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ABSTRACT

Future NASA concept missions that are currently under study, like Habitable

Exoplanet Imaging Mission (HabEx) & Large Ultra-Violet Optical Infra Red

(LUVOIR) Surveyor, would discover a large diversity of exoplanets. We propose

here a classification scheme that distinguishes exoplanets into different categories

based on their size and incident stellar flux, for the purpose of providing the

expected number of exoplanets observed (yield) with direct imaging missions.

The boundaries of this classification can be computed using the known chemical

behavior of gases and condensates at different pressures and temperatures in a

planetary atmosphere. In this study, we initially focus on condensation curves for

sphalerite ZnS, H2O, CO2 and CH4. The order in which these species condense in

a planetary atmosphere define the boundaries between different classes of planets.

Broadly, the planets are divided into rocky (0.5 − 1.0R⊕), super-Earths (1.0 −
1.75R⊕), sub-Neptunes (1.75 − 3.5R⊕), sub-Jovians (3.5 − 6.0R⊕) and Jovians

(6 − 14.3R⊕) based on their planet sizes, and ’hot’, ’warm’ and ’cold’ based

on the incident stellar flux. We then calculate planet occurrence rates within

these boundaries for different kinds of exoplanets, ηplanet, using the community
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co-ordinated results of NASA’s Exoplanet Program Analysis Group’s Science

Analysis Group-13 (SAG-13). These occurrence rate estimates are in turn used

to estimate the expected exoplanet yields for direct imaging missions of different

telescope diameter.

Subject headings: planets and satellites: atmospheres

1. Introduction

The discoveries of exoplanets over the last two decades has revealed planetary bodies of

various sizes and masses around other stars (Rowe et al. 2014; Anglada-Escudé et al. 2016;

Coughlin et al. 2016; Kane et al. 2016; Morton et al. 2016; Gillon et al. 2017; Dittman et al.

2017). More specifically, the location of these exoplanets around their host star has a signif-

icant influence not only on the prospects of their detectability, but also on the atmospheric

chemical composition and the capability of characterizing these atmospheres. Furthermore,

the relatively large sample of nearly 3400 confirmed planets and another ∼ 4700 planet

candidates to-date1 has enabled us to calculate exoplanet occurrence rates in our galaxy

(Catanzarite & Shao 2011; Traub 2012; Howard et al. 2012; Bonfils et al. 2013; Dressing &

Charbonneau 2013; Petigura et al. 2013; Kopparapu 2013; Gaidos 2013; Fressin et al. 2013;

Dong & Zhu 2013; Foreman-Mackey et al. 2014; Morton & Swift 2014; Silburt et al. 2015;

Dressing & Charbonneau 2015; Burke et al. 2015; Mulders et al. 2015). These initial esti-

mates are dominated by close-in planets due to the sensitivity of the detection techniques

and search pipelines. Nevertheless, these studies made a crucial and a significant leap in

understanding planet diversity, and paved a way for comparative planetology of exoplanets.

Several of the above mentioned studies have also focused on obtaining an estimate of the

fraction of stars that have at least one terrestrial mass/size planet in the habitable zone (HZ),

or η⊕. Estimates of η⊕ for Sun-like stars have been calculated by the data collected from the

Kepler mission. Earlier estimates ranged from 0.02 (Foreman-Mackey et al. 2014) to 0.22

(Petigura et al. 2013) for GK dwarfs, but more recent analyses (Burke et al. 2015) imply

that systematic errors dominate. For M-dwarfs, η⊕ is estimated to be ∼ 20% on an average

(Dressing & Charbonneau 2015). Apart from the general curiosity of finding how common

are Earth-like planets in our galaxy, the focus on η⊕ has a more practical application: It can

be used in the design of direct imaging missions, like the concept studies under consideration

1http://exoplanetarchive.ipac.caltech.edu/
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HabEx2, the Habitable Exoplanet Explorer; and LUVOIR3, the Large UV-Optical-InfraRed

surveyor with the goal of detecting biosignatures, and also in calculating ‘exo-Earth candidate

yield’, the number of potentially habitable extrasolar planets (exoEarth candidates) that can

be detected and spectroscopically characterized (e.g., Stark et al. 2014, 2015).

Crucial to these estimates are the location of the main-sequence HZ, which have been

studied by both 1-D and 3-D climate models (Kasting et al. 1993; Selsis et al. 2007b; Abe et

al. 2011; Pierrehumbert & Gaidos 2011; Kopparapu et al. 2013; Leconte et al. 2013a; Yang

et al. 2013; Zsom et al. 2013; Kopparapu et al. 2014; Wolf & Toon 2014; Yang et al. 2014a;

Wolf & Toon 2015; Way et al. 2015; Godolt et al. 2015; Leconte et al. 2015; Kopparapu

et al. 2016; Haqq-Misra et al. 2016; Ramirez & Kaltenegger 2017; Kopparapu et al. 2017).

With some exceptions for certain types of planets (Kane et al. 2014), there has not been an

overarching way to classify planets beyond the HZ. The lack of a systematic way to classify

exoplanets in general, combined with the allure of planets within it, has led to direct imag-

ing mission yield analyses that focus on HZ planets to the exclusion of everything else (e.g.,

Stark et al. 2014, 2015). While some mission studies have attempted to classify the non-HZ

planets into hot, warm and cold planets that a mission would discover4, the boundaries for

the classification are arbitrarily fixed without giving consideration to chemical behavior of

gases and condensates in a planetary atmosphere. Classifying different size planets based

on the transition/condensation of different species (Burrows et al. 2004; Burrows 2005) pro-

vides a physical motivation in estimating exoplanet mission yields, separate from exo-Earth

candidate yields.

In the search for exo-Earth candidates, we will undoubtedly detect a multitude of

brighter planets. According to Stark et al. (2014), for an 8m size telescope, the number

of exo-Earth candidates detected is ∼ 20 (see Fig. 4 in Stark et al. 2014), although this is

strongly dependent on the value of η⊕. At the same time, the number of stars observed to

detect these exo-Earth candidates is ∼ 500. If we assume that, on an average, every star

has a planet of some size (Cassan et al. 2012; Suzuki et al. 2016), then there are ∼ 500

exoplanets of all sizes that can be observed. Not considering the ∼ 20 exo-Earth candidates,

the bulk of the exo-planets will fall into ‘non-Earth’ classification, without any distinguishing

features between them. This provides an additional motivation to devise a scheme based on

planetary size and corresponding atmospheric characteristics of exoplanets.

Some work has been done at the theoretical level to derive the radiative response of

2http://www.jpl.nasa.gov/habex/

3https://asd.gsfc.nasa.gov/luvoir/

4https://exoplanets.nasa.gov/exep/studies/probe-scale-stdt/
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an irradiated atmosphere (Robinson & Catling 2012; Parmentier & Guillot 2014; Robinson

& Catling 2014; Parmentier et al. 2015), but these analytical tools have not been either

used to derive any general boundaries nor tied to planet occurence estimates, and were not

designed with that intent in mind. This highlights the need for a theory-based system to

classify planets beyond the habitable zone for the purposes of understanding the diversity of

worlds future missions could explore. Such a system should be based on the properties we

can measure today, primarily size and orbital information, and the boundaries in the scheme

should divide planets with major differences in the properties that would be observable with

current and future missions.

Fortunately, much of the theory needed for such a classification scheme already exists.

There has been significant progress in understanding how the size of a planet is a major

control on composition, and therefore on future observables (Rogers & Seager 2010a,b).

This includes work on the relationship between size, density, and bulk composition (Fortney

et al. 2007; Weiss & Marcy 2014; Rogers 2015; Wolfgang et al. 2016; Chen & Kipping

2017). While the exact values for the boundaries of mass-radius change based on the specific

analysis or theoretical technique, there is growing evidence of structure in the occurrence

rate distribution that suggests compositional aggregates: 1) small, rocky worlds whose bulk

composition and behavior is dominated by Fe, Mg and Si species; 2) planets with Fe/Mg/Si

cores but significant gas envelopes consisting of H/He, CH4, NH3 ices; and 3) gas giants

whose bulk composition and behavior is dictated almost exclusively by its volatiles.

Similarly, there have been significant advances in our understanding of how the orbital

separation of non-HZ planets could affect the chemical composition of the atmosphere (Ca-

hoy et al. 2010). A constant theme across these studies is the influence of clouds. As a

planet moves further from its host star, its atmosphere will cool and lead to condensation

of progressively less volatile chemicals in the atmosphere. This condensation would create a

cold trap and an associated cloud deck. The result of this is a significant change in spectral

properties: as the condensing species would be trapped at or below the cloud deck, the

cloud deck itself would absorb and scatter light, causing preferential sampling of the layers

at or above the cloud deck. Multiple ”onion-like” cloud decks can form as sequentially less

volatile species condense at higher altitudes for planets with greater star-planet separation

distances and correspondingly lower levels of incoming stellar flux. This process can be ob-

served in detail in the gas giants of our own Solar System (Evans & Hubbard 1972), and has

been postulated to be a driver for the atmospheric structure and observable properties of

exoplanet atmospheres (Burrows & Sharp 1999; Sudarsky et al. 2003; Burrows et al. 2004;

Burrows 2005; Fortney 2005; Marley et al. 2007; Morley et al. 2013; Wakeford & Singh 2015;

Wakeford et al. 2017). We also note that the habitable zone itself has been defined in a

manner consistent with this, as the instellations (stellar incident flux) at which liquid water
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clouds form but carbon dioxide clouds do not (Abe et al. 2011).

This prior work enables the construction of an overarching scheme for identifying classes

of planets. This scheme could apply to all worlds, regardless of whether they are rocky or

gaseous (or something in between). And it would be both based on the current observable

properties, and prediction of major transitions in future observables. In short, this represents

a comprehensive means of predicting the diversity yields of future planet characterization

missions. Below we discuss in more detail how we simulate the processes underlying this clas-

sification scheme. These simulations define the boundaries between different planet classes,

for which we calculate occurrence rates based on prior exoplanet detection missions. The

occurrence rates allow us to simulate exoplanet yields - not just for HZ planets but for a

diversity of different kinds of worlds. Finally, we close with a discussion of the caveats of

this approach, and the implications of this scheme for future missions.

2. A New Classification Scheme

A planet size - and the relationship between its size and mass - appears to be primarily

driven by volatile inventory. For example, the atmospheric composition of larger planets

is predominantly H2/He, while smaller planets can have a mixture of CH4, CO2, H2O and

NH3. High-temperature atmospheres, such as hot Jupiters, should have their chemistry -

and therefore their spectral features - determined primarily by equilibrium chemistry. Low-

temperature atmospheres will have chemistry dictated by photochemistry, but this will be

secondary to determining what species are condensing in their atmospheres. The exception

to this - which we will discuss later - is for photochemical aerosols, which could have a major

impact in the same manner that clouds do.

The chemical behavior of gases and condensates in a planetary atmosphere can be de-

termined as a function of pressure, temperature, and metallicity. Using results from Lodders

and Fegley (2002) and Visscher et al. (2006) adapted with solar abundances taken from

Lodders (2010), we have computed the condensation curves for sphalerite ZnS, H2O, CO2

and CH4 as a function of pressure and temperature for systems with a solar metallicity.

Pressure-temperature profiles of planetary atmospheres are tightly related to the incom-

ing stellar flux. We define the boundaries between our different selected planetary cases

as the stellar fluxes for which these four species condense out. For instance, ZnS clouds

have been considered as possible condensates in hot exoplanet atmospheres (Morley et al.

2012; Charnay et al. 2015), so the location (or the stellar flux) at which ZnS clouds form

in a planetary atmosphere denotes the first boundary for our planet classification. Moving
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further away from the star, at relatively lower stellar fluxes, H2O starts condensing in the

atmosphere. This, then, becomes the next boundary for grouping different planets. Between

these two boundaries is where one would expect to find ZnS mineral clouds and H2O in a

gaseous state. Continuing to lower fluxes, CO2 and CH4 condensates bracket final bound-

aries. The results are independent of any particular model atmospheres, and in principle,

any pressure-temperature profile may be superimposed on these condensation curves to find

the equilibrium composition along the profile. In particular, the intersection of a particular

pressure-temperature profile with one of these condensation curves indicates the pressure

and temperature at which the respective species condenses out in the planetary atmosphere

considered. We have investigated the different incident stellar fluxes, or instellations, for

which condensates could form within the regions of an exoplanet system that will be probed

by future direct imaging missions. Specifically, we simulate the star-planet separations for

which ZnS, H2O, CO2 and CH4 would condense out in planetary atmospheres. Other metal-

lic clouds can condense at distances closer to the star than the ZnS condensation line, and

other volatiles (e.g., NH3) can condense at orbiting distances beyond the CH4 condensation

line, but such worlds are likely undetectable by future direct imaging missions so are not

simulated here.

We have considered six different planetary size boundaries: 0.5 R⊕, 1.0 R⊕, 1.75 R⊕, 3.5

R⊕, 6.0 R⊕, and 14.3 R⊕ in our grid. These boundaries represent, respectively: the radius

(0.5 R⊕) at which planets in the habitable zone appear to not have a sufficient gravity well

to retain atmospheres (Zahnle & Catling 2017); the “super-Earths” (1− 1.75 R⊕) and “sub-

Neptunes” (1.75− 3.5 R⊕), as defined by Fulton et al. (2017) (see section 4.4) based on the

observed gap in the radius distribution of small planets with orbital periods shorter than 100

days; the assumed upper limit on Neptune-size planets (6R⊕) based on the small peak in the

radius distribution from Fulton et al. (2017); and the radius past which planets transition to

brown dwarf stars (Chen & Kipping 2017). We have computed the corresponding pressure-

temperature atmospheric profiles using (1) the non-grey analytical model of Parmentier

and Guillot (2014) with the coefficients from Parmentier et al. (2015) and the Rosseland

opacity functional form of Valencia et al. (2013), and (2) the grey analytical model of

Robinson and Catling (2012, 2014), both modified to take the planetary size and instellation

as unique input parameters. We have used the Robinson and Catling (2012, 2014) model

for planets with radius smaller than 3.5 R⊕ at low instellations, and the Parmentier and

Guillot (2014) model for planets with a radius of 14.3 R⊕ at high instellations. We have

assumed an internal temperature Tint = 0 and mass-radius relations taken from Weiss and

Marcy (2014) for planets with radius smaller than 3.5 R⊕. We have assumed an internal

temperature Tint = 100 and the density calculated from Mass-radius relation from Chen

& Kipping (2017) for planets with radius equal to 14.3 R⊕. Assuming a planetary mass
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of 0.414MJ(131M⊕), the density is ∼ 0.25 g.cm−3. We have considered L = 0.95L� and

M = 0.965M� for the parent star5.

As an illustrative example, we show in Fig. 1 the condensation curves for the four

different species we considered (solid black), along with temperature profiles for two different

size planets: 0.5R⊕ and 14.3R⊕, at different incident stellar fluxes (‘instellation’). The figure

shows that ZnS would condense out at ∼ 10mb in the atmosphere of a highly irradiated

(220 times Earth flux) 14.3 Earth radius planet, a typical hot-Jupiter, whereas CH4 would

condense out in the atmosphere of a 0.5 Earth radius planet receiving only ∼ 1/280th the flux

Earth is receiving. Following this procedure, we have derived the radius and stellar flux where

other gaseous species condense in the atmosphere. Table 1 provides the corresponding data

of the planetary radius and stellar flux boundaries that can be used for classifying planets

into different regimes. These boundaries are parameterized in Eq.(1) and are also available

as an online calculator at: http://www3.geosc.psu.edu/~ruk15/extrasolar/.

Table 1: Planetary radii and stellar flux values at which the given

species condense in a planetary atmosphere, for a star with L =

0.95L� and M = 0.965M�. These limits form the boundaries for

classifying planets into different categories to calculate exoplanet

yield estimates. See Fig. 2 and Section 2.2.

Stellar Flux (Earth flux)

Radius (R⊕) ZnS H2O CO2 CH4

0.5 182 1.0 0.28 0.0035

1.0 187 1.12 0.30 0.0030

1.75 188 1.15 0.32 0.0030

3.5 220 1.65 0.45 0.0030

6.0 220 1.65 0.40 0.0025

14.3 220 1.7 0.45 0.0025

5The values of the stellar luminosity and mass are obtained as follows: We downloaded the confirmed

and candidate Kepler catalog from NEXSCI, found the median values of stellar luminosity and mass for

each data set, and then took the average value of luminosity and mass from these median values. Median

Luminosity for candidate planet list: 1.057; Median Stellar mass for candidate planet list: 0.97; Median

Luminosity for confirmed planet list: 0.86; Median Stellar mass for confirmed planet list: 0.96; Average

luminosity of confirmed & candidate: (1.057 + 0.86)/2 = 0.95; Average stellar mass of confirmed & candidate:

(0.97+0.96)/2 = 0.965

http://www3.geosc.psu.edu/~ruk15/extrasolar/
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F (Rp)i = aix
5 + bix

4 + cix
3 + dix

2 + eix+ fi (1)

where F (Rp)i is the stellar flux, normalized to the current Earth flux (1360 Wm−2),

at which species i = (ZnS, H2O,CO2,CH4) condenses on a planet with radius Rp, and

x = Rp/R⊕ given in Table 1. The coefficients for the four condensing species are given in

Table 2.

Table 2: Coefficients to be used in Eq.(1).

a b c d e f

ZnS 0.0010338041 - 0.0255230451 0.1858822989 - 0.4990171468 0.5690844110 1.6385396777

H2O 0.0017802416 - 0.0443704003 0.3302966853 - 0.9299682851 1.1366785108 0.6255832476

CO2 0.0002947546 - 0.0070583509 0.0483928147 - 0.1198359100 0.1477297602 0.2304769313

CH4 -0.0000033096 0.0000889715 -0.0007644190 0.0026719183 -0.0038305535 0.0048373922

2.1. Application of the Classification Scheme to Obtain Planet Occurrence

Rates

Extending the insights obtained from Fig. 1 and Table 1, it is then possible to define

various zones as a function of stellar flux and planetary radius. This should qualitatively ap-

ply across all stellar types and the entire field of planets, even if the quantitative positions of

the boundaries change due to, for example, the age of the system and the amount of internal

heat released from planets, or the stellar energy distribution (SED) and its relationship to

planetary albedo (Segura et al. 2003). For a full consideration of such caveats, see section

3.1. This particular framing of the parameter space will allow us to calculate the occurrence

of different kinds of planets within each zone based on their condensation conditions, as both

radius and flux are measurable quantities.

We have performed such a calculation of ηplanet, the fraction of stars that have a planet

within one of the zones defined by a condensing species. As an illustrative example of how

these boundaries can be used to calculate the occurrence of planets, we apply these criteria to

the preliminary parametric model introduced by one of NASA’s Exoplanet Program Analysis

Group (ExoPAG) science analysis studies (SAG13). A detailed discussion of the SAG13

model is outside the scope of this paper, but we will summarize the most critical points.

The SAG13 model is based on a simple meta-analysis of planet occurrence rates from
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CH
4,cond

 → CH
4

CO
2,cond

 → CO
2 ZnS → Zn

Robinson and Catling, 2012

Robinson and Catling, 2014

Parmentier and Guillot, 2014

Parmentier et al., 2015

r = 0.5 r
Earth

  /  I = 0.0035

r = 14.3 r
Earth

  /  I = 220

H
2
O

cond
 → H

2
O

Fig. 1.— Dependence of ZnS, H2O, CO2 and CH4 condensation with pressure and tempera-

ture in any planetary atmosphere (solid black) along with the pressure-temperature profiles

for two different sizes of planets, 0.5 R⊕ and 14.3 R⊕ and two different instellations, 0.004

I⊕ and 220 I⊕, respectively (solid red). The intersections of the two sets of curves indicate

that CH4 and ZnS are condensing out in each of considered planetary atmospheres.
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many different individual publications and groups. Specifically, the SAG13 group collected

tables of occurrence rates calculated over a standard grid of planet radius, period, and stellar

type. A full description of the grid is as follows. The ith bin in the planet radius is defined

as the interval:

Ri = [1.5i−2, 1.5i−1)R⊕ (2)

This implies the following bin edges: [0.67, 1.0, 1.5, 2.3, 3.4, 5.1, 7.6, 11, 17,...] R⊕.

The jth bin in the planet period is defined as:

Pj = 10 . [2j−1, 2j)days (3)

This implies the following bin edges: [10, 20, 40, 80, 160, 320, 640,...] days

Data and models from peer-reviewed publications (Petigura et al. 2013, ForemanMackey

et al. 2014, Burke et al. 2015, Traub 2015, Dressing & Charbonneau 2013) were integrated

over the standard grid, and supplemented by several unpublished tables from the 2015 Kepler

“hack week” which were based on Q1-Q17 DR24 catalog, Kepler completeness curves, and

data products at the time.

However, for our current work, we did not use the SAG13 standard grid mentioned

above because the SAG13 grid does not represent the condensation sequences described

in the previous section. Instead, we took the stellar fluxes from Table 1 where species

condensation happens, and calculated the corresponding orbital periods based on the stellar

mass (0.965) M� and luminosity (0.95) L� described in footnote 5. It should be noted that

the SAG-13 grids are available for different spectral types. Herein, our work focuses on the

G dwarf population and employs the corresponding grids.

The SAG13 submissions were then processed as follows. First, within each spectral

type, the sample geometric mean (µi,j) and variance (σ2
i,j) was computed in each (i, j)-th bin

of the period-radius grid, across the different submissions. The mean values µi,j formed a

“baseline” table of occurrence rates. “Optimistic” and “pessimistic” tables were also defined

by using the µi,j ± 1σi,j values for each (i, j)-th bin.

SAG13 then fit a piecewise power law to the “pessimistic”, “baseline”, and “optimistic”

combined tables. The power law had the following form:

∂2N(R,P )

∂lnR ∂lnP
= ΓiR

αiP βi (4)
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For optimistic case, Γi = [1.06, 0.78], αi = [−0.68,−0.82], βi = [0.32, 0.67]; for pes-

simistic case Γi = [0.138, 0.72], αi = [0.277,−1.56], βi = [0.204, 0.51]; for baseline, Γi =

[0.38, 0.73], αi = [−0.19,−1.18], βi = [0.26, 0.59]

The break between two pieces of the power law was set at 3.4 R⊕ (following Burke et

al. 2015), hence the two values for the coefficients, and a least squares fit was performed

separately to each of the pieces. Similarly to the mean and variance above, logarithms of

occurrence rates were used when performing the least squares of log occurrence rates, rather

than actual occurrence rates, in order to properly balance the effects of small and large

occurrence rates. This resulted in “pessimistic”, “baseline”, and “optimistic” parametric

models. These models were then integrated across the planet parameter boundaries described

in this paper.

It should be stressed that community-sourced data do not represent independent mea-

surements or estimates of scientific quantities, so that the SAG13 sample mean and variances

should not be interpreted as a formal mean and uncertainty of exoplanet occurrence rates.

Rather, they simply represent one possible way to measure the state of knowledge as well

as the disagreement on the rates within the occurrence rate community. In other words, the

SAG13 “pessimistic”, “baseline”, and “optimistic” cases refer to the typical pessimistic, av-

erage, and optimistic submissions within the SAG13 community survey, rather than formal

scientific results.

Alternative ways of combining SAG13 results are also possible, such as: including only

peer-reviewed submissions, including submissions based only on different catalogs, removing

outliers, etc. A detailed analysis of this is beyond the scope of this paper, but as a general

rule, combinations tend to fall somewhere between the occurrence rates published in Petigura

et al.(2013) and Burke et al. (2015) for G-dwarfs, which represent a range of about 4 in the

warm rocky planet regime, with a tendency to be closer to Burke et al. (2015). For example,

the geometric mean combination which we use in this paper is about 25% lower than Burke

et al. (2015) for warm rocky planets, though it is significantly higher than Petigura et al.

(2013). It should also be stressed that extrapolation is implied when integrating fitted power

laws into cold planets or very small planet sizes, so the numbers in those regions remain very

unreliable.

To judge the robustness of the SAG13 occurrence rate estimates, independent occurrence

rates were calculated using the inverse detection efficiency method based on the data from

the DR25 catalog. The occurrence rate per bin, η, is given by

η =
1

n?
Σ
np

i

1

compi

(5)
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Where compi is the survey completeness evaluated at the radius and orbital period of

each planet in the bin, n? is the number of stars surveyed, np is the number of planets in

each bin. The planet list is taken from Thompson et al. (2017), using a disposition score

cut of 0.9. The stellar properties are taken from Mathur et al. (2017), removing giant stars

with logg < 4.2 and culling the G dwarfs by selecting stars with 5300 K < Teff < 6000 K.

The completeness of each star is calculated with KeplerPORT (Burke & Catanzarite 2017),

and the survey completeness is calculated by averaging over all stars that were successfully

searched for planets according to the timeoutsumry flag.

The above equation assumes that the vetting completeness (the fraction of planet tran-

sit signals (TCEs, Threshold Crossing Events) properly classified as planet candidates) and

reliability (the fraction of transiting candidates that are not caused by instrumental arti-

facts or statistical false alarms) are 100%. The vetting completeness and reliability are very

important for small planets, especially at long orbital periods. The vetting completeness

decreases substantially when one employs a high score cut on the DR25 catalog while the

reliability approaches 100%. The net effect is that occurrence rates are likely to be under-

estimated by ignoring both corrections. It should be noted that all SAG13 calculations also

ignored vetting completeness and reliability. We note that more work needs to be done to

do a reliable occurrence rate calculation.

For regions with no planet detections (low instellation, long period orbits), occurrence

rates were estimated with a parametric function that is a broken power-law in period and ra-

dius. Free parameters were constrained using the Exoplanet Population Observation Simula-

tor (EPOS, Mulders et al. in prep). EPOS generates planet populations from this parametrized

description using a Monte Carlo simulation, and conducts synthetic observations using the

survey completeness from the DR25 catalog. The synthetic observable populations are com-

pared with the observed planet distribution from Kepler in the range P = [2, 400] days and

Rp = [0.5, 8] R⊕ , and the posterior parameters are estimated using emcee (Foreman-Mackey

et al. 2013). Binned occurrence rates are calculated by marginalizing the posterior paramet-

ric distribution over the bin area, and taking the 50% and 16% and 84% percentiles for the

mean and 1-sigma error, respectively.

Table 4 provides the occurrence rates calculated from Eq.(5) for the same bins as in

Tables 1 & 2. The values are more or less consistent within the uncertainties of SAG13

ηbasl from Table 2. However, the extrapolations into the cold planet regimes (low instel-

lation fluxes) results in a disagreement between SAG13 values and from Eq. (5). This is

expected, considering that (1) the cold regimes do not have any planet detections and any

extrapolations are expected to wildly deviate (even between the methodologies) from the true

distribution, and (2) the SAG13 rates are a combination of several individual methodoligies.
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Table 3: Occurrence rates of planets in different boundaries, defined in Ta-

ble 1 classification scheme. The ηplanet values are estimated using SAG-13

occurrence rates. The ? values are based on extrapolation and therefore are

very uncertain.

Planet Type (Stellar Flux range) Radius (R⊕) ηpess ηbasl ηopt
Hot rocky (182-1.0) 0.5-1.0 0.22 0.67 2.04

Warm rocky (1.0-0.28) 0.5-1.0 0.09? 0.30? 1.04?

Cold rocky (0.28-0.0035) 0.5-1.0 0.50? 1.92? 7.61?

Hot super-Earths (187-1.12) 1.0-1.75 0.21 0.47 1.04

Warm super-Earths (1.12-0.30) 1.0-1.75 0.087 0.21 0.54

Cold super-Earths (0.30-0.0030) 1.0-1.75 0.50? 1.42? 4.14?

Hot sub-Neptunes (188-1.15) 1.75-3.5 0.29 0.48 0.79

Warm sub-Neptunes (1.15-0.32) 1.75-3.5 0.12 0.22 0.41

Cold sub-Neptunes (0.32-0.0.0030) 1.75-3.5 0.77? 1.63? 3.52 ?

Hot sub-Jovians (220-1.65) 3.5-6.0 0.05 0.07 0.12

Warm sub-Jovians (1.65-0.45) 3.5-6.0 0.04 0.07 0.13

Cold sub-Jovians (0.45-0.0030) 3.5-6.0 0.58? 1.35? 3.19?

Hot Jovians (220-1.65) 6.0-14.3 0.028 0.056 0.11

Warm Jovians (1.65-0.40) 6.0-14.3 0.023 0.053 0.12

Cold Jovians (0.40-0.0025) 6.0-14.3 0.34? 1.01? 3.07?
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Table 4: Occurrence rates calculated from Eq.(5). Comparing with

the ηbasl values from Table 3 from SAG-13 occurrence rates, the

SAG13 values are more or less consistent with the values given

below within the uncertainties. We use the ηbasl values from Table

3 to calculate the exoplanet yield estimates in section 2.2. As with

Table 3, the ? values are extrapolated.

Planet Type (Stellar Flux range) Radius (R⊕) η

Hot rocky (182-1.0) 0.5-1.0 0.552+0.195
−0.150

Warm rocky (1.0-0.28) 0.5-1.0 0.215+0.148
−0.099

?

Cold rocky (0.28-0.0035) 0.5-1.0 1.09+1.48
−0.755

?

Hot super-Earths (187-1.12) 1.0-1.75 0.374+0.068
−0.056

Warm super-Earths (1.12-0.30) 1.0-1.75 0.145+0.071
−0.061

Cold super-Earths (0.30-0.0030) 1.0-1.75 0.78+0.86
−0.52

?

Hot sub-Neptunes (188-1.15) 1.75-3.5 0.356+0.049
−0.047

Warm sub-Neptunes (1.15-0.32) 1.75-3.5 0.147+0.058
−0.057

Cold sub-Neptunes (0.32-0.0.0030) 1.75-3.5 0.85+0.88
−0.57

?

Hot sub-Jovians (220-1.65) 3.5-6.0 0.113+0.019
−0.018

Warm sub-Jovians (1.65-0.45) 3.5-6.0 0.051+0.021
−0.020

Cold sub-Jovians (0.45-0.0030) 3.5-6.0 0.279+0.31
−0.18

?

Hot Jovians (220-1.65) 6.0-14.3 0.004+0.011
−0.004

Warm Jovians (1.65-0.40) 6.0-14.3 0.002+0.004
−0.001

Cold Jovians (0.40-0.0025) 6.0-14.3 0.008+0.031
−0.007

?
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Integrating the SAG13 parametric model across the bin boundaries defined in Table 1

gives the occurrence rates in Fig 2, where we have assumed L = 0.95L� and M = 0.965M�.

Each class of planet has an occurrence that is a mixture of astrophysical effect and an

observational bias. For example, even though it is easier to detect giant planets in close

orbits, their occurrence rate is comparatively smaller (0.05) than close-in sub-Neptune or

terrestrial-size planets (∼ 0.48, respectively). The implication is that hot, giant planets are

likely less in number.

The trend in Fig. 2 indicates that the occurrence rate generally increases, from larger

planets to the smaller ones in any particular bin. We can define the inner edge of the habitable

zone (HZ) as the boundary where H2O starts condensing in a terrestrial planets atmosphere,

and the outer edge of the habitable zone as CO2 condensation boundary (Abe et al. 2011).

Within this zone, it appears that the terrestrial size planets have higher occurrence rates

(0.2 − 0.3) than compared to either Jovians (0.053) or Neptunes (0.07) planets. However,

it should be noted that the occurrence rate of terrestrial planets in this regime is severely

restricted by low number statistics.

2.2. Mission yield estimates

With the planet categorization scheme and associated occurrence rates described above,

we estimated the exoplanet yields for each type of planet using the yield optimization code

of Stark et al. (2015). Briefly, this code works by simulating the detection of extrasolar

planets around nearby stars over the lifetime of a mission. To do so, it distributes a large

number of synthetic planets around each nearby star, sampling all possible orbits and phases

consistent with the planet definition, illuminates them with starlight, calculates an exposure

time for each planet given a set of assumptions about the instrument and telescope, and

determines the fraction of planets that are detectable within a given exposure time (i.e.,

the “completeness”). The code optimizes the exposure time of each observation, as well

as which stars are observed, the number of observations to each star, and the delay time

between observations, to maximize the yield for a given type of planet.

We first ran the yield code to define the set of observations that maximized the yield of

exoEarth candidates. We adopted the same baseline mission parameters defined in Table 3

of Stark et al. (2015) with exception to the OWA, which increased from 15 λ/D to 30 λ/D,

the contrast for spectral characterization which improved from 5 × 10−10 to 1 × 10−10, the

spectral resolution which increased from R=50 to R=70, and the SNR required for spectral

characterization which increased from 5 to 10 per spectral channel. We also adopted a

new definition for exoEarth candidates. We distributed exoEarth candidates across the
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Kopparapu et al. (2014) conservative HZ, which ranges from 0.95 - 1.67 AU for a solar

twin. The semi-major axis distribution followed the analytic SAG13 occurrence rate fits.

ExoEarth candidates ranged from 0.5 1.4 Earth radii, with the lower radius limit set by

0.8 ∗ (a ∗ (L?)
1/2)−0.5, a reasonable limit following the work of Zahnle & Catling (2017).

All exoEarth candidates were assigned a flat geometric albedo of 0.2. In this paper, the

exoEarths are used solely to optimize an observation plan. We do not report on the yield of

these exoEarth candidates, focusing instead on the yields of the classes of planets defined in

section 2 when following such an observation plan. We then locked this set of observations

in place and re-ran the yield code to calculate the yield of each planet type discussed above,

simply by changing the planets input parameters each time. For each planet type, we

distributed planet radii and orbital period according to the SAG13 distribution. We assumed

Lambertian phase functions for all planets.

To calculate the brightness of a given planet, we must also know the planets albedo.

The actual distribution of exoplanet albedos is unknown. So for this study, we simply

assigned each planet type a single reasonable albedo. We adopted a wavelength-independent

geometric albedo of 0.2 for rocky planets and 0.5 for all other planets.

To calculate an expected yield, we must also assign each planet type an occurrence rate.

Table 3 lists the occurrence rates obtained from §2.1 in each bin of planet size and planet type

(hot/warm/cold). The histogram plot in Fig.3 visualizes the total scientific impact of the

habitable planet candidate survey. The y-axis gives the expected total numbers of exoplanets

observed (yields), which are also given by the numbers above the bars. By “expected”, we

mean the most probable yield after many trials of an identically executed survey. Three sizes

of exoplanets are shown, consistent with Table 1. For each planet size, three incident stellar

flux classes are shown: hot (red), warm (dark blue), and cold (ice blue). The boundaries

between the classes correspond to the temperatures where metals, water vapor, and carbon

dioxide condense in a planet’s atmosphere. The warm bin is not the same as the habitable

planet candidate bin, as it is likely too generous.

We also calculated each planet’s yield when deviating from the baseline mission param-

eters. Figs. 4 & 5 show the sensitivity of each planet’s yield to changes in a single mission

parameter. Each yield curve has been normalized to unity at the value of the baseline mis-

sion. As expected, the yield of hot planets is more sensitive to the IWA than cold planets,

and the yield of cold planets is more sensitive to OWA than hot planets. However, surpris-

ingly, the yield of cold Jupiters is quite sensitive to IWA, suggesting that an observation

plan optimized for the detection of exoEarths will typically detect cold Jupiters in gibbous

phase near the IWA. We note that in general, larger apertures are less sensitive to changes

in mission parameters than smaller apertures.
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Fig. 2.— Planet occurrence rate estimates from SAG13 baseline analysis (see Table 3)

as a function of incident flux and planetary radius, assuming a star with L = 0.95L� and

M = 0.965M�. The boundaries of the boxes represent the regions where different chemical

species are condensing in the atmosphere of that particular size planet at that stellar flux,

according to equilibrium chemistry calculations. The radius division is from Fulton et al.

(2017) for super-Earths and sub-Neptunes, and from Chen & Kipping (2017) for the upper

limit on Jovians. The ‘?’ values are based on extrapolation and therefore are very uncertain.

See §2.1 for more details.
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(a) (b)

(c)

Fig. 3.— Expected number of exoplanets observed (y-axis) for the baseline occurrence

rates in each planet category (rocky, super-Earths, sub-Neptunes, sub-Jovians and Jovians)

for hot (red), warm (blue) and cold (ice-blue) incident stellar fluxes shown in Table 1 and

Fig.2. The telescope sizes are (a) 4m, (b) 8m and (c) 16m. The occurrence rates, as well as

yield estimates, ignore multiplicity and the planet categories were all treated as effectively

independent.
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3. Discussion

In this section, we discuss caveats to our classification scheme, and its relevance to future

missions that plan to detect and/or characterize extrasolar planets.

3.1. Caveats to the classification scheme

The boundaries discussed in earlier sections are made out of the necessity for creating

a single classification scheme that applies to all planets, and that can translate current

planet obervations into predictions of future planet yields. No single scheme will be able to

properly capture the complex interactions between myriad planetary processes in exoplanet

atmospheres. An analogy with the habitable zone here is useful: The habitable zone is

not a good means of determining the habitability of a single planet. Instead, it is best

used to understand how many potentially habitable worlds a given mission may be able

to probe for evidence of habitability. Similarly, the classification scheme discussed in this

paper is probably not the best means for determining whether a single world has a certain

combination of clouds decks or upper atmospheric composition. Ultimately, that should be

determined by specific observations of such worlds. What this scheme is useful for is to

help understand the diversity, and the number, of worlds that can be expected from future

missions and ground-based observatories.

Even given the above overall caveat, more specific caveats exist. Much of the work upon

which this classification scheme is based is relatively new, and represents an area of rapidly

evolving thought. This means that the resulting classification scheme will also have to evolve

as these theories are better elucidated, tested, and refined. Ultimately, when future exoplanet

characterization missions and ground-based observatories become operational, they will pro-

vide the tests of the various hypotheses contained in the drawing of the boundaries shown

in Fig. 2. This again draws similarities to the habitable zone, which has evolved over the

years, and will ultimately be determined by missions. But until such observations are made,

this scheme (and the HZ) will enable predictions of how many such worlds we will be able

to eventually epxlore in detail.

An example of this rapid evolution is the work by myriad groups on the mass-radius

relationship of planets (Weiss & Marcy 2014; Rogers 2015; Wolfgang et al. 2016; Chen &

Kipping 2017) Clearly, this area of research is rapidly evolving - and further data on this

relationship is anticipated with continues ground-based observations of planets around M

dwarfs combines with TESS observations of the same target. Thus, we anticipate changes

to the boundaries selected in this study as these new data and models are incorporated into
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this line of research. We also anticipate that these data will allow for the study of how these

dividing lines are a function of instellation received by the planet. If that is the case, the

”horizontal” lines in our classification scheme (Figure 2) would instead be diagonal. We used

horizontal lines here as a first-order determination of this scheme and because deriving the

slope of those lines empirically or theoretically is well beyond the scope of this work. This

is something that may be true more generally - the lines drawn in our scheme may all be

diagonal, as we think instellation could impact planet size categories and that planet size

could impact the instellations at which various cloud decks form.

A second category of caveat is the lack of consideration of many planetary processes

and planet/star properties in this study. Kinetic chemistry, atmospheric circulation, internal

heat generation, different star types, and differing bulk planet composition are not explicitly

considered in this study. Each of these processes could affect the boundaries considered here.

Our boundaries have been determined at equilibrium. However, the distribution of

chemical constituents in planetary atmospheres can be strongly affected by the so-called

chemical quenching, in which as the material moves, the temperature and pressure within

the gas mixture change and chemical reactions may become slower, potentially reaching a

certain state for which the chemical abundances are ‘frozen’ (Madhusudhan et al. 2016).

Also, photochemistry could also impact the ability of a condensate to form. This is most

evident in the potential for secondary aerosols that form when photochemical byproducts

cause supersaturation and condensation in an atmosphere. This process occurs on many

solar system worlds (Courtin 2005; Waite et al. 2007; Gladstone et al. 2016), is thought

to have occurred on Archean Earth (Arney et al. 2016), and likely occurs on exoplanets

(Moses et al. 2011, 2014). However, these processes themselves will likely represent a signif-

icant overprint over the transitions that are proposed here, where within one of the planet

categories we propose, planets that are closer to their host star will have a gradual and

increasingly important contribution from non-equilibrium chemistry. But others may also

exist, including the potential for other photochemical byproducts to form in an atmosphere

and be evidenced in the planetary spectrum. However, we expect these will be secondary in

importance compared to the optical depth and cold-trapping effects of discrete cloud layers.

The specific properties of the planet and star are also not considered here. Atmospheric

circulation, internal heat generation, and the stellar energy distriburion (SED) are also

ignored here. These could all impact the specific position of the boundaries we propose.

Changing the SED can lead to changes in the planetary albedo, which would affect the

position of these boundaries just as they affect the habitable zone (Segura et al. 2003; Shields

et al. 2013, 2014; Yang et al. 2013, 2014a; Kopparapu et al. 2014, 2016; Wolf et al. 2017).

Greater internal heat generation, or decreased convection could lead to a suppression of
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cloud formation. These are not independent variables, as increased heat generation should

lead to increased convection and the SED could also impact circulation as it impacts the

altitude-dependent deposition of energy in the atmosphere. Although these properties and

processes are not included here, they could be in future papers, just as the consideration of

the habitable zone now includes consideration of internal heat sources (Barnes et al. 2013;

Haqq-Misra & Kopparapu 2015), atmospheric circulation and convection. Finally, we do not

consider the impact of the bulk chemical composition of the planet. Clearly, a planet that

is extremely carbon poor will be less likely to condense CO2 or CH4.

Lastly, we note that the simulations of the scheme in this paper considers a limited

parameter space, due to its focus on a near-term problem faced by the exoplanet commu-

nity. Given the ongoing studies of flagship missions that propose to directly image and

spectroscopically characterize extrasolar planets - HabEx and LUVOIR - we require an abil-

ity to discuss and compare the exoplanet yields from such missions. This will also help

us understand how these missions will complement the discoveries that will be made by

already-planned ground-based and space-based observatories. The focused utility shown in

this manuscript comes at the expense of other applications of the proposed classification

scheme. It could also be used to simulate the yields from future transit spectroscopy mis-

sions such as JWST or CHEOPS. It also helps us understand how detection missions such

as TESS, PLATO, and WFIRST will provide complementary discoveries to past exoplanet

detections, and increase the total expected diversity of known planets. These are all worthy

applications of the scheme we propose, but we save these applications for future manuscripts.

3.2. Application of classification scheme to future space-based direct imaging

missions

These estimates of the abundances of different planet types allow for projections of the

yields of future exoplanet missions. As mentioned in the introduction, two such missions

are under study in advance of the next astrophysics Decadal Survey: HabEx and LUVOIR.

Most of the discussion of these missions - and past direct imaging studies - has focused on

their ability to find and characterize rocky planets in the habitable zones of nearby stars.

However, the observations enabled by such missions would also bring an ability to observe

other kinds of worlds. All planets between the inner working angle and outer working angle

of the starlight suppression at the time of observation can be observed. And many of these

worlds will be brighter than rocky planets in the habitable zone. Therefore, even observation

strategies that are optimized for maximizing the yield of rocky planets in the habitable zone

will also yield observations of a considerable diversity of worlds.
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None of these yield estimates should be taken as simulations of the yields of the ar-

chitectures the HabEx and LUVOIR teams are studying. For one, these simulations hold

everything except telescope diameter constant, as a way to demonstrate how planet diversity

scales with telescope size and as a way to show end-member yields across the range of mis-

sion sizes being explored (For a more extensive options of varying quantities other than the

telescope diameter, see here: http://jt-astro.science:5100/multiplanet_vis). More

importantly, the two studies will explore four different architectures which may have differ-

ent instrument properties, assume different levels of technological development, and different

starlight suppression techniques. None of those nuances are considered here. We refer the

reader to the eventual reports from these teams for better estimates of the yields from these

missions. What we present here should instead be considered an example of how these planet

categories can be useful to such yield simulations.

Our simulations predict that a 4m-class mission would observe a great diversity of worlds

(Figure 3(a)). At that scale, a mission whose observations are designed to maximize the yield

of potential Earths will also yield the detection and characterization of all of the planet types

discussed here, with the exception of hot Jupiters. Hot Jupiters are not observed by a 4m-

class mission because the tight inner working angle of the 4m mission, and because of the

low abundances of hot Jupiters (see Table 2) . But a total of up to 90 planets are observed,

including up to 12 rocky/super-Earths planets in the habitable zone. The diversity of these

simulations will allow tests - albeit on a small sample size within each bin - of the planet

bins proposed here.

An 8m-class mission yields even more planets (Figure 3(b)). We predict that class of

mission would observe over 300 planets, including at least a few planets in each of the planet

classes proposed in this manuscript. Although neither LUVOIR nor HabEx is explicitly

considering an 8m mission, this size sits at the dividing line between the two studies and

represents an approximation of what a large HabEx or a small LUVOIR could enable.

The larger versions of LUVOIR (Fig. 3(c)) bring the ability to not only observe planets,

but to test the occurrence of different features within each of the planet bins. It would

observe dozens of each planet type, providing larger sample sizes which enables to study

each planet type as a population. As shown by Stark et al. 2014, a sample of 30 planets of

a given type would allow us to be sensitive to any feature that has at least a 10% chance

of occurring. For this class of mission, there would be a total of up to 1000 worlds. This

includes several hundred Neptune-size planets with orbits that likely cause water clouds -

but not carbon dioxide clouds - to form. The least populated bins are for hot Jupiters, which

only contains ∼ 15 detections, and for “cold rocky” which would have CO2 clouds, which

contains only few detections. But all other bins have at least 50 detections. As mentioned

http://jt-astro.science:5100/multiplanet_vis
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above, 30 planets of a given type would allow us to be sensitive to any feature that has a

∼ 10% chance of occurrence within that planet type (Stark et al. 2014). It is this large

number of observation that would allow the myriad hypotheses contained in this manuscript

to be tested. For example, the presence/absence of various cloud types could be plotted

as a function of the energy incident at the top of exoplanet atmospheres. And the absence

of absorption features associated with cold-trapping could be measured in each of these

bins. This logic has been applied to habitable planets before (Stark et al. 2014); here we

demonstrate that it also applies to planets beyond the habitable zone.

4. Conclusions

NASA concept mission studies that are currently underway, like LUVOIR and HabEX,

are expected to discover a large diversity of exoplanets. These larger missions would provide

large enough sample sizes that we could study each planet type in the context of its “rela-

tives” in the Solar system or currently known exoplanets. We present here a classification

scheme for exoplanets in planetary radius and stellar flux bins, based on chemical species’

condensation sequences in planetary atmospheres. This chemical behavior of gases is depen-

dent on pressure, temperature and metllicity, and we primarily focus on condensation curves

of sphalerite ZnS, H2O, CO2 and CH4. The order of condensation of these species repre-

sent the order in which the boundaries of our classification scheme are defined. We then

calculated the occurrence rates of different classes of exoplanets within these boundaries,

and estimated the direct imaging mission yields for various telescope sizes. While the main

focus of future flagship exoplanet direct imaging missions is to characterize a habitable world

for bio-signatures, the missions will also have the ability to observe other kinds of planets

within the system. Therefore, distinguishing features that separate planet categories based

on current observables (planet radius and incident stellar flux), and a scheme to illustrate

these categories, is essential in calculating the expected direct imaging mission yields, and

correspondingly choosing an optimal observational strategy.
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Fig. 4.— Yield for each planet type when deviating from the baseline mission by varying

one parameter at a time. The top panel is for a 4m mirror size and bottom is for 8 meter.

Solid, dashed, and dotted lines correspond to rocky, sub-Neptune, and Jovian planet types.

Color scheme is the same as Figure 3.
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Fig. 5.— Same as Fig. 4, but for a 16m mirror size.
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