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ABSTRACT 

Like amplitude and phase, polarization is one of the fundamental properties of light. 

Controlling polarization in a desirable manner is fundamental to science and technology. 

However, practical applications based on polarization manipulation are mainly hindered 

by the complexity of experimental system, bulky size and poor spatial resolution. In 

recent years, metasurfaces have drawn considerable attention in the scientific community 

due to their exotic electromagnetic properties and potential breakthrough for light 

manipulation. With the development of nanophotonics, the generation of arbitrary 

spatially-varying polarization from an input beam is achievable. The objective of this 

thesis is to develop metasurface approaches to control phase and polarization of light in 

subwavelength scale for novel applications, such as polarization-controlled hologram 

generation and structured beam generation. The emphasis of the thesis is placed on the 

polarization control using geometric plasmonic metasurfaces. 

We start by reviewing recent progress regarding novel planar optical components. After 

the introduction of mechanism of light-nanostructure interaction and the far-field 

scattering of metal nanostructure arrays based on Mie theory, we discuss the abrupt phase 

change emerging from rotated nanostrips and the generalized Snell’s law. To demonstrate 

the precise phase manipulation, we develop a metasurface approach for polarization-

controlled hologram generation. Moreover, we propose and experimentally demonstrate 

a novel method to realise the superposition of orbital angular momentum states in multiple 

channels using a single device.  

Spring from the superposition of two opposite circular polarizations, two different 

approaches for polarization manipulation at nanoscale are developed and experimentally 

verified. Based on the first approach, a vector vortex beam with inhomogeneous 

polarization and phase distributions is demonstrated, which features the spin-rotation 

coupling and the superposition of two orthogonal circular components, i.e., the converted 

part with an additional phase pickup and the residual part without a phase change. The 
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second approach is to control the phase of the two orthogonal circular components 

simultaneously to engineer the polarization profile. Furthermore, we adopt this approach 

to develop a compact metasurface device which can hide a high-resolution grayscale 

image in a laser beam. The compactness of metasurface approach in polarization 

manipulation renders this technology very attractive for diverse applications such as 

encryption, imaging, optical communications, quantum science, and fundamental 

physics. 
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Chapter 1 – INTRODUCTION 

Metasurfaces, a novel kind of ultrathin optical components, can manipulate light 

properties by introducing abrupt phase change over the scale of subwavelength. They can 

be considered as arrays of subwavelength optical elements which perform efficient light-

matter interaction to control the light properties. Considering the materials of 

nanostructures, this field are currently classified into two main categories: plasmonic 

metasurfaces [1-6] and dielectric metasurfaces [7-11]. These two categories have a 

common characteristic of geometry related interaction with light. Plasmonic metasurfaces 

are based on meta-atoms made from metallic nanostructures that exhibit effective electric 

and/or magnetic polarizabilities which are determined by their size, geometry, and 

orientation. In this context, optical responses are governed by the particle plasmon 

resonances they support. When applying an electric field to a metallic structure, the quasi-

free electrons are displaced from their equilibrium positions with respect to the nuclei. 

The metallic structure is polarized in this case. Meanwhile, a restoring force arises to 

bring the system back toward equilibrium.  In a time varying external field such as light, 

this collective motion can be viewed as a Lorentzian oscillator. This resonance is called 

surface plasmon resonance, which is the basis of light-matter interaction. Up to now 

various designs of nanostructures ( such as rod antennas [2], V-shaped antennas[1], L-

shaped antennas[12], and split-ring resonator [13]), and different types of metals ( such 

as gold [14], silver [15], and aluminum [6]) are investigated to realize plasmonic 

metasurface with interesting optical functionalities. However, the transmissive plasmonic 

metasurfaces consisting of single layer of nanostructures suffer from low device 

efficiency. To overcome this problem,  the reflective metasurface consisting of a gold 

ground layer, a silicon dioxide spacer layer and a top layer of nanostructures are 

developed to increase the efficiency [16]. Moreover, the three-layer design can give rise 

to a broad spectral response in the visible/near-infrared range.   

In comparison with plasmonic metasurface, dielectric metasurfaces are made of high-

refractive-index dielectric arrays, such as silicon [7, 10], andTiO2 [17, 18], which provide 

substantial control over the local light scattering property. For a fixed geometric size, the 

difference between metallic and dielectric nanostructures is in the sign of the dielectric 

permittivity, which is negative for metals and positive for dielectrics [19]. When light 

with frequency below or near the bandgap frequency of the material hits a dielectric 
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nanostructure, both the magnetic and electric dipole resonances are excited. Dielectric 

metasurfaces offer the opportunity for reducing dissipative losses and achieving large 

resonant enhancement of both electric and magnetic fields [7]. By carefully optimizing 

the shape and size of the dielectric nanostructures, the conversion efficiency of 

transmissive dielectric metasurface can be higher than 80% [7, 10, 18].  

With the interaction between metasurface and light field, wavefronts can be steered and 

shaped at subwavelength scale. The phase, polarization, and amplitude of light waves can 

be changed in unusual ways through metasurface. These features distinguish 

metasurfaces from conventional optical components which rely on light propagation over 

large optical path [1, 20, 21]. Meta-atoms are defined at the nanoscale, which can largely 

surpass the classical limits imposed by diffraction. The control over light beam at the 

nanoscale has led to a variety of relevant applications, including metasurface holograms, 

polarization dependent surface plasmon polaritons excitation, optical devices based on 

wavefront manipulation and nonlinear photonics. It also sets high expectations for 

applications of integrated circuits, optical computing, and medical technologies. 

 

  



 

3 

1.1 Review of Metasurfaces 

1.1.1 Metasurface for phase and polarization control 

Metasurfaces break the dependence on the propagation effect by introducing abrupt phase 

changes over the scale of the subwavelength. The first phase-gradient metasurface was 

demonstrated by Capasso’s group [1]. A two-dimensional array of V-shaped antennas 

was used to produce a linear phase gradient distribution (Figure 1.1(a)). Anomalous 

reflection and refraction phenomena were observed by patterning periodic distributed 

nanoantennas, where each unit cell consists of eight different V-shaped antennas covering 

the whole [0 2π] phase range. They derived generalized laws of reflection and refraction 

from Fermat’s principle and experimentally demonstrated an optical vertex by using gold 

nano-antennas (Figure 1.1(c)). Following this paper, this group demonstrated an out-of-

plane anomalous reflection and refraction through anisotropic arrays of V-shaped gold 

antennas [22]. Here the phase changes are generated by the interaction of linearly 

polarized light beam with V-shaped meta-atoms that support two plasmonic eigenmodes 

with different resonant properties. Huang et al. subsequently investigated dispersionless 

phase discontinuous by using dipole antenna array [2] (Figure 1.1(b)). It should be noted 

that this is a completely different approach, which is based on the Pancharatnam-Berry 

phase [23-25]. Abrupt phase change is generated when a circularly polarized light beam 

is converted to the opposite polarization. A broadband optical vortex beam was 

experimentally demonstrated based on this configuration (Figure 1.1(d)). Metasurface has 

recently attracted considerable attention because of its ultrathin structure, subwavelength 

precision of wavefront manipulation, broadband performance, and easier fabrication. It 

provides unprecedented capabilities in the manipulation of phase and polarization. More 

and more metasurface devices have been developed, such as planar lenses [10, 20, 26, 

27], axicons [3], waveplates [28, 29], beam splitters [30], vortex beam generators [1, 2, 

12, 31], polarization measurement devices [14, 32], an invisibility cloak [33], optical 

rotation [34], and spectrum splitters [35]. 
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Figure 1.1 Plasmonic metasurfaces [1, 2]. (a) The SEM picture of a V-shape antenna 

array. The unit cell of the plasmonic interface compromises eight gold antennas of width 

220 nm and thickness 50 nm. (b) Schematic illustrations of a representative dipole array. 

Each unit consists of eight gold rods with a rod to rod spacing of 400nm in both x and y 

directions. (c) Measured and calculated light distribution of an optical vortex with 

topological charge one, spiral patterns created by interference of the vortex beam and a 

co-propagating Gaussian beam, and interference patterns with a dislocated fringe. (d) 

Measured intensity distributions of the optical vortex beam at different wavelengths. 

Dual-polarity plasmonic flat lens based on helicity-dependent phase discontinuities for 

circularly polarized light was demonstrated using metasurface [36]. By controlling the 

helicity of the input light, the positive and negative polarities are interchangeable in one 

identical flat lens. With special phase distribution, in-plane and out-of-plane refractions 

could also be manipulated. A beam can be focused in a 3D spot either in a real or virtual 

focal plane (Figure 1.2(a)). Figure 1.2(b) shows aberration-free ultrathin flat lenses and 

axicons at telecom wavelengths [3]. A radial distribution of phase discontinuities was 

introduced to generate respectively spherical wavefronts and non-diffracting Bessel 

beams at telecom wavelengths. According to the simulations, high numerical aperture 

lenses (NA=0.015 for the f=3 cm lens, NA=0.77 for the f=371 μm) were realised. These 

flat lenses described above are transmission-type. What’s more, metasurface shows 

potential in the replacement of bulk refractive optical components with diffractive 
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property. Conventional diffractive optical components suffer from large chromatic 

aberrations due to the dispersion of the phase accumulated by light during propagation. 

Aieta et al. presented a planar lens without chromatic aberrations at three wavelengths 

[37]. This design is based on dielectric resonators which introduce a dense spectrum of 

optical modes to enable dispersive phase compensation (Figure 1.2(c)).  

 

Figure 1.2. (a) Schematic of metalens with interchangeable polarity. The focusing 

properties of the same metalens can be switched between a convex lens and a concave 

lens by controlling the helicity of the incident light [36]. (b) Schematic of the design of 

flat lenses and axicons [3]. In order to focus a plane wave to a single point at a distance f 

from the metasurface, a hyperboloidal phase profile is imparted onto the incident 

wavefront. (c) Schematic of the achromatic metasurface. It consists of subwavelength 

space resonators to preserve the operation that different wavelengths of light share 

identical focal length [37]. (d) and (e) schematic design of quarter-wave plate[29] and 
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half-wave plate [38], respectively. (f) Dielectric metasurface for radially and azimuthally 

polarized cylindrical vector beams generation [7]. (g) Schematic of the polarization 

rotation by a metasurface.  

Metasurfaces can be used not only for phase modulation, but also for polarization 

manipulation. Wave plates and polarizers have been successfully developed using 

metasurface approach. Figure 1.2(d) shows quarter-wave plate that generates light with a 

high degree of circular polarization (>0.97) from λ = 5 to 12 μm for arbitrary orientation 

of the linearly polarized incident light [29]. Figure 1.2(e) shows a broadband plasmonic 

metasurface-based half-wave plate [38]. A s-polarized wave incident from an angle of 

135 °  is converted into a p-polarized wave upon reflection. Amir Arbabi, et al. 

demonstrated a dielectric metasurface for complete control of phase and polarization. 

Figure 1.2(f) shows the metasurface for radial and azimuthal polarized vector beams 

generation. However, the requirement for nanofabrication is very critical. Our group 

presented a method to realise optical rotation which originates from the additional phase 

difference between the two circular components (figure 1.2(g)) [34]. Metasurface not 

only offers degree of freedom in controlling the wavefront and polarization, but also 

exhibits the ability of spectrum splitting at visible and near infrared frequency with high 

conversion efficiency [35].  

1.1.2 Metasurface for hologram generation 

Another convincing example of phase control is metasurface hologram [6, 30, 35, 39-43]. 

The metasurface approach provides great flexibility in engineering the wavefront of light, 

and can be applied to generate holograms. Recently, a plethora of phase holograms based 

on metasurfaces have been investigated and presented (see Figure 1.3). Huang et al. have 

demonstrated phase-graded metasurface holograms with full 3D image reconstruction 

(Figure 1.3(a)) [21]. The required phase profile was calculated using a computer-

generated holography algorithm similar to that used for holographic images using spatial 

light modulators. Almost simultaneously, Ni et al. [43] presented the ultrathin 

metasurface which provides phase modulation in the visible wavelength range for 

hologram generation (Figure 1.3(b)). It is worth noting that the conversion efficiency of 

hologram based on transmission-type metasurface is poor because of single-pass 

interaction between light beam and nanoantennas. To overcome the limitation, Huang et 

al. [6] and Zheng et al. [16] presented plasmonic meta-holograms with reflective-type 
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design which achieved multi-colour properties and higher efficiency (Figure 1.3(c)-(f)). 

Specifically, the concept introduced by Zhang and colleagues combines the superior 

phase controlling of geometric metasurfaces with reflect-arrays (arrays of metallic 

structures fabricated over a reflective surface) and yields a wide-angle reflective 

hologram with the efficiency of 80% (Figure 1.3(f)). The zeroth-order efficiency is 

extremely low. This structure also exhibits a broadband spectrum response over visible 

and near infrared wavelength range. These pave the way for putting metasurface 

hologram into practical application. 

 

Figure 1.3. Examples of metasurface holograms (a) Hologram structure and 

reconstruction procedure. The reconfigured 3D models are designed to appear within the 

Fresnel range [21]. (b) The image of the word 'PURDUE' is obtained experimentally at a 

plane 10 μm above the metasurface hologram [43]. (c) Illustration of designed meta-

hologram by Din Ping Tsai’s group. The images ‘NTU’ and ‘RCAS’ can be reconstructed 

by linearly polarized light along the x- or y-direction, respectively. (d) Helicity 

multiplexed metasurface holograms [15]. (e) Illustration of the designed multi-colour 
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meta-hologram under illumination of linearly polarized light. (f) Experimentally obtained 

holographic images of Einstein’s portrait captured by a camera in the far-field [16].  

1.1.3 Surface plasmon polariton excitation using metasurface 

Light can propagate at a metal-dielectric interface in the form of surface plasmon 

polaritons (SPP), which are hybrid waves of photons and charge oscillations sustained by 

the electrons near the interface [44-54]. Another exciting feature of plasmonic 

metasurfaces is the ability to control SPP over near field region [52, 55-60]. Conventional 

approaches for SPP excitation and modelling rely on bulky optical materials which lead 

to intrinsic limitations on the size and cost of devices. The latest work by several groups 

shows that metasurfaces can efficiently excite the SPPs. With the interaction between 

patterned plasmonic nanostructures and light, part of the radiative energy can convert to 

SPP. In this way, metasurface could be considered as a SPP emitter. Moreover, under 

special design of metasurface pattern, one can achieve polarization-dependent or 

wavelength–dependent unidirectional SPP excitation.  Figure 1.4 (a) shows an approach 

of helicity dependent SPP excitation using a metasurface with phase discontinuity [55]. 

A circularly polarized light was normally incident on metasurface. The propagation 

direction of SPP wave could be controlled by changing the helicity of the incident light. 

Capasso’s group also demonstrated a polarization-controlled surface plasmon polaritons 

[57]. They designed rectangle structure and circular structure to realise different SPP 

manipulation (Figure 1.4(b)). In 2015, Lin et al. reported a generic metasurface that can 

realise both wavelength and polarization multiplexing of SPP [61]. They used a 

straightforward method to reconstruct surface waves by compositing two patterns of 

different effective wavelengths or two separate patterns designed for orthogonal 

polarization states (Figure 1.4(c)). This mode-matching metasurface enables the access 

to the additional degree of freedom in surface optics, e.g. the transverse dimension of 

SPPs. In the same year, Wintz et al. [56] reported holographic metalens which engineered 

as switchable focal lens for SPP as shown in Figure 1.4 (d). This method overcomes some 

of the coupling and focusing issues for SPPs. The design strategy can be used to gain both 

wavelength and polarization tunability over the direction of SPP wave propagation. Most 

importantly, by recreating the wavefront of a point source it is feasible to focus SPP 

beams after coupling.  
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Figure 1.4. (a) Schematic of a unidirectional SPPs coupler [55]. The coupler consists of 

an array of rectangular apertures with spatially varying orientations on a metal film. The 

direction of propagation can be changed by altering the helicity of circularly polarized 

incident light. (b) NSOM images of the rectangle and circular structures under 

illumination from the back by both left handed and right handed circularly polarized light 

[57]. (c) Wavelength-multiplexing SPP with a mode-matching metasurface [61]. The 

composite metasurface is designed for the reconstruction of two excitation patterns of 

different effective wavelengths (613 nm and 770 nm at an Ag/air interface). (d) SPP 

metalens design [56]. The focal points for illuminating light wavelengths λ0 = 632 and 

670 nm are in the bottom and top left corners, respectively. Equivalent of panel but for 

the other two wavelengths (λ0 = 710 nm and 750 nm) will be focused to the remaining 

corners. 
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1.1.4 Nonlinear metasurfaces 

The metasurface provides the capabilities to control the phase of light not only in linear 

regime, but also in nonlinear regime [13, 62-66]. The local engineering of the nonlinear 

optical properties of light at nanoscale plays an important role in nonlinear photonics. 

More recently, nonlinear metasurfaces with tailored nonlinear response have provided 

new degrees of freedom in light-matter interaction with interesting uses in super-

resolution imaging, performing efficient frequency conversion and optical control with 

greatly relaxed phase-matching conditions. Specially, the nonlinear Pancharatnam-Berry 

Metasurfaces, which consist of plasmonic nanoantennas with rotational symmetries, have 

the abilities to continuously control the local nonlinearity in the subwavelength range for 

the high-order harmonic generation. In 2015, Li et al. experimentally demonstrated 

nonlinear metasurface with spatially varying nonlinear polarizability for continuously 

phase control [62]. The nonlinear metasurface consisting of nanoantennas with rotational 

symmetries provides the phase control over the local nonlinearity. The basic principle is 

the nonlinear spin-rotation coupling of light. Based on the selection rules for harmonic 

generation under circularly polarized incident light, a nanostructure with m-fold rotational 

symmetry allows harmonic orders of 1n lm  , where the “+” and “-” correspond to the 

harmonic generation of the same and opposite circular polarization in terms of that of the 

incident light, l  is an integer (Figure 1.5(a)). In the same year, Keren-Zur et al. [13] 

demonstrated the nonlinear beam shaping by tailoring both the local phase and the 

amplitude of the nonlinear coefficients of metasurfaces. Figure 1.5(b) shows the 

illustration of the second harmonic vortex beam generation. Moreover, by carefully 

designing the shape and the orientation of the plasmonic nanostructures, the helicity and 

wavelength selective harmonic generation can also be realised due to the nonlinear spin-

rotating coupling. Figure 1.5(c) shows the schematic and the experiment results of the 

spin and wavelength multiplexed linear and nonlinear holography [65].  
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Figure 1.5. (a) Illustration of geometric phase controlled nonlinear nanostructures with 

C2 and C4 rotational symmetry [62]. (b) Illustration of nonlinear vortex beam 

generation[13]. (c) The schematic and experiment results of spin and wavelength 

multiplexed nonlinear holography [65].  

The family of metasurfaces is actively growing. It is clear that there is a great deal of 

potential in this area that has yet to be realised. The research of optical metasurfaces will 

continue to be a very exciting field in the coming years, both in terms of fundamental 

scientific research and increasingly in the development of practical devices.
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1.2 Thesis Overview 

The thesis is organized as follows: 

After a brief introduction about metasurface, we start to discuss the interaction between 

light and plasmonic nanostructure, and the geometric phase in Chapter 2. We build a 

theoretical model to analyse the conversion efficiency and the abrupt phase change due 

to the spin-rotation coupling. Then the fabrication process of plasmonic metasurfaces and 

numerical simulation for wavefront distribution are presented. The explanation of high 

efficiency and broadband performance of reflective metasurfaces is given in this chapter. 

The simulated and measured efficiency of metasurface devices are presented at the end 

of this chapter.  

In subsequent chapters, we present the working principle of metasurfaces for phase and 

polarization control, and demonstrate in detail several novel metasurface approaches for 

various applications. In Chapter 3 we describe the application of metasurface holograms 

with polarization-controlled functionality. Then the simulated and experimentally 

obtained metasurface holograms are presented. 

Chapter 4 describes our approach to generate and manipulate the orbital angular 

momentum of light by means of single metasurface device. We begin by introducing the 

orbital angular momentum (OAM) of light. A metasurface approach to generate multiple 

orbital angular momentum states is developed and the polarization controlled 

superposition of OAM states is theoretically analysed and experimentally realised.  

In Chapter 5 we demonstrate the metasurface for polarization control and present two 

examples followed by simulated and experiment results. The first example is about vector 

vortex beam generation using metasurface. In second example, we propose and 

experimentally demonstrate a metasurface approach to control the transverse polarization 

profile of light beam, in which a high-resolution grayscale image can be encoded. The 

desired polarization profile originates from the superposition of two circularly polarized 

beams with opposite handedness and space-dependent phase difference emerging from a 

single metasurface.  

In Chapter 6 we make a conclusion and discuss the possible directions of future research 

about metasurface. 
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Chapter 2 – PLASMONIC NANOSTRUCTURES AND GEOMETRIC 

PHASE 

The metal structures with the size smaller than light wavelength have strong light 

enhancement due to the resonance between the electromagnetic field of light and the 

quasi-free electrons on the surface of the metal structures. The shape and size of the 

nanostructure affect the spectral selective light scattering and absorption, which provides 

the freedom to tailor the properties of the resulting light. In this chapter, we discuss the 

basic principle of plasmonic metasurface and analyse the optical properties of plasmonic 

nanostructures and the geometric phase. At the beginning of this chapter, the interaction 

of light with plasmonic nanostructures is briefly described. The Drude model and the 

Drude-Lorentz model are discussed to analyse the optical properties of metals. In the 

second part of this chapter, the abrupt phase shift (known as Pancharatnam-Berry phase) 

associated with the circular polarizations is introduced, which is the basis of geometric 

metasurface. The abrupt phase change provide the fundamental capability to control the 

properties of light field in a desirable manner. After that, the fabrication process of 

transmissive and reflective metasurface is presented. Finally, the conversion efficiency of 

two types of metasurface designs is analysed and simulated, and the experimentally 

measured results are presented and discussed.  
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2.1 The Interaction of Light with Plasmonic Nanostructures 

2.1.1 Optical properties of metal nanoparticles 

Most metals are opaque but highly reflecting; glass or pure water is transparent but 

weakly reflecting. The optical phenomena of the materials (e.g., reflection, transmission, 

and dispersion) are determined by the fundamental optical constants of microscopic 

structure of the matter. For example, the refractive index of a material depends on the 

polarizability of a single molecule and the number of molecules per unit volume [67].  

To describe the optical properties of the materials, two sets of quantities are usually used, 

which are the complex dielectric function ' ''i     and the complex refractive index 

n n ik  ，respectively. Here '  and ''  are the real part and imaginary part of the 

complex relative permittivity. For the complex refractive index, the real part n  is the 

refractive index and indicates the phase velocity, while the imaginary part k is the 

extinction coefficient and indicates the amount of attenuation during the electromagnetic 

wave propagating through the material. These two sets of optical properties are 

responsible for the interpretation of different optical phenomena. The reflection and 

transmission on an interface are analysed more simply with n and k , while the analysis of 

absorption and scattering by particles with subwavelength size is more simple by using

'  and ''  . The two sets of properties are related to each other, as given by 

 
2 2' n k     (1.1) 

 '' 2nk    (1.2) 

 
2 2' '' '

2
n

   
   (1.3) 

 
2 2' '' '

2
k

   
   (1.4) 

where we have assumed that the materials are non-magnetic, hence the relative 

permeability is close to 1. 
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A matter is formed from atoms which can be subdivided into nuclei and electrons. To 

analyse the optical properties of metals and understand the interaction of light and matter,  

some simple phenomenological models such as Drude model [68, 69]and Drude-Lorentz 

model [70, 71] were proposed  and discussed, in which the nuclei and electrons are 

approximately treated as damped harmonic oscillators subject to the applied 

electromagnetic fields. The complex optical dielectric function of metals are related to 

their energy band structures. Electrons in metals at the top of the energy distribution can 

be excited into other energy and momentum states by photons with very small energies. 

Thus, they can be treated as quasi-free electrons, which refers to the intraband effects 

[67]. The optical response of a collection of quasi-free electrons can be obtained from the 

Lorentz harmonic oscillator model, in which the spring constant equal to zero. The Drude 

model or free-electron model can be deduced as  

 

2

( )

2
( ) 1

pD

i


 

 
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
  (1.5) 

where  is the damping constant, p  is the plasma frequency that refers to the oscillating 

resonant of the harmonic oscillator. In equilibrium, the centre of mass of the electrons 

and the centre of mass of the nuclei coincide. However, when illuminating an 

electromagnetic field on the matter, the centre of mass of the nuclei and the electrons shift 

with respect to each other. A Coulomb force arises to restore their position, initiating an 

oscillatory behaviour. The oscillating frequency is called the plasma frequency. The 

plasma frequency
2

0

p

Ne

m



 is proportional to the electron density, where N  is the 

number density of electrons, e  stands for the electric charge, m  is the standard mass of 

the electron, and 0  is the permittivity of free space. The plasma frequencies of gold (Au) 

[72], silver (Ag) [73] and aluminum (Al) [74] are given in Table 2.1.   

Despite its applicability to metals such as aluminum, Drude model alone does not 

accurately describe the optical characteristics of many other metals. Moreover, the Drude 

model approximation is valid over a limited wavelength range [71]. Indeed, metals not 

only exhibits some quasi-free-electron type of behavior, which can be treated with the 

Drude theory, but also has a substantial bound-electron component, which refers to the 
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interband effects or bound-electron effects. The interband effect can be described by the 

simple semiquantum model resembling the Lorentz results for insulators:  
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where k  is the number of oscillators with frequency j  and damping constant j , jf  are  

weighting factors. By considering both the intraband (free-electron) and interband 

(bound-electron) transitions, the Drude model can be extended to the Drude-Lorentz 

model, which can broaden the range of validity of analytical approximations to metallic 

dielectric constants. The Drude-Lorentz model is expressed by 

 

2 2

0( )

2 2 2
10

1
( )

k
p i pD L

j j j

f f

i i

 


    





  
  

   (1.7) 

In Figure 2.1, we compare the Drude and Drude-Lorentz models with experimental data 

for silver [75]. As illustrated on Figure 2.1, the Drude model is a valid model for the 

dielectric function of sliver over a limited wavelength range. Whereas, the Drude-Lorentz 

model provides an accurate fit with the real dielectric function of silver over the whole 

frequency range of interest. 

Table 2.1 The plasma frequencies of Au, Ag and Al 

 Au Ag Al 

N  
28 35.90 10 m  

28 35.85 10 m  
29 31.8 10 m  

p
 

161.3 10 Hz  
161.37 10 Hz  

162.32 10 Hz  
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Figure 2.1. Real and imaginary part of the dielectric constant of silver at optical 

frequencies. The solid lines show experimental data [76]. The dashed lines show values 

calculated using (a) the Drude model, (b) the Drude-Lorentz model with five Lorentzian 

terms [71].  

2.1.2     The far field scattering of metal nanostructure arrays 

In the above section, the optical properties of bulk materials, especially the metal, are 

discussed. The light-matter interaction is successfully analysed in terms of Drude-Lorentz 

model. When the sizes of the metal solids fall into nanoscale regime, which are smaller 

than the wavelength of interest, unusual properties and physical phenomena arise due to 

the distinguished light-matter interaction in subwavelength scale. The striking example is 

the extraordinary optical transmission through subwavelength hole arrays [77]. In this 

section, the light-matter interaction of metal nanostructures arrays and the far field 

scattering are discussed. 

Considering particles smaller enough compared to wavelength of the involved 

electromagnetic fields, the quasistatic approximation is adopted to simplify the 

calculation, which assumes the exciting field to be homogeneous and not retarded over 

the particle’s volume. When a metallic nanoparticle is illuminated with an 

electromagnetic field (light), as shown in Figure 2.2, the conduction electrons on surface 

of the metal nanostructure will oscillate collectively and coherently caused by the 

oscillating electric field. The shift of the free conduction electrons with respect to the 

metal ion lattice produces a restoring local field between the two sides of the nanoparticle. 

The coherently shifted electrons of the metal particle together with the restoring field 

consequently generate an oscillator, and the oscillating frequency is determined by the 
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size and shape of the nanoparticle, the dielectric function of the metal and the surrounding 

environment. The collective oscillation of the electrons is called the surface plasmon 

resonance (SPR) [78]. 

 

Figure 2.2. Schematic of plasmon oscillation on metal nanoparticles irradiated by an 

electromagnetic field. 

To theoretically analyse the interaction of light with small particles, Gustav Mie 

developed a set of theory that described the scattering and absorption spectral 

performance of spherical particles with arbitrary size [67]. The Mie theory plays a 

fundamental role in understanding the physics of light-nanoparticle interaction in 

nanophotonic field. Since it is the only simple and exact solution to Maxwell’s equations 

that is relevant to the size and shape of particles. In addition to the material, shape control 

of nanoparticles provides more degrees of freedom to manipulate the optical properties, 

which has significant impact on science and technology. To generalize the concept, Gans 

extended Mie’s theory to the prolate and oblate spheroidal particles averaged over all 

orientations [79] . In this thesis, we focus on the gold rectangular solids which have long 

and short axes. The thickness of the rectangular solids are quite small in comparison with 

the long and short axes. For this shape of gold nanoparticles, the surface plasmon 

resonance has two modes: one longitudinal mode along the long axis of the particle and 

a transverse mode perpendicular to the first.  

When an electric field is applied on a rectangular metal solid, the resulting surface charges 

of opposite sign on the opposite surface elements of the nano-strip generate an electric 

dipole (see Figure 2.2). The Polarizability   determines the dynamical response of the 
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metal nano-strip to the external oscillating electric fields. It is defined as the ratio of the 

induced dipole moment of nano-strip P  to the electric field E  as 

 P E   (1.8) 

According to the generalized Mie’s theory extended by Gans, the polarizabilities of the 

metal nano-strip along the long and short axes can be given by [80] 
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m s
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 
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where V  is the volume of the nano-strip, m  and s are the frequency dependent 

dielectric functions of the metal and the surrounding material, respectively, longA  and 

shortA  are the shape constants of the long and short axes, which depend on the aspect ratio 

of the two axes [80]. For spherical particles with radius of a , the volume is 
34

3
V a  

and the shape constants 
1

3
long shortA A  .  

The absorption and scattering process of the metal nano-strip are described by the 

absorption cross-section absC  and the scattering cross-section scaC  [74]. 

 Im( )absC k    (1.11) 

 
4

2
C

6
sca

k



   (1.12) 

Im( )  denotes the imaginary part of the polarizability and   is the modulus of the 

polarizability. k  is the wave number. From equation (2.9-2.12), it can be concluded that 

the absorption and scattering of an incident light with electric field parallel to the long 

axis are different from that of the light with electric field parallel to the short axis. 
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Moreover, the absorption and scattering efficiency are determined by the wavelength 

dependent dielectric function of the metal and surrounding material, together with the 

size and the shape of the metal nano-strip. 

If we assume the metal nano-strip is illuminated by an x-polarized plane wave 
( )

0

ikz i t

xE e 
e  

or y-polarized plane wave 
( )

0

ikz i t

yE e 
e , the electric charges on the surface of the nano-

strip are set into oscillatory motion along x direction or y direction by the electric field of 

the incident wave, respectively (see Figure 2.3(a) and (c)). Larmor’s theorem of 

electromagnetism states that accelerated charges generate electromagnetic radiation [81]. 

Accelerated electric charges radiate electromagnetic energy in all directions. Note that, 

the excited elementary charges may transform part of the incident electromagnetic energy 

into other forms in addition to reradiating electromagnetic energy, such as thermal energy. 

First, we consider the case of x-polarized incident plane wave. The SPR along the long 

axis of the nano-strip has a dipole moment 0

i t

xE e  P e . As shown in Figure 2.3(b), 

the reradiating wave or scattering wave at point G in far field can be written as follow 

[67]  

 
3

0 ( )                (kr >>1)
4

ikr

s long long r r x

e ik
E

ikr



   


E e e e   (1.13) 

where r is the distance from zero to the point G, re is the unit vector. Here the time-

dependent factor 
i te 

 is omitted. Analogously, for the case of y-polarized incident plane 

wave (see Figure 2.3(c) and (d)), the complex amplitude of scattering wave at point G 

can be given by 

 
3

0 ( )             (kr >>1)
4

ikr

s short short r r y

e ik
E

ikr



   


E e e e   (1.14) 

Therefore, from Eq. (2.13) and (2.14) we can see that the amplitude of the scattering wave 

is determined by the polarizabilities long  and short . The polarizabilities depend on the 

wavelength-dependent dielectric function of metal and the shape of the nano-strip. 

Therefore, we can tailor the scattering properties by adjusting the shape of the nano-strip. 

If the polarization state of the incident plane wave has both x and y components, such as 

circular polarization, the amplitude of the scattering wave at point G is the superposition 
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of two scattering waves caused by the SPR along the long axis and short axis of the nano-

strip, respectively.  

 

Figure 2.3. Schematic of surface plasmon resonance along long axis and short axis. (a) 

and (b) illustrate the dipole moment along the long axis of the metal nano-strip that arises 

when illuminated a x-polarized plane wave. (c) and (d) show the dipole moment along 

the short axis that arises under the illumination of y polarized plane wave. 

For a single nano-strip, the resonance phenomenon and the far field scattering are 

determined by the shape and size of the nano-strip, together with the frequency-dependent 

dielectric function of nano-strip and the surrounding materials. For metal nan-strips 

arranged in regular two-dimensional patterns, the far field performance depends not only 

on the surface plasmon resonance of single nanoparticle, but also on the interaction 

between nanoparticles [82, 83]. The interaction among nanoparticles can be divided into 

near-field coupling which is relevant to the nearby particles with short distance and far-

field collective interaction. This phenomenon has been theoretically discussed by 

Meier[84], and experimentally investigated by Lamprecht [83]. For grating constants d  

in the range of light wavelength of interest  , there are four relevant domains as shown 

in Figure 2.4. When the interparticle distance is smaller than a critical grating constantd
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cd , both the evanescent field and scattering field are excited by the nanoparticle arrays 

(see Figure 2.4(a)). If the distance  exceeds the critical grating constant , the 

scattering field arises because the evanescent field changes to radiative mode. For

cd d   , only the zeroth scattering order is allowed and the direction of the scattering 

wave is along the transmission direction (see Figure 2.4(b)). For d  , both the zeroth 

and first grating order exist. The first grating order is emitted parallel to the grating plane 

as shown in Figure 2.4(c). For d  , the incident light is scattered at defined angles, 

which is analog to the light diffraction from a grating.  

   

Figure 2.4. Four domains of the grating constant concerning the near field coupling and 

far-field scattering. 
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2.2 Conversion Efficiency and Geometric Phase 

The geometric metasurface consisting of plasmonic nano-strip arrays provides the 

opportunity to manipulate the phase and polarization of light at the nanoscale. The 

geometry of the nano-strip is identical, but the orientation angle is space-dependent. 

When a circularly polarized light illuminating the nano-strip, part of the incident light 

will be converted to the opposite circular polarization. More importantly, the converted 

part will acquire an abrupt phase which is relevant to the orientation angle of the nano-

strip. Thus, by engineering the nano-strip arrays with space-dependent orientation angles, 

the phase and wavefront of the light could be tailored in subwavelength scale. In this 

section, we use the Jones matrix calculus to analyse the conversion efficiency of the 

metasurface consisting of nano-strips. After that, the geometric phase, which arises during 

the interaction of circularly polarized light with rotated nano-strip, is discussed.  

2.2.1 The conversion efficiency 

In the past, many mathematical tools were developed to treat the physical problems 

regarding light and optical components, such as the set of Stokes parameters and Mueller 

matrices, and the set of Jones vector and Jones matrices [85]. Table 2.2 shows the 

differences between the two sets of mathematic tools. The Stokes parameters and the 

corresponding Muller matrices can describe any polarization state ranging from 

completely polarized light to completely unpolarized light. But they are more complicated 

than Jones vector and Jones matrices. The Jones vector is suitable for the treatment of 

completely polarized light. In this thesis, we shall deal primarily with completely 

polarized waves. Therefore, we use the Jones vector and the Jones matrices to describe 

the polarized light of interest and the transformation of polarization after the nano-strip, 

respectively. The plane-wave components of the optical field in terms of complex 

quantities can be written as 

 ( )

0( , ) xi t kz

x xE z t E e
  

   (1.15) 

 
( )

( , ) yi t kz

y oyE z t E e
  

   (1.16) 

We suppress the propagator t kz   and arrange Equation (2.15) and (2.16) in a 2 1 

column matrix: 
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  (1.17) 

Equation (2.17) is the Jones vector. First, we assume a right-handed circularly polarized 

(RCP) light is illuminated onto a nano-strip. It should be noted that there are two 

definitions of circular polarization from different literatures. In this thesis, we adopt the 

definition from the reference book [85] in which the polarization is right-handed when 

looking in the direction from which the light is coming, the end point of the electric vector 

would appear to describe the ellipse in the clockwise sense. The normalized Jones vector 

of the RCP is 
1

inE
i

 
  
 

. We first consider the case that the long axis of the nano-strip is 

parallel to the x axis, and the short axis is parallel to the y axis. As discussed in above 

section, the polarizabilities for the long and short axis of nano-strip are different due to 

asymmetric shape. Therefore, the electric field vibration along the long and short axes of 

the nano-strip experiences different scattering and phase shift. Considering the nano-strip 

is sufficiently small in comparison with the wavelength, it is reasonable to assume that 

the absorptions of electric fields parallel to the long and short axes are same. 

Table 2.2 The differences between the set of Stokes parameters & Muller matrices, and 

the set of Jones vector & Jones matrices 

 Jones vector Jones matrices Stokes parameters Mueller 

matrices 

The dimensions 

of the row and 

column 

2×1 2×2 4×1 4×4 

Applicable targets Polarized 

light 

Optical 

components 

Polarized and 

unpolarized light 

Optical 

components 

When a RCP light is illuminated on the nano-strip, the x and y components experience 

different phase delay. The nano-strip is similar as a retarder (phase shifter), and the Jones 

matrix can be written as

/2

( ) /2

0

0

i

i

e
J

e



 

 
  
 

 , where  is the total phase shift between x 

and y components. At the beginning, we consider the case that the x and y direction are 

parallel to the long and short axes, respectively. For the case of rotated nano-strip, it is 
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analysed on the following section. The Jones vector specifying the emerging field is 

obtained when 
RCP

inE  is multiplied by ( )J  . This gives 
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  (1.18) 

From Eq. (2.18) we find that the emerging field consists of two parts. The first part has 

the same circular polarization with the incident light, which refers to the non-converted 

light, the second part has the opposite circular polarization, which is the converted light. 

The ratio between these two parts is only determined by the total phase shift . When

  , all the input light is converted to the light with opposite circular polarization. This 

coincides with the half-wave plate. It is well known that a half-wave plate producing a 

phase delay of π between the light components parallel and perpendicular to the optical 

axis, leads to fully convert a circularly polarized beam into the oppositely polarized one 

in transmission. Note that there is a phase delay of 
2


 between the converted and non-

converted field, which is manifested by the factor i  on the second term of Equation 

(2.18). Similarly, the Jones vector of emerging field under the illumination of left-handed 

circularly polarized (LCP) light 
1

i

 
 
 

 can be given as 

 
1 1

E =cos sin
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out i
i i
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   
  (1.19) 

From Eqations (2.18) and (2.19), we can conclude that the conversion efficiency of 

geometric metasurface consisting of metal strip arrays depend on the phase retardation 

between the SPR modes along the long and short axes of the strips. When the phase 

retardation is close to , the conversion efficiency is close to 100%. 



 

26 

2.2.2 The geometric phase   

We now consider the passage of circularly polarized light through the rotated nano-strip 

using the Jones formalism. The Jones matrix for the rotated nano-strip with rotation angle

  can be deduced using the familiar rotation transformation [85], namely, 

 
( )

( ) ( ) ( ) ( )J R J R

      (1.20) 

where ( )R  is the rotation matrix: 
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Then we find that the Jones matrix for the rotated nano-strip can be deduced by carrying 

out the matrix manipulation of Eqation (2.20), which is given by 
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We assume a RCP light beam
1

i

 
 
 

 is illuminated onto the rotated nano-strip, the Jones 

matrix of the emerging light can be written as 
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  (1.23) 

From the second term of Equation (2.23), we find an interesting thing that the converted 

light acquires an abrupt phase 2  introduced by the rotated nano-strip. The abrupt phase 

is known as geometric phase or Pancharanam-Berry phase [2, 24, 25]. Similarly, for the 

case of LCP light, the output light can be given as 
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 2
1 1
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i

outE i e
i i
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  (1.24) 

From Equations (2.23) and (2.24), we are led to the important conclusion that by rotating 

the nano-strip, the phase of the output light can be manipulated in an easy and efficiency 

manner. Moreover, the geometric phase is independent on the wavelength. The array of 

nano-strips with space-dependent rotation angles, namely plasmonic metasurface, 

provides the ability to control the phase and even the polarization of the light due to the 

light-matter interaction and rotation-determined abrupt phase change. The advantages of 

high resolution and the miniature size make the plasmonic metasurface for a plenty of 

applications, such as lensing, hologram, ultrathin waveplate, spin-hall effect, invisibility 

cloak, etc. 
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2.3 The Generalized Snell’s Law 

In above section, we have described the abrupt phase change of the light introduced by 

the rotated nano-strip. In this section, we will give an example to demonstrate the 

robustness of the metasurface. In the following chapters, more applications including 

hologram, vortex beam generation, and imaging are presented and analysed.  

Reflection and refraction refer to optical surface phenomena which occur when waves 

pass through an interface between two media with different refractive indices. The surface 

phenomena are governed by the law of conservation of energy and momentum. The 

direction of reflected and refracted waves is determined by Snell’s Law. Considering a 

metasurface with nanorod structures in array with a lattice constant and a constant 

orientation angle step along one direction. The metasurface can be treated as an 

anisotropic interface between two different media. The plasmonic nanostructures 

introduce abrupt phase changes to the involved beam rays. When a circularly polarized 

light beam passes through the metasurface, Snell’s law becomes inapplicable because of 

the special characteristic of the interface. Then the Generalized Snell’s Law was proposed 

and demonstrated by Yu, et al. from Capasso’s group [1] and Huang, et al. from Shuang 

Zhang’s group [2]. They derived the Generalized Snell’s Law with considering the abrupt 

phase changes at the interface. The Generalized Snell’s Law of refraction and reflection 

are given by: 
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Figure 2.5. (a) The nano-strip arrays with spatial-dependent orientation angles.  (b) The 

anomalous refraction of the Generalized Snell’s law. 

From Eq. (2.25), we can see that the refraction and reflection angle are determined by 

incident angle together with the phase gradient
d

dx


. The phase gradient can be realised 

by gradually rotating the nano-strip arrays with certain angle step along one direction as 

shown in Figure 2.5(a) and (b). It should be mentioned that the phase gradient is 

dependent on the helicity of the incident light.  

 

Figure 2.6. Schematics of anomalous refraction and the simulated phase distributions of 

both the input light and the refracted light by full wave simulation using CST microwave 

studio. (a) Schematics of anomalous refraction for the left-handed circularly polarized 

(LCP) light. (b) The simulated phase distribution for the case of LCP incident light. (c) 

Schematics of anomalous refraction for the right-handed circularly polarized (RCP) light. 

(d) The simulated phase distribution for the case of RCP incident light. 

Firstly, we assume a LCP light beam is incident onto the phase gradient metasurface as 

shown in Figure 2.6(a). Part of the incident light is converted and the wavefront is tailored 
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due to the rotation-dependent abrupt phase change. We carried out the simulation of the 

refraction using Full 3D finite-difference time-domain CST Microwave Studio. One 

period of metasurface with six gold nano-strips is modelled at periodic boundary 

condition. The rotation angle step is 30  and the corresponding phase difference between 

two neighbouring nano-strips is 
3


. Therefore, the abrupt phase changes in one lattice 

cover from 0 to 2. A LCP light beam is normal incident onto the gold structures. The 

anomalous refraction is clearly observed from the wavefront distribution illustrated in 

Figure 2.6(b). For the case of right-handed circularly polarized light, the refraction 

direction is flipped because of the opposite sign of the phase difference for the opposite 

helicity. The schematic and the simulation of the wavefront distribution are shown in 

Figure 2.6(c) and (d).      
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2.4 Fabrication Process of Plasmonic Metasurface and The Efficiency.  

The standard electron-beam lithography and lift-off process are used to fabricate the 

plasmonic metasurface. Firstly, a ITO-coated glass substrate is cleaned in Acetone and 

isopropyl alcohol (IPA) with ultrasound, respectively. Then a thin layer of positive resist 

PMMA (polymethyl methacrylate) 950 A2 which is sensitive to the electron beam, is 

spin-coated on the substrate. The spin speed of the spinner is 1000 rpm with 60 secs, 

which will result a PMMA layer with thickness of 120 nm. After that, the PMMA coated 

substrate is baked on hotplate at 180 oC for 5 mins.  

The nanopatterns are designed and plotted using MATLAB, and saved as txt file. Then 

the txt file is loaded to the E-beam writer (Raith PIONEER). The nanopatterns are defined 

on the PMMA resist using E-beam writer. After the exposure, the sample is developed in 

the developer (Methyl isobutyl ketone (MIBK): IPA = 1:3) for 45 secs following by IPA 

(stopper) for 45 secs. A gold layer with thickness of 30 nm is deposited on the sample 

using electron-beam evaporator. The vacuum of the chamber during deposition is 4×10-

6 mbar. Finally, the gold nanopatterns are realised after lift-off process. The whole process 

is presented in Figure 2.7. Figure 2.8 shows the scanning electron microscope (SEM) 

images of one fabricated sample. 

 

Figure 2.7. Fabrication process of gold nanopatterns. 

The performance of this plasmonic metasurface is characterized and the conversion 

efficiency is measured. Before that, it is necessary to give the parameters of this 

metasurface. The size of nano-strip is 200 nm length by 80 nm width, and the thickness 

of the pattern layer is 30 nm. The distance between two neighbouring nano-strips is 300 

nm. The rotation angle step is 30  . Because of the phase gradient generated by the 
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metasurface, the converted beam is deflected away from the non-converted part. It is easy 

to measure the power of the converted beam and the incident beam at different 

wavelengths. The conversion efficiency is defined as the ratio of the power of the 

converted beam and the total incident beam.  

 

Figure 2.8. Scanning electron microscope (SEM) images of fabricated phase gradient 

gold metasurface. 

Figure 2.9(a) shows the experimentally obtained image of transmission spots with 

different polarization states of incident light. The middle bright spot is the non-converted 

light and the spots at the both sides are the converted light. The experimental results verify 

the generalized Snell’s law of refraction described in Equation (2.26). As we can see from 

Figure 2.9(a), under the normal illumination of a LCP light beam, the converted light 

which has the opposite circular polarization, is deflected to the left side of the axis of 

incident light (Top image in Figure 2.9(a)). Similarly, under the normal illumination of a 

RCP light beam, the converted light is deflected to the right side (Bottom image in Figure 

2.9(a)). It is well known that the linear polarization can be viewed as the superposition of 

a LCP component and a RCP component with equal weight. Therefore, two spots can be 

observed at both sides under the normal illumination of a linear polarized (LP) light beam 

as shown in the middle image of Figure 2.9(a). The anomalous transmission angle is 

determined by the phase gradient and the wavelength. This effect provides an efficient 

way to measure the polarization state of the incident light [29, 81]. The measured 

conversion efficiency at different wavelengths is presented at Figure 2.9(b). Although the 

metasurface approach has a broadband performance, the low efficiency limits its practical 

applications.   
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Figure 2.9. The characterization of the phase gradient metasurface. (a) The observed spots 

under the illumination of light with different polarization states. (b) The measured 

conversion efficiency over a broad wavelength range. 

To increase the conversion efficiency, a reflective-type metasurface with three-layer 

structure is developed and demonstrated [15, 16, 86, 87]. The reflective-type metasurface 

is composed of a gold ground layer, a silicon dioxide spacer layer, and a top layer of gold 

nano-strip arrays. On the one hand, the thickness-dependent dispersion of the dielectric 

layer compensates the intrinsic dispersion of the gold nano-strips, which provides the 

capability of ultra-broadband performance [87]. On the other hand, the conversion 

efficiency can be greatly enhanced by the Fabry-Pérot effect of the multilayer structure 

[86].  

For metallic nanostructures, free electrons at the surface of structures can be excited 

collectively and coherently under the illumination of electromagnetic field due to the 

resonant electronic-electromagnetic oscillation. The output light can be modulated by the 

response of the localized plasmonic resonance. In the case of gold, the plasma frequency 

is at the visible wavelength range. However, the resonance occurred on gold or other 

metal is highly dispersive, which limits the broadband performance. If a dielectric layer 

is sandwiched between the metallic nanostructure layer and a ground metal layer, then 

the thickness-dependent dispersion of the dielectric layer may compensate the intrinsic 

dispersion of the gold nanostructures [87]. By appropriately optimizing the thickness of 

the dielectric layer and the parameters of the nanostructure, the broadband performance 

of the reflective metasurface can be realised. Moreover, the conversion efficiency of the 
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metasurface can be significantly enhanced due to the Fabry-Pérot effect of the multilayer 

structure [86]. We assume an incident light beam inE , the total output light is the sum of 

all the reflected light from the nanostructure layer and the transmitted light after 

propagation in the dielectric layer as shown in Figure 2.10. The output light is expressed 

as 

 1 2 3 4 ....out     E E E E E   (1.26) 

Now, we need to derive two sets of the coefficients, which are the complex transmission 

and reflection coefficients at the interface between air and the nanostructure layer r and t

, and the complex transmission and reflection coefficients the interface between the 

nanostructure and the dielectric layer 'r and 't . For simplicity of the physical model, the 

sheet of ultrathin nanostructures is treated as a homogeneous layer [16]. 

 

Figure 2.10. Schematic of the multiple reflections from the multi-layer metasurface.   

The susceptibility of nanostructure layer is related to the polarizability of the individual 

nanostructure as [16]  
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where g is the antenna polarizability, which can be assumed to have a Lorentzian form 

as
0

1
g

i


  


 
 due to the localized plasmon resonance of the antennas. Here, the 

antenna polarizability is obtained with the assumption that the sheet of ultrathin antennas 

is treated as a homogeneous layer. It differs from the polarizability of the metal nano-strip 

described in Equations (2.8) and (2.9). More details can be found in reference [16]. a is 

the in-plane lattice constant, d  is the thickness of gold nanostructure layer. For 

sufficiently small d , the complex transmission and reflection coefficients can be derived 

as [16]  
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We assume all the light is reflected on the gold ground layer but get a phase shift . The 

thickness of dielectric layer is h . So the total output light can be given as 
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By properly choosing the thickness of the dielectric layer h , the dispersion of the complex 

coefficients can be cancelled by the thickness-dependent dispersion of the dielectric layer. 

Furthermore, the conversion efficiency can be significantly enhanced due to the Fabry-

Pérot effect in the three-layer structure. The simulated and experimentally measured 

efficiency have been presented in Chapter 2.   

Here, the three-layer design is adopted and the simulation and fabrication are performed 

as well. The schematic of each pixel is shown in Figure 2.11(a) (the inserted image). We 

sweep the related parameters, including the size of the gold strip, the thickness of the SiO2 

layer and the pixel size, to find the best performance of this design using CST microwave 

studio software. Figure 2.11(a) shows the simulated conversion efficiency with optimized 

parameters. The length and width of the nanostrip is 220 nm, 80 nm, respectively. The 

thickness is 30 nm. The thickness of SiO2 spacer layer and gold ground layer are 85 nm 

and 150 nm, respectively. The refractive index of SiO2 is 1.45. The Drude model where 

Epsilon infinite is 1, the plasma frequency is
161.37 10 rad/s, and the collision efficiency 

is
141.215 10 rad/s, is used for the simulation of material parameters of gold [88]. Periodic 

boundary is applied in both the x and y directions. Firstly, the x and y polarized plane 

wave are normally incident onto the pixel, respectively. The metasurface works at 

reflection. Then the spectra of reflection coefficients rxx (x polarization in, x polarization 

out), rxy (x polarization in, y polarization out), ryy (y polarization in, y polarization out), 

ryx (y polarization in, x polarization out) are obtained from the simulation [82]. Finally, 

the reflection coefficients for circularly polarized light can be deduced from the reflection 

coefficients of linear polarized light, which are given as xx yy xy yx((r +r )+ i (r -r ))/2RRr   ,  

xx yy xy yx((r -r )+ i (r +r ))/2RLr   . Figure 2.11(a) shows the simulated conversion efficiency 

(
2

RLr ) of the single pixel with optimized parameters. We can see that the conversion 

efficiency is over 80% at a broad wavelength range.  
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 Figure 2.11. The reflective-type metasurface. (a) The simulated conversion efficiency 

using CST microwave studio. Cross-pol and Co-pol represent the converted and non-

converted component, respectively. (b) The image of the fabricated metasurface samples. 

(c) The SEM image of the reflective-type phase gradient metasurface. (d) The measured 

conversion efficiency at different fabrication doses. 

Based on these optimized parameters, the reflective-type phase gradient metasurfaces are 

also fabricated and characterized. Prior to the nano-strip array layer define, a gold ground 

layer with thickness of 150 nm is deposited on the silicon substrate followed by a SiO2 

layer with thickness of 85 nm. Figure 2.11(b) shows the picture of four samples (four 

black dots) sitting on the silicon substrate. The SEM image of one sample is presented in 

Figure 2.11(c). Four samples are fabricated with different current doses. Despite the four 

samples have the same design, the sizes of the resultant structures are different under 

different current doses. The higher dose, the bigger size. Figure 2.11(d) shows the 

measured conversion efficiency of all the four samples. We can see that the sample with 

dose of 500 µc/cm2 has the highest efficiency. It should be noted that an ultrathin 

Titanium layer with thickness of 4 nm is deposited between the pattern layer and the SiO2 

spacer layer for adhesion purpose. This layer could slightly decrease the conversion 

efficiency. The size of each metasurface sample is 400 µm, which is smaller than the size 
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of incident beam (about 2 mm)In experiment, the incident beam is focused by a lens to 

make sure all the input beam is shining onto the metasurface sample. This can also cause 

a reduction of conversion efficiency because of the converge light field. By enlarging the 

size of metasurface sample, this effect can be eliminated. Moreover, the bigger sample 

consisting more pixels can further increase the fidelity of  diffraction patterns according 

to the Huygens-Fresnel principle. The reflective metasurface exhibits high conversion 

efficiency compared with the transmissive plasmonic metasurface. Therefore, the 

reflective-type metasurface is adopted for the applications described in the following 

chapters.  
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2.5 Conclusion 

In this chapter, we have discussed the principle of plasmonic metasurface with arrays of 

nano-strips. The properties of the interaction of a light field with single nano-strip and 

nano-strip arrays are analysed in the first section. We have shown that the shape and size 

of nano-strips determine the far-field scattering and absorption. Then we analysed the 

conversion efficiency of metasurface consisting of nano-strips using the Jones matrix 

calculus. The geometric phase or Pancharanam-Berry phase, which arises from the 

interaction of the circularly polarized light and the rotated nano-strip, are discussed in 

detail. We have theoretically introduced the Generalized Snell’s Law corresponding to 

the phase gradient metasurface. After that the fabrication process of metasurface is 

presented. We fabricated several metasurface samples to verify the Generalized Snell’s 

Law. Specially, the conversion efficiency of reflective metasurfaces are theoretically 

analysed and experimentally characterized. In the following chapters, we adopt the 

reflective metasurface to demonstrate our proposed approaches for phase and polarization 

manipulation. 
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Chapter 3 – GEOMETRIC METASURFACE FOR PHASE 

CONTROL AND ITS APPLICATION IN HOLOGRAMS 

In the previous chapter we discussed the interaction between the electromagnetic field 

and the plasmonic nanostructures. The optical properties of the light can be efficiently 

tailored by the metasurface consisting of nanostructure arrays. Metasurfaces have been 

widely used in various research areas, including invisibility cloaking, photonic spin Hall 

effect, holography, and lensing. In chapter 3, 4, 5, we start to demonstrate the applications 

of plasmonic metasurfaces based on the phase and polarization control at subwavelength 

scale. Miniaturization and integration are two continuing trends in the production of 

photonic devices. Great effort has been made to incorporate multiple functions into a 

single device [89, 90]. As one of the important multifunction optical elements, 

polarization selective optical elements can achieve multiple functionalities according to 

the polarization states of the incident beam; these have been applied in optical encryption, 

image processing, and so on. In this chapter, we focus on the application of metasurface 

holograms with polarization-controlled functionality [15, 91]. This chapter is organized 

as follows. First, the background of the hologram is presented. Then, the simulated and 

experimental results are demonstrated and analysed. 
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3.1 Introduction to Holograms 

Since its creation in the late 1940s, holograms have been applied in many fields including 

3D-projection, design, medicine, and entertainment. Specially, the computer-generated 

holograms (CGH) attract increasing attentions because there is no need for a real object 

[92, 93]. By encoding the digitally computed holographic interference pattern to an 

engineered surface, a holographic image can be generated under the illumination of the 

coherent light onto the surface. Conventional encoding methods, such as those based on 

spatial light modulator (SLM), rely on transmitting light through a medium of varying 

thickness or refractive index. Then the phase front of light is manipulated due to the slight 

changes in the optical path, which allows for the generation of holograms. However, the 

phase resolution is limited by the fabrication methods. Moreover, it suffers from the shade 

effect, twin image, and narrow working bandwidth. Benefiting from the unprecedented 

manipulation of the phase of light at subwavelength scales, metasurfaces have been 

employed for the application of holography [21], including colourful holograms [94-96], 

and broadband holograms [97-99]. The holograms generated by metasurfaces not only 

have the advantages of high resolution and high conversion efficiency, but also provide 

the capability to generate and manipulate different holograms by changing the 

polarization of the incident light through a polarization-sensitive phase control [15, 100].  

Here, we adopt the geometric metasurface to generate helicity multiplexed holograms. As 

shown in Figure 3.1 (bottom right), we design a metasurface which can reconstruct an 

off-axis “Rubin face” located at left side or right side of the viewing screen upon the 

illumination of right-handed or left-handed circularly polarized light. Since a linearly 

polarized light beam can be decomposed into two opposite circularly polarized light 

beams with equal components. Then, two “Rubin face” can be observed on the screen, 

and an additional image named “vase” can be perceived between the two faces.  
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Figure 3.1 Schematic of the polarization-controlled holograms for illusion. A polarizer 

and a quarter-wave plate are used to generate the required polarization states for the 

incident light.  

The phase profile of the phase-only hologram is obtained using the Gerchberg−Saxton 

algorithm [101] via the Fourier transform function with multiple iterations. The input data 

to the algorithm are the amplitudes of the sampled incident beam profile and the intensity 

distribution of target image at the diffraction plane. The amplitudes are proportional to 

the square roots of the intensities. In the beginning, an initial array of phase generated by 

a random number generator (between   and   ) are multiplied by the respective 

sampled amplitudes of the incident beam. Then the Fourier transform of this synthesized 

complex discrete function is done by means of the Fast Fourier Transform. After that, the 

phases of the resultant discrete complex function are calculated and combined with the 

corresponding intensity distribution of target image. Then the inverse Fourier Transform 

of this new synthesized complex function is done. The phase profile is computed and 

combined with the sampled incident beam profile to form a new complex function for the 

next iteration. After multiple iterations, the required phase profile is obtained. The 

polarization-controllable functionality can be explained by the basic principle of the 

geometric metasurface and the general feature of the Fourier transformation. Suppose the 

intensity profile of the target image is ( , )I x y , and the corresponding phase distribution 

obtained by the Gerchberg−Saxton algorithm is 0 0( , )x y . The relation between the 

intensity profile and the phase distribution is given by 

 0 0
2

( , )

0( , ) ( )
i x y

I x y F A e


    (3.1) 
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where 0A  is the amplitude of the incident light. Here, we assume that the incident light 

is a uniform planar wave. F refers to the Fourier transformation. As discussed in the 

previous chapter, the sign of the phase generated by the metasurface is dependent on the 

helicity of the incident light. When the phase distribution changes from 0 0( , )x y to 

0 0( , )x y , the resultant intensity profile '( , )I x y  can be deduced by 
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  (3.2) 

where fx=x/λz and fy=y/λz (λ is the wavelength and z is the reconstruction distance). From 

Equations (3.1) and (3.2) we can see that the resultant hologram generated under the phase 

0 0( , )x y is the centrosymmetric image of the hologram from 0 0( , )x y . Therefore, the 

feature of polarization-dependent phase generation from the geometric metasurface 

provides an alternative way to realise the image-switchable functionality of the 

holograms. 
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3.2 The Simulated and Experimental Results of The Metasurface Holograms   

In this section, we will firstly discuss the design method. Then the simulated and 

experiment results will be presented. Figure 3.2 shows the design of the target image. The 

two off-axis “Rubin faces” are designed asymmetrically, which is different from the 

previous polarization-controlled metasurface holograms with symmetrically distributed 

target images . Under the illumination of a RCP light, two “Rubin faces” (one upright and 

one inverted) are reconstructed on two sides of the zero-order spot. When the polarization 

state of the incident light changes from RCP to LCP, the two “Rubin faces” are rotated 

180  counter clockwise and horizontally flipped around point O. This is because of the 

phase-conjugation induced by different helicities of the incident light, which is analysed 

in the previous section. It is known that the linearly polarized light can be decomposed 

into RCP and LCP light with the same components. Therefore, the upright and inverted 

“Rubin’s vase” illusions are generated on the both sides for the case of LP incident light. 

 

Figure 3.2 Schematic design of the polarization-controlled holograms. 

To avoid the unnecessary overlap of the holographic image and the non-converted light, 

an off-axis design is adopted. The off-axis angle of this target image is 1 9.75   , and the 

field of view are 60 23   along horizontal and vertical directions, respectively. The 

Gerchberg-Saxton algorithm is utilized to obtain the expected phase profile of the phase-

only hologram. The encoding process from the phase profile into pixelated nanoantennas 

of the metasurface is straightforward. It should be noted that the coupling effect exists 
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between neighbouring nanorods. The coupling will be strongest if the corners of the two 

nearest rods are closest to each other and weakest when they are most apart from each 

other [16]. Although arbitrary phase levels can be achieved, we choose 32-phase levels 

(as shown in Figure 3.3(a)) instead of continuous phase distribution to minimize the near 

field coupling between neighbouring nanorods.  Here, a 2×2 periodic array of the phase 

(“Rubin face”) pattern with pixel size of 300 nm × 300 nm and pixel number of 

2000×2000 is designed to improve the fidelity of constructed image (Figure 3.3(b)). The 

whole size of sample is 600 µm.  

 

Figure 3.3. (a) The 32 steps of phase level design. (b) The phase distributions generated 

by the Gerchberg-Saxton algorithm.  
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Figure 3.4. The reconstructed image based on phase distribution with single period and 

2x2 array, respectively. 

The concept of Dammann grating is adopted in design to increase the fidelity of the 

hologram images. The difference between 2x2 array and a single period is shown in 

Figure 3.4. In comparison with a single period, which produces a continuous image with 

lower image fidelity (i.e. more laser speckles), the 2x2 periodic hologram generates an 

image consisting of discrete spots. The design can be further optimized by a N × N (N is 

an integer) Dammann grating, which can increase the image quality sharply. However, 

this will in turn require the need for longer fabrication time. 

 

Figure 3.5. (a) The scanning electron microscopy (SEM) image of the fabricated sample. 

(b) The target, simulated and experimental images.  

The reflective metasurface is fabricated using standard electron beam lithography and a 

subsequent lift-off procedure. The detailed fabrication process can be found in Chapter 2. 

The scanning electron microscopy (SEM) image of the fabricated metasurface is shown 

in Figure 3.5(a). The top row on Figure 3.5(b) are the original target images (“Rubin 

faces”) upon different polarization states of the incident light (RCP, LP, LCP). These 

target images of “Rubin face” can be simulated by considering light emission from all the 

discretized point sources, as shown in the middle row. The Huygens-Fresnel principle 

states that every point on the object plane is a source of spherical waves with the same 

frequency. The resulting field on the diffraction plane is a superposition of these 

secondary waves defined by their complex amplitude and/or wavefunction. Thus, the 

complex amplitude at any point of hologram image can be numerically obtained as a sum 
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of complex amplitudes of all the secondary wavelets. Then the hologram image is 

reconstructed. To experimentally verify the method and inspect the performance of the 

fabricated metasurface samples, a polarizer and a quarter-wave plate are located after the 

tuneable laser source to generate the required polarized states. Then, a plano-convex lens 

(f=150 mm) is used to weakly focus the light beam with a beam size of 2 mm onto the 

fabricated sample. The setup is shown in Figure 3.1. The off-axial holographic images 

are reconstructed under the illumination of the light with certain polarizations. Here, a 

viewing screen is used to display the holographic images. The bottom row on Figure 3.5(b) 

present the experimentally captured holographic images for RCP, LP and LCP of the 

incident light at the wavelength of 633 nm. The distance between the screen and the 

metasurface is 60 mm. Upon the illumination of RCP light, a holographic image named 

“Rubin face” with high signal-to-noise is reconstructed on the left side of the screen. Due 

to the design method, the size of the “Rubin face” is proportional to the reconstructed 

distance between the sample and the screen. When the polarization of incident beam is 

changed from RCP to LCP, a horizontally flipped image of “Rubin face” is displayed on 

the right side, which clearly shows that the position of the holographic image is dependent 

on the polarization state of the incident light. Under the illumination of LP light that is 

the superposition of LCP and RCP light with equal components, two pairs of different 

centrosymmetric “Rubin faces” (one upright and one inverted) are generated. Even more 

intriguingly, an additional image of “vase” is also perceived between these two “Rubin 

faces”.  

 

Figure 3.6. (a) The Signal-to-noise ratio of the experimentally obtained hologram at 

wavelength of 633 nm. (b) The measured conversion efficiency of the metasurface sample. 
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To further characterize the performance of the metasurface approach, we inspect the 

experimentally obtained hologram and calculate the signal-to-noise ratio (SNR). The 

SNR is defined as the ratio between the mean power of area A and the standard deviation 

of area B as shown in Figure 3.6(a). The measured SNR of the optical hologram is 7.6. 

The noise is mainly caused by the irregularity of nanorods, and non-rigid of the plane-

wave incidence. The SNR can be further improved by optimising the fabrication process 

and optical experimental setup. We also measured the conversion efficiency of the 

metasurface over a broadband wavelength in the range from 530 nm to 1090 nm. The 

conversion efficiency is defined as the ratio of the power of all the reconstructed images 

and the input power. In experiment, a condenser lens with focal length of f=32 mm is 

used to collect the generated images. The conversion efficiency in experiment is 69.94% 

at the wavelength of 910 nm. It is worth to note that conversion efficiency is limited by 

the fabrication error of nanorods, and the absorption of the titanium layer between 

nanorods and SiO2 layer. No twin images are observed in our experiment since the pixel 

size (300 nm) is much smaller than the wavelength of the incident light. 

 

Figure 3.7. (a) The design of the target image. (b) The scanning electron microscopy 

(SEM) image of the fabricated metasurface. (c) The experimentally captured images at 

different polarization states and wavelengths.  
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To demonstrate the versatility of the metasurface for the realization of optical holograms 

based on the phase control, we also developed other metasurface devices to generate 

Moiré fringes. Figure 3.7 shows the design of the target image and the experiment results. 

In this case, the original target images are two identical concentric annuluses located on 

the two sides (see Figure 3.7(a)). But the location of the two images are asymmetric. 

Therefore, for the LP light illumination, both the concentric annuluses are partially 

overlapped with each other on the display screen. Moiré fringe is generated by the 

superposition of the light intensities of these overlapped concentric annuluses. Figure 

3.7(b) is the SEM image of the fabricated metasurface. The samples are characterized at 

different polarization states including right-handed circular polarization (RCP), right-

handed elliptical polarization (REP), horizontal linear polarization (HLP), left-handed 

elliptical polarization (LEP), and left-handed circular polarization (LCP). The intensity 

evolution of the holograms can be observed from the experiment results. Figure 3.7(c) 

presents the experimental results at different wavelengths and different polarization states.  

 

Figure 3.8. (a) The design of the target image. (b) The scanning electron microscopy 

(SEM) image of the fabricated metasurface. (c) The experimentally captured images at 

different polarization states and wavelengths.  

Figure 3.8 shows another example of the metasurface hologram. Different from the design 

of the previous two holograms that are asymmetry, the two images are symmetry in terms 
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of the zero point. Moreover, the image pattern on the right side is rotated 20o to generate 

different overlap fringe. The design method is shown in Figure 3.8(a). The fabricated 

SEM image and the experimental results are presented on Figure 3.8(b) and (c). 

The geometric metasurface provides arbitrary phase control at the nanoscale. Moreover, 

with the optimized design, it can work at a broad wavelength range with high efficiency. 

This approach proposed in this chapter is compatible with standard semiconductor 

fabrication process. More importantly, the polarization multiplexed functionalities are 

realised by combining two sets of holograms operated with opposite incident helicities, 

which provides a new methodology to integrate multiple optical functionalities into one 

single optical element.  
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Chapter 4 – GEOMETRIC METASURFACE FOR VORTEX BEAM 

GENERATION AND MANIPULATION 

It is known that light can carry both the spin angular momentum (SAM) and orbital 

angular momentum (OAM). The SAM and OAM are manifested as circular polarization 

and azimuthal phase structure of light beam, respectively. Since the first report in 1992 

by Allen et al. that light beams with an azimuthal phase dependence of exp( )i   carry 

the OAM [102], it draws extensive attention since the OAM can be many times greater 

than the SAM and such beam carrying OAM is easily realizable. The OAM of light has 

been found in various applications including optical tweezers [103], quantum memories 

[104], optical communication [105-107], and metrology [108, 109].  

In the previous chapter, we described the polarization-controlled holograms realised by 

the geometric metasurface. We now turn our attention to the generation and manipulation 

of orbital angular momentum of light using geometric metasurface. Firstly, the 

background of orbital angular momentum of light is presented, and the vortex beams with 

different topological charges of orbital angular momentums are experimentally 

demonstrated using reflective metasurfaces. Then a novel approach to realise the 

superposition of orbital angular momentum states in multiple channels using a single 

metasurface device is proposed and experimentally demonstrated [31]. With this 

principle, not only the phase but also the polarization states can be controlled at the 

nanoscale. Vector beams and Poincaré beams with inhomogeneous phase and 

polarization distribution on the transverse plane of the beams could be easily realised and 

manipulated. This approach solves several major issues associated with OAM research: 

multichannel OAM generation, polarization-controllable OAM superposition, higher 

resolution, broadband, and compactness, rendering this technology very attractive for 

diverse applications such as photonics, quantum science, and fundamental physics.  
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4.1 The Orbital Angular Momentum of Light  

4.1.1 The introduction of orbital angular momentum of light 

Polarization, defined as the vibration direction of the electric field vector, plays crucial 

role in light characterization. The fundamental state of polarization of light beam such as 

linear polarization, elliptical polarization and circular polarization could be described as 

a superposition of two orthogonal circular eigenstates (left- and right-handed) and 

represented on the surface of fundamental Poincaré sphere. These two circular eigenstates 

correspond to the spin angular momentum (SAM) of light. Circularly polarized light 

carries the spin angular momentum of   per photon. The sign of the SAM is determined 

by the helicity of the circular polarization. The SAM of light was firstly anticipated by 

Poynting [110] in 1909. He theoretically predicted that circularly polarized light should 

possess an angular momentum to energy ratio of  . 27 years later, Beth et al. 

successfully demonstrated the transformation between the circularly polarized light and 

the rotational motion of a birefringent wave plate suspended on a filament [111].  

Indeed, light beam can carry not only spin angular momentum (SAM), but also orbital 

angular momentum (OAM) which is manifested as azimuthal phase structure of light 

beam. Light carrying OAM (namely optical vortex), also known as Laguerre-Gaussian 

mode, has a helical phase structure described by exp( )i  , where is the azimuthal angle,

is the topological charge of optical vortex corresponding to an orbital angular 

momentum of  per photon [102]. A striking difference between the SAM and the OAM 

is the range of allowed values. SAM can only have two values,   per photon, expressed 

as left or right circular polarization. While OAM has an unbounded value of  per 

photon, 0,  1, 2, 3......    . In 1992, Allen et al. theoretically demonstrated that all 

the helically phased beams carry the OAM [102], which opens a new window for the 

study of OAM and its applications.  

The OAM states of light can be mathematically represented as Laguerre-Gaussian (LG) 

modes which are solutions of the paraxial Helmholtz equation in cylindrical coordinates. 

The LG mode is characterized by two indices and p . refers to the azimuthal phase 

dependence, and p refers to the radial nodes in its amplitude. Here, we limit to the case 

of singly-ringed modes with 0p  . The field distribution of LG modes with topological 

charge can be given as [102] 
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where 2 2

0( ) 2 / Rw z w z z  is the beam radius at a propagation distance z . , ,r z are the 

cylindrical coordinates, k is the wave number, the constant 0w  is the beam waist, 

2 2( ) ( ) /RR z z z z  denotes the radius of curvature of the wavefront, 

1( ) (| | 1) tan ( / )Rz z    is the -dependent Gouy phase [112], and
2

0 / 2Rz kw  is the 

Raleigh range. The LG mode has a ‘doughnut’ intensity profile due to the phase 

singularity at the beam axis. The distance from the centre to points where the intensity is 

maximum is given by ( )
2

w z   , which denotes the radius of the ‘doughnut’ ring. 

Figure 4.1 shows sample examples of OAM beams with different topological charges. 

The wavefront, the phase distribution, and the intensity profile are presented in this 

Figure.  

 

Figure 4.1 The wave front, the phase distribution, and the intensity profile of OAM beams 

with topological charges of 1 , 2 , and 3 . 
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4.1.2 The generation of OAM beams 

The common approach to generate the helically phased beam is to pass a plane wave 

beam through an optical element that can manipulate the wave front of the incident beam, 

such as spiral phase plate, spatial light modulator cylindrical lenses, and the q-plate. 

 

Figure 4.2. The common optical approaches to generate the OAM beams. (a) Spiral phase 

plate. (b) Spatial light modulator. (c) Cylindrical lenses. (d) The q-plate. 

The spiral phase plates are a type of optical component with azimuthal position dependent 

optical thickness according to / 2 ( 1)n   , where n  is the refractive index of the 

medium (see Figure 4.2(a)). The advantage of the type of elements is that it is not 

dependent on the polarization state of the incident light. An alternative approach to 

generate the OAM of light is the diffractive optical elements such as the spatial light 

modulator (SLM) as shown in Figure 4.2(b). The SLMs are based on translucent or 

reflective liquid crystal micro-displays, which can be programmed by a computer to 

spatially modulate the amplitude or phase of the light. Usually the SLM has certain 

working directions for the linearly polarized beams. It has maximum efficiency for the 

incident light with certain linear polarization. The cylindrical lens mode converters can 

also be used to transform the LG modes from the Hermite-Gaussian (HG) modes (see 

Figure 4.2(c)). These mode converters consist of two components: the / 2 -converter 

and the -converter. The advantage of this approach over SLMs is high conversion 

efficiency which is only limited by the quality of the cylindrical lenses.  

More recently, another optical device named q-plate provides the researchers with an 

alternative tool to generate the OAM of light [113]. The q-plate (as shown in Figure 

4.2(d)) is a liquid crystal cell with a thin liquid crystal film sandwiched between two 

glasses, which can be electrically controlled. The q-plate allows the generation of light 

with OAM from ordinary light with circular polarization, which has found various 

applications in classical and quantum photonics [114, 115].  
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Despite many approaches and methods [116-118] have been proposed to generate the 

OAM beams, these systems could not be straightforwardly downsized, preventing from 

widespread applications in integrated optics. Moreover, the limitations of poor resolution 

of the SLM, low damage threshold of the q-plate still need to be overcame for practical 

applications.  

Nano-fabrication advances have enabled the development of metasurfaces capable of 

controlling the wave front of the incident light in the subwavelength domain. To 

experimentally demonstrate the OAM beams generation using metasurface, several 

samples with single gold pattern layer are fabricated and characterized. The required 

phase profiles (see examples in Figure 4.1) are realized by changing the orientation angles 

of the nanorods according to the Pancharatnam-Berry phase mechanism. Figure 4.3 

shows the experimental results of OAM beams with different topological charges by 

geometric metasurfaces. The SEM images of the fabricated samples are shown in the top 

column of Figure 4.3. In experiment, a linear polarizer and a quarter-wave plate are 

inserted in front of the sample to generate the required circular polarization. Then the 

light is weakly focused by a lens to ensure that the beam size on the sample plane is 

smaller than the sample. It is worth to mention that the alignment between the incident 

beam and the metasurface is very important. The best performance happens when the 

centre of the beam and the metasurface sample coincide.   

The metasurface sample is mounted on a 2D translational state to adjust the position. 

Another pair of a linear polarizer and a quarter-wave plate is used to pass the converted 

light with opposite circular polarization and isolate the nonconverted light with the same 

circular polarization. A charge coupled device (CCD) camera is used to record the 

intensity profile of the output beam.  

The intensity profiles of the OAM beams are shown in the middle column of Figure 4.3. 

The doughnut shapes of the resultant beams confirm the existence of optical vortices. The 

vortex beams contain intensity null at the beam axis because of the phase singularity. The 

radius of the ‘doughnut’ ring depends on the absolute value of the topological charge of 

the OAM. To further confirm the topological charge of the resultant OAM beams, the 

angle of the linear polarizer after the metasurface is slightly tuned to let both the converted 

and residual beam partially pass. Then the nonconverted beam serves as the reference 

spherical wave to interfere with the converted vortex beam. The helical intensity profiles 
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and the number of branches stemming from the singularity confirm the topological charge 

of the resultant beam generated by the metasurface (see Figure 4.3 bottom column) [119]. 

 

Figure 4.3. The experimental results of OAM beams generation using geometric 

metasurfaces. 
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4.2 The Superposition of OAM States Using Single Metasurface 

Arbitrary state of polarization of light beam such as linear polarization, elliptical 

polarization could be described as a superposition of two orthogonal circular eigenstates 

(left- and right-handed). The amplitude coefficients and the phase difference of the two 

components determine the ellipticity and azimuthal angle of the resultant polarization. As 

discussed in above section, the light beam carrying orbital angular momentum or vortex 

beam has azimuthal dependent phase distribution and ‘doughnut’ shape intensity profile 

on the transverse plane of the beam. If we superimpose two vortex beams with different 

topological charges and orthogonal circular polarizations, the resultant beam with 

complex phase and polarization distribution can be generated, such as cylindrical vector 

beam [120, 121], vector vortex beam [116, 119], and Poincaré beams [122, 123]. In this 

section, the metasurface approach for the realization of superposition of OAM states are 

discussed, and the intensity profile and polarization distribution of the resultant beams 

are analysed theoretically and experimentally.  

4.2.1 The background  

Light can carry SAM and OAM, which corresponded with circular polarization and 

azimuthal phase structure of light beam, respectively. Light possessing OAM has a helical 

phase structure described by exp( )i  , where is the topological charge of optical vortex, 

corresponding to an orbital angular momentum of  per photon. The superposition of 

OAM states with orthogonal circular polarizations is of importance both in classical 

physics and quantum sciences. For instance, linear combination of OAM modes with 

equal components and opposite circular polarizations and opposite signs of topological 

charges 1  and 1   gives rise to the cylindrically vector beam that has radially or 

azimuthally distributed polarization. The cylindrically vector beam has distinguished 

features. The radially polarized beam leads to a strong longitudinal electric field 

component around the focus under strong focusing by an objective with a high numerical 

aperture. In contrast, the azimuthally polarized beam generates a strong magnetic field at 

the optical axis of the beam [124]. The cylindrically vector beam has been applied in 

high-speed kinematic sensing [125] and improved focusing [124]. Moreover, 

superposition of OAM modes with high-order topological charges can be used for ultra-

sensitive angular measurement [109] , rotational Doppler effect [126], and spin object 

detection [108]. The electromagnetic field with Multi-OAM-state can also be used to 
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generate arbitrary superposition of atomic rotational states in a Bose-Einstein condensate 

(BEC) [127, 128]. In addition, light beams with entangled OAM states and orthogonal 

circular polarizations are prime candidates for fundamental characterizations of quantum 

entanglements [129], especially the spin-orbit hybrid entanglement [130-132].   

Despite the diverse applications of OAM beams, there are fundamental or technical 

challenges for current techniques to efficiently generate and manipulate the superposition 

of OAM states. As discussed in the previous section, the optical OAM beams can be 

generated using cylindrical lenses, computer generated holograms, and spiral phase 

plates. However, all these devices are polarization independent. Thus, it cannot be 

adopted in the promising quantum photonic applications related to the spin-to-OAM 

conversion. The q-plates have been developed and employed in many research fields such 

as transformation of qubits between photons, and polarization-controlled OAM beam 

generation [114, 133, 134]. Nevertheless, q-plates are susceptible to chemical degradation 

and sensitive to temperature. The q-plates also have the disadvantage of poor spatial 

resolution and complicated operation.  

The interferometer [104, 135] consisting of OAM generator, beam-splitters and mirrors 

can be employed to realise various superpositions of OAM states in quantum 

experiments. However, such an approach significantly increases the complexity and 

volume of experimental systems. In addition, the system performance may greatly be 

affected by the aberrations and the misalignment of the optical elements. Consequently, 

an efficient and compact approach to realise artificially controlled generation and 

coherent superposition of OAM states, even in multichannels, is desirable, because of the 

broad range of applications. Due to the exotic electromagnetic properties and potential 

breakthroughs for light manipulation, metasurface provides the ability to generate the 

superposition of OAM states in multichannels. By changing the polarization state of the 

incident light, the superposition can be simply controlled. The advantages of multiple 

OAM generation, polarization-controlled superposition, and subwavelength resolution, 

renders this metasurface approach attractive for various applications both in classical 

physics and quantum optics. 

4.2.2 Design and method  

The basic principle of this approach is based on the fact that arbitrary polarization state is 

the superposition of orthogonal circular polarizations. The key point of this method for 
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the realization of superposition of two OAM states is to generate the phase structure that 

two OAM bases are generated simultaneously by shining a RCP light. Moreover, the two 

generated OAM beams are propagated along symmetry-equivalent directions with respect 

to the axis of incident light. This can be realised by the phase-merge method described 

by the following equation [105, 136]   

 
1

( , ) arg( (exp( ) ))
N

i i x y

i

x y E i   


      (4.2) 

where N is the total number of OAM states,
iE is the power of OAM state

i
with respective 

to the total power, is the azimuthal angle. x and x are phase gradients in x and y 

directions, which introduce the off-axis deflection for the OAM modes of interest, 

respectively [2].  

 

Figure 4.4. Schematic of eight OAM states from 1 to 8  generation under 

illumination of RCP light using equation (4.2). Considering the practical application, the 

off-axis design is employed in this approach. By changing the handedness of incident 

light from RCP to LCP, all the OAM beams are flipped to the symmetric position with 

respect to the axis of incident light. Meanwhile, the sign of topological charges become 

negative from positive. 

Equation (4.2) can be used to generate spatial multiplexed OAM states. Figure 4.4 shows 

the schematic for generation of eight OAM beams with topological charges form 1 to

8  under a RCP Gaussian beam illuminating upon the designed metasurface. It is noted 

that, by changing the handedness of incident light from RCP to LCP, all the OAM beams 
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are flipped to the symmetric position with respect to the axis of incident light. 

Meanwhile, the sign of topological charges become negative from positive. 

 

Figure 4.5. Method of polarization-controlled superposition of OAM states. The 

polarization state of incident light is (a) RCP and (b) LCP, respectively. (c) The case of 

incident light with arbitrary polarization state which is superposition of RCP and LCP 

light with different components (A for RCP and B for LCP) and phase difference 2ie  . 

Figure 4.5 presents the principle of this approach. When a RCP Gaussian beam ( R ) is 

illuminated upon the metasurface with designed phase structures, two OAM beams

1,R and
2,R are generated, with the symmetry-equivalent propagating directions 

(see Figure 4.5(a)). The explanation about the polarization conservation can be found in 

other references [16]. By switching the handedness of incident light, the propagating 

directions of two resultant OAM beams are swapped with respect to the incident axis. In 

addition, the signs of topological charges are changed from positive to negative since the 

abrupt phase change introduced by nanorods is handedness-dependent [2] (see Figure 

4.5(b)). Arbitrary polarized light can always be decomposed into a superposition of the 

two circular polarized waves with opposite handedness which are eigenstates of Poincaré 

sphere (see Figure 4.5(c)). It is described as 

 cos sini ie R e L            (4.3) 

where cos  and sin are the amplitudes of RCP and LCP light, and is the phase 

difference of two components. When a light beam with polarization state of  is 

shining on the metasurface, two kinds of superpositions with different OAM states and 

orthogonal circular polarizations are generated in two channels, which are 

2 1(cos , sin , )i ie R e L     and 1 2(cos , sin , )i ie R e L     . This 

is shown in Figure 4.5(c). Now we can see that the superposition of two OAM beams is 
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realised under the incident beam with polarization state of  , such as linear polarization 

or elliptical circular polarization. Moreover, by changing the polarization state of the 

incident light, the superposition can be manipulated. 

 

Figure 4.6. (a) Illustration of the Poincaré sphere representation of polarization state of 

incident light (b) and the higher-order Poincaré sphere representation of superposition of 

OAM eigenstates
1
and

2
.   

To describe the evolution of OAM superposition, we introduce the recent concept of the 

Higher-order Poincaré sphere [137, 138]. In analogy to the well-known Poincaré sphere 

for polarization (or SAM) state description, any state in a given o subspace can be 

represented as a point on the Higher-order Poincaré sphere. The poles of the sphere are 

the OAM eigenvalues 1,2  and correspond to Laguerre-Gauss (LG) transverse modes. It 

should be mentioned that the value of OAM eigenstates
1
and

2
 can be different [139].  

The superposition of LG modes with orthogonal circular polarization states produces 

structured beams with inhomogeneous phase and polarization distribution [140]. As 

described in above section, arbitrary pure polarization state can be represented with 

circular polarization bases. When a Gaussian beam with polarization state described by 

equation (4.3) illuminates the metasurface, the resultant beam is the superposition of two 

LG modes with orthogonal circular polarization. Consider the superposition of two LG 

modes with topological charges 1 and 2 , the resultant beam can be expressed as  

 1 2

1 2

1
(cos , sin , )

2

i iV LG e R LG e L           (4.4) 
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To clearly analyse the properties of the resultant beam, the discussions are divided into 

two cases: when 1 2   and 1 2  . 

For the case of 1 2  , we can rewrite equation (4.4) with Jones vector as 

 
( ) ( )(cos sin )

2

i iV e R
G

e L          (4.5) 

where 

 
1 2     (4.6) 
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   

  (4.7) 

When
4


  , the two circular bases have equal components. Then, the polarization states 

at the beam’s transverse plane is linear. But the orientation angles of the linear 

polarization are spatial dependent in terms of   . The polarization distributions of 

two example cases are presented in Figure 4.7. Considering the case of 1 , the 

structured beam is the well-studied radial vector beam for 0  , and the azimuthal vector 

beam for
2


  .  

Since the resultant beam has inhomogeneous polarization distribution, which is 

determined by the design of the metasurface together with the polarization state of the 

incident light. The resultant beam generated by the superposition of LG modes with 

orthogonal circular polarization states can be diagnosed by passing it through a linear 

polarizer with orientation angle  (with the horizontal). Accordingly, the transmitted 

intensity is proportional to
2cos ( )    , and it has 2 minima at angles [140]  

 
(2 1)

2
m

a   



     (4.8) 
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where 1,2,...2a  . The simulated intensity profiles of the resultant beams after passing 

through a horizontal linear polarizer are presented in Figure 4.7 as well. 

 

Figure 4.7. The polarization profile and the intensity profile of the resultant beam with 

the superpositions of (a) , 1R   and , 1L   , (b) , 3R  and 

, 3L   . 

When θ is within the range of (0, π/4) or (π/4, π/2), the polarization states at every point 

of the light’s transverse plane is elliptical. Moreover, the ellipticity is determined by θ, 

which is same with that of the incident light. The azimuthal angles of the spatial 

dependent elliptical polarization are determined by   . When 0  or / 2  , the 

resultant beam is right- or left-handed circularly polarized Laguerre-Gauss modes, or 

vortex beams. 

For the case of 1 2  , the equation (4.4) can be rewritten as 
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 1 2( ) /21
( cos cos sin sin )

2

i i iV e e R e L          (4.9) 

where 

 
2

1

1tan ( )
G

G
    (4.10) 

 1 2( )

2


 


    (4.11) 

Therefore, the polarization state at every point of the transverse plane of the beam is 

determined by the three parameters , ,   . If 1 2| | | | , the polarization state evolves 

from right circularly polarized to left circularly polarized when moving the position from 

centre to the edge of the beam (see Figure 4.8). Interestingly, when 1 0  and 2 1 , the 

resultant beam refers to as full Poincaré beam, which has all states of polarization 

represented on the Poincaré sphere [122, 141].  

By passing the resultant beam through a linear polarizer, the output beam becomes 

composite-vortex beam which contains a vortex of charge 1  in the centre of the beam 

surrounded by 1 2| |  singly charged peripheral vortices with the same sign of 2  

located at the same radial distance [112]  

 
2 1

1

2(| | | |)
22

1

!( )
(tan )

!2

w z
d 

 
  

 
  (4.12) 

The right column of Figure 4.8 shows the intensity profile of the resultant beam with 

superpositions of , 1R   and , 3L   , and , 2R  and , 4L    after 

passing through a horizontal linear polarizer. 
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Figure 4.8. The polarization profile and the intensity profile of the resultant beam with 

the superpositions of (a) , 1R   and , 3L   , (b) , 2R  and 

, 4L   . The symbols with black colour represent the polarization state with right-

handed helicity, and that of red colour represents the left-handed helicity.   

4.2.3 The experimental results 

To experimentally verify the proposed approach and inspect its flexibility, several 

metasurface samples for generating multiple OAM states are fabricated. The 

manipulations of the superposition of different OAM states in multiple channels are also 

characterized theoretically and experimentally. To clearly demonstrate the functionality 

of polarization controllable OAM modes superposition, the fundamental Poincaré sphere 

and Higher-order Poincaré sphere are employed to describe the polarization states of 

incident light and the Higher-order states of output light, respectively. 
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In experiment, the metasurface samples are mounted on a three-dimensional translation 

stage and exposed to the light from tuneable supercontinuum laser source (NKT-SuperK 

EXTREME) which covers a broad wavelength range. A Glan polarizer and a quarter-

wave plate are inserted following the laser to generate the required polarization states. 

Then the collimated Gaussian beam impinges upon metasurface at normal incidence with 

a weak focus by a lens with a focal length of 100 mm. The measured intensity profiles of 

reflected output beams are captured using a colour CCD camera.  

The first kind of metasurfaces realise superposition of OAM states with the same value 

but opposite signs in four output channels. The design is shown in Figure 4.7(a). Under 

the illumination of RCP light, two pairs of off-axis OAM beams are generated, i.e., 

(represented by black dots in horizontal direction) and (represented by red dots in vertical 

direction), respectively (see Figure 4.9(a))). Here 
i
 and j are the topological charges. 

By changing the incident circularly polarized light from RCP to LCP, the sign of 

topological charges of output OAM states is flipped from positive to negative (see Figure 

4.9(b)), and the positions are swapped with respect to the centre (In practical, the 

propagating direction of two resultant OAM beams are swapped with respect to the 

incident axis.), accordingly. For a linearly polarized (LP) incident light which is the 

superposition of RCP and LCP components with equal weight, the states of the output 

beams generated by metasurface are , ,i iR L  and , ,j jR L , 

respectively. Then, the superpositions of OAM states are realised. 

 

Figure 4.9. Schematic of the generation of two kinds of OAM modes and their 

superpositions in four channels. (a) For the case of incident beam with RCP, two pairs of 

off-axis OAM beams are generated, i.e., , iR  (denoted by black dots) and , jR  

(denoted by yellow dots), respectively. (b) The signs of the topological charges of OAM 
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states and their positions are changed for the case of LCP input light. (c) OAM 

superpositions occur under the illumination of linearly polarized (LP) input light which 

is the superposition of LCP and RCP. 

Figure 4.10 shows the metasurface that achieves two channels, i.e., channel 1 is the 

superposition of right-handed LG mode ( 1 ) and left-handed LG mode ( 1  ), and 

channel 2 is the superposition of right-handed LG mode ( 3 ) and left-handed LG mode 

( 3  ). The scanning electron microscope (SEM) image of the metasurface is 

presented in Figure 4.10(a). In our experiment, we measure the resultant beams by 

recording the intensity profile at wavelength of 650 nm. It should be mentioned that these 

metasurface devices work in broad wavelength. Initially, the polarization state of the 

incident light is set with linear polarization. The output beam in channel 1 is the 

superposition of OAM modes with equal weight and opposite topological charges 1  

and 1  . Moreover, the two OAM components have opposite circular polarizations. 

The output beam in channel 2 has the similar superposition states, but the topological 

charges are 3  and 3  . The combination of OAM beams with opposite 

topological charges and circular polarizations generate vector beams. The calculated 

polarization distribution can be found in Figure 4.7.  

 

Figure 4.10. (a) The SEM image of the fabricated metasurface sample META 1. (b) The 

simulated and the experimentally observed intensity profiles of the superposition of OAM 

states after passing through a linear polarizer. The polarization angle of the incident linear 

polarized light and the transmission axis of the second polarizer in front of the CCD 

camera are denoted by the red and white double-headed arrows, respectively.    
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The superimposed OAM beams can be diagnosed by passing through a linear polarizer. 

We set the angle of the transmission axis of the polarizer is  regarding x-axis. The Jones 

matrix can be written as 

 
2

2

cos sin cos

sin cos sin

  

  

 
 
 

  (4.13) 

Then the intensity profile after the polarizer can be calculated by [138] 

  21 co
1

s
2

        
  (4.14) 

  is the polarization angle of the incident linear polarized light. The transmitted intensity 

finds its minima at the azimuth angle
 2 1

2
n

n  






  and has 2 | |  lobes, where

1,2,...2n  . The number of lobes is double the absolute value of the topological charge. 

The positions of the minima are determined by the polarization angle of the incident light 

 and the angle of the polarizer in front of the camera  . A good agreement between the 

simulated and measured results are observed as shown in Figure 4.10. Note that the 

combination of , 1R  and , 1L   with equal component can generate a radial 

or azimuthal vector beam, which has been found in various applications due to the unique 

properties [124, 125, 142].   

Then we use a Glan polarizer (GP) and a quarter-wave plate oriented as suitable angles 

to generate the required polarization state as will. First, we generate five polarization 

states, i.e., 1) right-handed, 2) right-handed elliptically polarized, 3) horizontal linearly 

polarized, 4) left-handed elliptically polarized and 5) left-handed, which are 

geometrically represented on Poincaré sphere shown in Figure 4.11(a). The 

experimentally obtained results of resultant beams in two channels are also shown in this 

figure, which agree very well with numerical prediction. To further characterize the 

capability of arbitrary controlled superposition, we then set the Glan polarizer and the 

quarter-wave plate to introduce a retardation of / 2 between the circular polarization 

components of the input beam. By adjusting the Glan polarizer and a quarter-wave plate, 

the polarization states depicted in Figure 4.11(b) are generated at will. Consequently, the 
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introduced phase difference of / 2 between the eigenstates causes the rotation of the 

intensity profiles, which are theoretically predicted and experimentally verified. 

 

Figure 4.11 Simulated and experimental results of the polarization-controlled 

superposition of OAM modes. A linear polarizer is used to characterize the output beam. 

The transmission axis of this polarizer is denoted by the white double-headed arrows. Ten 

polarization states of the incident light are chosen along two different trajectories on the 

Poincaré sphere. The red symbols represent the polarization states.  

To further confirm the metasurface approach for the realization of polarization-controlled 

OAM superposition, metasurface 2 (META 2) is fabricated to generate different 

superpositions from the first metasurface. Figure 4.12 illustrates the experimental results 

of the second metasurface which produce superpositions of OAM modes 2  and

4  in two channels, respectively. Figure 4.12(a) shows the SEM image of this 

metasurface. The experimental characterization for this sample is in a similar manner with 
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the first metasurface. Both the simulated and experiment intensities of resultant beams 

are presented in Figure 4.12 and 4.13. A superposition of equal intensities of left-handed 

and right-handed LG modes with topological charge forms a Hermite-Gaussian mode 

after a polarizer, which consists of 2 | |intensity lobes [138]. From Figure 4.10-4.13, we 

can see that the experiment results are in excellent agreement with the anticipated 

intensities. 

 

Figure 4.12. (a) The SEM image of the fabricated metasurface sample META 2. (b) The 

simulated and the experimentally observed intensity profiles of the superposition of OAM 

states, which are 2R   and 2L   , 4R   and 4L    , after passing 

through a linear polarizer. The polarization angle of the incident linear polarized light and 

the transmission axis of the second polarizer in front of the CCD camera are denoted by 

the red and white double-headed arrows, respectively.   
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Figure 4.13 Simulated and experimental results of the polarization-controlled 

superposition of OAM modes in two channels, which are  2R   and 2L   , 

4R   and 4L   , respectively. A linear polarizer is used to characterize the 

output beam. The transmission axis of this polarizer is denoted by the white double-

headed arrows. Ten polarization states of the incident light are chosen along two different 

trajectories on the Poincaré sphere. The red symbols represent the polarization states. 
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Figure 4.14. (a) The SEM image of the third metasurface sample for the generation of 

hybrid superpositions of OAM states. (b) Under the illumination of RCP light, four OAM 

beams with topological charges of 
i

 ( 1,  2, 3, 4i  ) are generated. (c) The 

experimentally observed intensity profiles of four OAM beams. 

In order to further explore the high performance and extend the functionality of this 

approach, the third metasurface is designed and fabricated, which not only generates four 

OAM modes from 1 to 4 for RCP Gaussian beam illumination (see Figure 4.14), 

but also four channels of hybrid superpositions of OAM states are realised. The SEM 

image is presented in Figure 4.14(a). Firstly, we measured the intensity profiles of the 

four OAM beams in four channels under the illumination of RCP Gaussian beam. Figure 

4.14(c) shows the observed doughnut beams corresponding to four OAM modes from

1 to 4 . Upon the illumination of linearly polarized light, the four channels 

correspond to four cases of superposition of SAM and OAM states, i.e., 

 (cos , 1 sin , 3 )i iR e L e         (4.15) 

 (cos , 2 sin , 4 )i iR e L e         (4.16) 

 (cos , 3 sin , 1 )i iR e L e         (4.17) 

 (cos , 4 sin , 2 )i iR e L e         (4.18) 

which are represented on different Hybrid-order Poincaré spheres. We characterize this 

metasurface under the similar process with previous experiment. Both the simulation and 

measurement results about the superposition of OAM modes 1R   and 3L    

are illustrated in Figure 4.15. The upper rows show the simulated and measured intensity 

profiles without a polarizer in front of the camera. We can see from the results that the 

diameter of dark hole in the centre of the obtained profiles increases with continuously 

changing the polarization state of the incident light from RCP to LCP, which indicates 

that the output beam evolves from the OAM state with 1  to OAM state with 3 . For 

the case of incident light with elliptical and linear polarization, the resultant beam is the 
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superposition of the two OAM modes. Since the polarization states of the two components 

are orthogonal, there is no interference between them. The doughnut shape of the intensity 

profile remains during the change of polarization.  

 

Figure 4.15 Simulated and experimentally recorded intensity profiles of the hybrid 

superposition of OAM modes 1R   and 3L   . 
G  is the Gouy rotation 

introduced by the Gouy phase difference between the two OAM components during 

propagation. 

The performance of the approach is further verified by transmitting the output beam 

through a horizontal linear polarizer as shown in the bottom rows of Figure 4.15. The 

experiment results agree well with the simulated results. It should be noted that the 

rotation of the intensity profile
G  is observed, which is caused by the -dependent 

Gouy phase [143, 144]. The Gouy phase shift is the axial phase shift that a converging 

light wave experiences as it passes through its focus in propagating from   to 

[144]. During the propagation of the LG beam along the optical path after focus, it 

acquires a -dependent Gouy phase which is proportional to the fundamental Gouy phase

1tan ( / )Rz z
. The -dependent Gouy phase can be given by 

 
1(2 | | 1) tan ( / )G Rp z z      (4.19) 
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Here we consider the case of 0p  , the field distribution of the beam is a single ring that 

contains a phase vortex of charge at the beam axis. When the composite beam formed 

by collinear superpositions of LG beams with topological charges of 1 and 2  

propagates, the intensity profile rotates about the beam axis if 1 2| | | | . Since there is 

Gouy phase difference between the component beams. When 1 2| | | | , there is no 

rotation, which is verified in Figure 4.12. More details about the explanations can be 

found in Ref. [112]. The simulated and experiment results on the superposition of 

2R   and 4L    are shown in Figure 4.16. 

 

Figure 4.16. Simulated and measured intensity profiles of superposition of OAM states

, 2R   and , 4L   . The polarization state of the incident light is denoted by 

red symbols. The direction of the polarizer’s transmission axis in front of the CCD camera 

is denoted by the white double-headed arrows. 

This approach also provides the capability for multiplexing massive individual orbital 

angular momentum beams using single metasurface with miniature size, paving the way 

for highly compact meta-devices in optical communication systems [105]. Furthermore, 

this approach offers the opportunity to explore the physical process about multipartite 

quantum entanglement of photons both in their spin and orbital angular momentum 

degrees of freedom [145]. 
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Chapter 5 – GEOMETRIC METASURFACE FOR POLARIZATION 

CONTROL 

The coherent superimposition of two orthogonal circular polarizations can generate 

arbitrary polarization by adjusting the intensity ratio and phase difference between them. 

This basic rule provides the capability to control the polarization state of the output light 

at the subwavelength scale in the manner of phase and amplitude change introduced by 

nanoantennas. Considering the example of geometric metasurface consisting of 

nanopattens with identical geometry but different orientations. Due to the spin-rotation 

coupling, the phase of the output light is determined by the orientation of the nanoantenna. 

Moreover, the sign of the phase change depends on the helicity of the light. Thus, the 

polarization angle and phase of the linear polarization can be controlled in subwavelength 

scale through governing the phase difference between the two circular components. It 

should be noted that the ellipticity cannot be engineered in this way since the amplitude 

of the scattering field remain same for both the two circularly polarized light. To 

demonstrate the linear polarization control using metasurface, we proposed and designed 

two different approaches using metasurfaces. The first is about the generation of vector 

vortex beam with a single metasurface [119]. This method features the spin-rotation 

coupling and the superposition of two circular components which are the converted part 

with an additional phase pickup and the residual part without a phase change. Both the 

orbital angular momentum and polarization distribution in the transverse plane about the 

propagation axis are manipulated by a single metasurface consisting of nanorods with 

spatially variant orientation. As this approach solves several major issues typically 

associated with vector vortex beam generation such as poor resolution, low damage 

threshold, bulky size, and complicated experimental setup, it opens a new window for 

future practical applications of the structured beams in the relevant research fields such 

as optical communication, particle trapping, microscopy, and quantum optics. The second 

approach is to spatially manipulate the phase of the two circular components 

simultaneously to control the polarization distribution of the resultant beam [146]. Based 

on this method, we propose and experimentally demonstrate a metasurface approach to 

encode a high-resolution image in a laser beam. This approach provides a novel route to 

hide a high-resolution grayscale image in the polarization topology of a laser beam that 

has not previously been reported in the literature. The uniqueness of image-hidden 

functionality and precise polarization manipulation, and high performance in resolution, 
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bandwidth, and compactness renders this technology very attractive for diverse 

applications such as encryption, anti-counterfeiting, and optical communications.  

  



 

77 

5.1 Vector Vortex Beam Generation Using Single Metasurface 

Vortex beams and vector vortex beams have been widely investigated due to their 

distinguished features. Vortex beams have a distribution of azimuthal phase and 

homogeneous polarization, while vector vortex beams have azimuthal phase and 

polarization dependence at the transverse plane of the light beams. Vortex beams and 

vector vortex beams have been found in various applications including particle trapping 

quantum memories, high-resolution lithography, and optical communication. In this 

section, we demonstrate an approach to generate the vector vortex beam using 

metasurface. The designed metasurfaces can generate cylindrical vector vortex beams 

carrying orbital angular momentum. The vector vortex beams are obtained using the 

superposition of the converted part and the residual part of the output beam [119]. Figure 

5.1 shows the schematic of the vector vortex beam generation. For an incident light beam 

with right-handed circular polarization (RCP), part of the input beam is converted and 

acquired spatially dependent abrupt phase changes. In contrast, the residual beam has no 

phase change but the opposite helicity polarization in comparison with that for the 

converted part. The output beam is therefore a superposition of two components, and the 

polarization distribution is transformed to a radial vector field. The generated vector 

vortex beam (VVB) carries OAM 1 . 
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Figure 5.1 Schematic of the vector vortex beam generation through a metasurface. The 

resultant beam is a superposition of the converted part and the residual part. The converted 

part has the same circular polarization as that of the incident beam and obtains an 

additional phase pickup. Whereas the residual part has the opposite helicity but no phase 

change. With the RCP incident light, the converted beam has a helical wavefront with a 

topological charge of  and the resultant beam has radial polarization distribution 

with the OAM of .  

5.1.1 Design of the metasurface 

It is evident that any state of complete polarization on the fundamental Poincaré sphere 

can be described as a superposition of left- and right-handed circularly polarized light, 

which refer to spin eigenstates. By extending the basis of states in terms of the optical 

SAM to the total optical angular momentum that includes the higher dimensional orbital 

angular momentum (OAM), the vector vortex beam can be constructed from a coaxial 

superposition of two spin-orbital eigenstates with different values.  

To generate VVB, we design and fabricate a reflected-type metasurface that 

simultaneously generate two eigenstates, i.e., the converted part and residual part, with 

pre-designed phase difference between them. The metasurface has the metal-dielectric-

metal configuration with the top layer of nanorods with space-variant orientation. The 

high efficiency of this configuration has already been discussed in Chapter 2 and 3. The 

detailed information can be found in Ref. [16] and [15].  

Here, the orientation angle of nanorods can be specified by the following expression  

 
0( , )

4
r q


       (5.1) 

where ( , )r  is the polar coordinate representation, and q is an integer related to the 

difference of topological charge for two eigenstates( 2 1 2q   ). 0 is the initial 

angle related to the phase difference of two eigenstates. When a circularly polarized 

Gaussian beam impinges onto the metasurface, part of incident light will be converted 

into the opposite circularly polarized light. The change in the SAM is transformed into 

OAM [12]. Therefore, the emerging beam is converted into Laguerre-Gauss beam 

carrying orbital angular momentum, whereas the intensity distribution of residual beam 

2

1
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is still Gaussian. This process is inherently geometry dependent and occurs in a sub-

wavelength scale. By carefully designing the structure of the metasurface, the converted 

beam and residual beam serve as two eigenstates. Hence, the resultant beam can be 

expressed as 

 0,0 0,2 0

1 1
( , ) ( , ) ( , ) exp( )output qE r LG r LG r i

i i
   

 

   
     

   
 (5.2) 

where 0,0 ( , )LG r  and 0,2 ( , )qLG r  represent the intensity distributions of fundamental 

Gaussian beam with zero topological charge and Laguerre-Gauss beam with topological 

charge of 2 q , respectively. 0 is the phase difference between these two modes. 1  

stand for the cases of right- and left-handed circularly polarized light, respectively.  

5.1.2 Polarization and phase evolution on a single-pixel cell structure. 

A single-pixel cell structure is functionally similar with a reflective-type half-wave plate 

with fast axis parallel to the major axis of nanorod as shown in Figure 5.2. The Jones 

matrix of reflective-type half-wave plate is given by  

 ( /2, )

cos 2 sin 2

sin 2 cos 2
J i 

 

 

 
  

 
  (5.3) 

where is the angle between the fast axis of half-wave plate and the horizontal axis. In 

normal case, the factor i is usually suppressed since we only consider the converted part. 

However in this case it can’t be ignored since the phase difference with regard to incident 

wave is the key point. When a pure circularly polarized light impinges normally upon the 

half-wave plate, the reflection beam is in general a superposition of two components with 

orthogonal circular polarization states: the converted part with an abrupt phase change, 

and the non-converted part with no phase change. First we consider the RCP incident 

light. Its normalized Jones vector is 
11

2

RCPE
i

 
  

 
. The Jones vector of converted light 

could be derived by multiplying the Jones vector and equation (5.3). Assuming that part 

of incident light is converted and we find that 
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(2 )

2
( /2, )

11

+ +2

i
RCP RCP

Con

A A
E J E e

iA B A B




 

  
   

 
  (5.4) 

where A and B represent the amplitudes of converted and residual light, respectively. 

From equation (5.4), we can see that the incident RCP light is converted to LCP light with 

an additional phase ( 2 )
2


 .  

 

Figure 5.2. Illustration of polarization and phase evolution of emerging light on a single-

pixel cell structure. For the circularly polarized incident light, the emerging light is the 

superposition of two orthogonal circularly polarized beam which are the converted wave 

(same handedness with that of incident beam) and non-converted wave (opposite 

handedness with that of incident beam), respectively. Spiral curved line in red colour 

stands for right-handed circularly polarized light (RCP), and that in blue colour stands for 

left-handed circularly polarized light (LCP). (a) The case of RCP input light. (b) The case 

of LCP input light. 

The term 2 is the Pancharatnam-Berry phase. The term 
2


is an overall phase delay 

introduced by the half-wave plate. It should be noted that the handedness of polarized 

light is reversed when it is reflected by an ideal mirror because of opposite direction of 
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propagation. Thus, the converted wave maintains the handedness of incident light as RCP 

but with additional phase ( 2 )
2


 . The Jones vector is 

 
(2 )

2
11

+2

i
RCP

Con

A
E e

iA B


  

  
 

  (5.5) 

The non-converted wave only experience handedness flip and the Jones vector can be 

given by 

 
11

2

RCP

Non con

B
E

iA B


 
  

  
  (5.6) 

The emerging beam is the superposition of converted (
RCP

ConE ) and non-converted wave (

RCP

Non conE  ). If the converted and residual component have equal intensity ( A B ), the 

resultant beam gives rise to linearly polarized light and also acquires a phase change. It 

can be expressed as follows (see Figure 5.2(a))  

 
( )

4

cos( )
1 4

( ) 2
2

sin( )
4

i
RCP RCP RCP

out Con Non conE E E e














 
 

    
  
  

                            (5.7) 

A similar derivation takes place when the polarization state of incident light is LCP 

(Figure 5.2(b)). The Jones vector of emerging beam is 

 
( )

4

cos( )
4

= 2

sin( )
4

i
LCP

outE e












 
 

 
 
  

  (5.8) 

The superscripts in equations (5.4-5.8) represent the polarization state of incident light. 

From equations (5.7) and (5.8), we can see that the resultant beam gives rise to linearly 

polarized light and acquires a phase change under the illumination of LCP or RCP light. 

More importantly, both the polarization angle and phase change are dependent on the 
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orientation angle of nanorods and the handedness of incident light. In addition, an overall

4


shift is introduced by the half-wave plate [120]. 

5.1.3 The simulation and experimental results 

To verify the idea, two metasurface samples with different values of 
0  are designed and 

fabricated by means of the similar fabrication process. Here 1q  . Initially, the first 

sample with 
0 0   is characterized. Figure 5.3(a) shows the measured normalized power 

of the two eigenstates over a wide range of wavelengths. The inset is the SEM image of 

the fabricated sample. The two curves overlap at the wavelength of 697 nm, which means 

that the converted and residual part have equal components at this wavelength and the 

VVB is realised. By passing through a linear polarizer with different transmission angles, 

the generated structured beams from the fabricated metasurface are characterized and 

validated. Figure 5.3(b) shows the simulated and measured intensity distribution of 

vectorial vortex beam after passing through an analysing polarizer in horizontal, 45°, 

vertical, and -45 ° orientations at the wavelength of 697 nm. The appearance of ‘s’ shape 

patterns is theoretically predicted and experimentally confirmed. The observed patterns 

indicate that the resultant beams indeed have an inhomogeneous polarization distribution 

and a helical wavefront. The simulated intensity patterns of vector beams with different 

OAM can be found in Figure 5.4. Moreover, the twisted direction of the ‘s’ shape varying 

with the helicity of circular polarization are also experimentally confirmed from the 

obtained intensity patterns.  
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Figure 5.3. Measured power (normalized) of converted and residual parts at various 

wavelengths, and intensity patterns of vector vortex beam after passing through a linear 

polarizer. (a) The measured power (normalized) of converted and residual parts at various 

wavelengths. The inset is the SEM image of the metasurface for vector vortex beam 

generation. The scale bar is 500 nm. (b) Simulated and experimentally recorded intensity 

profile of the vector vortex beam after passing through a polarizer with different 

polarization angles including horizontal, diagonal, vertical, and antidiagonal directions. 

The polarization angles are denoted by white double-headed arrows. i, LCP light input, 

ii, RCP light input. 

 

Figure 5.4. Simulated intensity distributions of vector beams with different topological 

charges.   

5.1.4 The validation of the OAM 

In Chapter 2, we discussed that the Generalized Snell’s law and the phase gradient 

metasurface (PGM). Due to the spin dependent phase manipulation, the PGM can work 

as a circular beam splitter. Here, we employ a PGM in experimental setup that allow us, 

without the need of any additional polarizer and waveplate, to simultaneously decompose 

the output beam from the metasurface. Since the two eigenstates have the opposite 

circular polarization states.  
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Figure 5.5. Experimental setup, and the theoretically predicted and measured intensity 

distribution of the two components. (a) Schematic of the experimental setup. A charge 

coupled device (CCD) camera is used to image the output beams. The inset is the SEM 

image of fabricated phase-gradient metasurface. (b) Simulated (top) and measured 

(bottom) intensity profiles of the two components. (c) Spiral patterns created by the 

interference of the vortex beam and a co-propagating Gaussian beam. The polarization 

states of incident light are LCP (upper image) and RCP (lower image), respectively. 

The schematic of experimental setup is depicted in Figure 5.5(a). The metasurface 

sample for the VVB generation is mounted on a three-dimensional translation stage and 

exposed to the laser beam. A Glan polarizer and a quarter-wave plate are used to generate 

the required circularly polarized light. In order to collect the reflected light, a polarization-

insensitive beam-splitter (BS) is inserted between the QWP and the lens. The reflected 

vector vortex beam is either projected to PGM to decompose the resultant beam, or 

propagates in the free space for further application. The SEM image of the PGM is shown 

in Figure 5.5(a) (see inset). The simulated and obtained intensity distributions of two 

components are shown in Figure 5.5(b). The doughnut shape and singular point confirm 

the existence of optical vortex (right in Figure 5.5(b)), which corresponds to the converted 

light. The residual part (left in Figure 5.5(b)), on the other hand, is confirmed by the shape 

without a singularity in the light spot. To further reveal the spiral wavefront and verify 

the OAM of optical vortex, the PGM is replaced by the circular polarization filter 

consisting of a quarter-wave plate and a linear polarizer. We deliberately let both the 

converted and residual beam partially pass the filter by tuning the angle of the quarter-

wave plate and linear polarizer. The residual beam serves as the reference spherical wave 

to interfere with the converted vortex beam. The double helical intensity profile and the 

number of branches stemming from the singularity confirm that the converted beam 

carries orbital angular momentum of 2 . 
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The proposed method provides an unusual way to generate vector vortex beam carrying 

orbital angular momentum using a single metasurface, which will inspire the pursuit of 

further novel functionalities. To our knowledge, this is the first time that the converted 

part and the residual part are used together to realise new functionalities. Both the phase 

and polarization are manipulated at subwavelength scale by the artificial array of 

engineered nanorods over the metasurface. We develop two metasurfaces with different 

initial angles (
0 0   and 

0  ), which can generate radially and azimuthally 

polarized vortices carrying orbital angular momenta, respectively. The SEM image of the 

second metasurface with
0  and results are shown in Figure 5.6. The good agreement 

between predicted and experimental results confirms the proposed methodology. It has 

been reported that azimuthally polarized beams with helical wavefront could effectively 

achieve a significantly smaller spot than normal azimuthally polarized beams when 

focused with a high-numerical-aperture lens. 

 
Figure 5.6. (a) SEM image of fabricated metasurface with 

0  . (b) the experimental 

results. The scale bar is 500 nm. 

For the application of free space communication, the optical vortex has attracted growing 

attention due to its higher data transmission capacity. However, the atmospheric 

turbulence strongly affects the properties of the optical vortex when propagating in free 

space. The existence of the vectorial vortex can be identified with longer propagation 

distance through atmosphere than the scalar vortex even with vanishing characteristic 

vortex structure [147]. By carefully designing the angle distribution of nanorods, the 

manipulation of polarization profile can be realised using a single metasurface with the 

circularly polarized incident light. In addition, the resultant polarization distribution is 

switchable by controlling the helicity of the circularly polarized incident light.  
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5.2 Hiding a Grayscale Image on a Laser Beam 

In this section, we demonstrate the second approach to control the transverse polarization 

profiles. Moreover, we encode a high-resolution grayscale image into the spatially variant 

polarization states of the laser beam, which can be revealed after passing through a linear 

polarizer. The desired space-variant polarization profile originates from the superposition 

of two circularly polarized beams with opposite handedness and space-dependent phase 

difference emerging from a single metasurface.  

5.2.1 The design method 

The required light beam with an inhomogeneous linear polarization profile can be 

decomposed into the superposition of two circularly polarized beams with equal 

components and opposite handedness, which can be described as 

 

0

0

( , ) [ cos ( , ) sin ( , )]

           [exp( ( , )) exp( ( , )) ]
2

R L

E x y E x x y y x y

E
i x y e i x y e

 

 

 

  
  (5.9) 

where ( , )x y  represents the relative phase difference between the two orthogonal 

circular polarization states, ( ) / 2Le x iy   and ( ) / 2Re x iy  are unit vectors of 

the left circular polarization and the right circular polarization. A geometric metasurface 

is used to realise the handedness-dependent phase profile while maintaining constant 

amplitude. Here, a single reflective metasurface is designed to generate the desired 

structured beams by manipulating the superposition of two beams with opposite circular 

polarization states emerging from the identical metasurface. 

Figure 5.7 shows the schematic to generate the required linear polarization profile. To 

eliminate the effect of the non-converted beam, we adopt the off-axis configuration in 

this design. A general linear polarization topology can be generated by a coherent 

superposition of two planar circularly polarized beams with opposite handedness, which 

propagate along the same direction. The key point here is to generate a phase profile that, 

upon the illumination of circularly polarized light, can simultaneously generate a pair of 

centro-symmetrically distributed off-axis beams with same phase profile with respect to 

the propagation axis of the incident light (see Figure 5.7(i)). The required phase 

distribution is governed by   
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 ( , ) arg(exp( ( ( , ) ( ))) exp( ( ( , ) ( ))))x y i x y x i x y x          (5.10) 

where ( , )x y  represents the position-dependent phase difference between the two 

orthogonal polarization states. ( )x  is an additional phase profile, which is used to 

produce the phase gradient along x direction for the off-axis reflection ( 1  order). The 

angle of reflection is determined by the generalized Snell’s law of reflection. The detailed 

discuss can be found in Chapter 2. Since the sign of the geometric phase generated at the 

interface of the metasurface depends on the handedness of the incident circularly 

polarized light, when the incident beam is changed from RCP to LCP, a pair of off-axis 

beams with the phase profile  are generated accordingly (Figure 5.7(ii)). 

Obviously, under the illumination of linearly polarized light beam, the reflected beams 

with opposite handedness will meet and generate the desired polarization profile as shown 

in Figure 5.7 left. 

 

Figure 5.7. Mechanism of the polarization manipulation via the metasurface. The 

polarization states of incident beam in (i) and (ii) are right circular polarization and left 

circular polarization, respectively. A pair of off-axis beams with phase profile  

(or ) are generated by shining the metasurface with light beam with RCP (or 

LCP). When a linearly polarized (LP) beam is incident on the metasurface, the reflected 

beam with opposite circular polarization and equal components will meet and generate 

the required polarization profile on both sides (Figure 5.7 left).   

( , ) x y

( , )x y

( , ) x y
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According to Malus’ Law, when a linearly polarized light beam passes through an 

analyser (linear polarizer), the intensity of the light transmitted by the analyser is directly 

proportional to the square of the cosine of angle θ between the transmission axes of the 

analyser and the polarizer (see Figure 5.8(a)), i.e., I = I0cos2θ, where I0 is the intensity of 

incident light. A structured beam with inhomogeneous polarization distribution can 

generate a spatial intensity distribution when passing through a polarizer, providing a new 

degree of freedom to hide an image. Based on the Malus’ law, an arbitrary grayscale 

image can be hidden in the linear polarization profile of a light beam. 

Figure 5.8(b) shows the high-resolution grayscale image with 1300×1300 pixels that is to 

be hidden in the optical beam. In memory of the milestone work of James Clerk Maxwell 

in electromagnetics, we take one of his grayscale portraits as the hidden image. The 

resultant beam has a dimension of 390 m by 390 m since each pixel has a size of 300 

nm by 300 nm, exhibiting the subwavelength resolution. To explain our approach, we 

select an area from the eyebrow region with 10×10 pixels (Figure 5.8(c)). The enlarged 

intensity profile and the corresponding polarization distribution are given in the left and 

right of Figure 5.8(c) respectively. In our design, the transmission axes of the first 

polarizer and the analyser (second polarizer) are respectively along horizontal and vertical 

directions, respectively. 

 

Figure 5.8. Malus’ law and image hidden mechanism. (a) According to Malus’ Law, when 

a linearly polarized light beam passes through an analyser (linear polarizer), the intensity 

of light transmitted by the analyser is I = I0cos2θ. Where I0 is the intensity of incident 

light and θ is the angle between the transmission axes of the analyser and the polarizer. 

An arbitrary grayscale image can be hidden in the linear polarization profile of a light 

beam. (b) The target image of James Clerk Maxwell’s grayscale portrait. (c) The details 
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of selected area from the eyebrow area with 10×10 pixels. The left side shows the 

grayscale profile and the right side shows the required polarization distribution for the 

analyser with a transmission axis along the vertical direction. 

Figure 5.9 shows the schematic of our approach for hiding an image. A grayscale image 

is hidden in the structured beam with a spatially variant polarization profile, which is 

realised by a reflective metasurface illuminated by a laser beam at normal incidence. It is 

worth mentioning that two centro-symmetrically identical reflected beams are generated, 

whereas in the schematic, only one reflected beam is shown. An analyser (linear polarizer) 

is used to reveal the hidden image in the generated structured beam. Figure 5.9(a) and (b) 

show the simulated results with and without an analyser, respectively. This approach 

allows us to conceal the high capacity information in the inhomogeneous polarization 

profile of the laser beam and transfer the hidden information along the propagation 

direction of the light. 

 

Figure 5.9. Schematic for hiding a high-resolution grayscale image. Under the 

illumination of linearly polarized light, two reflected beams with a spatially variant linear 

polarization profile are generated, which can be used to hide a high-resolution grayscale 

image (256 levels, black and white). It is worth mentioning that only one reflected beam 

is shown here for demonstration. The two beams are exactly the same apart from the 
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propagation direction. The hidden image is revealed by an analyser (linear polarizer) (a), 

while no image is obtained without it (b).  

5.2.2 The simulation and experimental results 

The design parameters of the metasurface and the fabrication process can be found in 

Chapter 2. Figure 5.10(a) shows the SEM image of the fabricated metasurface. In order 

to visualize the hidden image in the polarization topology of the laser beam, an analyser 

(linear polarizer) is used to reveal the grayscale of the image. In doing so, we do not 

directly observe the spatially-variant polarization profile of the laser beam but rather 

indirectly confirm its existence through the intensity profile (grayscale image) behind the 

analyser. For this metasurface, the additional phase difference between neighbouring 

pixels to along x direction is / 5 , where the corresponding reflection angle is 12.2 . The 

experimental setup is given in Figure 5.10(b). An objective with a magnification of 10x 

is used to expand the image for visualization with a charge-coupled device (CCD) camera.  

 

Figure 5.10. Fabricated metasurface, experiment setup and metasurface device 

characterization. (a) SEM image of the fabricated metasurface. The scale bar is 500 nm. 

(b) The experimental setup. The collimated light beam with the required linear 

polarization is generated using a linear polarizer (LP), and then is incident on the 

metasurface which is mounted on a 3D translation stage. The analyser, which is a linear 

polarizer, is placed in front of the CCD to reveal the hidden image. (c) The simulated and 
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experimental results with and without analyser. Note that the direction the transmission 

axis is along vertical direction. (d) The image histogram of a selected area of experiment 

image. The histogram is plotted with 256 equally spaced intervals, and then calculating 

the total number of pixels for each value. 

Figure 5.10(c) shows the simulation and experiment results. As shown by the numerical 

calculation, no image is observed in the intensity profile of the beam (Figure 5.10(c) top 

left). The experimental result is given in Figure 5.10(c) (top right), indicating that the 

image-hidden functionality is unambiguously realised in comparison with the high-

quality hidden image. A high-quality image is revealed with the analyser whose 

transmission axis is along the vertical direction, which agrees very well with the simulated 

result (Figure 5.10(c) bottom left and right). Here the transmission axes of the first 

polarizer and the analyser are along horizontal and vertical directions, respectively. It 

should be noted that the incident light beam for the simulation is a plane wave with 

uniform intensity, whereas the incident beam for experiment is a collimated laser beam 

with Gaussian profile. It causes a slight discrepancy between experiment and simulation. 

Another reason for the discrepancy is the imperfection of linear polarizer and fabrication 

error. Due to the off-axis design, another identical image is also observed in the reflected 

beam on the other side with respect to the surface normal. The detailed information in the 

measured result such as moustache, eyeball and eyebrow are clearly observed, indicating 

the ultrahigh resolution of the proposed approach.  

To characterize the grayscale performance, we select an area from the measured image 

and plot the histogram that shows the distribution of intensities against grayscale level 

(see Figure 5.10(d)), which clearly shows that the image has a grayscale level of 256. To 

further analyse the performance of our approach, the dependence of simulated and 

measured results on the direction of transmission axis of the analyser is given in Figure 

5.11. From the results at 0 ,  45 ,  90 ,  135o o o o , a good agreement between experimental and 

simulation results is found. Interestingly, the two images for the analyser with orthogonal 

directions of transmission axis (e.g., 0o and 90o, 45o and 135o) are complementary 

grayscale images, i.e., the brightest area becomes the darkest area and vice versa. 
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Figure 5.11. The simulated and experimental results for the analyser with various 

directions of transmission axis. Results at 0 ,  45 ,  90 ,  135o o o o  are given. The scale bar is 500 

µm. 

 

Figure 5.12. The simulated and experimentally obtained images when the angle between 

the transmission axes of the analyser and the polarizer is fixed at 90o. The red and black 

double-headed arrows represent the transmission axes of the linear polarizer and the 

analyser, respectively. The transmission axis of the polarizer is set at , , ,  

with respect to the horizontal direction, and the analyser is adjusted to maintain the 

transmission axis of the analyser perpendicular to that of the polarizer. (a-d) Simulated 

images. (e-h) Experimental images. Scale bar, 500 µm. 

According to the Malus’ Law, the intensity of the light transmitted by an analyser is 

directly proportional to the square of the cosine of angle between the transmission axes 

0o 45o 90o 135o
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of the analyser and the polarizer. Consequently, the quality of the hidden image (in 

comparison with target image) should be the same once the angle between the 

transmission axes of the analyser and the polarizer is fixed. In our experiment, we set the 

transmission angle of the polarizer at , , , , and adjust the analyser to make 

sure the transmission axis of the analyser is perpendicular to that of the polarizer. It is 

worth mentioning that the best image quality is for the angle between the transmission 

axes of the analyser and the polarizer fixed at 90o. From the simulated and experimental 

results shown in Figure 5.12, the clear images are revealed in this case. The 

experimentally obtained images are captured with a monochrome CCD camera at the 

wavelength of 640 nm. 

To characterize the performance of the approach at different polarization states of the 

incident light, the transmission axis of the analyser is fixed along the vertical direction. 

The polarization state is changed by controlling the angle between the transmission axis 

of the polarizer and the fast axis of the quarter-wave plate. These simulated and 

experimental results are shown in Figure 5.13. Although the image quality at LCP and 

RCP incident light is slightly different from that of the simulated results, the dependence 

of the revealed images on the polarization states of the incident light agrees well with the 

prediction. The minor difference for circular polarization states is mainly due to the 

imperfection of the experimental setup and fabrication error.   

 

Figure 5.13. Simulated and experimentally measured results versus incident polarization 

states at 640 nm. The polarization states of the incident light are chosen to be LCP, left-

handed elliptically polarized (LEP), linearly polarized (horizontal) (LP), right-handed 

elliptically polarized (REP) and RCP. Scale bar, 500 µm. 

0o 45o 90o 135o
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Benefiting from the broadband nature of the geometric metasurface, the developed device 

can operate in a broad wavelength range. Images at different wavelengths are captured 

and given in Figure 5.14. The experimentally revealed clear images at the wavelengths of 

500 nm, 550 nm, 575 nm, 600 nm, 640 nm, and 700 nm unambiguously show the 

capability of the developed device in the visible range.  

 

Figure 5.14. Broadband performance and robustness of the proposed approach. 

Many techniques for image formation have been proposed and demonstrated in the past 

decades, in which the functionalities are realized by transforming the image information 

into the phase or amplitude space. One particular example for image formation is 

holography that can reconstruct a holographic image at the diffraction plane by 

illuminating a light beam onto an engineered surface or phase mask. The sampled 

amplitude distribution of the image is reconstructed due to the constructive or destructive 

interference at the diffraction plane. However, the phase distribution of the reconstructed 

image is uncertain through this process. Hence the level of spatial coherence of the 

resultant image is reduced. Compared to hologram, he specificity of this approach lies on 

encoding a high-resolution grayscale image onto the polarization profile of the laser 

beam. The phase correlation keeps same during the polarization encoding process. 

Therefore, the spatial coherence of this approach is better than hologram. Moreover, the 

image can be hidden and carried by the laser beam during propagation and manipulation. 

It can be easily displayed via an analyser with certain transmission angle. To show the 

advantage of our approach in terms of the image propagation, we perform a set of 

measurements in which we inspected the images at different propagating distance 
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including 0.3 m, 1 m, 2 m, and 4 m. Dielectric mirrors and lenses are used in the setup to 

examine the performance under multiple reflecting and focusing. The experimental setup 

and the recorded images are presented in Figure 5.15-5.18. The hidden grayscale images 

can be successfully displayed using an analyser even the beam is reflected and focused 

many times. It is important to note that the images will be flipped horizontally without 

any distortion after reflecting by mirror (Figure 5.16 and 5.18).    

 

Figure 5.15. The experimental setup and experimentally recorded images at propagating 

distance of 0.3 m. LPs are the linear polarizers. A Nikon objective with magnification of 

10X is used to enlarge the beam for projecting the image onto the CCD camera. The 

wavelength of incident light is 633 nm.  

 

Figure 5.16. The experimental setup and experimentally recorded images at propagating 

distance of 1 m. Two lenses with focal lengths of 200f  and 150f   are used to 

control the beam size.  
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Figure 5.17. The experimental setup and experimentally recorded images at propagating 

distance of 2 m. Three lenses with focal lengths of 300f  , 200f  and 150f   are 

used to control the beam size. Two dielectric mirrors are used to reflected the beam twice.  

 

Figure 5.18. The experimental setup and experimentally recorded images at propagating 

distance of 4 m. Three lenses with focal lengths of 200f  , 300f  , 400f  , and

150f   are used to control the beam size. Three dielectric mirrors are used to reflected 

the beam three times.  

To characterize the performance of the developed device, the metasurface is exposed to 

a tuneable light beam from a supercontinuum laser source (NKT-SuperK EXTREME) to 

calculate the conversion efficiency. This approach is to generate the required linear 

polarization distribution, which is realised by the superposition of two orthogonal 

circularly polarized beams with certain phase profile. The two orthogonal circularly 

polarized beams should have the equal power and propagate exactly along the same 

direction. The key point is to design a phase profile that, upon the illumination of 

circularly polarized light, can simultaneously generate a pair of centro-symmetrically 

distributed off-axis beams with identical phase profile with respect to the normal axis. In 
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experiment, we measure the output power of two reflected off-axis beams at both sides 

under the illumination of right-handed circularly polarized light. The total power of two 

beams is normalized to unity. The relative power of two beams is shown in Figure 5.19(a). 

We can see that the power of the two beams remain equal over a broadband wavelength 

range (640-960 nm). The conversion efficiency is defined by the total power of two output 

beams divided by the power of incident light (Figure 5.19(b)). The maximum conversion 

efficiency is 60% at the wavelength of 820 nm. The difference between simulated and 

experimental results is mainly due to the titanium adhesion layer and the fabrication error 

of the nanopatterns. 

 

Figure 5.19. The relative power of two reflected beams and the conversion efficiency. (a) 

The measured relative power of two reflected beams at two sides under the illumination 

of right-handed circularly polarized light. (b) The measured conversion efficiency is 

defined as the total power of the two reflected beams divided by the power of incident 

beam. 

This approach provides a novel route to manipulate the polarization profile with high 

resolution. We adopted this approach to hide a high-resolution grayscale image in the 

polarization topology of a laser beam that had not previously been reported in the 

literature. The uniqueness of our approach in precise polarization manipulation and high 

performance in resolution, bandwidth, and compactness renders this technology very 

attractive for diverse applications, such as encryption, imaging, anti-counterfeiting, 

optical communications, quantum science, and fundamental physics. 
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Chapter 6 – CONCLUSION AND FUTURE WORK 

6.1 Summary of Thesis 

In the beginning of the thesis, current progress on metasurfaces and their applications (for 

example, novel flat optical devices, metasurface hologram, surface plasmon polariton 

generation and higher-order harmonic generation) were reviewed. Then the fundamental 

physics of metasurface was discussed. After that, we experimentally demonstrated 

polarization-controlled holograms based on reflective metasurface. Moreover, a novel 

approach to realise the superposition of orbital angular momentum states was proposed 

and experimentally verified. Multiple superpositions of orbital angular momentum states 

were realised in four channels, which have great potential in classical physics and 

quantum optics. Inspired by these two projects, we proposed and experimentally 

demonstrated two metasurface methods to precisely control the polarization profile at the 

transverse plane of light beam. These novel approaches for polarization manipulation in 

subwavelength scale open a new route for various applications including imaging, smart 

optical components, structured beam generation, encryption, and quantum photonics. 

Theoretically, we started by the optical properties of plasmonic nanostructure, and then 

discussed the interaction between light and nanostructures. The shape and size of 

nanostructures affect the spectral selective light scattering and absorption, providing a 

new degree of freedom to tailor the optical properties of the resultant light. After that, we 

discussed the geometric phase emerged from the spin-rotation coupling and built models 

to theoretically analyse the conversion efficiency. This content was presented in Chapter 

2. The analysis of reflective metasurface with high efficiency and broadband performance 

was given in Chapter 2 as well. The control of phase and polarization by means of 

metasurface was discussed in the theoretical part of Chapter 3, Chapter 4, and Chapter 5, 

respectively.  

Numerically, we simulated the phase distribution of the phase gradient metasurface using 

CST microwave studio, which was shown in Chapter 2. The conversion efficiency of 

reflective metasurfaces consisting of a gold ground layer, a silicon dioxide layer and a top 

layer of nanorods, was modelled and the simulated results are also presented in Chapter 

2. We used the MATLAB software to simulate the intensity distribution of hologram 

(Chapter 3), the vortex beam (Chapter 4), the polarization distribution of structured beam 

(Chapter 5), and the grayscale image profile (Chapter 5). 
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Experimentally, we fabricated various metasurface samples for different applications. 

Initially, a reflective-type phase gradient metasurface was used to characterize the 

efficiency. Chapter 2 presented the fabricated sample and the measured efficiency over a 

broad wavelength range. Then we designed and fabricated three metasurface devices for 

the helicity multiplexed holograms. The far field images have been experimentally 

characterized and the results were shown in Chapter 3. Upon the illumination of a linearly 

polarized light beam, the optical illusions were perceived through our novel approach for 

holograms generation. The alliance between geometric metasurface and the optical 

illusion opens a pathway for new applications related to encryption, optical patterning, 

and information processing. In Chapter 4, we have experimentally demonstrated the 

geometric metasurfaces for vortex beam generation and characterization. More 

importantly, we proposed and experimentally demonstrated a facile metasurface approach 

to realise polarization-controllable multichannel superpositions of OAM states at will. 

Multiple OAM beams in four separate channels were generated by a single metasurface 

for an incident Gaussian beam with circular polarization. By manipulating the 

polarization state of the incident light, arbitrary control of the superpositions of various 

OAM states in multiple channels was realised, which provided a fast and efficient way 

for the manipulation of OAM superposition and significantly simplifies the experiment 

setup. This approach is of great importance for the efforts in the fields of metrology, 

quantum entanglement, and optical data storage. In Chapter 5, we proposed and 

experimentally demonstrated two different novel methods to control the polarization 

profile of light using geometric metasurfaces. The first method featured the spin-rotation 

coupling and the superposition of two circular components which were the converted part 

with an additional phase pickup and the residual part without a phase change. The second 

approach was to spatially manipulate the phase of the two circular components 

simultaneously to control the polarization distribution of the resultant beam. We believe 

that these two approaches for polarization manipulation may pave a new way for light 

engineering, which are of great importance for both scientific research and practical 

implications. 
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6.2 Future Work 

Metasurfaces can manipulate the light properties in a desirable manner by imparting local 

and space-variant abrupt phase change, which provides an unprecedented capability to 

yield fundamental insights into physical phenomena not easily accessible using even the 

highest quality commercial devices. The precise control of optical response now can be 

designed on demand on a single subwavelength-thick interface. The attractive advantages 

of metasurface such as miniature size, high-resolution phase and polarization 

manipulation, and high efficiency, make this technology very attractive for diverse 

applications. In the future, the metasurface technology could be adopted in integrated 

photonics [148]. The striking feature of optical properties control in nanoscale make the 

metasurface nanodevices eminently suitable for ultracompact device and system 

integration. In Chapter 5, we used two cascaded metasurface devices in experimental 

system to decompose the resultant beam [119]. The future research of metasurface 

technology would focus on integration of multiple metasurface components to develop 

smart devices [148] or micro-system on optical waveguide [149]. On the one hand, by 

tailoring the size and shape of plasmonic or dielectric nanoparticles, both the polarization 

and phase of the light field can be controlled precisely [7, 149]. On the other hand, the 

mutual transforming between the scattering mode and evanescent mode can also be 

realised by changing the interparticle distance of neighbouring particles [59, 60, 83]. The 

metasurface can also be used to control the propagation of waveguide mode via strong 

optical scattering at subwavelength intervals. 

Due to the ultrathin nature and arbitrary control of phase and polarization, metasurfaces 

provide the capability to empower the sensing system and metrology, such as the 

integration of metasurface doublet with a complementary metal-oxide-semiconductor 

(CMOS) image sensor to produce wide angle images at near-diffraction-limited 

resolution. The new compact optical configuration will enable various innovative 

portable instruments for many applications. 
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