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Abstract

Neural mass models (NMMs) are increasingly used to uncover the large-scale
mechanisms of brain rhythms in health and disease. The dynamics of these models is
dependent upon the choice of parameters, and therefore it is crucial to be able to
understand how dynamics change when parameters are varied. Despite being considered
low dimensional in comparison to micro-scale, neuronal network models, with regards to
understanding the relationship between parameters and dynamics, NMMs are still
prohibitively high dimensional for classical approaches such as numerical continuation.
Therefore, we need alternative methods to characterise dynamics of NMMs in high
dimensional parameter spaces.

Here, we introduce a statistical framework that enables the efficient exploration of
the relationship between model parameters and selected features of the simulated,
emergent model dynamics of NMMs. We combine the classical machine learning
approaches of trees and random forests to enable studying the effect that varying
multiple parameters has on the dynamics of a model. The method proceeds by using
simulations to transform the mathematical model into a database. This database is
then used to partition parameter space with respect to dynamic features of interest,
using random forests. This allows us to rapidly explore dynamics in high dimensional
parameter space, capture the approximate location of qualitative transitions in
dynamics and assess the relative importance of all parameters in the model in all
dimensions simultaneously. We apply this method to a commonly used NMM in the
context of transitions to seizure dynamics. We find that the inhibitory sub-system is
most crucial for the generation of seizure dynamics, confirm and expand previous
findings regarding the ratio of excitation and inhibition, and demonstrate that
previously overlooked parameters can have a significant impact on model dynamics. We
advocate the use of this method in future to constrain high dimensional parameter
spaces enabling more efficient, person-specific, model calibration.

Author summary 1

Understanding the workings of the healthy brain and the disruptions that lead to 2

disease remains a grand challenge for neuroscience. Given the complexity of the brain, 3
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mathematical models are becoming increasingly important to elucidate these 4

fundamental mechanisms. However, as our fundamental understanding evolves, so 5

models grow in complexity. If the model has only one or two parameters, formal analysis 6

is possible, however understanding changes in system behaviour becomes increasingly 7

difficult as the number of model parameters increases. In this article we introduce a 8

method to overcome this challenge and use it to better elucidate the contribution of 9

different mechanisms to the emergence of brain rhythms. Our method uses machine 10

learning approaches to classify the dynamics of the model under different parameters 11

and to calculate their variability. This allows us to determine which parameters are 12

critically important for the emergence of specific dynamics. Applying this method to a 13

classical model of epilepsy, we find new explanations for the generation of seizures. This 14

method can readily be used in other application areas of computational biology. 15

Introduction 16

Neural mass models (NMM) approximate the average behaviour of large populations of 17

neurons and therefore provide an efficient way to simulate electrographic data in order 18

to understand the mechanisms of brain (dys-) function. They have been used to 19

understand a wide variety of physiological and pathophysiological activities of the brain, 20

including the alpha rhythm [1,2], sleep rhythms [3–5], Brain resonance [6] or dynamics 21

resulting from conditions such as epilepsy [7–11], schizophrenia [12] and dementia [13]. 22

In particular, mechanisms underlying these conditions can be uncovered by inverting 23

NMMs given dynamic data and studying the meaning of model parameters [14–17]. 24

However, maintaining a sense of biological realism in NMMs results in a high 25

dimensional parameter space. The presence of many parameters renders the estimation 26

of parameters from data, or model inversion, a challenging task because it is difficult to 27

systematically and exhaustively explore large hypervolumes in order to identify 28

subvolumes that are plausible. In order to reduce dimensionality, subsets of parameters 29

can be fixed based on a priori assumptions. Both the choice of initial values for 30

parameters and the boundaries of the parameter space that are searched are often 31

constrained [18]. Unfortunately, these constraints are often based on previously used 32

values that have sometimes arisen arbitrarily in the literature. For example, the 33

majority of parameters used in the study of [11] are taken directly from a previous 34

study [19]. This study used itself previous parameters values [20,21]. Ultimately these 35

values were derived from studies made in the 70s [1, 22–26] (see Fig 1 for a summarised 36

history of typically cited parameter values for the NMM). In these early derivations of 37

NMM, parameters that could be experimentally determined were estimated but their 38

uncertainties were not always measured [1]. 39

Figure 1. Historical development of the Wendling model. The history of
neural mass models typically begins with the work of Lopes da Silva and Freeman in the
1970s, although strictly speaking it can be traced back to Beurle [27]. These classical
works from 1970s were extended by van Rotterdam and Freeman during the 1980s,
before the classical Jansen and Rit model of 1995. Wendling further extended this
model in work at the turn of the millennia extending the number of interneuron
populations in the model. Interestingly, many of the parameter choices for the Wendling
model in current use can be traced back to these early historic works.

Such parameters at the macroscopic level of NMM are often presumed to relate 40

directly to properties of individual neurons but aggregated, for example, to mean 41

values [28]. However, large variability has been shown to exist in parameters measured 42

directly from neurons and even parameters that are considered to be quasi-certain in 43
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the modelling community, such as membrane time constants, have been shown to vary 44

significantly in experiments [29]. Furthermore it remains unclear exactly how 45

parameters of NMMs relate to microscopic properties of nervous tissue. Under standard 46

values of NMM parameters, important insight has been gained regarding the generation 47

of spontaneous or evoked electrographic recordings. For example, epileptiform rhythms 48

have been shown to be induced by alterations to the excitatory/inhibitory balance in 49

models [30]. However, fixing default values a priori in order to study the generation of 50

particular dynamics does not allow to understand the behaviour of the system at 51

unexplored, potentially plausible parameter values. Thus we cannot discover whether 52

other regions of parameter space permit the same or different conclusions. When 53

specifying prior distributions for model inversion (for example using the Kalman filter 54

or Dynamic Causal Modelling frameworks [18, 31]) we usually, therefore, do not know to 55

what extent any resulting inference is dependent upon the particular choice of priors or 56

whether unexplored regions of parameter space could also provide reasonable solutions. 57

High dimensionality of parameter space is a particular problem in such settings since 58

inversion algorithms become computationally demanding. It is therefore often 59

prohibitive to explore a large parameter space or conduct inference under alternative 60

choices of priors. The same can also be said for the use of global non-deterministic 61

searches, for example based on evolutionary algorithms [32]. 62

Typically, the parameter space of NMMs contains nonlinear manifolds which 63

delineate parameter sets that give rise to qualitatively the same dynamics. These 64

manifolds can therefore be studied to understand the emergence of different dynamic 65

regimes. Traditional approaches to mapping dynamics over changes in parameters 66

include bifurcation analyses and simulation studies. Some models have been extensively 67

studied via these methods [33,34], which typically only examine two parameters 68

simultaneously. Clearly, in high dimensional systems such as NMM, we expect that 69

changing a third parameter could affect the distribution of dynamics obtained. As such, 70

the Jansen model [19] have been studied comprehensively by simultaneously altering 3 71

parameters [30]. A potential downside to such analyses is that results can be 72

cumbersome and difficult to summarise, thus moving beyond 3 parameters with these 73

techniques would prohibit a succinct evaluation of the role of each of parameter. 74

Another approach is to extend multiple bifurcation analyses in a single parameter across 75

5 further dimensions, whilst classifying different bifurcations and their prevalences [35]. 76

Although this is a valid approach to understanding some elements of the complexity 77

over large dimensional parameter spaces, it does not give a comprehensive overview of 78

the role that each parameter plays. Even if very inlighting about the role and 79

codependance of few parameters bifurcation theory cannot be use to approach 80

simultanoiusly all parameters. In high dimensions (e.g. D ≥ 3) these methods soon 81

become computationally intractable and are not able to characterise the effect on 82

dynamics of changing all parameters simultaneously. On the other hand, studying a 83

restricted number of parameters is unsatisfactory. 84

It would therefore be highly beneficial to develop approaches to understand the 85

repertoire of NMM dynamics over all parameters that cannot be sufficiently constrained. 86

Such an approach would facilitate choosing appropriate priors and initial parameter 87

settings in model inversion algorithms. It would also facilitate a deeper understanding 88

of complex, high dimensional models. Approaches such as global sensitivity analyses 89

(variance-based methods [36],screening [37] or generalised models [38]) have previously 90

been used to identify the existence of relationships between dynamics and parameters. 91

However, these methods do not allow to quantify the impact that changes in multiple 92

(e.g. all) parameters have on dynamics, or to identify specific regions of parameter space 93

in which changes in dynamics occur. 94

In this study we therefore introduce a new methodology for the characterisation of 95
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NMM dynamics simultaneously over all parameters. The NMM is simulated a large 96

number of times with different combination of parameters. The simulations are then 97

classified according to their dynamics using pre-specified features. The relationships 98

between parameter space and dynamics are then studied using the classical machine 99

learning method of decision trees and random forests [39]. The decision trees can map 100

the parameter space and the random forest can be used to rapidly characterise the 101

dynamics of the NMM under previously unexplored parameter combinations. 102

Importantly, the resulting statistical model yields natural means by which to quantify 103

the relative importance that each parameter plays in the generation of dynamic 104

characteristics of interest, without restricting analyses to low dimensional subspaces. 105

We use this method to demonstrate the significance of previously overlooked NMM 106

parameters for both physiological and pathophysiological rhythms. 107

Methods 108

Overview 109

In this section we give a brief descriptive overview of the approach and provide further 110

mathematical details of each component in subsequent sections. . To do so, we 111

transform the NMM into a statistical model, which is a function that maps parameters 112

onto a quantification of these important features. This statistical model can then be 113

analysed to understand the relationship between the NMM parameters and the 114

dynamics (see Fig 2 for a general overview). The first step consists of choosing a NMM

Figure 2. Schematic of the methodology. First, the dynamic features of interest
are identified and characterised (this could be from a model or as in this case from data.
The NMM is simulated a large number of times over its parameter space. Next, each
simulation is given a classification according to its dynamic features. Then the
simulations are partitioned using decision tree learning. The final partitions are used to
characterise the parameter space of the NMM.

115

and defining a plausible parameter space, i.e. some constraints on the extreme values 116

that each parameter can take. In this study we use a variation of the Jansen and Rit 117

model introduced in the context of epilepsy [11], this model, called Wendling model, 118

has 11 parameters. The second step in the methodology consists of transforming the 119

mathematical model into a database. To do this the NMM is simulated a large number 120

of times using different parameters, which are chosen using a latin hypercube design. 121

This is a space filling design which allows to efficiently explore the whole parameter 122

space given a fixed number of simulations [40]. Each simulation is then classified in 123

terms of some chosen characteristics. Here, we choose to focus on characteristics that 124

are often used to define healthy and epileptiform rhythms, i.e. amplitude, frequency and 125

number of peaks per period. The amplitude was defined as the maximum minus the 126

minimum of the simulation. In cases for which the amplitude was greater than zero, i.e. 127

the simulation was not constant, the frequency of the cycle and the number of peaks per 128

period were calculated. The number of peaks can be used, for example, to characterise 129

pathological dynamics. One of our aims is to characterise qualitative changes in model 130

dynamics over the features above, since such an approach would enable us to find 131

boundaries in parameter space over which dynamics change. We therefore seek to 132

“classify” dynamics, rather than, for example, estimate quantitative features. Studying 133

the database with classical statistics such as the joint distribution of the likelihood of 134

seizure dynamics gives new insights into the model, but does not yield a comprehensive 135

analysis. 136
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The final step is to fit the data with a statistical model. Here, we choose to use a 137

tree approach, which cuts the parameter space into rectangular regions of different sizes 138

and is amenable to high dimensional analyses. These regions are created with the aim 139

that each one contains similar dynamics and so trees approximate the parameter space 140

in a simple and interpretable way. Of course, we do not expect that the parameter 141

space can be completely mapped to a set of rectangular regions, each containing 142

homogeneous dynamical features. Some regions therefore contain dynamics with 143

different features and the proportion of space in the region filled by particular dynamics 144

is useful information. For example, one can ask whether certain regions contain a high 145

density of seizure dynamics or exclude regions with certain features from further 146

analyses. The statistical model captures defined characteristics of the mathematical 147

model and summarises them in an efficient way, therefore facilitating the estimation of 148

sensitivity of the dynamics to variations in a particular parameter. Thus critical, or 149

important parameters for a given dynamics can be found. 150

Wendling model 151

The extension of the Jansen-Rit model [19] introduced by Wendling et al. [41] 152

considered in this paper has classically been used to study transitions to seizure 153

dynamics. It is a neurophysiological model, i.e. one that has been built to understand 154

interactions in nervous tissue at the macro- or meso-scopic level. It has previously been 155

shown to display a repertoire of important dynamics which occur at ictal and inter ictal 156

states, for example in temporal lobe epilepsy [11,41]. The model is based on the 157

assumption of the existence of four populations of neurons: pyramidal cells; excitatory 158

interneurons; slow and fast inhibitory interneurons. The activity of each population is 159

governed by the interactions between them. Each population is characterized by: 160

1. Its second order linear transfer function. This function transforms the average 161

presynaptic pulse density of afferent action potentials of other populations of 162

neurons (the input) into an average postsynaptic membrane potential (the 163

output). This can be either excitatory, slow inhibitory or fast inhibitory with 164

respective impulse response he(t),hi(t) or hg(t). 165

2. A sigmoid function S(v) = 2e0
1+exp (r(v0−v)) that relates the average postsynaptic 166

potential of a given population to an average pulse density of action potentials 167

outgoing from the population. 168

The total potential of the pyramidal cell population is given by the aggregated 169

contributions of the three feedback loops of inter-neurons connected to it. This is the 170

output of the model, in analogy with recordings of electroencephalography (EEG) [42]. 171

These interactions can be summarise in the following set of ordinary differential 172

equations: 173

ż1(t) = z6(t) (1)

ż6(t) = AaS {z2(t)− z3(t)− z4(t)} − 2az6(t)− a2z1(t) (2)

ż2(t) = z7(t) (3)

ż7(t) = Aa(p+ C2S {C1z1(t)})− 2az7(t)− a2z2(t) (4)

ż3(t) = z8(t) (5)

ż8(t) = BbC4S {C3z1(t)} − 2bz8(t)− b2z3(t) (6)

ż4(t) = z9(t) (7)

ż9(t) = GgC7S {C5z1(t)− z5(t)} − 2gz9(t)− g2z4(t) (8)
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ż5(t) = z10(t) (9)

ż10(t) = BbC6S {C3z1(t)} − 2bz10(t)− b2z5(t) (10)

NMM parameters 174

The biological meaning of the NMM parameters is given in Table 1. As highlighted in 175

the introduction the values of these parameters or their possible ranges are often based 176

on previously used values that have sometimes arisen arbitrarily in the literature. As 177

further experiments are conducted over time, it is possible to gain an improved insight 178

into the range that NMM parameters could take. Examination of the experimental 179

literature reveals that neuronal level mechanisms, which are often assumed to map to 180

NMM parameters, can vary significantly from one species to another, as well as within 181

species [29] (neuroelectro.org). Therefore the plausible range of NMM parameters can 182

be large. The parameters A, B, G, C and P have traditionally been considered to be 183

highly uncertain and dynamics have therefore been studied over substantial ranges of 184

these parameters [11, 19, 43]. In contrast, the membrane time constants a, b and g have 185

often been considered as relatively certain [11, 19]. However, experimental studies point 186

towards the contrary. For example, there is a large uncertainty of dendritic time 187

constants of the somatic response due to synaptic input for single neurons [44,45]. 188

Ranges for these values have been shown to be large, from 25 s−1 [46] to 140 s−1 [47] for 189

pyramidal neurons. Similarly, the membrane time constant of inhibitory neurons 190

(related to b) could also be considered uncertain, with values ranging from 6.5 s−1 to 191

110 s−1 [48]. We use these experimentally determined ranges for values of a and b in our 192

study (see Table 2). It is more difficult to find a plausible range for g; values used can 193

be traced back to 1993 [49], in which the authors indicated a large uncertainty. We 194

therefore implement a large range for this parameter (350 to 650−1). C was fixed at 195

135 [19] based on interesting dynamics occurring near this value. Here, we chose to use 196

the initial range of uncertainty in [19] from 0 to 1350. v0 was considered uncertain in 197

previous studies and has also therefore been examined across a range of values, for 198

example 2 to 6 mV [19]. Here, we extend the study from 2 to 10. e0 is often fixed at 2.5 199

s−1 but a range from 0.5 to 7.5 s−1 has been recorded [24], and therefore we use this 200

range. Finally there is very little information about r, the value was found 201

experimentally, but without information regarding uncertainty [23]. We therefore 202

studied the range of this parameter from 0.3 to 0.8 mV. A summary of ranges of 203

parameter values implemented in our study is given in Table 2. 204

Model simulations 205

The NMM was simulated 2,000,000 times varying 11 parameters A, B, G, P , a, b, g, C, 206

v0, e0 and r using a latin hypercube design to explore the parameter space. The 207

simulations were computed using ODE45 in MATLAB (Runge–Kutta method). 208

Each time, 20 seconds of EEG activity were simulated, the first 10 seconds were 209

removed to eliminate transients. Simulations were performed in parallel over 4 CPUs 210

each running at 3.5 GHz. It took approximately 4 days to simulate the whole data base 211

(i.e. 2,000,000 simulations). 212

Quantifying dynamic transitions in high dimensions 213

We are interested in understanding the relationship between parameters of the NMM 214

and its dynamics. This understanding can be achieved through an explicit mapping 215

between regions of parameter space and qualitatively different dynamics (e.g. steady 216

states and oscillations). Previous studies have analysed the dynamics of NMMs by 217

characterising features of simulations. Different properties of dynamics have been used 218

PLOS 6/26

http://neuroelectro.org


Parameter Interpretation
A Average excitatory synaptic gain
B Average slow inhibitory synaptic gain
G Average fast inhibitory synaptic gain
a Inverse mean time in the excitatory loop
b Inverse mean time in the slow inhibitory loop
g Inverse mean time in the fast inhibitory loop
P Input to the system from the area of the cortex
C1 Connectivity pyramidal to excitatory
C2 Connectivity excitatory to pyramidal
C3 Connectivity pyramidal to slow inhibitory
C4 Connectivity slow inhibitory to pyramidal
C5 Connectivity pyramidal to fast inhibitory
C6 Connectivity slow inhibitory to fast inhibitory
C7 Connectivity fast inhibitory to pyramidal
v0 the postsynaptic potential for

which a 50% firing rate is achieved
e0 1/2 maximum firing rate of the neural population
r Steepness of the sigmoidal transformation

Table 1. Description of parameters in the Wendling model.

parameter nominal value min max Reference
A 5 mV 0 10 [19,33]
B 22 mV 0 50 [19,33]
G 20 mV 0 50 [19,33]
P 90 spikes.s−1 0 2000 [43]
a 100 s−1 25 140 [46,47]
b 50 s−1 6.5 110 [48,50]
g 500 s−1 350 650 [11]
C 135 0 1350 [7, 19]
v0 6 mV 2 9 [19]
e0 2.5 s−1 0.5 7.5 [24]
r 0.56 mV-1 0.3 0.8 [23]

Table 2. The range of considered parameter space of the Wendling model.
Details of the reference used to define the minimum and maximum value of each
parameter is included. Chosen ranges were constrained either by experiments (e.g. a
and b) or the widest range described in theoretical studies (e.g. P and C).

for characterisation, such as the power spectrum [11], amplitude or variance [51, 52] and 219

more nuanced features such as the number of spikes within a period of a specific 220

rhythm [32,33]. These studies have demonstrated that NMMs can recreate key types of 221

epileptiform dynamics such as slow spike-wave rhythms and theta spikes, which are 222

important rhythms for generalised and focal epilepsies, respectively. Based on these 223

previous studies, we consider three key features of simulations that are relevant for 224

delineating different types of dynamics within the NMM: amplitude, frequency and 225

number of peaks per cycle. We use these features to classify regions of parameter space 226

according to the nature of the emergent dynamics. For example, alpha activity 227

corresponds to low-amplitude oscillations with a frequency of around 10Hz. 228

Alternatively, seizure dynamics in this model correspond to low-frequency oscillations 229

(2-8Hz to take into account focal and generalized seizure activity) with additional peaks 230

that correspond to “spikes” or “poly-spikes” in EEG (c.f. Fig 3). 231
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Figure 3. Common dynamic patterns observed in the Wendling model.
Non-steady-state solutions are split into two categories: oscillations and
(poly)spike-wave dynamics. Oscillations are cycles with one peak per period delineated
by frequency into the five classical clinical bands: gamma (30-60Hz); beta (13-30Hz);
alpha (8-12Hz); theta (4-8Hz); and delta (0-4Hz). (Poly)spike-wave dynamics are cycles
with one or more spikes per period, riding on an oscillation of between 2 and 8 Hz with
a mean of 4 Hz. For the sake of clarity amplitudes don’t have uniform y-axis scale.

We formalise this idea by denoting P (Y |X ∈ R) as the probability of the dynamics
Y given that the parameter set X belongs to region R, which is a hypercube subset of
the full parameter space. For example we could have:

Y =

{
0, if the dynamic state of interest is seizure dynamics;

1 otherwise.

and a region defined, for example, by 232

X ∈ R = X ∈
(

(A < 5) ∩ (15 < B < 30)
)
.

In this case P (Y = 1|X ∈ R) represents the likelihood of observing seizure dynamics 233

when the parameter A is inferior to 5mV, B is between 15 and 30 mV and the other 234

parameters are not constrained. The value of P (Y = 1|X ∈ R) is given by 235

P (Y = 1|X ∈ R)) =

∫
x∈R

P (Y = 1|x) dx (11)

Since the function mapping X onto Y is unknown, we take a sampling approach and 236

use the data base created by the simulations defined in the section . 237

We can therefore estimate P (Y = 1|X ∈ R) for the given region R by 238

P̂ (Y = 1|X ∈ R) =
1

|χ|
∑
χ

y. (12)

where χ = {x|x ∈ R} and |χ| denotes the cardinality of the set. P (Y = 1|X ∈ R) can 239

be further used to determine which parameters are important to find certain dynamic 240

regimes. 241

An obvious question that arises is how to choose R. A first approach consists of 242

fixing the regions Ri∈[1:m] such that each region has the same size, i.e. the parameter 243

space is cut into pre-defined regions. An example of this approach can be found in Fig 6 244

and allows us to detect the combination of parameters that are particularly prone to 245

producing seizure dynamics or steady states in the model. 246

Another approach consists of partitioning the parameter space by selecting M 247

“optimal” regions, R1, . . . , RM . By optimal, we mean the number of regions M is as 248

small as possible such that in each region the discrepancy of the event Y is low. In 249

principle, this results in a more efficient mapping of the dynamics of the model onto its 250

parameter space. Furthermore the boundaries between regions are useful, as they 251

indicate which parameters have an important role in the emergence of dynamics of 252

interest. Effectively they describe the transitions between different dynamic types that 253

can correspond to bifurcations or other types of phase transition in the underlying 254

dynamic model. 255

To define optimal regions, we use an approach called decision tree learning 256

algorithms [53]. Here, the parameter space is partitioned recursively into rectangular 257

disjoint subspaces. The size of each region is determined by ensuring that it consists, as 258
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far as possible, of only a single type of dynamics. Tree-based methods are a 259

conceptually simple, yet very powerful tool to study highly nonlinear functions for the 260

purpose of regression or classification. These methods are inherently non-parametric; no 261

assumptions are made regarding the underlying distribution of parameter values. They 262

can be trained quickly and also provide a vehicle to efficiently predict the output of new 263

simulations. We focus on classification and regression tree (CART) algorithms [53]. 264

These produce binary splits recursively from the root (the complete parameter space), 265

to its leaves (the regions corresponding to dynamics of a single type). 266

Building a tree 267

In general, finding the optimal partitioning of parameter space is a NP-complete 268

problem [54]. Therefore, decision tree learning algorithms are based on heuristics 269

whereby locally optimal decisions are made within each region of the tree. Whilst such 270

an approach is not guaranteed to give the globally-optimal decision tree, CART 271

methods have been shown to give good results in practice [53]. Here, we summarise the 272

approach, which is described in detail in [39]. Formally we have a data set consisting of 273

n points in Rp, xij where i ∈ [1 : n] and j ∈ [1 : p]. The set of outputs consists of the 274

class of observed dynamics Yi of each simulation. Suppose that we have a partition into 275

M regions, R1, . . . , RM . For a given region Rm the splitting stage is chosen by finding 276

an optimal split point in terms of the impurity criterion described Eq (14). 277

We seek the jth split parameter and split point, s, such that the cost function: 278

argmin
{s,j}

IRL(m,j,s) + IRR(m,j,s) (13)

is minimised. Here RL(m, j, s) = {x|x ∈ Rm, x.j ≤ s} and 279

RR(m, j, s) = {x|x ∈ Rm, x.j > s} are respectively the potential left and right split 280

of the region of interest. The measure IRm
of region impurity represents the quality of 281

classification in a region. By this we mean how well a region of parameter space maps 282

onto model dynamics of a single type. It is defined by the Gini index 283

IRm =
1

Nm

K∑
k=1

p̂mk(1− p̂mk) (14)

where 284

p̂mk =
1

Nm

∑
xi.∈Rm

I(yi = k) (15)

is the proportion of class k observations in a given region Rm. When IR = 0 the region 285

is pure, and there is only a single class of dynamics. By contrast a large Gini index 286

indicates a region with large impurity, and thus contains parameters that map onto 287

different types of dynamics in the model. 288

For each region, the determination of the split points can be done very quickly 289

(o(p× n) operations) and hence by scanning through all of the inputs, determination of 290

the best pair (j, s) is feasible in finite time. An example of a tree and its construction 291

can be found in Fig 4. To estimate a new set of parameters x, the class with the largest 292

frequency k(m) = argmax
k

p̂mk is attributed to x. Furthermore P̂ (y ∈ k) = p̂mk. 293

Random decision forests 294

Problems faced when focussing on a single tree include overfitting and the inability of 295

the heuristic to find the optimal partition. To overcome these problems, the aggregation 296

of a large number of trees is often used, and provides much greater insight. In a series of 297
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Figure 4. The different steps to construct a tree. In this example, the
parameter space consists of two parameters X and Y ranging from 0 to 1. There are 3
classes of dynamics. A) This full parameter space is represented in the tree by its root.
In this region all classes are represented. The impurity in this region is equal to 0.48. B)
The split at Y = 0.4 removes drastically the impurity in its two sub regions which are
now 0.13 and 0.14. Nevertheless the regions themselves are not pure. C) The region
with the larger impurity is then targeted by the CART algorithm. The split at X = 0.1
removes totally the impurity in its two sub regions which are now equals to 0. There are
only one type of observation per region in this region of the parameter space. D) The
last region with impurity is again targeted by the CART algorithm. The split at
X = 0.7 removes totally the impurity in its two sub regions. There are now only one
type of dynamic feature within each region of the tree.

papers and technical reports, [55–57] demonstrated that substantial gains in 298

classification and regression accuracy can be achieved by using ensembles of B trees, 299

where each tree in the ensemble is grown in accordance with a random set of rules. This 300

method is called random decision forests. This method remains one of the most 301

accurate machine learning algorithms [58,59]. 302

In this study the use of multiple trees is equivalent to mapping the parameter space 303

using different rules of segmentation. If a segmentation appears consistently, this implies 304

it is important. The training algorithm for random forests applies the general technique 305

of bootstrap aggregating [60], i.e. for each tree, a random sample with replacement of 306

the training set is selected. Furthermore for each region, a random subset of parameters 307

is selected and the split is optimised on the basis of the chosen parameters. For each 308

bootstrap sample Z∗b, {b = 1, 2, . . . , B}, we fit a tree according to a succession of 309

random rules r, giving the tree t∗b. Then the random forest f is given by: 310

f =
1

B

B∑
b=1

t∗b (16)

. 311

The estimation of the probability for a set of parameters x to belong to class k is 312

given by: 313

P̂ (y ∈ k) =
1

B

B∑
b=1

P̂b(y ∈ k). (17)

Determining the importance of a parameter 314

Knowing which parameters have a high impact on the dynamics of a model is crucial to 315

improve our understanding of the system so that we may focus on these parameters. 316

The variable importance V I(j), j ∈ [1 : p] (also called Gini Importance in [61]) 317

quantifies how much the dynamics depend on the parameter value. We note that in the 318

statistical literature, parameters are often termed “variables” since it is implicit that we 319

would study the effect of changing their values. This is in contrast to the study of 320

dynamical systems, in which parameters are considered to have fixed values relative to 321

the evolution of “variables”, for which the differential equations are defined.Here, the 322

variable importance is defined as the sum of all decreases in impurity in the tree due to 323

the given parameter divided by the number of branch regions, Nb, i.e. 324

V I(j) =
1

Nb

∑
Rm∈T

IR(m) − IRL(m) + IRR(m) (18)
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A parameter with a large V I indicates that a change in the values of the parameter is 325

more likely to influence the dynamics than a parameter with small V I. The variable 326

importance V I(i) of the parameter i is expressed in terms of a normalized quantity 327

relative to the variable having the largest measure of importance. 328

NV I(i) =
V I(i)

max(V I)
(19)

A parameter therefore has an important influence on the dynamics of interest in the 329

model if its NV I is close to 1 and a small importance if it close to 0. These values are 330

only indicative and small differences in NV I between two parameters would not 331

necessarily indicate that a parameter is more important than another. Furthermore it 332

quantifies global parameter importance; it is possible that in some parts of the 333

parameter space a parameter described as important does not affect dynamics. 334

Fig 5 shows examples of NV I for some simple cases. The functions studied have
three parameters X, Y and Z. The outputs are two classes, 0 or 1. The first function
exa depends only on X, the functions exb and exc depend equally on X and Y . The
last function, exd, depends principally on Y and slightly on X.

exa(X,Y, Z) =

{
0, if 0 ≤ X ≤ 1/4 | 3/4 ≤ X ≤ 1

1 Otherwise
(20)

exb(X,Y, Z) =

{
0, if X + Y ≤ 1

1 Otherwise
(21)

exc(X,Y, Z) =

{
0, if X2 + Y 2 ≤ 0.75

1 Otherwise
(22)

exd(X,Y, Z) =

{
0, if cos2(20X) + sin2(3Y ) ≤ 1

1 Otherwise
(23)

(24)

Figure 5. Example of the use of normalised variable importance (NV I),
demonstrating that the NV I can identify the important parameters of different
functions. Each subfigure shows evaluations of a different function (named exa, exb, exc
and exd, for details of these functions please refer to the main text) of three parameters:
X, Y and Z. For each sampled parameter combination, the function outputs either 1
(red dots) or 0 (blue dots). Note that Z does not play a role in determining the output
of any of these functions.

.
(A) Simulation of exa over the parameter space, with resulting NV Is:

NV IX = 1, NV IY < 10−3 and NV IZ < 10−3.
(B) Simulation of exb over the parameter space, with resulting NV Is: NV IX = 0.97,

NV IY = 1 and NV IZ < 10−3.
(C) Simulation of exc over the parameter space, with resulting NV Is: NV IX = 1,

NV IY = 0.99 and NV IZ < 10−3.
(D) Simulation of exd over the parameter space, with resulting NV Is: NV IX = 0.60,

NV IY = 1 and NV IZ = 0.02.

335

The NV I is able to capture the importance of each parameter in each case. For 336

example for the function exa the normalised variable importance of X is equal to one 337

whilst the others are very close to 0. One can observe that the NV I of the parameter Z 338
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is not exactly equal to 0 even though the output of our function is independent from 339

this parameter. The reason for this comes from the fact that in some trees, due to the 340

sampling of our databases, the random forest can overfit a branch. This overfit branch 341

will increase the variable importance of the independent parameters. Nevertheless this 342

is a very marginal effect as one can observe in the examples of Fig 5. To check the 343

convergence of NV I in our study we estimated the NV I of different parameters with a 344

data base of 500,000 and 2,000,000 points. The maximum difference between the NV I 345

of the two data bases was 0.05 which can be considered as negligible. 346

We implemented random forests using r [62] with the packages RandomForest [63]. 347

The figures were built with rpart [64] and rpart.plot [65]. 348

Results 349

Analyses of the data set 350

2,000,000 simulations were computed on the whole parameter space as described in 351

section , using the ranges in Table 2. Analysing these simulations, we found that the 352

dynamics of the Wendling model can predominantly be categorised as steady state 353

(62.3% of parameter space). The remaining simulations were classified by frequency and 354

number of peaks (see Fig 3 for a description of dynamics). The dynamics ‘spike and 355

wave’ or ‘poly-spike and wave’, which are characteristic of seizure dynamics, represent 356

5.8% of the parameter space. This number can be considered as the likelihood to find 357

seizure dynamics when random parameters are used. 358

Fig 6 provides a 2 dimensional representation of the distribution of steady state and 359

seizure dynamics throughout the whole parameter space. It can be seen that the 360

parameter subspace in which seizure dynamics can be found is large and is not 361

concentrated in small sub-regions. The top right of Fig 6 demonstrates that seizure 362

dynamics can be observed across most parameter values; there are few combinations of 363

two parameters for which, regardless of other parameter values, seizure dynamics cannot 364

exist. Examples are the inverse mean time in the excitatory and slow inhibitory loop (a 365

and b), which give rise to dark blue regions in Fig 6 (low likelihood of seizure dynamics). 366

Specific combinations of parameters A, B, C, e0 or r can also preclude seizure dynamics. 367

In contrast, the subfigures for parameters of the fast inhibitory loop (G and g) appear 368

quite homogeneous, and therefore do not change the likelihood of seizure dynamics. 369

Figure 6. Bivariate joint distribution of the likelihood of steady state (lower triangle)
or seizure dynamics (upper triangle). Each subfigure is a projection of the parameter
space over two parameters, and the colour indicates the likelihood of finding a particular
type of dynamics (seizure or steady state) as per the colourbar. For example, the
subfigure in the second column on the first row (encircled and labelled (i)) maps the
likelihood of finding seizure dynamics over different values of B(x-axis) and A(y-axis),
given variations in all other parameters. In the upper triangle, yellow indicates high
likelihood of observing seizure dynamics, whereas blue indicates low likelihood of
observing seizure dynamics. In the lower triangle, red indicates high likelihood of
observing steady state dynamics, whereas blue indicates low likelihood of observing
steady state dynamics. Each subfigure was computed using equation 12 with 20× 20
bins over the parameter ranges provided in Table 2. Upper triangle: Specific
combinations of parameters can lead to manifolds with a high likelihood of seizure
dynamics (see for example the linear relationships between A and B in the encircled
subfigure (i) and a and b in the encircled subfigure (ii)). Lower triangle: one can
observe that small values of the parameters A or C guarantee a steady state (see for
example the encircled subfigures (iii) and (iv)).
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However, varying the value of some parameters does reduce the likelihood of 370

observing seizure dynamics: reducing parameters of the excitatory loop (A and a); the 371

connectivity coefficient (C); the maximum firing (e0); and the inflexion point (v0) and 372

the slope (r) of the sigmoidal nonlinearity. On the other hand, increasing the inverse 373

mean time in the slow inhibitory loop (b) also reduces the probability of observing 374

seizure dynamics. Intermediate values of the input (P ) and the average slow inhibitory 375

gain (B) increase the chance of observing seizure dynamics. Particular combinations of 376

pairs of parameters such as the average synaptic gains(A and B) or the inverse time 377

scales (a and b) can significantly alter the chance of observing seizure dynamics. For 378

example, there is a linear combination of a and b for which the proportion of dynamics 379

in the seizure class is greater than 30%. The lower triangle of Fig 6 indicates that 380

steady state dynamics can be observed in a very large proportion of the parameter 381

space. It can be seen that small values of A or C force the system to be at steady state. 382

Explorations such as undertaken in Fig 6 are informative and give a good 383

preliminary indication of the role that each parameter plays in constraining the model 384

dynamics. Nevertheless, in more than two dimensions, visualisation becomes difficult. 385

For example, extending Fig 6 to 3 dimensions would require 1,000 2D plots. Therefore, 386

we used tree statistics (see section ) to efficiently summarise how a change in a 387

parameter can impact the dynamics of the model. Fig 7 presents one such tree that 388

describes the segmentation of parameter space according to the density of seizure 389

dynamics. Recall, that for each branch the tree algorithm scans through the 390

sub-parameter space to identify the optimal separation between the maximum and 391

minimum likelihood of observing the feature of interest (seizure dynamics in this case). 392

Fig 7 is a relatively small tree used to illustrate the method. At the root of this tree, 393

the first parameter used to partition parameter space is the inverse time scale of the 394

slow inhibitory loop, b. b ≥ 60 reduces the probability of observing seizure dynamics 395

and produces a region that represents 49 % of the parameter space. This region, which 396

represents nearly half of the parameter space, contains only 10% of all parameter 397

combinations that lead to seizure dynamics. Taking b < 60 again yields approximately 398

half of the total parameter space (51%), but this region contains 90% of all parameter 399

combinations that lead to seizure dynamics. Since this region is large, and the 400

probability of observing seizures in the whole space is low (5.8%), the density of seizures 401

in this region is low at 10%. The next branch cuts through the average slow inhibitory 402

gain at B = 32. Above this value, 19% of the parameter space remains and this contains 403

12% of all parameter combinations that yield seizure dynamics. The remaining 32% of 404

parameter space accounts for 78% of seizure dynamics. Choosing A ≥ 2.1 further 405

increases the density of seizure dynamics to 17%, incorporating 73% of all parameter 406

sets that lead to seizure dynamics. Further adding the criterion that v0 ≥ 4.8 leads to a 407

region with highest density of seizure dynamics (bottom right region in Fig 7). This 408

region represents 15% of the total parameter space and the proportion of seizure 409

dynamics in this region is 22%; thus it accounts for 57% of all parameter combinations 410

that result in seizure dynamics. 411

However it is possible to create larger trees with more regions giving a finer 412

resolution. There is of course a trade-off as larger trees segment the parameter space 413

into more (smaller) hypercubes, making them more cumbersome to analyse (see 414

supplementary materials for more examples). The main conclusion to be drawn from 415

the large tree presented in the supplementary material is that the dependency of 416

dynamics on parameter space is complex: transitions between dynamics can vary 417

between regions. For example, an increase of B or P can either increase or decrease the 418

likelihood of seizure dynamics. However, other parameters exhibit robust transitions; a 419

split at r around 0.52 appears consistently, and e0 and v0 tend to slightly increase the 420

seizure likelihood when their values increase. Figure 6 seems to show different results 421
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Figure 7. A tree representing how parameter space is split dependent on
the presence or absence of seizure dynamics. The root region is at the top of the
figure and represent 100% of the parameter while the leafs are at the bottom. The
upper label of each regions indicates the size of the parameter space represented in this
region. The lower label indicates the percentage of all parameter combinations that
result in seizure dynamics. The colour indicates the density of seizure dynamics in the
given region. The parameters A, B, a and b are the most important parameters because
they split efficiently the parameter space into subspaces with high or low likelihood of
seizure dynamics. Some parameters such as P and C do not appear in this small tree,
however they can appear in a more complex tree (see supplementary material). Values
are given to two digits precision.

from [11]. To recall; in this article, the presence of seizure dynamic would appears only 422

for B superior to 20mV and A superior to 5 (other parameters at standard value as in 423

Table 2). At the opposite in figure 6 the likelihood of seizure when B is superior to 20 is 424

low and higher for small values of B. These show that if a projection of the parameter 425

space in 2 D is helpful to have a quick understanding of the parameter space it does not 426

capture all of its aspects. At contrary in figure 7 with the help of the tree algorithm this 427

manifold are well approximated. Indeed one can see that even for large B (¿32) seizure 428

dynamic can appear with the standard values of parameters [11] (fourth leaf from the 429

left). Furthermore the tree shows that this change appears around A=5.4mV. There are 430

other bigger manifolds in the figure 7 for small values of B. These manifold are the one 431

which influence the most the figure 6 and ‘hide’ [11]. 432

Determining the relative importance of parameters for 433

observing features of interest 434

A B G P a b g C v0 e0 r
steady-state to cycle 1 0.40 0.11 0.15 0.27 0.32 0 0.59 0.48 0.16 0.26
amplitude of oscillation 0.13 0.46 0 0.02 0.13 1 0 0.96 0.11 0.83 0.04
frequency of oscillation 0.14 1 0.09 0.01 0.11 0.86 0.01 0.01 0.01 0.01 0
transition to seizure dynamics 0.25 0.59 0.03 0.09 0.30 1 0 0.22 0.28 0.07 0.15

Table 3. The importance of parameters as determined by normalised variable importance (NV I) averaged
over a random forest of 100 trees. Four characteristics of interest are considered: the switch between steady state and
non-steady state, the amplitude of cycles, the frequency of cycles and the switch between any activity (mainly steady state)
and seizure dynamics. A value of 1 signifies the parameter with greatest importance for observing the feature of interest (e.g.
A is most important for observing transitions from steady-state). A value of 0 implies a parameter has no control over
observing a feature of interest.

To generalise the example of Fig 7, we computed the variable importance of model 435

parameters over a random forest of 100 trees. Clearly, the importance of a parameter 436

depend of the characteristics we are interested in. Results regarding the presence of 437

steady states, oscillations with different amplitudes and frequencies, as well as seizure 438

dynamics are provided in Table 4. We find that the values of A, B, C and v0 are 439

important parameters for transitioning between steady state dynamics and the different 440

types of oscillations. Interestingly, the amplitude of oscillations was less dependent on A 441

and instead strongly dependent on C and e0. This might seem surprising given the 442

importance of A in observing oscillations in the first place. This contrast demonstrates 443

how the relative importance of a parameter is strongly dependent on the observed 444

feature of interest (e.g. frequency vs the amplitude). The input from other regions of 445

the cortex (P ) can affect the emergence of oscillations but has a marginal role in tuning 446
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the amplitude and the frequency of these oscillations. The connectivity constant (C) is 447

important for governing the amplitude but not the frequency of an oscillation. In fact, 448

few parameters (A, B, a, b and G) are important for determining the frequency of 449

oscillations. 450

All parameters except g were found to play a role in the generation of transitions 451

between dynamics, but with varying importance. The frequency of an oscillation was 452

found to be predominantly dependant on the inhibitory slow loop parameters (B and b). 453

These parameters were also found to be crucial for producing seizure dynamics. This 454

observation confirms the finding in Fig 7 that when these parameters split the space 455

they reduce impurity. Overall the excitatory pair of pyramidal and excitatory 456

interneurons and the slow inhibitory loop are important to create oscillations in the 457

Wendling model. The output of the Wendling model is sensitive to a change of any of 458

these parameters as indicated by the NV I measurements ( Table 3). 459

Extension to parameter ratios 460

Fig 6 demonstrated a potentially important relationship between the parameters A and 461

B and the parameters a and b. We further investigated this by incorporating two 462

artificial parameters rA/B and ra/b which are respectively the ratio of A over B and the 463

ratio a over b. Fig 8 shows that smaller values of ra/b lead to a lower likelihood of 464

observing seizure dynamics. A ratio less than 1.6 gives a likelihood of observing seizure 465

dynamics of 0.56% in a very large sub-region that contains 57% of the parameter space. 466

At the opposite extreme, the region on the right of the figure contains 40% of all seizure 467

dynamics in only 5% of the whole parameter space. In this region the proportion of 468

seizures is nearly 50%. It is interesting to note that low values of ra/b reduce the 469

likelihood of seizure dynamics, whereas for rA/B , small values (<0.19) or large values 470

(>1.5) reduce the likelihood of seizure dynamics. A more highly resolved version of this 471

tree can be found in supplementary materials. We recomputed the NV I, incorporating 472

these two new parameters over a random forest of 100 trees. The results are in Table 4. 473

It is clear that for steady state transitions or frequency of oscillations rA/B is the most 474

important, whereas ra/b is most important for transitions to seizure dynamics. Aside 475

from the amplitude of oscillations, the normalised variable importance of the ratios 476

rA/B and ra/b are larger than for the parameters taken individually.

Figure 8. A tree representing how the extended parameter space
(incorporating two additional ’ratio parameters’ ra/b and rA/B) is split
dependent on the presence or absence of seizure dynamics. The root region is
at the top of the figure and represents the total parameter space, while the leafs are at
the bottom. The upper label of each regions indicates the size of the parameter space
represented in this region. The lower label indicates the percentage of all parameter
combinations that result in seizure dynamics. One can see that the ratios have an
important role to split the parameter space. Values are given to two digits precision.

477

Discussion 478

In this study, we introduced a new approach to explore the parameter space of high 479

dimensional NMMs. In contrast to classical studies that considered parameters 480

individually, or in pairs, we used a random forest approach in order to study the entire 481

parameter space simultaneously. 482

Our approach relies on the creation of a database of dynamic features derived from 483

forward simulations. Other statistical approaches could be used to study the database, 484
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A B G P a b g C v0 e0 r rA/B ra/b
steady-state to cycle dynamics 0.65 0.24 0.13 0.17 0.16 0.19 0 0.62 0.49 0.17 0.25 1 0.57
amplitude of oscillation 0.10 0.59 0.01 0 0.1 0.89 0 1 0.07 0.89 0.02 0.14 0.15
frequency of oscillation 0.04 0.51 0.04 0 0.11 0.71 0.01 0.01 0 0 0 1 0.41
transition to seizure dynamics 0.11 0.33 0.04 0.12 0.06 0.3 0 0.14 0.31 0.08 0.17 0.8 1

Table 4. The importance of parameters as determined by normalised variable importance (NV I) averaged
over a random forest of 100 trees. The ratios rA/B and ra/b have been added as additional parameters. Four
characteristics of interest are considered: the switch between steady state and non-steady state, the amplitude of cycles, the
frequency of cycles and the switch between any activity (mainly steady state) and seizure dynamics. A value of 1 signifies the
parameter with greatest importance for observing the feature of interest. A value of 0 implies a parameter has no control over
observing a feature of interest.

but they all suffer from particular deficiencies. For example, artificial neural network 485

models have a vast number of hyperparameters that cannot be interpreted [66]. Support 486

vector machines [67] result in boundaries between regions of parameter space that are 487

not split according to single parameters, and therefore one has to integrate over all 488

parameters to understand the importance of each. Kernel methods such as Gaussian 489

processes [68] rest upon the assumption of “smoothness” of data, i.e., proximal 490

parameter sets are assumed to yield similar simulations, which is clearly not the case 491

close to bifurcations. Another approach combines trees and Gaussian process [69,70], 492

but that approach requires prior assumptions on parameters, limiting its use when this 493

information is not to hand. In contrast, the approach we employed provides an efficient 494

way to study the influence of model parameters on their dynamics: trees are 495

computationally fast, make no a priori assumptions on either the type of model or 496

parameter values, and can handle data that are represented on different measurement 497

scales [71]. We thereby demonstrated that random forests are a useful tool to study the 498

dynamics of NMMs. 499

The implementation of the random forest approach [56], overcomes the issue that 500

each implementation of CART produces a single tree that is locally optimal. A 501

drawback is that the random forest approach introduces some loss of interpretability, 502

but the final solution is more representative of the global optimum. This is particularly 503

important for the NV I which measures the relative contribution of parameters to an 504

observed dynamic feature of interest of the model (e.g. a steady-state, oscillation or 505

spike-wave). By this we mean that effectively, the NV I indicates which parameters are 506

critical for segmenting the total parameter space into regions in which a feature of 507

interest is more or less likely to be observed. Further, the NV I provides a principled 508

approach for determining whether or not parameters can be fixed, hence reducing the 509

number of parameters to be calibrated from observable data. A consistently low NV I 510

across all features of interest means that the considered parameter plays little role in 511

any dynamic change and can therefore be fixed to an arbitrary value within a given 512

physiological range. 513

For example, in our study of the Wendling model, g has little effect on determining 514

transitions from steady-state to oscillations, or in determining the amplitude and 515

frequency of those oscillations. It can therefore be fixed, meaning that the parameter 516

space explored in subsequent calibration is smaller. On the other hand, some 517

parameters have a high NV I for specific features of interest, and are therefore 518

important for observing that specific feature without playing an important role in 519

altering other aspects of the dynamics. For example, e0 is critical in determining the 520

amplitude of oscillations, but plays a marginal role in the appearance of other features. 521

Therefore if amplitude is not a particular feature of interest, e0 could be fixed. When 522

considering networks of dynamical systems, the number of parameters can rapidly 523
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become very large, so NV I is an important tool for managing this increase in 524

complexity. For example, one could use the framework presented herein to examine 525

whether there are certain network structures in which certain edges can be given fixed 526

weights, thereby reducing the dimension of an optimisation or calibration problem. 527

The notion of importance is defined using NV I due to its robustness and ability to 528

measure the influence of parameters on dynamics [72]. However, the notion behind 529

importance is somewhat nebulous, and it is difficult to directly attribute a small 530

difference in NV I to the relative importance of a specific parameter. The pragmatic 531

approach we have adopted, is to consider parameters with values of NV I > 0.1 as 532

playing a role in governing the feature of interest. In contrast, parameters with a NV I 533

close to 0 can be disregarded. In the present study we defined importance specifically in 534

the context of changes in parameters causing changes in asymptotic dynamics. This is 535

relevant for the case in which bifurcations give rise to epileptiform activity. However, 536

there are other possible model scenarios in which changes in dynamics could occur, such 537

as for example, intermittency, bistability and excitability [73]. In these cases, we would 538

seek to characterise importance with respect to changes in unstable invariant sets of the 539

system, for example boundaries of basins of attraction. Furthermore, importance as we 540

have defined it in the context of the NMM does not imply that a parameter is crucial 541

for changes in dynamics at the individual level. For example, it might be necessary to 542

model some seizures using transitions between dynamics that occur only in small 543

regions of parameter space. It is important to highlight that in the random forest 544

approach, other definitions of importance exist, such as the permutation importance or 545

the conditional permutation importance [61]. However, these approaches suffer from 546

lack of robustness [74], hence our focus on NV I. 547

Our analyses of the full parameter space of the Wendling model show that 548

parameters of the slow inhibitory loop (b and B) play the most important role (in term 549

of NV I) in the emergence of seizures. The time scale of the slow inhibitory loop (b) is 550

the most important parameter; a small change in its value can transform steady state 551

dynamics into seizure dynamics robustly, i.e. for the majority of combinations of other 552

parameters in the model. We found the excitatory loop, governed by a and A, together 553

with the offset of the sigmoid function (v0) to be the second most important 554

components of the system for the emergence of seizure dynamics. These are followed by 555

the other parameters of the sigmoid function (v0 and r) and the parameter that scales 556

connectivity between the different populations of neurons (C). Interestingly, changes in 557

the fast inhibitory loop (parameters g and G) do not play an important role in the 558

generation of seizure dynamics. We note that a low value of NV I in the context of our 559

study does not mean that a parameter is irrelevant to the emergence of other brain 560

dynamics not captured by the choice of features. Furthermore, parameters with low 561

NV I may play a role in determining transitions between dynamics in specific subsets of 562

parameter space; NV I is purely a global measure. The parameters governing the 563

magnitude of input from other areas (P ) or the scaling of intrinsic connectivity (C), for 564

example were shown herein to have little (global) effect on the emergence of seizure 565

dynamics, but in a priori constrained sub-regions have been shown capable of governing 566

transitions in NMMs [7,8]. Table 4 showed a comparison of parameter importance when 567

different features were considered. Parameters of the slow inhibitory loop, b and B, as 568

well as the ratio of time scales ra/b, showed relatively high importance across all 569

features. It is therefore possible that these parameters are important for transitions 570

between dynamics in general. Verifying this will require exploration of additional 571

features in model dynamics. 572

We found that the ratio of parameters of the excitatory and inhibitory loops plays 573

an important role in the generation of all the features we considered, with the exception 574

of amplitude of oscillations. The ratio of time scales (ra/b) is the most important factor 575
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governing emergence of seizures, whereas the ratio of gains (rA/B) is most important for 576

the onset of cycles and the frequency of these cycles. Reducing ra/b robustly reduces the 577

likelihood of seizures regardless of other parameter values (see e.g. Fig 8 and 578

Supplementary Materials). rA/B on the other hand, presents an intermediate range of 579

values that have highest likelihood of seizure dynamics. 580

Our finding of the importance of rA/B for the emergence of seizure dynamics is in 581

line with previous experimental observations. For example, [75] found that the ratio of 582

Glutamine to GABA Levels is larger in people with idiopathic generalized epilepsies 583

compared to healthy controls. This also aligns with the action of some antiepileptic 584

drugs, for example those acting via modulation of neurotransmitters such as GABA [76], 585

the potentiation of which would be reflected in our model by an increase in B, and 586

hence a decrease in rA/B . Furthermore, Our finding of the importance of rA/B for the 587

emergence of seizure dynamics confirms previous modelling results [30] 588

Interestingly, since the highest likelihood of emergent seizure dynamics was found to 589

be for intermediate values of rA/B , this would suggest that, depending on the choice of 590

other parameters, decreasing the ratio of excitation to inhibition could also produce a 591

route into seizure dynamics, in line with evidence of the possibility of heightened 592

inhibition at seizure onset [77]. Our finding that the slow inhibitory and excitatory 593

synaptic gains have more influence than the fast inhibitory loop is in line with previous 594

modelling results [33,34], as are our findings that the parameter r and the ratio ra/b 595

are important for dynamics of the NMM [35,78,79]. 596

Few experimental studies have investigated the role that different time constants 597

might play. However, it has been shown that chloride ion homeostasis is perturbed in 598

patients with mesial temporal lobe epilepsy [80], and intracellular chloride ion 599

concentrations have been shown to play a role in the time constants of postsynaptic 600

potentials [81]. This therefore presents a possible biophysical interpretation for the 601

importance of ra/b. Interestingly, a recent study utilising dynamic causal modelling 602

applied to a zebrafish model of seizures also demonstrated the potential importance of 603

excitatory and inhibitory synaptic time constants [82]. 604

In our study, we obtained these results using a method in which the influence of all 605

parameters was analysed simultaneously and a complete characterisation of the relative 606

importance of all parameters was possible. In fact, this analysis revealed new 607

combinations of parameters that can potentially govern the emergence of seizure 608

dynamics in the Wendling model, for example v0. In addition, given our finding that 609

the ratio ra/b is most important for seizure generation it would be interesting to explore 610

the known effect of drugs that could target the inverse mean time ratio ra/b. 611

[11] presented detailed, two-dimensional analyses of the effects that changing system 612

parameters have on emergent dynamics. One of the findings of [11] was that seizure 613

dynamics predominantly occur when B > 20. However, our results (figure 6) show that 614

the likelihood of seizures when B > 20 appears rather low (but not zero) and is in fact 615

higher for small values of B. These results indicate that although a projection of the 616

parameter space in 2 D is helpful to gain a quick understanding of the system, it does 617

not capture the global picture. In our figure 7, with the help of the tree algorithm, we 618

did indeed find that for large B (> 32) seizure dynamics occur for the range of 619

parameters used by [11] (fourth leaf from the left in figure 7). Furthermore the tree 620

shows that this change appears around A = 5.4mV . However, our analysis in figure 7 621

demonstrates that there are other regions of parameter space, for lower values of b that 622

contain seizure dynamics. 623

The approach presented herein relies on the construction of a statistical model of 624

dynamics based on simulations. This means that we cannot uncover the dynamic 625

mechanisms that govern the emergence of the features studied, for example the presence 626

of unstable invariant sets or changes in stability. However, our approach could be 627
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combined with traditional methods such as numerical continuation [83]; we would first 628

constrain parameter space by using NV I to identify the most important parameters, 629

together with transition boundaries and then perform more detailed analyses therein. 630

Studies including [73] and [84] describe four alternative mathematical mechanisms 631

underlying the emergence of seizures: bifurcation (a parameter is slowly varied so that 632

the system crosses a bifurcation point), bistability (backround and seizure attractors 633

co-exist, with perturbations allowing transitions between the two), transient excitability 634

(the seizure dynamics occurs due to a complex trajectory elicited by a perturbation) and 635

intermittency (background and seizure dynamics are part of the same attractor). In this 636

study we have focussed on a detailed explanation of the bifurcation mechanism (e.g. 637

how small changes in system parameters can lead to abrupt changes in emergent 638

dynamics). Specifically, we find for the chosen Wendling model that under the 639

bifurcation assumption changes in the slow inhibitory loop or the fact excitatory loop 640

are most likely to underpin the emergence of seizures. It is important to highlight that 641

this finding is specific to the chosen model and further, that it does not exclude the 642

other three possibilities. To explore the possibility of transient excitability and 643

bistability, we would need to extend our statistical model to include system variables 644

(e.g. initial conditions) and properties of perturbations as parameters. We investigated 645

the impact of initial conditions by considering them as parameters and found their NV I 646

to be close to zero, indicating that regions of bistability are small in the context of 647

global changes in parameters. 648

Another possible extension to the results presented herein would be to consider 649

different dynamic models or different characteristic features of their dynamics. For 650

example [85] or [86] focused their attention on the power spectrum of the model in 651

comparison with clinically recorded data. Future work could focus on power spectra as 652

a feature of interest, enabling an appropriate characterisation of the importance of 653

parameters for generating alpha activity in NMMs. 654

In summary, we presented a framework for the global characterisation of the 655

dynamics of NMMs. Our methods have the potential to advance patient-specific model 656

representations, for example by first determining the relative importance of parameters, 657

and then reducing the parameter space to a subset in which model calibration from data 658

becomes tractable. Such an approach will become increasingly important as the 659

emphasis on networked dynamical systems of the brain increases. Here the number of 660

model parameters grows rapidly, beyond the point for which established approaches 661

such as Kalman filtering [15] or genetic algorithms [32], that work directly with the 662

dynamical system of interest, can be effective. 663

Supporting information 664

S1 Fig. Large tree. The parameter space is split dependent on the presence or 665

absence of seizure dynamics. The figure represents a tree with all the parameters and 666

with a minimum size of leaf of 1000 simulations. 667

S2 Fig. Large tree with modified parameter space. The parameter space is
split dependent on the presence or absence of seizure dynamics. The figure represents a
tree with all the parameters and the ratio of the parameter A over B and a over b. The
minimum size of leaf are 1000 simulations.
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48. Wierenga CJ, Müllner FE, Rinke I, Keck T, Stein V, Bonhoeffer T. Molecular
and electrophysiological characterization of GFP-expressing ca1 interneurons in
GAD65-GFP mice. PLoS ONE. 2010;5(12):1–11.
doi:10.1371/journal.pone.0015915.

49. Pearce RA. Physiological evidence for two distinct GABAA responses in rat
hippocampus. Neuron. 1993;10(2):189–200. doi:10.1016/0896-6273(93)90310-N.

50. Thomson A, Deuchars J. Synaptic interactions in neocortical local circuits: dual
intracellular recordings in vitro. Cerebral Cortex. 1997;7(6):510–522.
doi:10.1093/cercor/7.6.510.

51. Suffczynski P, Kalitzin S, Lopes Da Silva FH. Dynamics of non-convulsive
epileptic phenomena modeled by a bistable neuronal network. Neuroscience.
2004;126(2):467–484. doi:10.1016/j.neuroscience.2004.03.014.

52. Jedynak M, Pons AJ, Garcia-Ojalvo J, Goodfellow M. Temporally correlated
fluctuations drive epileptiform dynamics. NeuroImage. 2017;146(July
2016):188–196. doi:10.1016/j.neuroimage.2016.11.034.

53. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and Regression
Trees. Wadsworth ed. CRC press; 1984.

54. Hyafil L, Rivest RL. Constructing optimal binary decision trees is NP-complete.
Information Processing Letters. 1976;5(1):15–17.
doi:10.1016/0020-0190(76)90095-8.

55. Breiman L. Consistency for a simple model of random forests. University of
California at Berkeley. Technical Report 670; 2004.

56. Breiman L. Random forest. Machine Learning. 2001;45(1):5–32.
doi:10.1023/A:1010933404324.

PLOS 23/26



57. Breiman L. Some infinity theory for predictor ensembles. University of California
at Berkeley. Technical Report 577 (August 2000); 2000. Available from:
https://www.stat.berkeley.edu/{~}breiman/.

58. Caruana R, Niculescu-Mizil A. An empirical comparison of supervised learning
algorithms. In: Proceedings of the 23rd international conference on Machine
learning - ICML ’06. New York, New York, USA: ACM Press; 2006. p. 161–168.
Available from:
http://portal.acm.org/citation.cfm?doid=1143844.1143865.

59. Fernández-Delgado M, Cernadas E, Barro S, Amorim D, Amorim
Fernández-Delgado D. Do we Need Hundreds of Classifiers to Solve Real World
Classification Problems? Journal of Machine Learning Research.
2014;15:3133–3181. doi:10.1016/j.csda.2008.10.033.

60. Breiman L. Bagging Predictors. Machine Learning. 1996;24(421):123–140.
doi:10.1007/BF00058655.

61. Goldstein BA, Polley EC, Briggs FBS. Random Forests for Genetic Association
Studies. Statistical Applications in Genetics and Molecular Biology. 2011;10(1):32.
doi:10.2202/1544-6115.1691.

62. R Core Team, R Development Core Team R. R: A Language and Environment
for Statistical Computing. R Foundation for Statistical Computing. 2017;1:409.
doi:10.1007/978-3-540-74686-7.
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