.

36



Proof. Let q = τ(p). By Theorem 8.9, EndR(J)
∼= F = R′(q). We now pass to the ring R◦ and notice

that, by standard localisation theory, F ◦ = EndR◦(J◦). Moreover, F = T (p + τ(p)), the blowup of

T at two consecutive points on a τ -orbit, is shown in [Rg, Proposition 11.2(1)] to have a proper ideal

I such that F/I is g-torsionfree. Thus I◦ is a proper ideal of F ◦ and F ◦ is not simple, whereas by

Proposition 10.2 R◦ is simple. In particular, R◦J◦ = R◦ and thus J◦ is an R◦-generator; since F ◦ is not

Morita equivalent to R◦, it follows that J◦ is not projective as a right R◦ module.

Now let ℓ = τ−1(p). We claim that EndR(Y ) = T (2ℓ). This will complete the proof of the lemma

since now EndR◦(Y ◦) ∼= T (2ℓ)◦, which is again simple by Proposition 10.2. By the Dual Basis Lemma,

Y ◦ is therefore projective as a right R◦-module.

In order to prove the claim, we note that, from the formulæ from [Rg, Lemmas 4.1 and 4.6] noted in

the proof of Lemma 10.3,

(10.7) T (2ℓ)1T1 = W (σ−3(p))W (σ−2(p))S1S3 = S3W (p)W (σ(p))S1 = T1R1.

Moreover, as T (2ℓ) ⊆ T , certainly T (2ℓ)1R ⊆ T1R and hence T (2ℓ)1Y = T (2ℓ)(R + T1R) ⊆ Y . Since

T (2ℓ) is generated in degree one by definition, it follows that T (2ℓ) ⊆ EndR(Y ). Equation (10.7) also

implies by induction that T (2ℓ)nT1 = T1Rn for all n ≥ 0, so T (2ℓ)T1 = T1R. It follows that T1R is a

finitely generated left T (2ℓ)-module. In particular, writing a k-basis {xi} of T1 as fractions xi = yiz
−1

with a common denominator, where yi, z ∈ T (2ℓ), we see that T1Rz ⊆ T (2ℓ), and then Y z = (k+T1R)z ⊆

T (2ℓ). Thus EndR(Y )Y z ⊆ Y z ⊆ T (2ℓ), which means that EndR(Y ) and T (2ℓ) are equivalent orders.

Since T (2ℓ) is a maximal order by [Rg, Theorem 1.1(2)], the inclusion T (2ℓ) ⊆ EndR(Y ) is actually an

equality. �

We next show that (L•L) 6= −1. In fact, we prove:

Lemma 10.8. There is a nonsplit exact sequence

(10.9) 0 → L[−1] → Y/R → L[−1] → 0.

Proof. By (10.4), T1J ⊆ X . Thus there is a homomorphism π : (R/J)[−1] → Y/X = T1R/R
′
1R which

sends 1 to a, where T1 = R′
1⊕ka. Since T1R = R′

1R+aR, π is surjective. Now since R′/X ∼=
⊕

i≥2 L[−i]

as right R-modules by Theorem 8.5, R′/X is g-torsionfree. Since R′ is g-divisible, Qgr(T )/R
′ is g-

torsionfree, and so Qgr(T )/X and thus Y/X are also g-torsionfree. As noted in the proof of Lemma 10.3,

L has no proper g-torsionfree factor modules, and this forces π to be injective as well. Thus Y/X ∼= L[−1]

as right R-modules.

We saw that X/R ∼= L[−1] in the proof of Lemma 10.3, and so the exact sequence (10.9) exists

as claimed. Finally, localising (10.9) gives the exact sequence 0 → L◦ → (Y/R)◦ → L◦ → 0. By

Lemma 10.6 pdimL◦ > 1 = pdim(Y ◦/R◦). Thus, neither this sequence nor (10.9) is split. �

Corollary 10.10. Let R = T (2p) with exceptional line module L, as above. Then (L•L) 6= −1. On the

other hand, hilbEndR(J) = hilbR and so, by Theorem 8.5, one can blow down L.
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Proof. By Lemmas 5.6 and 6.3, EndR◦(L◦) = k. On the other hand, Ext1R◦(L◦, L◦) 6= 0 by Lemma 10.8.

Thus, by Lemma 6.3, (L•L) ≥ 0 > −1. Finally, by Theorem 8.9, EndR(J) = R′(q), and so the equality

hilbEndR(J) = hilbR follows from [Rg, Theorem 1.1(1)]. �

The next result shows that there is a particularly interesting self-extension of J◦.

Proposition 10.11. There is a nonsplit exact sequence

(10.12) 0 → J◦ → P → J◦ → 0

of R◦-modules, where P is projective.

Proof. Recall thatX◦/R◦ ∼= Y ◦/X◦ ∼= R◦/J◦ ∼= L◦, from the proof of Lemma 10.8. Thus the localisation

of (10.9) can be written as:

(10.13) 0 → X◦/R◦ → Y ◦/R◦ → Y ◦/X◦ → 0.

The natural surjection φ′ : R◦ → R◦/J◦ ∼= Y ◦/X◦ lifts to a homomorphism φ : R◦ → Y ◦/R◦, which

must be surjective as L◦ is simple. As was shown in the proof of Lemma 10.8, (10.13) is nonsplit. Let

K = kerφ; thus K is projective since pdim(Y ◦/R◦) = 1.

Clearly K ⊆ J◦ = ker(φ′) and J◦/K ∼= L◦. This isomorphism lifts to a map θ′ : R◦ → J◦ so that

θ′(R◦) +K = J◦. This induces a surjective homomorphism θ : R◦ ⊕K → J◦. It is routine to check that

ker θ = {(r, k) ∈ R◦ ⊕K : θ′(r) = k} and that as an R◦-module this is isomorphic to (θ′)−1(K) = J◦.

Thus we have constructed the sequence (10.12) with P = R◦ ⊕ K. As pdim J◦ > pdimP , it does not

split. �

We now examine the higher Ext groups from L◦ to itself; the ultimate aim being to show that (L •
MSL)

is undefined.

Lemma 10.14. Keep the above notation. Then:

(1) ExtnR◦(J◦, J◦) ∼= Extn+1
R◦ (J◦, J◦) 6= 0 for n ≥ 1.

(2) ExtnR◦(J◦, J◦) ∼= Extn−1
R◦ (J◦, L◦) ∼= ExtnR◦(L◦, L◦) for all n ≥ 2.

(3) In particular, ExtnR◦(L◦, L◦) ∼= Extn+1
R◦ (L◦, L◦) 6= 0 for all n ≥ 2.

Proof. (1) Applying HomR◦(−, J◦) to (10.12) gives the exact sequence

(10.15) ExtmR◦(P, J◦) → ExtmR◦(J◦, J◦) → Extm+1
R◦ (J◦, J◦) → Extm+1

R◦ (P, J◦)

for m ≥ 1. As P is projective, it follows that ExtmR◦(J◦, J◦) ∼= Extm+1
R◦ (J◦, J◦) for m ≥ 1. Moreover,

(10.12) ensures that Ext1R◦(J◦, J◦) 6= 0 and hence ExtmR◦(J◦, J◦) 6= 0 for m ≥ 1.

(2,3) Applying HomR◦(J◦,−) to 0 → J◦ → R◦ → L◦ → 0 gives

ExtmR◦(J◦, R◦) → ExtmR◦(J◦, L◦) → Extm+1
R◦ (J◦, J◦) → Extm+1

R◦ (J◦, R◦) for all m ≥ 1.

Now J◦ is CM by Lemma 5.8(2) and so, as m ≥ 1, the outside terms are zero in this equation. Hence,

(10.16) ExtmR◦(J◦, L◦) ∼= Extm+1
R◦ (J◦, J◦) ∼= Extm+2

R◦ (J◦, J◦) ∼= Extm+1
R◦ (J◦, L◦) for all m ≥ 1.
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By part (1) these groups are also non-zero.

From the exact sequence 0 → J◦ → R◦ → L◦ → 0, one also obtains ExtmR◦(J◦, L◦) ∼= Extm+1
R◦ (L◦, L◦)

for m ≥ 1. Combined with (10.16) this implies that

ExtsR◦(L◦, L◦) ∼= Exts−1
R◦ (J◦, L◦) ∼= Ext1R◦(J◦, L◦) ∼= Ext2R◦(L◦, L◦) for all s ≥ 2.

Finally, by (10.16) and part (1), ExtsR◦(L◦, L◦) ∼= Exts−1
R◦ (J◦, L◦) ∼= ExtsR◦(J◦, J◦) 6= 0, for all s ≥ 2. �

Finally, by combining Lemma 10.14 with Proposition 6.7, we get the promised example of an undefined

self-intersection.

Corollary 10.17. Let R = T (2p) as above, with exceptional line module L. Then the self-intersection

(L •MS L) is an infinite sum and hence is undefined. Further, gldimR◦ = ∞ and so qgr-R is not

smooth. �
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