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Abstract

In this thesis multi-component, spinorial cold atomic gases are studied. We investi-

gate first the new perspectives introduced by nonlinear, that is density dependent,

synthetic gauge fields in atomic Bose-Einstein condensate. Such fields stem from

a collisionally induced detuning in combination with synthetic magnetism arising

from the light-atom coupling. The effective mean field dynamics of the condensate

shows the appearance of an exotic nonlinearity which is proportional to the current

in the system. It introduces a chirality, whose effects on the stability and dynamical

properties of the rotating state of a condensate is investigated. We show that by

properly shaping the profile and the magnitude of the light-matter interaction pa-

rameters, it may happen that the rotating state is energetically favorable compared

to the corresponding non-rotating one. Furthermore, we analyze the effects of the

nonlinear field on the dynamics of a vortex in a condensate. We obtain the equation

of motion for the vortex core, showing the appearance of an extra force which is

explicitly depending on the number of particles that are in the system.

Furthermore, we consider the implications of the same type of density-dependent

fields in the context of analogue gravity. We show that they provide an extra degree-

of-freedom that can be exploited in order to design effective non-trivial spacetimes

experienced by phonons.

In the framework of analogue models of gravity, we finally discuss the perspectives

of two-dimensional systems, and address the problem of the black hole lasing ef-

fect in the spin modes of the system. By developing a Gross-Pitaevskii theory for

the problem, we prove the onset of the lasing instability, and the phenomenon of

mode conversion at the horizons. To this aim we consider both homogeneous and

harmonically trapped condensates.
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2. Butera S., Valiente M., Öhberg P., Vortex dynamics in superfluids governed

by an interacting gauge theory, New Journal of Physics, 18, 085001, (2016).
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Chapter 1 Introduction

Artificial gauge fields [1, 2] and analogue models for gravity [3, 4] are both imple-

mentations of the seminal idea of quantum simulators introduced by Feynman in

1982 [5]. The aim is to use experimentally accessible physical systems in order to

emulate the dynamics of other systems of interest, whose investigation is out of

current analytic, computational or experimental capabilities.

Ultracold neutral atomic systems, such as Bose-Einstein condensates or degenerate

Fermi gases, provide a remarkably flexible experimental playground for this perspec-

tive. The great ability in tuning the physical parameters governing the dynamics

of such systems, such as confining potentials, particle density, dimensionality, and

even the interactions between atoms, allows to experimentally simulate a number of

phenomena characteristic of condensed matter systems [6–13].

The implementation of effective (artificial), static (that is not affected by the atomic

degrees of freedoms) orbital magnetism for neutral atoms, and more in general of

non-abelian gauge potentials, enlarges the perspectives of the field, allowing for the

investigation of a plethora of intriguing phenomena at the quantum level, such as the

quantum Hall effect or Rashba-type spin orbit coupling (SOC). Beside fundamental

reasons, the interest in synthetic gauge fields relies on practical motivations. Orbital

magnetism and SOC, are for example strictly related to the existence of topological

states of matter [14, 15]. The interest in such exotic states relies on their topological

properties, which makes them robust against external perturbations, such as finite

temperature effects or noise, and thus relevant for future technological applications in

particular in the context of quantum computation. Here we seek for physical systems

with the necessary properties in order to build error-free quantum computers [75].

An example of these topological states are the conducting edge states appearing in
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Chapter 1: Introduction

a topological insulator [14, 15], which are responsible for the quantized conductance

which characterizes the integer quantum Hall effect [77, 78]. Such edge states may

also be useful in order to investigate anyons [14, 16], which are exotic excitations

of a system, satisfying neither bosonic nor fermionic statistics, which have been

predicted to appear in quantum Hall liquids [16] and topological superfluids [14].

The ultimate goal of the research on artificial gauge fields is to emulate fully dynam-

ical gauge theories, with the purpose of addressing a number of still open questions

in different areas of physics, ranging from condensed-matter, where they appear as

effective field theories, to the much higher energy scales of particle physics, where

the gauge fields describe the fundamental interactions of nature. A number of pro-

posals have been suggested to engineer dynamical fields with cold atoms systems

[17–22], but the complexity involved has unfortunately prevented their experimental

implementation so far.

One approach in this direction has been done in the context of synthetic magnetism

with neutral atoms [23]. Here the authors show, by exploiting collisional induced

detuning, how nonlinear synthetic magnetic fields arise in the adiabatic dynamics of

the atoms, whose internal states are coherently coupled by a laser. These nonlinear

effective fields do not reproduce a truly dynamical gauge field, but their explicit

particle density dependence provides a local back-reaction effect between matter

(the atoms) and the (effective) fields, which gives rise to new interesting physics,

opening up novel perspectives in quantum simulation.

Analogue models for gravity and quantum field theory in general, represent another

concrete realization of Feynman’s proposal, which allows us to emulate the physics

of quantum fields in curved spacetime. In this discipline physical systems are sought,

whose underlying dynamics is not governed by Einstein’s equations, but where an

effective, generally curved, spacetime emerges in the dynamics of the elementary

excitations of the system.

The quantum field theory in curved spacetime, i.e. the theory of semi-classical in-

teraction between gravity and matter fields [24, 25], can thus be experimentally

investigated in physical systems characterized by energies far below the energies

2



Chapter 1: Introduction

pertaining cosmological scale systems, and attainable in ordinary laboratories. As

a consequence, effects such as Hawking radiation, the process by which black holes

evaporate by emitting thermal radiation and proposed by Hawking [26, 27], or cos-

mological particle creation [28–32] are no longer unattainable experimentally.

The work presented in this thesis concerns the two implementations of the quantum

simulator program discussed above, and in particular regards synthetic magnetism

and analogue gravity with Bose-Einstein condensates (BECs). Accordingly, the

thesis is divided into two parts, after a first introduction to the theory of weakly

interacting Bose gases and the implementation of synthetic magnetism with neu-

tral atoms, which are discussed in Chapters 2 and 3, respectively. The work is

summarized as follows:

Rotating BECs and nonlinear synthetic magnetism − This part of the thesis inves-

tigates the novel physics introduced by nonlinear synthetic fields [23], giving par-

ticular emphasis to the stability and dynamical properties of a rotating condensate.

In Chapter 4 we envisage a situation in which the explicit density dependence of

the effective vector and scalar potentials acting on the atoms, makes it energetically

favorable for the condensate to rotate rather than staying in its static state. We

will see in particular that the induced vorticity increases with the particle density.

In Chapter 5 we develop a minimal model which describes the dynamics of a vortex

state in a condensate, whose atoms are subjected to a nonlinear gauge potential.

We show that, other than the usual Magnus force, which originates from the relative

motion between the vortex and the condensate bulk, another force appears acting

on the vortex core because of the presence of the vector potential. What differen-

tiates the present situation from the standard case, in which an ordinary (that is

non density dependent) vector potential acts on the system, is that the nonlinear

nature of the synthetic potential makes the magnitude of this force depending on

the number of particles that are in the system.

Analogue gravity with coherently coupled two-component condensates − The second

part of the thesis is devoted to the topic of analogue models for gravity in coherently

coupled two-component atomic BECs. In Chapter 6 we investigate the effects of the

nonlinear synthetic potentials in the context of BEC based analogue models for

3



Chapter 1: Introduction

gravity. We show that the nonlinear potentials provide an extra degree-of-freedom

that can be exploited to implement non-trivial effective spacetime configurations for

the elementary excitations of the systems. This endows the effective spacetime with

new features, enriching the physics that can be investigated. Chapter 7 introduces

the so-called black hole laser effect [33], and is preparatory in the perspective of the

original work discussed in Chap. 8. Working in the classical limit, we show how the

lasing mechanism in spin modes rather than in the density modes of the condensate

can be created. We point out several promising advantages of this setup with respect

to standard single-component systems, especially regarding the investigation of the

spontaneous Hawking radiation.

4
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Chapter 2 Bose-Einstein Condensates

The aim of this chapter is to give a brief overview on the theory of Bose-Einstein

condensation in weakly-interacting atomic gases and, at the same time, define the

notation, the basic concepts and physical quantities that will be used in the rest

of the thesis. To this aim we refer to the standard literature on the topic [34–

38]. We start the chapter by introducing in Sec. 2.1 the Bogoliubov theory for a

weakly-interacting Bose gas at zero temperature. In Sec. 2.2 we introduce small

amplitude excitations in the system, developing the analysis within the (classical)

Gross-Pitaevskii theory for a BEC, and discuss their quantum-mechanical interpre-

tation. These concepts will be useful in the second part of the thesis, in Chapter 6-8,

where the topic of analogue gravity models in BECs is discussed. In Sec. 2.3 we treat

the problem of a rotating condensate, and its stability properties. The results of

this section represent a theoretical background for the work presented in the first

part of the thesis, which includes Chapters 4 and 5, where we discuss the effects

of nonlinear synthetic potentials on the stability and dynamics of a vortex state,

respectively.

2.1 Weakly-interacting Bose gas at zero temperature

The origin of Bose-Einstein condensation dates back to Bose’s work on the statistics

of photons [39] in 1924, and the subsequent extension by Einstein of these concepts

to the case of a gas of non-interacting massive bosons [40]. We do not give here any

historical introduction of the path leading to condensation, but refer for example

to the E. A. Cornell and C. E. Wieman Nobel lecture [41] to this aim. Together

with W. Ketterle, they were the first who observed, in 1995, the phenomenon of

Bose-Einstein condensation in rubidium [42] and sodium [43] vapours. In the same

year, experimental evidence of condensate with lithium was also observed [44].
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Chapter 2: Bose-Einstein Condensates

2.1.1 Bogoliubov approximation

By dilute system it is commonly meant a system at very low density. To understand

the order of magnitudes we are speaking about, note that typical values achieved in

state-of-the-art cold-atoms experiments are in the range 1012−1015 atoms/cm3, while

densities of the order 1019 atoms/cm3 and 1022 atoms/cm3 characterize respectively

air at room temperature and atmospheric pressure, and liquid and solid phases. The

reasons for investigating such rarefied systems are many: i) For sufficiently low den-

sities, the average distance d = n−1/3 (with n the particle density) between atoms

is much larger than the range r0 of the interatomic forces, defined as the distance

beyond which the interaction between particles is negligible. Under these conditions

the probability of finding three or more particles interacting simultaneously is ex-

tremely low, and the physics of the system is governed, to a good approximation,

by pairwise interactions only. This prevents or at least attenuates molecule forma-

tion, which is a three-body process, and the consequent losses of atoms from the

system, ensuring a sufficiently long life-time for a condensate in actual experiments.

ii) Because of the large separation between particles, the wavefunction of the rela-

tive motion of colliding atoms can be approximated by its asymptotic form. This

ensures that the collisions and all the properties of the system can be expressed in

terms of the so-called scattering amplitude (see the review [45], the lectures [46–49]

and standard textbook such as [50] for further details).

Working with such rarefied gases, the value attained by the critical temperature for

condensation is of the order of 100 nK in typical cold-atoms experiments [36, 37, 51,

52]. At such temperatures, the atoms move so slowly that their De-Broglie thermal

wavelenght ΛT ≡
√

2π~2/mkBT is much larger than the range r0 of the interatomic

potential. In terms of the typical wavevector of the relative motion of the atoms

k ∼ 1/ΛT , this condition can be expressed as

kr0 ≪ 1. (2.1)

For such low values of the momenta, the interactions between atoms are governed by

the s-wave channel. The scattering amplitude and the effects of interactions on the

physical properties of the system can be described in terms of a single parameter,
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Chapter 2: Bose-Einstein Condensates

which is the s-wave scattering length denoted by a [46–50]. This parameter, together

with the atomic density, enters into the condition defining a nearly ideal, that is

weakly interacting gas for which

na3 ≪ 1. (2.2)

This condition needs to be satisfied in order to apply the Bogoliubov theory of

dilute gases here discussed, which represents the zero order approximation of the

many-body problem with respect to the perturbative parameter na3 [36, 53].

The study of the physics of a dilute system composed by N bosons, pair-wise inter-

acting via the potential V (r) and confined by the external potential Vext(r), starts

from the many-body Hamiltonian that is given, in the second quantization formal-

ism, by [34–36]

Ĥ =

∫

dr

[

Ψ̂†(r)

(

− ~
2

2m
∇

2 + Vext(r)

)

Ψ̂(r)

]

+
1

2

∫

drdr′
[

Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r)
]

. (2.3)

The boson field operators Ψ̂(r) and Ψ̂†(r) annihilates and creates respectively a

particle at position r, and satisfy the commutation rules

[

Ψ̂(r), Ψ̂†(r′)
]

= δ (r− r′) ,
[

Ψ̂(r), Ψ̂(r′)
]

= 0. (2.4)

In Eq. (2.3), the first integral is the single-particle Hamiltonian, while the second

accounts for the two-body interaction between particles. By using the commutation

law (2.4), the time evolution of the field operator Ψ̂ (r, t), in the Heisenberg picture,

reads

i~
∂

∂t
Ψ̂ (r, t) =

[

Ψ̂, Ĥ
]

=

[

− ~
2

2m
∇

2 + Vext(r) +

∫

dr′Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

]

Ψ̂(r, t), (2.5)

which represents the Schrödinger equation for the many-body problem. In order to

avoid solving the full problem, a mean field approach may be pursued when dealing

with weakly interacting systems, which was originally formulated by Bogoliubov [53].

In order to illustrate the theory, we expand the field operator in the basis of the

Hilbert space composed by the single-particle wavefunctions {ψi(r)}, in the form:
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Chapter 2: Bose-Einstein Condensates

Ψ̂(r) =
∑

i ψi(r) âi, where âi are the operators annihilating a particle in the state

ψi(r). These operators, together with their Hermitian conjugates â†i , are defined

in terms of their action on the states of the Fock space |{nj}〉 [50], through the

relations

âj|n0, n1, ..., nj, ...〉 =
√
nj |n0, n1, ..., nj − 1, ...〉, (2.6a)

â†j|n0, n1, ..., nj, ...〉 =
√

nj + 1|n0, n1, ..., nj + 1, ...〉, (2.6b)

where nj is the occupancy of the jth single-particle states, and eigenvalue of the

number operator n̂j = â†j âj. In order to satisfy the relations in Eq. (2.4), the

annihilation and creation operators have to obey the commutation rules

[

âi, â
†
j

]

= δij , [âi, âj ] = 0. (2.7)

Below the critical temperature condensation takes place, resulting in a macroscopic

occupation of the single-particle ground state, where by macroscopic we mean of the

order of the total number of particles. Indicating by N0 the number of condensed

atoms this means that, in the thermodynamic limit, N0 ≫ 1. In this limit, states

of the system with N0 and N0 ± 1 ≈ N0 correspond essentially to the same physical

configuration so that, following Eqs. (2.6a) and (2.6b), the operators â0 and â†0

can be treated as c-numbers, with value â0 = â†0 ∼
√
N0. From another point of

view, this classical approximation for the ground state operators can be justified by

noting that the commutators in Eq. (2.7) are c-numbers, and thus bounded, with

norm
∥

∥

∥

[

âi, â
†
i

]∥

∥

∥
= 1. Conversely, the operators âi and their Hermitian conjugates

â†i are unbounded. For N0 ≫ 1, we have

‖
[

â0, â
†
0

]

|n0〉‖
‖â0|n0〉‖

=
1

N0
≈ 0, (2.8)

from which we infer that the norm of the commutator in Eq. (2.7) is negligibly small

compared to (loosely speaking) the norm of the operators themselves, and can be

neglected. In some sense, this is the same idea as the classical limit of electromag-

netism according to which, when the number of photons is large, the corpuscular

nature of the radiation is no longer appreciable, in favour of its undulatory descrip-

tion.

9



Chapter 2: Bose-Einstein Condensates

According to these ideas, we can make the Bogoliubov ansatz and treat the macro-

scopic component ψ0(r)â0 of the field operator as a classical field [53], and write

Ψ̂(r) = Ψ0(r) + δΨ̂(r), (2.9)

where Ψ0(r) ≡
√
N0ψ0(r) has the physical meaning of an order parameter for

the system and is usually referred to as wave function of the condensate, while

δΨ̂(r) =
∑

i 6=0 ψi(r) âi is the depletion of the condensate. If the system is weakly

interacting and for temperatures well below the condensation temperature, quan-

tum and thermal depletion of the condensate is small, and the excited component

δΨ̂(r) can be neglected compared to Ψ0(r). This is equivalent to assuming that all

the particles are condensed in the ground state, so that N0 = N . A closed equation

for the order parameter can be derived in such conditions, which is the zeroth order

approximation to Eq. (2.5).

2.1.2 Gross-Pitaevskii equation

It is important to stress that, when we speak about a weakly interacting system in

a dilute gas context, we do not mean that the interactions between atoms are weak,

but that the condition (2.2) is satisfied. These interactions are actually strong when

the mutual distance between the two atoms is close to the range r0 of the potential.

Because of this reason, the direct substitution of the field operator Ψ̂(r, t) with the

condensate wavefunction Ψ0 (r, t) into Eq. (2.5) would lead to an inconsistency, since

the latter does not contain any information about the short distance correlations

between the atoms due to their interaction. In order to overcome this difficulty we

can use an effective potential Veff(r) in Eq. (2.5) instead of the bare V (r), which

includes these correlations into its definition. In other words, we need a Veff(r)

having the property of correctly describing the effective interaction between the long-

wavelength degrees of freedom of the system, when the short-wavelength ones have

been integrated out [35]. Since at low temperatures the condition (2.1) is satisfied,

the scattering between two particles is dominated by the s-wave contribution, and

the effects of collisions can be described in terms of a single parameter, which is the

scattering length a. This quantity fully describes the scattering at low energies, and

encodes the effects of the short-range correlations. The expression of the scattering

10
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length in the first Born approximation

aB =
m

4π~2

∫

dr V (r), (2.10)

suggests that the exact low-energy scattering behaviour can be obtained by using

an effective interaction potential, having the property

∫

dr Veff(r) =
4π~2a

m
≡ g. (2.11)

The contact potential

Veff(r) = g δ(r) (2.12)

satisfies this property, and its use is formally justified by the theory of scattering

in the low energy limit k → 0 [35, 46, 54]. By substituting the effective potential

defined above into Eq. (2.5), we can safely replace the field operator Ψ̂(r, t) with

the order parameter Ψ0(r, t), obtaining the Gross-Pitaevskii (GP) equation [55–58]

i~
∂

∂t
Ψ0(r, t) =

(

− ~
2

2m
∇

2 + Vext + g|Ψ0|2
)

Ψ0(r, t). (2.13)

Upon the same substitutions into the Hamiltonian operator (2.3), we get the energy

of the system in the form of the functional operator

E [Ψ0,Ψ
∗
0] =

∫

dr

(

~
2

2m
|∇Ψ0|2 + Vext|Ψ0|2 +

g

2
|Ψ0|4

)

. (2.14)

This energy is conserved, that is dE/dt = 0, if Ψ0 is a solution of the GP Eq. (2.13).

The latter can be alternatively derived by imposing the stationarity condition, with

respect to variations in Ψ∗
0, to the action S defined as

S =

∫

dtdrL, (2.15)

with the Lagrangian density

L = −i~Ψ∗
0

∂Ψ0

∂t
+

(

~
2

2m
|∇Ψ0|2 + Vext|Ψ0|2 +

g

2
|Ψ0|4

)

. (2.16)
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2.1.3 Hydrodynamic formalism

The unitary evolution of the condensed component of the system, described by the

GP equation, guarantees the conservation of the total number of particles. In the

Eulerian formalism, this conservation law takes the form of the continuity equation

dN

dt
=
∂n

∂t
+∇ · j = 0, (2.17)

where n(r) = |Ψ0(r)|2 is the particle density in the condensate and

j(r, t) = − i~

2m
(Ψ∗

0∇Ψ0 −Ψ0∇Ψ∗
0) , (2.18)

is the current density. By using the Madelung representation for the order parameter

Ψ0 (r, t) =
√
n eiS, where S(r, t) is the phase of the condensate wavefunction, the lat-

ter can be explicitly written in terms of the superfluid velocity field v = (~/m)∇S,

as j = nv. This velocity is irrotational as every field which originates from a poten-

tial flow, so that ∇× v = 0 [59–61]. The continuity equation (2.17), together with

the equation for the phase

~
∂S

∂t
+

(

1

2
mv2 + Vext + gn− ~

2

2m
√
n
∇

2
√
n

)

= 0, (2.19)

which can be obtained by substituting the Madelung expression given above for

the order parameter into the GP equation (2.13), provide a closed set of coupled

equations equivalent to the original GP equation. It is interesting to note that Eq.

(2.19), once written as an equation for v instead of S, resembles the Euler hydro-

dynamic equation for the flow of a classical inviscid fluid, except for the appearance

of the last term. This term, known as the quantum pressure, has no classical ana-

logue and represents a purely quantum effect. As well as the term mv2/2, which

represents the kinetic energy of the particles flowing in the condensate, it originates

from the kinetic energy contribution (~2/2m)|∇Ψ0|2 to the energy density (2.16).

It accounts for a sort of zero-point motion which does not give rise to any particle

current, but describes forces originating from an inhomogeneous density profile of

the condensate.

12
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2.1.4 Thomas-Fermi limit

A stationary solution of the GP equation is obtained by inserting into Eq. (2.13) the

order parameter in the form Ψ0(r, t) = Ψ0(r)e
−iµt/~, with µ the chemical potential of

the system. This expression comes directly from the definition of the order parameter

as the matrix element of the field operator Ψ̂(r) between the ground states of the

system with N and N − 1 particles [62–64]:

Ψ(r, t) =
〈

N − 1
∣

∣

∣
Ψ̂(r)

∣

∣

∣
N
〉

= Ψ0(r) e
−i(EN−EN−1)t/~, (2.20)

where EN and EN−1 are the corresponding energies. In the thermodynamic limit, we

have: EN − EN−1 ≈ ∂E/∂N ≡ µ. This substitution leads to the time-independent

GP equation for the spatial profile of the order parameter [55–57]

(

− ~
2

2m
∇

2 + Vext + g|Ψ0(r)|2
)

Ψ0(r) = µΨ0(r). (2.21)

An alternative way to derive the same equation is by imposing the stationary condi-

tion to the energy functional (2.14) with respect to variation in Ψ∗
0(r), constrained

by the normalization condition N =
∫

dr|Ψ0(r)|2. This corresponds to extremizing

the grand-canonical energy functional

E ′ [Ψ0,Ψ
∗
0] = E [Ψ0,Ψ

∗
0]− µ

∫

dr|Ψ0(r)|2, (2.22)

in which the chemical potential takes the role of a Lagrange multiplier, whose value

is determined by the normalization condition.

When the spatial variations of the density in the condensate occur on length scales

much larger than the so-called healing length ξ ≡ ~/ (2mgn)1/2, the mean field

interaction represents the main contribution to the energy of the system, and the

quantum pressure in the hydrodynamic equations (2.19) or, which is equivalent, the

kinetic term in Eq. (2.21), may be neglected. This condition defines the Thomas-

Fermi (TF) limit, and the ground state of the system can be approximated as [65]

n (r) =











[µ− V (r)] /g, if V (r) < µ,

0 otherwise.

(2.23)
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In the experimentally relevant case of harmonic trapping

Vext(r) =
1

2
m
(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

, (2.24)

the spatial extension of the cloud in the three directions is given in this limit by the

TF radii

Ri =

√

2µ

mω2
i

, i = x, y, z, (2.25)

with the chemical potential taking the value

µ =
152/5

2

(

Na

aho

)2/5

~ωho. (2.26)

In Eq. (2.26), aho =
√

~/mωho is the characteristic length of the harmonic os-

cillator associated with the geometric average ωho ≡ (ωxωyωz)
1/3 of the frequen-

cies of the trap in the three directions. Taking as average extension of the cloud

Rho ≡ (RxRyRz)
1/3 = 151/5 (Na/aho)

1/5 aho, the condition of applicability of the TF

approximation can be inferred from the ratio

Rho

ξ
=

2µ

~ωho
=

(

15
Na

aho

)2/5

, (2.27)

which shows the key role played by the TF parameter Na/aho. More precisely,

the TF approximation is justified when the interaction energy Eint of the system is

dominating compared to the kinetic energy Ekin [36]. An estimate of the relative

weight can be obtained considering the atoms in the ground state of the harmonic

oscillator, for which Eint = gNn̄ = (4π~2/m) (aN2/a3ho) with n̄ ≡ N/a3ho the average

density in the cloud, and Ekin = N~ωho = (~2/m) (N/a2ho). Given these results, we

obtain
Eint

Ekin
≈ Na

aho
. (2.28)

Since typical values of the ratio a/aho are of the order 10−3 in state-of-the-art ex-

periments (see [36] and references therein), a number of particles of the order of

105 is usually sufficient in order to have Na/aho ≫ 1 and safely apply the TF

approximation.
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2.2 Elementary excitations

2.2.1 Small amplitude fluctuations

We introduce here the theory of small amplitude fluctuations in a BEC, defined as

small time and space perturbation of the order parameter with respect to a station-

ary background configuration. Although a fully quantum mechanical approach is

feasible [53, 55, 56, 66], we develop the following arguments based on the classical

Gross-Pitaevskii theory, as described in the previous section. This procedure leads

to the same spectrum and eigenmodes for the fluctuations field, which can be quan-

tized a posteriori, as we show in Sec. 2.2.2. Within this formalism, the occurrence

of small fluctuations in the system can be taken into account by writing the order

parameter in the form

Ψ0(r, t) = [Ψ0(r) + δΨ0(r, t)] e
−iµt/~. (2.29)

Here Ψ0 is the condensed background state, on top of which the small fluctuations

δΨ0 occur. Since we consider stationary background configurations, frequencies are

conserved, and we look for solutions of the type [55, 56]:

δΨ0(r, t) =
∑

i

[

ui(r)e
−iωit + v∗i (r)e

iωit
]

, (2.30)

where ui(r) and vi(r) are functions that give the spatial profile of the modes, and ωi

are the corresponding frequencies. By substituting Eq. (2.29) and Eq. (2.30) into

Eq. (2.13) and collecting terms evolving in time as e−iωit and eiωit, we obtain the

so-called Bogoliubov-de Gennes equations [55, 56]

~ωi ui (r) =
(

Ĥ0 − µ+ 2gn (r)
)

ui (r) + gΨ2
0 (r) vi (r) , (2.31)

−~ωi vi (r) =
(

Ĥ0 − µ+ 2gn (r)
)

vi (r) + gΨ∗
0
2 (r)ui (r) , (2.32)

where Ĥ0 ≡ − (~2/2m)∇2+ Vext is the non-interacting single-particle Hamiltonian.

By collecting the solutions in the vectorial notation Wi ≡ (ui, vi), the set of equa-

tions (2.31) and (2.32) can be written in the compact form [35]

(σzM)Wi = ~ωiWi, (2.33)
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where σz = diag (1,−1) and

M =





[

Ĥ0 − µ+ 2gn (r)
]

gΨ2
0 (r)

gΨ∗
0
2 (r)

[

Ĥ0 − µ+ 2gn (r)
]



 . (2.34)

The operator (σzM) is η-pseudo-Hermitian [67–69], that is a Hermitian linear au-

tomorphism η exists in the Hilbert space, such that

(σzM)† = η (σzM) η−1. (2.35)

In the present case η ≡ σz. Because of this property, its eigenvalues are real or come

in complex conjugate pairs with the same multiplicity [67–69]. The appearance in

general of non-real solutions of Eq. (2.33) can also be justified because of the fact

that the operator (σzM) is self-adjoint (or loosely speaking Hermitian) with respect

to the not positive definite inner product

〈A,B〉σz
≡
∫

drA† (r)σzB (r)

=
∑

k=1,2

∫

drA∗
k (r) (σzB)k (r)

=

∫

dr (A∗
1B1 − A∗

2B2),

(2.36)

where we defined A = (A1, A2)
T and B = (B1, B2)

T . This means that the spectral

theorem [70] cannot be applied in this case (see [24], p. 228), and complex frequency

eigenvalues of Eq. (2.33) may exist. The Hermicity of the operator guarantees that

these eigenvalues appear in complex conjugated pairs.

By opportunely combining Eqs. (2.31) and (2.32), we see that the solutions of

Eq. (2.33) satisfy the following orthogonality condition

(

ωi − ω∗
j

)

〈Wi,Wj〉σz
= 0, (2.37)

which shows that real frequency solutions are orthogonal to each other as defined

in Eq. (2.36). For reasons that will be justified in Sec. 2.2.2, where we treat the

quantization of the small amplitude fluctuations, we normalize these solutions as

〈Wi,Wi〉σz
=

∫

dr
(

|ui|2 − |vi|2
)

= 1. (2.38)
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Complex frequency solutions have vanishing norm according to Eq. (2.37). When

this happens, we are in the presence of a dynamical instability of the system. From

the inspection of Eqs. (2.31) and (2.32) it results that, for any solution (ui, vi) with

frequency ωi, the other solution (v∗i , u
∗
i ) with frequency −ωi and opposite norm

exists. From a physical point of view, solutions with opposite frequency represent

the same physical oscillation, as can be inferred from Eq. (2.30).

The eigensystem in Eqs. (2.31) and (2.32) can be solved exactly for a uniform sys-

tem, in which case Vext = 0 for example, and the ground state takes the simple

form Ψ0 (r) =
√
n0, where n0 is the particle density. Because of the translational

invariance, the normal modes take the form of plane waves uk (r) = uke
ik·r and

vk (r) = vke
ik·r, with uk, vk constants to be determined. In this case the chemical

potential takes the value µ = gn0, and the Eqs. (2.31) and (2.32) reduce to the set

of equations

~ωi uk =
~
2k2

2m
uk + gn0(uk + vk),

−~ωi vk =
~
2k2

2m
vk + gn0(uk + vk),

(2.39)

with k = |k|. They admit a non-trivial solution if the determinant of the coefficients

vanishes, and lead to the Bogoliubov spectrum [53]

(~ω)2 =

(

~
2k2

2m

)2

+
~
2k2

m
gn0 ≡ (ǫk)

2 . (2.40)

Considering the positive frequency solution ~ω = ǫk we get the following relations

between the coefficients

vk = − gn0

ǫk + ξk
uk, (2.41)

where ξk ≡ ~
2k2/2m+gn. By posing the normalization |uk|2−|vk|2 = 1 and choosing

without loss of generality uk, and vk to be real, we finally find [35]

u2k =
1

2

(

ξk
ǫk

+ 1

)

, v2k =
1

2

(

ξk
ǫk

− 1

)

. (2.42)

The nature of these excitations can be understood by a close inspection of the

Bogoliubov spectrum and the behaviour of the coefficients uk and vk as a function

of k. Identifying with p = ~k the momentum of the elementary excitations in

the system, the Bogoliubov dispersion law takes for small momenta p ≪ mc, the
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phonon-like form ǫp = c p, where c =
√

gn/m defines the speed of sound and p = |p|.
This shows that the Bogoliubov theory for weakly interacting Bose gases predicts

that the long wavelength excitations behave as sound waves propagating in the

condensate. The divergence of the coefficients up, vp →
√

mc/2p that appear in this

limit, is a consequence of this interpretation. For small wavevectors we see that

they attain the same value, maximizing in this way the mixing between positive and

negative frequency modes. This dramatically modifies the free particle nature of

the excitations, that behave as collective fluctuations of the system in this case, as

sound waves are. In the opposite limit p ≫ mc instead, the spectrum approaches

the free particle law

ǫp =
p2

2m
+ gn, (2.43)

and the mixing between positive and negative frequency solutions is negligible: |v| ≪
|u| ≈ 1. The transition between the two regime takes place for p ∼ mc, that is for

wavelengths of the order of the healing length.

2.2.2 Quantum interpretation

The classical theory of small amplitude oscillations developed above admits a very

natural quantum interpretation in terms of elementary excitations of the system

[34]. In order to quantize the theory we work in the Heisenberg representation and

write the field operator as

Ψ̂ (r, t) =
(

Ψ0 (r) + δΨ̂ (r, t)
)

e−iµt/~, (2.44)

which is equivalent to Eq. (2.29) but with the perturbative term being this time an

operator. The grand canonical Hamiltonian is defined as Ĥ ′ = Ĥ −µN̂ , where Ĥ is

given by (2.3), with the effective potential Veff = gδ(r) replacing the bare interaction

potential, so that

Ĥ =

∫
[

dr Ψ̂†

(

− ~
2

2m
∇

2 + Vext(r)

)

Ψ̂

]

+
g

2

∫

dr Ψ̂†Ψ̂†Ψ̂Ψ̂ (2.45)

and N̂ ≡
∫

drΨ̂†Ψ̂. It can be expanded around the equilibrium configuration in

the form Ĥ ′ = E ′
0 + Ĥ(2), where the zero order term is the value of the grand

canonical energy (2.22) at the equilibrium, while the second order term Ĥ(2) is the
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contribution due to the excitations. The term linear in the perturbation vanishes

at equilibrium since Ψ0 is the solution of the time-independent GP equation and

thus extremizes the grand canonical potential. By using the Heisenberg equation

describing the time evolution of δΨ̂ (r, t), which is obtained upon substitution of

Eq. (2.44) into Eq. (2.5) (with Veff instead of V ) and retaining only terms linear in

δΨ(r, t), the Hamiltonian for the excited component can be recast in the form:

Ĥ(2) =
i~

2

∫

dr

[

δΨ̂†

(

∂

∂t
δΨ̂

)

−
(

∂

∂t
δΨ̂†

)

δΨ̂

]

. (2.46)

The connection with the classical Bogoliubov theory developed in the previous sec-

tion is made by taking solutions for δΨ̂ in the form

δΨ̂ (r, t) =
∑

i

[

ui (r) b̂i e
−iωit + v∗i (r) b̂

†
i e

iωit
]

, (2.47)

where ui(r), vi(r) are solutions of Eqs. (2.31) and (2.32), ωi is the frequency, and

the operators b̂i and b̂
†
i annihilate and create particles in the ith mode, and satisfy

the Bose commutation rule
[

b̂i, b̂
†
j

]

= δij , with all others commutators vanishing. By

substituting the expression (2.47) into Eq. (2.46), and exploiting the orthogonality

(2.37) between solutions with different energies, the Hamiltonian operator for the

excitations takes the form:

Ĥ(2) =
∑

i

∫

dr ~ωi

(

|ui|2 − |vi|2
)

b̂†i b̂i, (2.48)

where the zero-point contribution due to the non-commutativity of the b̂i and b̂†i

operators has been omitted. The Eq. (2.48) justifies the choice made in Eq. (2.38)

for the normalization of the ui and vi solutions, from which follows that Eq. (2.48)

takes the form of the Hamiltonian of a system of independent particles and the

quantization procedure is concluded.

2.3 Rotating condensates

2.3.1 Uniform system

In this section we give a brief overview of the physics of rotating condensates, with

special attention to the stability properties. What follows represents a theoretical
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background, in the perspective of the original work discussed in Chapters 4 and 5.

The following arguments have been originally developed in [55–57], and reviewed in

[71–74].

As first theoretically predicted by Onsager [75] and Feynman [59], and experimen-

tally verified by Vinen working with superfluid helium [76–81], a superfluid rotates

through the nucleation of vortices with quantized value of circulation. This is a

purely quantum phenomenon, due to the restriction imposed to the condensate

wave function to be single-valued, which dramatically differs from the behaviour

of a classical fluid, which gains instead angular momentum by rotating as a rigid

body. Subsequent experiments [82, 83] revealed the appearance of the same physics

in atomic condensates, and showed the occurrence of the characteristic triangular

lattice structure [84], known as Abrikosov lattice.

The simplest solution of the GP equation (2.21) describing a rotating condensate

is given by an axial-symmetric vortex line, which is mathematically represented by

the order parameter [55–57]

Ψ0 (r) = f (r⊥, z) e
iℓϕ. (2.49)

Here we assumed the axis of the vortex line to be in the z direction, and introduced

the polar coordinates r⊥, ϕ, while ℓ is an integer that ensures the single-valuedness

of the wavefunction, whose physical meaning is illustrated in the following. By using

the definition given in Sec. 2.1.3, we see that the velocity field induced by such a

solution is purely azimuthal and equal to

v(r) =
ℓ

2π

κ× r

r2
, (2.50)

where we defined κ = κ ẑ, with κ ≡ h/m (h = 2π~). The physical meaning of κ can

be deduced from the circulation Γ of the velocity field along a line C surrounding

the axis of the vortex line, which reads

Γ ≡
∮

C

v · dl = ℓκ. (2.51)

Inspection of Eq. (2.51) reveals that the circulation is quantized, and κ has the
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meaning of a circulation quantum. The velocity field in Eq. (2.50) is irrotational

everywhere, except at the vortex line at r⊥ = 0, where the phase of the conden-

sate wavefunction is singular. The vorticity of the system is then localized along

the vortex line and, with the aid of the Stokes’ theorem [85] (according to which
∮

C
v · dl =

∫

S
(∇× v) · dS, with S a surface having the contour C as boundary),

one obtains

∇× v = ℓκ δ(2)(r⊥) ẑ, (2.52)

where δ(2)(r⊥) is the two-dimensional Dirac delta function in the plane orthogonal

to the vortex line.

The energy of the vortex is obtained by evaluating the energy functional (2.14) with

the order parameter given in Eq. (2.49), and takes the form

E =

∫

dr

{

~
2

2m

[

(

∂f

∂r⊥

)2

+

(

∂f

∂z

)2
]

+
~
2

2m

ℓ2

r2⊥
f 2 + Vext(r)f

2 +
g

2
f 4

}

. (2.53)

It is larger compared to the case of a non-rotating state, because of the extra con-

tribution to the kinetic energy due to the azimuthal flow and the density variations

close to the vortex core, where the particle density vanishes because of the centrifu-

gal barrier. In order to evaluate it explicitly, we need first to determine the radial

profile f of the order parameter.

The equation for the amplitude f (r⊥, z) is derived by minimizing the grand-canonical

energy E ′ = E − µN , with E given in Eq. (2.53) and N =
∫

dr f 2, or by inserting

the order parameter (2.49) directly into the GP equation (2.21), obtaining:

− ~
2

2m

[

1

r⊥

∂

∂r⊥

(

r⊥
∂f

∂r⊥

)

+
∂2f

∂z2

]

+
~
2ℓ2

2mr2⊥
f + Vext (r) f + gf 3 = µf. (2.54)

Considering the uniform system, it is useful to identify two limit regimes of the

solution, relative to the regions far and close to the vortex line respectively. In

the far region, the centrifugal potential barrier ~2ℓ2/2mr2⊥ vanishes, and the system

approaches the uniform state with density n0 = µ/g ≡ f 2
0 . On the other hand, in

the region close to the vortex line, f goes to zero as f ∼ r
|ℓ|
⊥ , as an effect of the

centrifugal barrier [50]. By comparing the centrifugal potential with the interatomic

interaction energy, we see that the cross-over between the two regimes occurs at
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distances from the vortex line of the order ∼ |ℓ|ξ, which defines the size of the

vortex core. The exact profile of the particle density is the solution of Eq. (2.54)

that, in the dimensionless variables χ ≡ f/f0 and x = r⊥/ξ, reads

1

x

d

dx

(

x
dχ

dx

)

+

(

1− ℓ2

x2

)

χ− χ3 = 0. (2.55)

Once we solve Eq. (2.55), for example numerically or by a variational calculation

[34, 35, 86], we are in the position to address the calculation for the energy of the

rotating condensate. We are interested in particular in the excess of energy compared

to the uniform state of the system with the same number of particles. In order to

calculate such energy difference, we assume the condensate confined in a cylindrical

vessel of radius R ≫ |ℓ|ξ, whose energy ǫ per unit length along the vortex line has

the form:

ǫ =

∫ R

0

dr⊥ 2πr⊥

[

~
2

2m

(

df

dr⊥

)2

+
~
2ℓ2

2m

f 2

r2⊥
+
g

2
f 4

]

. (2.56)

We need to subtract from Eq. (2.56) the energy ǫ0 = (n2g/2)πR2 relative to the

same system in the uniform state, with n = ν/πR2 and ν the number of particles

per unit length contained in the vessel. The value of ν is given by

ν =

∫ R

0

dr⊥2πr⊥f
2 = πR2f 2

0 −
∫ R

0

dr⊥2πr⊥
(

f 2
0 − f 2

)

, (2.57)

where we added and substracted the value pertaining the uniform state in the last

equation. Given Eq. (2.57), the energy per unit length of the uniform system can

be readily calculated:

ǫ0 =
g

2
n2πR2

=
π

2
R2gf 4

0 − gf 2
0

∫ R

0

dr⊥2πr⊥
(

f 2
0 − f 2

)

,
(2.58)

where terms of order (ξ/R)2 have been neglected, as we work under the assumption

R ≫ ξ. The excess of energy ǫv associated with the presence of a vortex is the

difference between Eqs. (2.56) and (2.58) and is equal to

ǫv =

∫ R⊥

0

2πr⊥dr⊥

[

~
2

2m

(

df

dr⊥

)2

+
~
2ℓ2

2m

f 2

r2⊥
+
g

2

(

f 2
0 − f 2

)2

]

. (2.59)

Since the particle density attains a constant value far from the vortex line, the kinetic

energy associated to the azimuthal flow diverges logarithmically, and represents the
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major contribution to the vortex energy. In such a regime, f ≃ f0 =
√
n0, and the

energy per unit length in the case of a single quantized vortex (ℓ = 1) is approxi-

mately equal to ǫv ≈ (π~2/m)n0 ln (R/ξ). Taking into account the contributions due

to the other terms, a more accurate result has been obtained by evaluating the en-

ergy functional (2.59) with a numerical solution of the Eq. (2.55) for the amplitude

of the order parameter. This gives [34, 35, 87]

ǫv = π
~
2

m
n0 ln

(

1.464
R

ξ

)

. (2.60)

Analogous result holds true for vortices with multiple quanta of circulation. In

such a case, by following the same reasoning as above, the vortex energy takes the

form ǫℓv ≈ (π~2ℓ2/m)n0 ln (R/|ℓ|ξ) [34, 35]. This shows that, in a uniform conden-

sate, configurations involving more vortices with a single quantum of circulation are

energetically favoured over states with vortices with multiple quanta of circulation.

2.3.2 Harmonically trapped system

Using the results of the previous section, we here estimate the energy of a vortex

in a harmonically trapped condensate. To this aim we first consider the simpler

two-dimensional system composed by a cylindrical cloud confined in a rotationally

invariant harmonic potential Vext = mω2
⊥r

2
⊥/2 with respect to the vortex axis. We

assume the number of particles is high enough that the corresponding non-rotating

state of the system is accurately described within the TF approximation introduced

in Sec. 2.1.4. In this limit, the extension of the cloud is much larger compared to

the size of the vortex core ξ0 at the center of the cloud, and results

ξ0
R⊥

=
~ω⊥

2µ
≪ 1, (2.61)

where R⊥ =
√

2µ/mω2
⊥ is the TF radius. The excess energy due to the presence of

the vortex can be conveniently estimated by splitting the calculation in two regions,

separated by an intermediate radius ρ satisfying the relation ξ0 ≪ ρ≪ R. Working

in the TF limit, the particle density varies smoothly in space and, in the inner

region, it can be considered uniform and equal to the value n(0) attained by the

non-rotating condensate at the center of the trap. The contribution to the energy

relative to this region is then given by the results in Eq. (2.60) for the uniform
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system, provided we substitute n → n(0) and R → ρ. By contrast, in the outer

region the density profile is not affected by the presence of the vortex, and the main

contribution to the vortex energy is due to the azimuthal kinetic energy. Combining

these two contributions, we have the excess energy per unit length [35, 87]

ǫv = πn(0)
~
2

m
ln

(

1.464
ρ

ξ0

)

+

∫ R⊥

ρ

dr⊥ 2πr⊥
~
2

2m

n(r⊥)

r2⊥

= πn(0)
~
2

m

[

ln

(

1.464
R⊥

ξ0

)

− 1

2

]

= πn(0)
~
2

m
ln

(

0.888
R⊥

ξ0

)

,

(2.62)

where we evaluated the integral using the TF profile for the density n(r⊥) =

n(0) (1− r2⊥/R
2
⊥). The results obtained above for the effectively two dimensional

system can be extended to the fully three-dimensional case. By neglecting the ki-

netic energy due to the spatial variations of the order parameter in the z direction,

again justified since we work in the TF limit, the energy of the vortex can be es-

timated by integrating the contribution of each infinitesimal slide of the cloud as

E =
∫ Rz

−Rz
dz ǫv(z), where Rz is the transverse extension of the cloud defined as in

Eq. (2.25). Given the TF particle density n(r⊥, z) = n(0) (1− r2⊥/R
2 − z2/R2

z), the

z-dependent radial extension of the condensate R⊥(z) = R⊥ (1− z2/R2
z)

1/2
and core

size ξ(z) = ξ0 [n(0, 0)/n(0, z)]
1/2, the energy of the vortex reads [35, 87]

Ev =
π~2

m

∫ Rz

−Rz

dz n(0, z) ln

[

0.888
R⊥(z)

ξ(z)

]

=
4πn(0)

3

~
2

m
Rz ln

(

0.671
R⊥

ξ0

)

.

(2.63)

Note that the procedure leading to the energy in Eq. (2.63) is based on the hy-

pothesis that R(z) ≫ ξ(z), a condition that is less and less satisfied for |z| → Rz.

However, the estimate based on this simplifying assumption turns out to be in good

agreement with numerical results obtained for large number of particles [35, 88].

Eq. (2.63) can be generalized to the case of an off-axis vortex displaced by r⊥ = b

from the minimum of the harmonic potential, as [35, 89, 90]

E(b) ≃ E

(

1− b

R

)3/2

. (2.64)

This result can be derived by evaluating the integral in Eq. (2.63) in the more
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generic form

E =
π~2

m

∫ Rz(b)

−Rz(b)

dz n(b, z) ln

(

R⊥(z)

ξ(b, z)

)

, (2.65)

with Rz(b) = Rz (1− b2/R2
⊥)

1/2
the vertical heigth of the cloud at the radial position

r⊥ = b, and ξ(b, z) = ξ0
√

n(0, 0)/n(b, z) the healing length at the point r⊥ = b and

z. This result shows that the configuration with the vortex in the center of the

trap is unstable with respect to small displacements of the vortex line from the

axis of symmetry of the trapping potential. As a consequence, the vortex would

leave the cloud in the presence of a dissipative mechanism that removes angular

momentum from the condensate, transferring the vortex towards its lower energy

states. Such a mechanism could be provided by the interaction between the vortex

and the thermal cloud for example [91]. Rotating traps, however, can stabilize a

vortex state. In order to show how that is possible, it is convenient to move to

the reference frame co-rotating with the external potential, where the Hamiltonian

does not depend on time. According to the Galilean transformations, the energy E ′

of the system in the frame rotating with angular velocity Ω, can be expressed in

terms of the energy E and of the angular momentum L in the non-rotating frame

as E ′ = E−Ω ·L [92]. This relation shows that, in the rotating frame, states of the

system with projection of the angular momentum in the direction of the rotations

different from zero can be stabilized. Indicating by Es the energy and by Ls the

relevant component of the angular momentum, such a state becomes energetically

favorable with respect to the ground state of the system with energy E0, when the

rotational velocity exceeds the critical value

Ωcr =
Es − E0

Ls
. (2.66)

This stability criterion can be applied to a vortex state, for which we calculated the

excess energy Ev ≡ Es − E0 in Eq. (2.64) for the case of a harmonically trapped

cloud, when the vortex line is displaced with respect to the axes of symmetry of the

potential. What is left to do is to calculate the angular momentum, which is equal
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to

Lv ≡ 〈Lz〉 =
∫

drΨ0(r)
†LzΨ0(r) =

=

∫ Rz(b)

−Rz(b)

dz

∫ R⊥(z)

b

2πr⊥n(r⊥, z) dr⊥

= ~N

(

1− b2

R2

)5/2

,

(2.67)

where we used the order parameter Ψ0 =
√

n(r⊥, z)e
iϕ, with n(r⊥, z) the TF density

profile introduced above, and the definition of the angular momentum operator

in polar coordinates Lz = −i~ ∂
∂ϕ
. Eq.(2.67) shows that, although the circulation

around the vortex is quantized, the angular momentum per particle is not, as it

decreases by increasing the distance of the vortex line from the center of the trap.

Combining Eqs. (2.64) and (2.67), the energy of the vortex in the rotating frame

takes the form [34, 35, 89, 90]

E ′
v = Ev − ΩLv

E

(

1− b2

R2

)3/2

− ~NΩ

(

1− b2

R2

)5/2

.
(2.68)

Eq. (2.68) shows that a rotation of the system lowers the energy of a vortex state

in the co-rotating reference frame. At the critical value Ωcr, the energy is zero, and

eventually becomes negative for higher values of the angular velocity. Under these

conditions, the vortex state becomes a globally stable solution.

For the simpler case of an axial symmetric (b = 0), harmonically trapped, cylindrical

system, Eq. (2.68) reduces to

ǫ′v = ǫ− ~νΩ, (2.69)

where ǫv is given by Eq. (2.62) and

ν =

∫

d2rn(r⊥) =
π

2
n(0)R2

⊥, (2.70)

is the number of particles per unit length. Here we used the TF density profile

n(r⊥) = n(0) (1− r2⊥/R
2
⊥). The critical angular velocity in such a case is thus equal

to

Ωcr =
ǫv
~ν

=
2~

mR2
⊥

log

(

0.888
R⊥

ξ0

)

. (2.71)
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Chapter 3 Artificial magnetism

The concept of artificial gauge fields, and in particular synthetic magnetism, is a con-

crete implementation of the idea of quantum simulators, first conceived by Feynman

in 1982 [5]. Tha aim is to exploit the universality of the laws of quantum mechanics

to use a controllable system in order to reproduce the physics of other systems of

interest, whose experimental investigation is out of the technological capabilities.

Within this framework, the way by which orbital magnetism is simulated can be

understood in terms of the so called Aharonov-Bohm effect [93, 94], according to

which the wavefunction of a charged particles gains a phase factor when it travels

around a closed path pierced by a non-zero magnetic flux. Following this picture,

magnetism can be simulated with neutral atoms by inducing geometrical phases

such as the Berry phase [95], that arise when the Hamiltonian of a quantum system

depends on one or more parameters that adiabatically change in time. Assuming

the atoms move slowly enough, a Berry connection [95] appears in the physical

space, when the Hamiltonian of the atoms parametrically depends on the position,

which plays the role of an effective vector potential. The emergence of such effective

dynamics has been first pointed out in [96, 97], by coupling the center-of-mass motion

of the atoms to their internal dynamics, via opportunely designed space-dependent

light-matter interaction. Because of the high level of controllability reached in state-

of-the-art experiments, successive works proposed the implementation of non-trivial

synthetic electric and magnetic fields in cold atoms systems [98–102]. Based on

these theoretical proposals, synthetic magnetism were experimentally realized at

NIST [103–105], working with cold atoms in the bulk geometry described above,

which is the configuration that will be used in the rest of the thesis, and reviewed

in the present chapter. It is however worth mentioning that lattice geometries have

also been widely used to the same aim (see [1, 2, 106, 107] and references therein).
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We start the chapter by introducing in Sec. 3.1 the general concept of geometric

(Berry) phase and show how they emerge in quantum mechanics. We use these

concepts in Sec. 3.2, in which we set the formalism for geometric potentials in the

physical space, where they can be seen as effective vector and scalar potentials. In

Sec. 3.3 we address the practical implementation of this with cold atoms, considering

two-level and Λ-level internal configurations. We finally show in Sec. 3.5, how these

arguments can be generalized to take into account the interparticle interactions,

leading to nonlinear (that is density dependent) synthetic magnetic and electric

potentials.

3.1 Berry phase

Let us consider a system whose dynamics is described by the Hamiltonian Ĥ (λ),

parametrically depending on one or more quantities here collectively denoted as λ.

The stationary states |ψn (λ)〉 of the system, which we assume form a discrete set,

and the corresponding energies En (λ), are defined by

Ĥ (λ) |ψn (λ)〉 = En (λ) |ψn (λ)〉. (3.1)

For each value of λ, the set {|ψn (λ)〉} is assumed to form an orthonormal basis

for the Hilbert space, so that the generic state of the system can be expanded as

|ψ〉 =∑n cn|ψn (λ)〉.

We consider the system initially prepared in the state |ψi(λ)〉 that is, at t = 0, ci = 1

and cn = 0 if n 6= i, and assume to vary the value of λ along a closed contour C in the

parameters’ space. If such variation occurs in the time interval t = [0, T ], this means

that λ(T ) = λ(0). In the hypothesis that the time evolution of the parameters is

slow enough, the adiabatic theorem holds true [108] and, to first approximation, the

state of the system remains proportional to the original eigenstate at all the times.

In these assumptions, the final state of the system at t = T is still equal to |ψi(λ)〉,
up to a phase factor. To show this result, we use the adiabatic assumption and

write the state of the system at the generic time instant t as |ψ(t)〉 = ci(t)|ψi(λ(t))〉,
where ci(t) is a phase factor to be determined. The reduced dynamics of the system
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is obtained by projecting the Schrödinger equation

i~
d|ψ(t)〉
dt

= Ĥ (λ(t)) |ψ(t)〉, (3.2)

onto the subspace of the Hilbert space spanned by |ψi (λ(t))〉, and results in the

equation

i~ċi =
(

Ei(t)− i~λ̇ ·Ai(λ)
)

ci, (3.3)

where we defined Ai(λ) = i~〈ψi(λ)|∇ψi(λ)〉, and we denoted time derivatives by

dotted symbols. This equation can be integrated, yielding

ci(T ) = e−i
∫ T

0
Ei(t)dt/~eiγi[C]ci(0). (3.4)

The first term in Eq. (3.4) is the usual dynamical phase factor that appears also in

time-independent problems, while the second term represents an extra phase factor,

providing the geometric phase [95, 107]

γi[C] =
1

~

∮

C

Ai(λ) · dλ. (3.5)

The name “geometric” is ascribed to the fact that such a phase shift is given by

the contour integral of Ai(λ) along the path C in the parameter space, whose value

only depends on the trajectory followed by λ(t) and is independent on how such

a contour is traversed (provided T is large enough compared to the other relevant

energy scales involved, and the adiabatic approximation can be applied).

Eq. (3.5) is the central result of this section. It clearly shows that Ai(λ) can

be interpreted as equivalent of an electromagnetic vector potential acting in the

parameter space, and the geometrical phase shift as an analogue Aharonov-Bohm

effect. Because of this reason, Ai(λ) is usually referred to as a Berry connection,

and Bi(λ) ≡ ∇ × Ai, which represents the corresponding magnetic field in the

parameter space, takes the name of Berry curvature.

From this it is clear how synthetic magnetism can arise in a quantum system. What

is needed is to make the Hamiltonian in Eq. (3.1) parametrically dependent on the

position, that is, making the identification λ ≡ r. How this prescription can be

implemented with cold atoms is the topic of the next two sections.
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3.2 Synthetic magnetic fields

3.2.1 General formalism

Synthetic magnetic fields acting on neutral atoms emerge by for instance coupling

the centre of mass motion of the particles to their internal degrees of freedom [96, 97],

in turn coupled between each other by a laser field [109–111]. This can be achieved

by making the light-matter interaction parameters space-dependent. We will see in

the following sections that, within the rotating-wave approximation [109–111], the

internal dynamics of the particles interacting with an electromagnetic field can be

described by a time-independent Hamiltonian, hereafter labelled Ĥint(r), so that the

Hamiltonian for a particle of mass M takes the general form

Ĥ =

(

p̂2

2M
+ Vext(r)

)

⊗ I+ Ĥint(r), (3.6)

where p̂ ≡ −i~∇ is the quantum momentum operator of the particle, Vext(r) ac-

counts for possible external potentials, and I is the identity operator for the internal

Hilbert space.

Retracing the reasoning illustrated in the previous section, we define the eigenstates

of the atom dressed by the interaction with the field, and the relative energies, as

Ĥint(r)|ψn(r)〉 = En(r)|ψn(r)〉, (3.7)

both parametrically depending on the position in general. As done in Sec. 3.1, we

consider the particle initially prepared in one of its dressed states, and suppose it

moves slowly enough that the adiabatic approximation can be safely applied (more

details on the validity of this condition are discussed in the following). Within these

assumptions the atom remains in the same internal state at all time. Analogously to

what was done in the previous section, the reduced dynamics of the atom is obtained

by projecting the Schrödinger equation

i~
d|ψ(r, t)〉

dt
= Ĥ|ψ(r, t)〉

=

[(

p̂2

2M
+ Vext(r)

)

⊗ I+ Ĥint(r)

]

|ψ(r, t)〉,
(3.8)

onto the subspace of the Hilbert space spanned by the initial, say |ψi(r)〉, dressed

30



Chapter 3: Artificial magnetism

state. In this procedure, a crucial role is played by the kinetic term of the atomic

center-of-mass motion, from which geometric vector and scalar potentials arise. The

effective dynamics of the particles can be derived by considering first the action of

the momentum operator on the full state |ψ(r, t)〉 =
∑

n ψn(r, t)|ψn(r)〉. Since the

dressed states explicitly depend on the position, we have

p̂|ψ(r, t)〉 =
∑

m,n

[(δm,np̂+Am,n(r))ψn(r, t)]|ψm(r)〉, (3.9)

where we used the completeness relation
∑

m |ψm(r)〉〈ψm(r)| = I, and we defined

Am,n(r) ≡ 〈ψm(r)| p̂ |ψn(r)〉. By using Eq. (3.9), and neglecting all the amplitudes

ψn (r, t) with n 6= i (because of the adiabatic assumption of the atomic motion),

the projection of the kinetic term onto the initial |ψi (r)〉 direction, takes the form

[1, 2, 107]

〈

ψi(r)

∣

∣

∣

∣

p̂2

2M

∣

∣

∣

∣

ψ(r, t)

〉

=

[

(p̂−Ai(r))
2

2M
+Wi(r)

]

ψi(r, t) (3.10)

with

Ai(r) = −〈ψi| p̂ |ψi〉 , (3.11a)

Wi(r) =
∑

n 6=i

|〈ψn| p̂ |ψi〉|2
2M

. (3.11b)

Comparison with the definition given in Sec. 3.1 shows that Ai(r) has the struc-

ture of a Berry connection in the physical space and represents the sought effective

magnetic vector potential. In addition, the Eq. (3.10) shows that the atom, during

its adiabatic evolution, feels the action of the effective scalar potential Wi(r). The

reduced dynamics is thus described by the following equation for the time evolution

of the probability amplitude ψi(r, t)

i~
∂ψi

∂t
=

[

(p̂−Ai (r))
2

2M
+ Ei (r) +Wi (r)

]

ψi (r, t) , (3.12)

that has the form of the Schrödinger equation for a particle with unit charge, moving

in the magnetic field Bi ≡ ∇×Ai, associated with the vector potential Ai(r) and

subject to a potential that is the combination of Wi (r) and the space-dependent

energy Ei (r) of the dressed state.
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3.2.2 Validity of the adiabatic approximation

In this section we give a deeper insight into the validity of the adiabatic approxi-

mation, on which the above arguments rely. By following [112], we show that the

condition required for its applicability is that the characteristic time scale of the

center-of-mass motion need to be sufficiently large compared to the time scales set

by all the relevant atomic Bohr frequencies.

To this aim, we work in the semi-classical approximation, according to which the

centre-of-mass motion is treated classically, while quantum mechanics is still used

to describe the internal dynamics. Starting with an atom initially at rest in the |ψi〉
internal dressed state, we say that it is adiabatically set in motion with the final

velocity v, if the population Πn of the other states |ψn〉, with n 6= i, is Πn ≪ 1 at

the end of the process. In order to find under which conditions this requirement is

fulfilled, we suppose that the atom is uniformly accelerated to the final velocity v

in the time T , with the velocity taking instantaneously the value v(t) = v t/T for

0 ≤ t ≤ T . Given the general expression |ψ〉 =
∑

n ψn(t)|ψn (r(t))〉 for the internal

state of the atom, the time evolution is obtained from the Schrödinger equation

i~|ψ̇〉 = Ĥint|ψ〉, considering the relation |ψ̇〉 =
∑

n

[

ψ̇n|ψn〉+ ψnv · |∇ψn〉
]

. The

equation of motion for the amplitudes ψj(t) takes the form

dψj

dt
= −iωjψj −

∑

n

(ψnv · 〈ψj |∇ψn〉), (3.13)

with ~ωj = Ej . To zeroth order in v, the internal state of the atom is not coupled

with the center-of-mass motion, and all ψj ’s are zero except ψi, which evolves as

ψi(t) = exp(−iωit). To first order, Eq. (3.13) can be solved, by noting that the

general solution of the differential equation ẏ+P (t)y = Q(t) can be written as y(t) =

ξ(t) exp(−
∫

dt′P (t′)), with ξ(t) = ξ(0)+
∫ t

0
dt′
[

Q(t′) exp
(

∫ t

0
dt′P (t′)

)]

. In our case,

P = iωj, Q(t) = −v · 〈ψj|∇ψi〉(t/T ) exp (−iωit) and, assuming T (ωj − ωi) ≫ 1, we

get for j 6= i

ψj(T ) = −v · 〈ψj |∇ψi〉e−iωjT

∫ T

0

dt ei(ωj−ωi)t
t

T

≈ i
v · 〈ψj |∇ψi〉
ωj − ωi

e−iωiT .

(3.14)
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The populations of the internal atomic states with j 6= i, at the end of the acceler-

ation, are thus equal to

Πj(T ) = |ψj(T )|2 ≈
∣

∣

∣

∣

v · 〈ψj|∇ψi〉
ωj − ωi

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

〈ψj |ψ̇i〉
ωj − ωi

∣

∣

∣

∣

∣

2

, (3.15)

which shows that the condition for the validity of the adiabatic approximation

(Πj ≪ 1) is that the angular velocity of |ψi〉, induced by the center-of-mass mo-

tion, is much smaller than all the relevant transition frequencies [108].

3.3 Practical implementations

We consider here the implementation of the formalism developed in Sec. 3.2, to the

case of a neutral atom interacting with an external laser field. We start with the

simplest possible scheme, which consists of a close to resonance monochromatic laser

beam with frequency ωf shone on an atom, whose internal dynamics can be restricted

to a single relevant transition between a ground |g〉 and an excited |e〉 state, with

characteristic frequency ω0. The dressed states in this simple two-level model for

the atom are defined as a linear combination of the ground and the excited states.

We see in the following that, in order to have a sizeable synthetic magnetic field, the

relative weights of the two states in this combination need to be of the same order.

This poses severe limitations on the experimental feasibility of this configuration,

which could be used provided the radiative lifetime of the excited atomic state is long

enough compared to the other relevant experimental time scales. In this scenario

the spontaneous emission from the excited state is negligible during the duration of

the experiment. This is a realistic assumption working with alkali-earth atoms (such

as Strontium) or Ytterbium, for which lifetimes of the order of seconds and even of

tens of seconds are achievable [113]. The limitations of the two-level scheme can be

circumvented, by using more complex internal atomic structures. The idea in this

case is to take advantage of eventual degeneracies of the electronic ground level, and

work with dressed states which are linear combinations of the the ground sublevels

only. This allows to exploit a wider class of atomic species, like the alkali-metal

atoms which are mostly used in state-of-the-art cold atoms experiments.
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Figure 3.1: Atomic internal states configurations. (a) Two-level scheme. (b) Λ-level

scheme.

We start this section with the description of the two-level scheme in Sec. 3.3.1, since

it is the simplest configuration useful in order to generate synthetic gauge fields

[1, 2, 107]. We extend the arguments in Sec. 3.3.2, introducing the three-level atom

in the Λ-configuration [1, 2].

3.3.1 Two-level atomic model

Let us consider a two-level atom, with transition frequency ω0 between the ground

|g〉 and the excited |e〉 states. In the dipole interaction approximation Ĥdip = −d̂ ·E
[109, 110], with d̂ the dipole operator of the atom, the Hamiltonian describing the

semi-classical interaction with the electromagnetic field E = (E0e
−iωf t + c.c.) /2,

reads [109, 110]

Ĥ ′
int = Ĥat + Ĥdip, (3.16)

with

Ĥat =
~ω0

2
|e〉〈e| − ~ω0

2
|g〉〈g|, (3.17a)

Ĥdip =
~

2

(

κe−iωf t + κ̃eiωf t
)

|e〉〈g|+ c.c. . (3.17b)

In Eq. (3.17b), we defined the Rabi frequency κ ≡ −deg ·E0/~ and κ̃ ≡ −deg ·E∗
0/~,

with dij = 〈i|d |j〉 (i, j = g, e). In the nearly resonant condition ωf ≈ ω0, we make

the rotating-wave approximation (RWA) [109, 110], according to which the terms in

the Hamiltonian which are rapidly oscillating (that are the ones evolving in time as

e±i(ω0+ωf) in the interaction picture) can be averaged to zero. In this approximation,
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the atom-light interaction takes the form:

ĤRWA

dip =
~

2

(

κe−iωf t|e〉〈g|+ κ∗eiωf t|g〉〈e|
)

, (3.18)

and the Hamiltonian describing the internal dynamics of the atom reads

Ĥ ′
RWA

int = Ĥat + ĤRWA

dip . (3.19)

The time dependence in Eq.(3.19) can be removed by the unitary transformation

U = eiωf t/2|e〉〈e|+ e−iωf t/2|g〉〈g|, obtaining

Ĥint = ÛĤ ′
RWA

Û † − i~Û
∂Û †

∂t

=
~

2
(∆|e〉〈e| −∆|g〉〈g|+ κ|e〉〈g|+ κ∗|g〉〈e|)

(3.20)

or, in matrix form:

Hint =
~

2





∆ κ

κ∗ −∆



 . (3.21)

Here ∆ = ω0 − ωf is the detuning of the coupling field from the atomic transition.

It is useful to rewrite the atom-light interaction operator in Eq. (3.21), by introduc-

ing the generalized Rabi frequency Ωr and the mixing angle θ, which are defined

as

Ωr =
√

|κ|2 +∆2, cos θ =
∆

Ωr
, sin θ =

|κ|
Ωr
. (3.22)

In terms of these quantities, and of the phase φ of the electric field, entering into

the definition of the Rabi frequency κ = |κ|e−iφ, Eq. (3.21) takes the form

Hint =
~Ωr

2





cos θ e−iφ sin θ

eiφ sin θ − cos θ



 . (3.23)

The eigenstates {|+〉, |−〉} of Eq. (3.23) are the internal states of the two-level atom

dressed by the interaction with the light field, and have the form

|+〉 =





cos(θ/2)

eiφ sin(θ/2)



 , |−〉 =





−e−iφ sin(θ/2)

cos(θ/2)



 , (3.24)

with eigenvalues ~Ωr/2 and −~Ωr/2 respectively. The Eqs. (3.11a) and (3.11b),

evaluated for dressed states |±〉 defined above, yield the following expressions for

35



Chapter 3: Artificial magnetism

the vector and the scalar potentials [1, 2, 107]

A± = −~

2
(1∓ cos θ)∇φ, (3.25)

W± =
~
2

8M

[

(∇θ)2 + sin2 θ (∇φ)2
]

, (3.26)

from which the following synthetic magnetic field is obtained

B± = ±~

2
∇(cos θ)×∇φ. (3.27)

Eq. (3.27) shows that a nonzero value for the magnetic field occurs when both

the mixing angle θ and the phase of the light field vary in space with non collinear

gradients. A spatial dependence for the former can be obtained by either modulating

in space the Rabi frequency κ, by choosing an appropriate space profile for the laser

intensity, or by varying in space the detuning ∆. This can be accomplished for

example by exploiting a space-dependent Zeeman shift of hyperfine levels of the

atoms, induced by an inhomogeneous magnetic field [102–104].

3.3.2 Λ-level atomic model

Let us consider a three-level atom, whose relevant internal states are disposed ac-

cording to the Λ-scheme depicted in Fig. 3.1(b). It is characterized by a two-fold

ground subspace, whose states |g1〉 and |g2〉 are coupled to an excited state |e〉 by two

laser beams, respectively of angular frequencies ωf1 and ωf2. In the rotating wave

approximation, the internal dynamics of the atoms is described by the Hamiltonian

H ′RWA

int = ~ωe|e〉〈e|+ ~ωg2|g2〉〈g2|

+
~

2

(

κ1e
−iωf1

t|e〉〈g1|+ κ2e
−iωf2

t|e〉〈g2|+H.c.
)

, (3.28)

in which we set the energy of |g1〉 equal to zero, and we indicated the Rabi frequencies

of the g1−e and g2−e transitions as κ1 and κ2 respectively. We define the detuning

of the laser beams with respect to these atomic transitions as δ1 = ωe − ωf1 and

δ2 = ωe−ωg2−ωf2 , together with their average value ∆ = (δ1 + δ2) /2 and difference

δ = δ1−δ2. The latter quantity physically represents the detuning of the two-photon

(Raman) transition between |g1〉 and |g2〉. This Hamiltonian can be written in a
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time-independent form by applying the unitary transformation

Û = ei(ωe−∆)t|e〉〈e|+ eiδt/2|g1〉〈g1|+ ei(ωg2
−δ/2)t|g2〉〈g2|. (3.29)

In matrix notation, it finally reads as [1]

Hint =
~

2











−δ κ∗1 0

κ1 2∆ κ2

0 κ∗2 δ











, (3.30)

with the basis chosen as {|g1〉, |e〉, |g2〉}. In the case of a perfectly resonant Raman

excitation δ = 0, with the lasers symmetrically tuned respect to the g1−e and g2−e
transitions (i.e. ∆ = 0), a zero energy dressed state of the atom exists called dark

state, given by the superposition of the ground states [114]

|D〉 = (κ2|g1〉 − κ1|g2〉) /κ, (3.31)

with κ =
√

|κ1|2 + |κ2|2. The other two dressed states have energies ±~κ/2 and

take the form [114]

|±〉 = (|B〉 ± |e〉) /
√
2, (3.32)

where |B〉 = (κ∗1|g1〉+ κ∗2|g2〉) /κ is the so-called bright state. Considering the atom

initially prepared in the |D〉 state, its adiabatic evolution leads to synthetic vector

and scalar potentials having the form A = i~〈D|∇D〉 and W = ~
2 |〈B|∇D〉|2 /2M .

By comparing the expression of the dark state in Eq. (3.31) with (for example) the

|+〉 state in Eq.(3.24), an analogy between the system here considered and the two-

level configuration of the atom can be identified. This analogy can be made explicit

by the following identifications between the parameters of the Raman coupling and

the mixing angle θ and the laser phase φ that characterize the two-level configuration

√

ζ ≡
∣

∣

∣

∣

κ1
κ2

∣

∣

∣

∣

= − tan

(

θ

2

)

, φ1 − φ2 = φ. (3.33)

The effective magnetic field resulting from the vector potential defined above takes

the form [1, 115, 116]

B = ~
∇φ×∇ζ

(1 + ζ)2
. (3.34)

We thus showed that synthetic vector potentials appear in the projected dynamics

of the three-level atom onto its dark state. As this state belongs to the ground

37



Chapter 3: Artificial magnetism

manifold of the internal Hilbert space of the atom, the setup does not suffer of

issues related to spontaneous decay of atoms.

It is worth mentioning that a different implementation of synthetic magnetism is also

feasible with the Λ-level scheme, which is different from the one presented above.

As shown in Capter 8, in the case of a far detuned coupling between the ground

and the excited states, the latter can be formally eliminated from the dynamics of

the system, which effectively reduces to a two-level problem in the ground subspace.

The dressed states of the atom |±〉 introduced in Sec. 3.3.1 are thus combinations

of the ground states in this case, and spontaneous atomic decay related issues are

avoided.

3.3.3 Experimental overview

We here give a brief overview of the experiments which first led to the observation

of synthetic potentials acting on neutral atoms, in the continuum configuration

discussed in the previous sections [103, 104]. The setup used is depicted in Fig. 3.2,

and is described in the following. It is based on a non-homogeneous detuning for

optical Raman transitions between different atomic ground sublevels.

The system is composed of Rb87 atoms, prepared in the F = 1 hyperfine subman-

ifold, with the Zeeman states |mF 〉 (with mF = 0,±1) coupled via quasi-resonant

Raman (that is two-photon) transitions. An additional, spatially dependent, mag-

netic field is applied, in order to resolve the degeneracy of the hyperfine levels,

splitting the states with mF = ±1 with respect to the mF = 0 state. The Raman

transitions are driven by two laser beams, respectively with wave vectors k1 and

k2, which couple states differing in ∆mF = ±1. Since the single photon detun-

ing ∆ of the coupling lasers, with respect to the excited state manifold involved in

the transition, is much larger compared to the amplitude of the Rabi frequencies

|κ1| and |κ2|, the excited states of the atoms can be adiabatically eliminated from

the dynamics of the system, as discussed in Sec. 8.2.1 of Chap. 8. The effective

Hamiltonian, describing the ground submanifold dynamics takes thus the form of

Eq. (3.30), with ∆ = 0, and κ∗1 and κ2 replaced by κ ≡ κ1κ
∗
2 = |κ|eiφ, with φ = kd ·r
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Figure 3.2: Experimental configurations used in [103, 104], and discussed in the text.

Note that the frequencies in the picture are not to scale, as ∆ ≫ δ and ∆ ≪ Ee−Eg

in practice (with Ee and Eg the excited and ground manifold energies).

and kd = k1 − k2.

Focusing on the lower energy dressed state

|χ〉 = eiφ cos2
θ

2
|−1〉 − sin θ√

2
|0〉+ e−iφ sin2 θ

2
|+1〉, (3.35)

with tan θ =
√
2|κ|/δ, the vector potential takes the form

A = i~〈χ|∇χ〉 = −~kd cos θ. (3.36)

Eq. (3.36) shows that, as discussed in the previous sections, a non-trivial magnetic

field can be created by modulating in space the amplitude of the Rabi frequencies

κi (with i = 1, 2), or using a non-homogeneous Raman detuning δ. In [104], the

authors obtained an effective magnetic field acting on the atoms, by using the latter

configurations.
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3.4 Lattice configuration

As mentioned in the introduction of this chapter, another important branch of the

current research on artificial gauge fields is devoted to the study of magnetic effects

on charged particles in spatially periodic potentials. The reasons for the interest in

studying magnetic phenomena in such a configuration are many. Spatially periodic

potentials naturally arise in condensed matter systems, as is the case for example

for electrons in the periodic lattice of crystals. The richness of the physics of these

systems, compared to the continuum case, is due to the existence of two competing

fundamental length scales in the problem, which are the the lattice period a, and

the magnetic length ℓmag =
√

~/qB (q is here the charge of the particle), which

characterizes the cyclotron orbit of a charged particle immersed in the magnetic

field B. The ratio between these two length scales can be written in terms of the

magnetic flux through the unit cell of the lattice Φ =
∫

cell
B · dS = Ba2, and the

flux quantum Φ0 ≡ h/q (with h = 2π~) as

a2

ℓ2mag

=
qBa2

~
= 2π

Φ

Φ0
. (3.37)

As long as Φ ≪ Φ0, the length of the cyclotron orbit is much larger than the lattice

spacing, and particles effectively see the periodic potential as a uniform medium.

Nothing relevant thus changes in this case, compared to magnetism in free space.

On the other hand, when Φ ∼ Φ0, the competition between the two length scales is

at the origin of interesting effects, such as the fractal structure of the single-particle

energy spectrum, known in literature as Hofstadter butterfly [117]. Because of the

recent technical advances in manipulating cold atoms in optical lattices, discrete

systems are well suited for reaching this limit, and thus promising in order to study

the quantum Hall physics, and related effects such as the quantization of the con-

ductivity or the topological properties of the energy bands.

3.4.1 General Formalism

We briefly illustrate in the following the general formalism used in order to study

magnetism in discrete systems (see [1, 2, 107] for a more detailed review). For

simplicity, we consider the case of a two-dimensional square lattice, and limit the
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following discussion to the physics of a single band. Assuming particles are able to

hop via tunneling into the nearest neighbour lattice sites, with J the corresponding

tunnel amplitude, the single-particle dynamics in the absence of magnetic field can

be conveniently modelled by the tight-binding Hamiltonian (Hubbard model)

Ĥ = −J
∑

j,l

(|j + 1, l〉〈j, l|+ |j, l + 1〉〈j, l|) + h.c.. (3.38)

In Eq. (3.38) we indicated by |j, l〉 (with j, l ∈ Z) the state of a particle localized

on the lattice site at the position r = a (jux + luy).

As noticed in the previous sections, the effect of a vector potential on the wave

function of a charged particle is encoded in the Aharonov-Bohm phase it gains

travelling from two different positions, respectively r and r′, which is equal to

φ (r → r′) =
q

~

∫

r
′

r

A(r) · dr. (3.39)

In light of Eq. (3.39), the Hamiltonian in Eq. (3.38) can be generalized in order to

take into account the presence of a magnetic field, by assigning a complex term to

the tunneling matrix elements. This procedure, that is the substitution of a real

hopping amplitude with a complex one, is known in literature as Peierls substitution

[118, 119], and leads to the single-particle Hamiltonian of the form (Hofstadter

model)

Ĥ = −J
∑

j,l

(

eiφj,l→j+1,l |j + 1, l〉〈j, l|+ eiφj,l→j,l+1|j, l + 1〉〈j, l|
)

+ h.c.. (3.40)

The effect of a magnetic field results thus in the net phase accumulated by a particle

traversing the unit cell of the lattice, hereafter called the plaquette. Such a phase is

given by the sum of the phases gained by the particle, travelling along each side of

the unit cell:

q

~
Φj,l = φj,l→j+1,l + φj+1,l→j+1,l+1 + φj+1,l+1→j,l+1 + φj,l+1→j,l, (3.41)

where Φj,l is the flux of the magnetic field through the plaquette having the site

(j, l) in its lower left corner. The gauge freedom related to the choice of the vector

potential in the continuum case is recovered in the discrete system. As the only
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Figure 3.3: Phase accumulated by a particle travelling around the unit cell of a

square lattice, in the presence of a non-zero magnetic flux.

gauge invariant quantity is the flux through the plaquette Φi,j , an infinite number

of choices for the phases in Eq. (3.40) (or in Eq. (3.41)) exist, which leads to the

same flux per plaquette. These equivalent gauge choices are related to each other

by a simple redefinition of the phase of the |j, l〉 states.

3.4.2 Experimental overview

There are many ways by which complex hopping amplitudes can be engineered in

the context of cold atoms in the periodic potential of optical lattices. Such potentials

generate a periodic array of trapping sites, linked between each other by quantum

tunneling, which arise from the interference pattern of several off-resonant lasers

[120, 121]. We list in what follows few of these techniques, and refer the interested

reader to the comprehensive reviews [1, 2] for more details.

Rotating system - The simplest technique consists in rotating the lattice [122, 123],

and has already been discussed in Chap. 2, in the context of a continuum condensate.

Shaking modulation - Another technique makes use of time-dependent optical po-
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tentials, resulting in a rapid shaking of the lattice. By making the period of the

temporal modulation of the potential much smaller than the other time scales of the

problem, it is possible to separate the dynamics of an effective, time-independent

Hamiltonian from the micro-motion induced by the rapid shaking [124–126]. It can

be shown [127, 128] that the effective long time scale dynamics of the system shows

the appearance of generally complex tunnel amplitudes between lattice sites. This

techniques has been implemented experimentally both in one-dimensional [128, 129],

and two-dimensional [130–132] systems. In order to solve the problem related to the

resulting staggered magnetic field, which changes sign between adjacent plaquettes,

and thus failing to simulate the physics of charged particles in a constant magnetic

field, it is necessary to implement a temporal modulation of the potential, which

varies from site to site [133–135].

Laser-assisted tunneling - Laser-assisted tunneling between different internal atomic

states is another method that has been exploited in order to engineer complex hop-

ping amplitudes in a lattice. This is achieved by using optical potentials which act

differently on atoms in different internal states, say |g〉 and |e〉, resulting in the

lattice depicted in Fig. 3.4, and using an opportunely tuned laser field in order to

induce a transition between them. The hopping between same states |g〉 → |g〉 and
|e〉 → |e〉 occurs because of quantum tunneling, and the corresponding transition

amplitudes are real. On the other hand, laser induced transitions between different

atomic states imprint a phase on hopping amplitude, which becomes complex. Also

in this case, the flux induced in the lattice is staggered, and need to be rectified in

order to simulate a constant magnetic field. This aim is achieved for example by

using counter-propagating laser field driving respectively the transitions |g〉 → |e〉
and |e〉 → |g〉. [136, 137].

3.5 Nonlinear gauge potentials

In the previous sections we have shown that orbital magnetism can be simulated

with neutral atoms by exploiting geometric potentials arising from light-matter cou-

pling. These potentials successfully reproduce the physics of charged particles in a

static magnetic field, but fail in simulating truly gauge fields, as they do not rep-
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Figure 3.4: Experimental setup used in order to engineer a synthetic field acting on

neutral atoms in a lattice configuration, by using laser-assisted transitions between

|g〉 (blue) and |e〉 (grey) states.

resent dynamical degrees of freedom for the system. In other words, the emerging

synthetic potentials do not obey the Maxwell equations or any other field theory, and

lack a dynamical coupling with matter fields (that are the atoms in our case). Dif-

ferent proposals exist in literature, aimed to simulate dynamical gauge theories in a

lattice geometry [17–22]. and in cavity QED [138–140]. By manipulating ultra-cold

atoms in optical lattices, such gauge fields have been shown to emerge as effective

low-energy theories from the underlying dynamics. Unfortunately, the complexity

involved has so far prevented their experimental realization.

At the basis of any such proposal there is the necessity of introducing a back-reaction

mechanism which locally and dynamically couples the effective gauge fields to the

atoms. In this perspective, we show in the next section that synthetic potentials

explicitly depending on the particle density can be engineered by including inter-

particle interactions in the formalism developed so far, as first proposed in [23]. For

a lattice version of this concept we refer the reader to the Refs. [141, 142]. Despite

44



Chapter 3: Artificial magnetism

the fact that the resulting nonlinear gauge potentials do not reproduce a truly dy-

namical gauge theory, they do give rise to interesting physics, with exotic nonlinear

dynamics which will be addressed in this thesis.

3.5.1 Artificial gauge fields by interacting atoms

Nonlinear (density-dependent) artificial gauge potentials emerge in cold atoms sys-

tems by using collisionally induced detuning in combination with the synthetic mag-

netism described in the previous sections [23, 143].

For the sake of simplicity and without loss of generality, we use the atomic two-level

scheme introduced in Sec. 3.3.1, bearing in mind that analogous arguments equally

apply to more complex configurations such as the Λ-scheme discussed in Sec. 3.3.2.

Modeling the collisional interactions by an effective zero-range pseudo-potential, the

microscopic N-body Hamiltonian of the atomic gas is given by

Ĥ =

N
∑

n=1

[(

p̂2
n

2m
+ Vext(rn)

)

⊗ In + Ĥint(rn)

]

⊗ IH\n+

N
∑

n<j

Gn,j δ (rn − rj)⊗ IH\{n,j},

(3.42)

where the identity matrices IH\{n,j,...} act on the subspace excluding the particles

n, j, ... . The first term in Eq. (3.42) is the sum of the single particle, non-interacting

Hamiltonians, where the light-atom coupling Ĥint is modelled as in Eq.(3.21). The

second term represents the pairwise interaction between the atoms, and takes the

diagonal form Gn,j = diag [g11, g12, g12, g22] in the internal Hilbert space of the in-

teracting particles. The coupling constants gij are related to the corresponding

scattering lengths aij as gij = 4π~2aij/m.

The dynamics of the system is described by the Lagrangian

L =

∫ N
∏

i=1

d3ri

[

Ψ†
(

i~∂t − Ĥ
)

Ψ
]

, (3.43)

where Ψ = Ψ (r1, r2, ...rN) is the many-body wave function. We consider the mean

field variational ansatz Ψ (r1, r2, ...rN) =
∏N

i=1 φ (ri), which is the symmetrized

product of the single particle pseudo-spinor wave function φ(r), satisfying the nor-

malization condition
∫

d3rφ†φ = 1. By substituting into Eq.(3.43), we obtain
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the corresponding mean field Lagrangian for the order parameter of the system

ψ(r) =
√
Nφ(r) [144]

LMF =

∫

d3r
[

ψ†
(

i~∂t − ĤMF

)

ψ
]

, (3.44)

where we defined the single particle mean field Hamiltonian HMF as

ĤMF =

(

p̂2

2m
+ Ĥint + ÛMF + Vext

)

⊗ I. (3.45)

The operator UMF describes the mean field collisional effects, and is given by

ÛMF =
1

2





∆1 0

0 ∆2



 (3.46)

where

∆1 = g11n1 + g12n2, (3.47)

∆2 = g12n1 + g22n2, (3.48)

and ni = |ψi|2 is the density of atoms in the ith internal state (i = 1, 2) and ψi the

corresponding component of the order parameter. By comparing Eq. (3.45) with

Eq. (3.21), we see that ∆1 and ∆2 can be regarded as effective detunings, induced

by the collisional shift of the energy levels. In view of this result it follows that the

potentials A± and W± in Eqs. (3.25) and (3.26) gain a density dependence.

Working in the weakly interacting limit, the strength ~Ωr of the coherent coupling

between the ground and the excited states is typically much larger than the mean

field energy shifts. This allows us to diagonalize the Hamiltonian in Eq. (3.45)

by treating the mean field interaction as a small perturbation with respect to the

atom-field interaction. To order O(∆d/~Ωr), the eigenstates of eq. (3.45) take the

form

|ψ±〉 = |±〉 ± ∆d

~Ωr
|∓〉, (3.49)

with the corresponding energies E± = ±~Ωr/2 + ∆±. Here we defined
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∆d ≡ 〈±|UMF |∓〉 = 1

2
sin

θ

2
cos

θ

2
(∆1 −∆2), (3.50)

∆+ ≡ 〈+|UMF |+〉 = 1

2

(

∆1 cos
2 θ

2
+ ∆2 sin

2 θ

2

)

, (3.51)

∆− ≡ 〈−|UMF |−〉 = 1

2

(

∆1 sin
2 θ

2
+ ∆2 cos

2 θ

2

)

, (3.52)

where {|+〉, |−〉} are the dressed states of the atoms in Eq. (3.24).

We retrace the arguments in Sec. 3.2 and expand the condensate wave function

|ψ(r, t)〉 in terms of the interacting dressed state basis in Eq.(3.49), as |ψ(r, t)〉 =
∑

i={+,−} ψi(r, t)|ψi〉. In order to capture the dynamics of the ± component of the

condensate we use the adiabatic assumption, according to which ψ∓(r, t) ≡ 0, and we

consider the projection of the mean field Lagrangian in eq.(3.44) onto the subspace

spanned by |ψ±〉. The space dependence of the atoms-field interaction, together with

the assumption of adiabatic motion, is responsible for the appearance of geometrical

gauge potentials in the effective Lagrangian for the projected dynamics of the system,

having the form

A± = −〈ψ±|p |ψ±〉 = A±,0 +A±,1, (3.53)

2mW± = | 〈ψ+|p |ψ−〉 |2 = 2m (W±,0 +W±,1) , (3.54)

As expected, these are the sum of the zeroth order terms

A±,0 = −~

2
(1∓ cos θ)∇φ, 2mW±,0 =

~
2

4
(∇θ)2 +

~
2

4
sin2 θ(∇φ)2, (3.55)

that are the single particle contribution in Eqs. (3.25) and (3.26), and the first order

terms

A±,1 = ±n±A1, 2mW±,1 =
~f±
8Ωr

n± cos θ(∇φ)2 − ~∇θ ·∇
(

∆d

Ωr

)

, (3.56)

which account for the meanfield collisional effects, and explicitly depends on the
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Chapter 3: Artificial magnetism

particle density. Here we defined A1 = f± (∇φ) /8Ωr, along with

f+ =
8∆d

n+

sin θ

= 2 sin2 θ

[

cos2
θ

2
g11 + g12

(

sin2 θ

2
− cos2

θ

2

)

− g22 sin
2 θ

2

]

,

(3.57)

f− =
8∆d

n−

sin θ

= −f+(1 ↔ 2).

(3.58)

The mean field Lagrangian for the relevant condensate component takes thus the

form (to order O(∆d/~Ωr))

L± =

∫

d3r
[

ψ∗
±

(

i~∂t − Ĥ±

)

ψ±

]

(3.59)

where

Ĥ± =
(p−A±)

2

2m
+W± ± ~Ωr

2
+ ∆± + Vext (r) (3.60)

is the Hamiltonian describing the dynamics of the ± component of the condensate.

The Gross-Pitaevskii equation for the order parameter of the ± component is finally

obtained by minimizing the Lagrangian in Eq. (3.59) with respect to variations in

ψ∗
±, and takes the form

i~
∂ψ±

∂t
=

[

(p−A±)
2

2m
+W± + V (r)± ~Ωr

2
+ 2∆± ±A1 · j

]

ψ±

+

[

n±

(

∂W±

∂ψ∗
±

−∇ · ∂W±

∂∇ψ∗
±

)

− ∂W±

∂∇ψ∗
±

·∇n±

]

. (3.61)

Eq. (3.61) is the central result of this section. It shows that new terms appear,

governing the dynamics of the condensate, because of the nonlinear nature of the

synthetic potentials. Of particular relevance for the work discussed in the thesis is

the exotic current nonlinearity (±A1 · j) induced by the density-dependent vector

potential. Because of the presence of the vector potential, the current density is

here defined as

j =
~

2mi

[

ψ±

(

∇+
i

~
A±

)

ψ∗
± − ψ∗

±

(

∇− i

~
A±

)

ψ±

]

. (3.62)

Eq. (3.61) gives rise to novel physics in a BEC, whose investigation in specific physi-

cal situations will be the topic of the following chapters. Of particular interest is the

fact that, because of the presence of the current nonlinearity, the system acquires
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Chapter 3: Artificial magnetism

chiral properties. As a result, i) the effective meanfield coupling constant turns out

to be stronger or weaker depending on the mutual direction of propagation between

the condensate and the vector potential. ii) The dynamics of excitations such as

wave packet shows a preferred direction, as well as the stability properties of solitons

[23] and vortices, as is shown in the next chapter.
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Part II − Rotating BECs and nonlinear synthetic

magnetism
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Chapter 4 Density induced vortex ground state

In this chapter we discuss how the nonlinear synthetic gauge potentials introduced

in Chap. 3 affect the physics of a rotating condensate.

The discussion is based on [Butera et al. J. Phys. B., 49, 015304 (2016)] and is de-

voted to the study of the stability properties of a vortex state. We focus in particular

on the physical conditions that make the existence of vortices energetically favorable

with respect to the non-rotating state. We consider an effectively two-dimensional

condensate in the Thomas-Fermi limit. We show that, as in the standard case of

a constant magnetic field, the effect of the density-dependent gauge potential is to

induce a rotation to the condensate. The main difference here is that the onset of

vorticity depends on the number of particles that are in the condensate: the higher

the particle density the more likely it is to have vortices. This condition is achieved

by choosing suitable spatial profiles for the light-atom interaction parameters, such

that the current nonlinearity in Eq. (3.61) leads to an exotic nonlinear term in the

Gross-Pitaevskii equation, which is proportional to the angular momentum of the

condensate. Its effect is to break the rotational invariance of the system, enhancing

or weakening the effective interaction felt by the atoms, depending on the direction

of rotation of the condensate.

4.1 Rotation-induced nonlinearity

We show in this section that by properly designing the spatial profile of the atom-

light interaction parameters, a rotation-induced nonlinearity appears in the GP

equation for the order parameter of the system. It is worth stressing that the specific

configuration we present here is one among several by which in principle the same

effect can be induced. Without loss of generality, we use the two-level formalism
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Chapter 4: Density induced vortex ground state

introduced in Chap. 3 and choose to work with the + component of the condensate.

An inspection of the definitions in Eqs. (3.53), (3.57) and (3.58) reveals that the

same physics could be obtained working with the − component of the condensate,

provided we change the sign of the detuning, which is proportional to g11 − g22.

We work in the symmetric gauge, in which the magnitude of the zeroth order term

of the vector potential in Eq. (3.53) is proportional to the radial distance from

the minimum of the external potential trapping the cloud, which we assume to be

harmonic and axially-symmetric along the z direction. The corresponding magnetic

field is therefore constant. Its effect can be compensated by opportunely rotating

the experimental apparatus. To this aim we make the assumption |κ|/∆ ≡ ǫ ≪ 1,

according to which Eqs. (3.22) and (3.57) can be expanded, to order O (ǫ2), as

sin θ = θ = ǫ, (4.1)

cos θ =

(

1− ǫ2

2

)

, (4.2)

and
f+
8Γ

= ǫ2
γ12
∆
, (4.3)

in which we defined the combination of the mean field coupling constants γ12 =

(g11 − g12) /4. Given the Eqs. (4.1)-(4.3), and omitting the subscript “+” in what

follows, the effective vector and scalar potentials in Eqs. (3.53) and (3.54) take the

form

A = A0 [1− 4ε] , (4.4)

2mW = 2mW 1
0 [1− 4ε] + 2mW 2

0 [1 + 4ε]− ~
2

2

(

∇ǫ2
)

· (∇ε) , (4.5)

where ε = nγ12/~∆ is the coherent versus collisional interaction perturbative param-

eter, while A0 = − (~/4) ǫ2∇φ, W 1
0 = (~2/8m) (∇ǫ)2 and W 2

0 = (~2/8m) ǫ2(∇φ)2

are the single particle components of the vector and scalar potentials, respectively.

We consider a laser beam, with a phase proportional to the polar angle ϕ as φ = ℓϕ,

where ℓ is the quantum number identifying the orbital angular momentum ~ℓ carried

by the electromagnetic field. We choose the space profile ǫ = ǫ0r for the perturbative

parameter (with ǫ0 constant), which can be obtained by making the intensity profile
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Chapter 4: Density induced vortex ground state

of the coupling field linearly growing in the radial direction, and keeping the detuning

∆ constant in space. This is valid in a limited region, restricted by the condition

ǫ≪ 1, that can be selected by properly choosing the value of ǫ0.

Given the expressions in Eqs. (4.4) and (4.5) for the vector and scalar potentials,

together with

~Ωr

2
=

~∆

2

(

1 +
ǫ2

2

)

, (4.6)

2∆+ = g11n− 2ǫ2γ12n, (4.7)

derived from Eqs. (3.22) and (3.51) to order O (ǫ2), the Gross-Pitaevskii equation

Eq. (3.61) takes, after lengthy calculations, the form:

i~
∂ψ

∂t
=

[

− ~
2

2m
∇

2 − ΩℓLz + Vext (r)

]

ψ

+

[

g11n− 2Ωℓε

{

(~ℓ)

(

2− 1

ℓ2

)

− 4Lz

}]

ψ, (4.8)

where Ωℓ = − (ǫ20/4m) (~ℓ) and Lz = −i~∂/∂ϕ is the z-component of the angular

momentum operator, which is in the direction of the axis of symmetry of the external

potential.

As expected, the zeroth order term of the vector potential in Eq. (4.4) results in

the linear term in the first bracket of Eq. (4.8) which is proportional to the angular

momentum operator. It describes the dynamics of a particle in the reference frame

rotating with the effective angular velocity Ωℓ, when the trapping potential Vext (r)

rotates with the same velocity. Equivalently, it describes the dynamics of a particle of

unit charge, in the constant magnetic field B = 2mΩℓ. The effects of this term on the

physical properties of a condensate have been widely studied in the literature and are

nowadays well understood [145]. More interesting is the nonlinear term in the second

bracket of Eq. (4.8). It consists of the standard mean field interaction term, with

the effective coupling constant geff = g11+gℓ, where gℓ ≡ −2Ωℓ (ε/n) (~ℓ) (2− 1/ℓ2),

plus the sought nonlinear term proportional to the orbital angular momentum Lz

operator.

In order to study the role of the nonlinear term, we envisage a situation where
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the effects of this term are isolated with respect to the ones which originate from

the standard linear term, for instance by rotating the system with angular velocity

Ω = −Ωℓ. This might be experimentally challenging [102] but realizable in principle

with existing techniques used for creating dynamical and rotating optical lattices

[122, 123], and allows us to focus on the effect of the density dependent gauge

potential only. In such conditions, the resulting Gross-Pitaevskii equation, takes

the final form

i~
∂ψ

∂t
=

[

− ~
2

2m
∇

2 − nCℓLz + Vext (r) + geffn

]

ψ, (4.9)

where we have labelled the experimental parameters collectively as Cℓ = −8Ωℓ(ε/n).

4.2 Vortex ground state

In this section we investigate the rotational properties of a condensate, whose dy-

namics is described by the GP equation (4.9). We focus in particular on the phys-

ical conditions that make the nucleation of vortices in the condensate energetically

favourable with respect to the corresponding non-rotating state. In order to extract

the novel physics arising from the new nonlinearity, we consider the case of a vortex

state carrying a single quantum of circulation. We carry out the analysis by looking

at the nonlinear angular momentum term from two different perspectives: i) We in-

terpret this term first as an effective, density modulated, angular velocity imprinted

to the system, and look for the critical value Cℓ,cr which makes a vortex state of

the condensate energetically favoured with respect to the non-rotating solution. ii)

From a different point of view, we interpret the new nonlinearity as a modification

of the mean field coupling constant, whose value depends on the local action of the

angular momentum operator.

In the standard case of a rotating condensate, we showed in Chapter 2 that a vortex

state becomes energetically favourable when its energy E ′
v = Ev − Ω〈Lz〉, in the

reference frame co-rotating with the trapping potential, is lower than the energy

of the non-rotating state. For a cylindrical TF cloud, this yields the critical value

for the angular velocity Ωcr = (2~/mR2
⊥) log(0.888R⊥/ξ0) in Eq.(2.71), where R⊥ =

√

2µ/mω2
⊥ is the TF radius of the cloud with the harmonic potential of frequency
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ω⊥, µ is the chemical potential of the system, related to the number of particles as in

Eq. (4.13), and ξ0 is the healing length in the center of the trap. In the same spirit,

we can calculate the critical value Cℓ,cr. Because of the nonlinear term, the energy

is more appropriately calculated in terms of the energy functional from which the

GP Eq.(4.9) originates. Written as an energy per unit length along the z direction,

the energy has the form

ǫ =

∫

dr⊥ψ
∗

[

− ~
2

2m
∇

2 − Cℓ

2
nLz +

geff
2
n

]

ψ. (4.10)

The critical value Cℓ,cr is readily calculated by posing

ǫ′v = ǫv −
Cℓ,cr

2

∫

dr⊥ ψ
∗nLzψ = 0. (4.11)

Given Eq.(2.62) and using the TF density profile n(r⊥) = n(0) (1− r2⊥/R
2
⊥), we get

Cℓ,cr = 3
Ωcr

n(0)
. (4.12)

The same result can be obtained by looking at the new nonlinearity as a modification

of the mean-field coupling constant. By substituting the expression ψ(r) = f(r⊥)e
iϕ,

characterizing the order parameter of a vortex state with angular momentum per

particle equal to ~, in the GP equation (4.9) (or in the energy functional (4.10)),

we obtain an equation for the amplitude f(r⊥), in which the effective mean field

coupling constant g′eff = geff − ~Cℓ appears. It gets stronger or weaker depending

both on the sign of the coefficient Cℓ, and of the angular momentum of the cloud,

and changes the energy scale of the system and the values of physical quantities such

as the healing length. In the case in which g′eff < geff, and the shift in the chemical

potential is larger than the energy ǫv of the vortex, the rotating state becomes

energetically favourable compared to the non rotating solution (see fig. 4.1).

In order to find the critical value Cℓ,cr for which this happens, we need to calculate

first the shift in the chemical potential induced by a modification of the mean field

coupling constant. To this aim we note that for the effectively two-dimensional TF

condensate here considered, the chemical potential is related to the total number of
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Figure 4.1: Illustration of the conditions for the onset of vorticity in the conden-

sate, in the presence of the angular momentum nonlinearity discussed in the text.

The solid long and short lines identify the energy of the non rotating and of the

vortex state, respectively. The energy level ǫ0 refers to the non-rotating state of the

condensate when the laser field is not acting on the atoms. (a) When the redefined

meanfield coupling constant g′ → g − ~Cℓ induces a shift ∆ǫ0 of the non-rotating

state energy ǫ0 which is larger than the energy ǫv of the vortex, then the rotating

state becomes energetically favorable compared to the non rotating one. (b) When

the energy ǫv of the vortex equates the energy shift ∆ǫ0, the parameter Cℓ attains

its critical value. In the case (c), the energy of the vortex state is lowered by the

angular momentum non linearity, but the non-rotating state of the condensate is

still the lowest energy state.

particles per unit length ν by

µ =

(

mω2
0g

π

)1/2

ν1/2, (4.13)

where we indicated by g the generic meanfield coupling constant. Since by definition

µ = ∂ǫ/∂ν, the energy of the system per unit length is equal to

ǫ(ν) =

∫ ν

0

dν ′µ(ν ′) =
2

3
µν. (4.14)

Given Eq. (4.14), the energy difference ∆ǫ between the non-rotating states corre-

sponding respectively to the values g′ = g +∆g and g is equal to

∆ǫ =
2

3
∆µν =

1

3
νµ

∆g

g
. (4.15)
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Equating the absolute value |∆ǫ| of this quantity with the energy ǫv of the vortex

state in Eq. (2.62), given |∆g| = ~Cℓ in our case, we obtain the same results as in

Eq. (4.12) for the critical value Cℓ,cr.

Both the interpretations discussed for the angular momentum nonlinearity, confirm

the result that the critical condition for the rotating state being lower in energy

than the non-rotating one, now depends on the particle number. Given Eq. (4.12)

and the definition for Cℓ reported above, a vortex ground state appears when

γ12n(0) ≥
3(~∆)

ℓǫ2(R⊥)
log

(

0.888
R⊥

ξ0

)

, (4.16)

where the equality holds at the critical condition. In Eq. (4.16), ǫ(R⊥) = ǫ0R⊥ is the

value of the perturbative parameter at the radial distance equal to the TF radius.

Note that, as discussed in Chap. 3, for the adiabatic assumption of the atomic motion

to be valid, the condition ρgij ≪ ~∆ (i, j = 1, 2) has to be satisfied in the present

case. In view of Eq. (4.16), this represents a limit for attaining the density induced

vortex ground state. This condition is an intrinsic limit of the density-dependent

gauge potentials, which arise as a first order effect of the interatomic collisions.

Moreover, the presence of the perturbative parameter ǫ, in the denominator of the

RHS of Eq. (4.16) make things even worse. The parameter we need to play with,

in order to attain the critical conditions, is the quantum number ℓ of the orbital

angular momentum per atom. In principle there is no theoretical upper limit on

how many quanta a single photon can carry, its value is restricted by technological

limitations. By using Spatial Light Modulators (SLM) with full HD (1920× 1080)

resolution, a Laguerre-Gauss mode with value of ℓ of the order of few hundreds can

be achieved, before a reduction in the mode transformation efficiency occurs, due to

the finite resolution of the SLM mask [146]. However, with a value ǫ(R) = 0.1, which

guarantees the fulfilment of the perturbative condition throughout the cloud, this

unfortunately is not sufficient. Higher values for ℓ, typically of the order of ∼ 1000,

can be obtained by using higher resolution SLM, or spiral phase mirrors [147]. Such

values of ℓ would be already enough for Eq. (4.16) to be satisfied, together with the

condition that the light-atom coupling energy exceeds the atomic collisions energy.

However, values of ℓ up to 10000 are in principle achievable by using more extreme

optical techniques [148].
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tials

Based on [Butera et al. New J. Phys., 18, 085001 (2016)], we develop in this

chapter a Lagrangian theory aimed at determining the dynamics of a vortex in

a Bose-Einstein condensate, subject to a nonlinear gauge potential. By using a

variational approach, we obtain the equation of motion for the vortex core, which

shows the appearance of a force due to the action of the vector potential. Because of

the nonlinear nature of the potential, such a force explicitly depends on the particle

density in the system.

5.1 Lagrangian for the vortex core

The effective Lagrangian for the vortex core is obtained directly from the Lagrangian

density of the superfluid, which is the integrand in Eq. (3.59). We choose to work

with the simplest possible setup, consisting of a cloud of two-level atoms illuminated

by a monochromatic laser beam with wavevector k, whose phase varies in space as

φ = k · r. We consider a symmetric atom-light interaction, characterized by the

mixing angle θ = π/2, as defined in Eq. (3.22). With these choices, the vector and

scalar potentials, defined respectively in Eq.(3.53) and (3.54), take the form

A± = A0 ± n±A1, (5.1)

2mW± =
~
2k2

4
, (5.2)

where we defined A0 = −~k/2, A1 = (g11 − g22)k/(8Ωr). Using the Madelung

representation for the order parameter ψ± ≡ √
n± e

iS, the Lagrangian can be written
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as

L = −~n±
∂S

∂t
− ~

2

2m
(∇

√
n±)

2 − ~
2

2m
n± (∇S)2 +

~

m
n± (A± ·∇S)

− n±

(

A2
±

2m
+W± ± ~Ωr

2
+
g

2

)

,

(5.3)

where g ≡ ∆± = (g11 + g22 + 2g12) /4 in the present configuration. In Eq (5.1),

the single particle component A0 of the vector potential is constant and gives no

contribution to the effective magnetic field felt by the atoms. Because of this reason

it can be gauged away by the unitary transformation ψ → exp (iA0 · r/~)ψ. Having
performed this transformation, the Lagrangian in Eq. (5.3) keeps the same form

with A± = ±nA1. Here we dropped the subscript from the density, which is now

indicated as n for brevity, and we will do the same for the other relevant physical

quantities in the following. The transformation given above for the order parameter

can be interpreted as just another way to split the physical velocity in the system

between the contributions due to the vector potential and the phase S of the order

parameter. In the presence of a vector potential A, the physical velocity u has in

fact the form:

mu = ~∇S −A. (5.4)

In our case, given the vector potential in Eq. (5.1), it can be written as

mu = ~∇S − (A0 ± nA1)

= (~∇S −A0)∓ nA1,
(5.5)

where the first line shows the splitting before, while the second line after the gauge

transformation has been performed.

In order to study the dynamics of the vortex, it is convenient to consider the cloud

having an effective thickness Z in the z-direction. The original condensate wave func-

tion can then be rescaled as ψ(r) → ψ(r)/
√
Z, where ψ(r) is now two-dimensional,

and normalised in such a way that
∫

dr |ψ|2 = N , with N the number of atoms in

the condensate. Eq. (5.3) keeps the same form after this dimensional reduction,

with n intended now as the effective two dimensional density, and the interaction

parameters rescaled as g → g/Z and A1 → A1/Z.

Since we are interested in the dynamics of a vortex state, we pose the ansatz ac-
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Figure 5.1: Density profile n/nB(x) = x/
√
2 + x2 of a single quantized vortex state.

The in-core and out-core regions are indicated.

cording to which n = n0 (r− r0(t)), where n0(r) is the density profile of a vortex

state, and r0 the position of the core. The latter depends on time in general and we

define its velocity v ≡ dr0/dt. We assume that the vortex carries a single quantum

of circulation for simplicity, and write the phase of the condensate as S = S0 + Sv,

with ~∇S0/m = u0 (r− r0) and u0(r) ≡ κ× r/(2πr2) the velocity field induced

by the vortex. Here κ ≡ κ êz is the circulation vector and κ = |κ| = h/m is the

quantum of circulation. The term Sv represents the perturbation in the phase due

to the core motion and has to be determined. Given the expression in Eq. (5.5) for

the local velocity u, and the definition of the current density j = nu, the continuity

equation (2.17), yields

∇n · (~∇Sv −A−mv) + n
(

~∇
2Sv −∇ ·A

)

= 0. (5.6)

In order to derive Eq. (5.6) we used ∇n · ∇S0 ≡ ∇n0 · ∇S0 = 0 and ∇
2S0 = 0.

Assuming that the vortex motion induces a uniform field ∇Sv, Eq. (5.6) reduces to

∇n · (~∇Sv −mv ± 2nA1) = 0. (5.7)

The Eq. (5.7) can be solved approximately, by dividing the domain of the solution in

the so-called in-core and out-core region, depicted in Fig. 5.1. The extension of the

former is of the order of the healing length ξ and is characterized by a density, which

goes to zero for r → 0, because of the centrifugal potential, and by a non-zero value
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of its gradient. As a consequence we pose in this region (∇n)in 6= 0 and nin ≈ 0. The

out-core region instead is characterized by values of the physical quantities that are

close to the ones corresponding to the bulk of the system, i.e. a constant and finite

density, and a zero value for its gradient. We thus pose in this region (∇n)out ≈ 0

and nout 6= 0. Given this distinction, Eq. (5.7) can be solved in the two different

regions, yielding

~∇Sv = mv in-core, (5.8)

~∇Sv = 0 out-core. (5.9)

The result in Eq. (5.8) follows straightforwardly from Eq. (5.7), while Eq. (5.9)

has been chosen in order to satisfy the boundary conditions according to which the

velocity field at infinity is not affected by the vortex motion.

Because of the domain distinction introduced above, it is useful to rewrite all the

terms in Eq. (5.3) of the type nf (∇S), with f (∇S) any function of the phase

gradient, as (n− nB) f (∇S) + nBf (∇S). In this expression nB ≡ limr→∞ n(r)

is the bulk density far from the vortex core. Following the discussion above, the

term proportional to (n− nB) can be assumed different from zero within the in-core

region only and, given Eq. (5.8), we can evaluate the generic function f (∇S) by

substituting the expression ~∇S = mu0 +mv for the phase gradient [149].

Considering that the phase in the condensate depends on time through the core

position, we have dS/dt = −∇S0 · v and the Lagrangian density can be written in

the form

L =
m

2
(n0 − nB) v

2 + [mnBu0 + (n0 − nB)A] · v + n0 A · u0

−
[

~
2

2m

(

∇
√
n
)2

+
m

2
(n0 − nB)u

2
0 +

m

2
nBu

2
0 + n0

(

A2

2m
+W ± ~Ωr

2
+
g

2
n0

)]

.

(5.10)

Integrating Eq. (5.10) in space we get the effective Lagrangian describing the motion

of the vortex core, which is given by

Lv =

∫

d2r L =
Mv

2
v2 +Av · v − (U0 + Uv). (5.11)
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Here we defined the effective vortex mass Mv, together with the effective vector

potential Av and scalar potentials U0 and Uv:

Mv = m

∫

dr (n0 − nB), (5.12a)

Av =

∫

dr [mnBu0 + (n0 − nB)A], (5.12b)

Uv = −
∫

drn0A · u0, (5.12c)

U0 =

∫

dr

[

~
2

2m

(

∇
√
n
)2

+
m

2
(n0 − nB)u

2
0 +

m

2
nBu

2
0

+n0

(

A2

2
+W ± ~Ωr

2
+
g

2
n0

)]

.

(5.12d)

The scalar potential U0 collects all the terms that do not give any contribution to

the vortex dynamics, since their values do not depend on the position r0 of the core.

As a consequence, they do not give rise to any effective forces acting on the vortex

core. The vortex massMv takes a negative value, and accounts for the missing mass

in the condensate due to the presence of the vortex. It diverges logarithmically

with the size of the system, and takes the form Mv = mcoreζ(L/ξ) [150], where

mcore = −mnB(πξ
2/2) and the mass parameter of the vortex defined as

ζ(L/ξ) = 4×
∫ L/ξ

0

x (1− n/nB) dx

= 4



2 arcsinh

(

L√
2 ξ

)

− L

ξ





√

2 +

(

L

ξ

)2

− L

ξ







 .

(5.13)

Here x = r/ξ is the dimensionless radial length, and we used the approximate

solution n(x)/nB = x/
√
2 + x2 [86]. For typical atomic clouds L/ξ ∼ 100 − 1000,

ζ(L/ξ) can take values significantly larger than one, as seen in Fig. 5.2. This means

that for large clouds the mass of the vortex can attain values significantly larger

than the core mass.

5.2 Effective forces

The Lagrangian in Eq. (5.11) describes the core as a point particle of (negative)

mass Mv and positive unit charge (q = 1), which feels the action of effective vector

and scalar potentials, Av, and Uv respectively (we omitted U0 as it has no effects
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Figure 5.2: Value of the vortex mass parameter defined in the text, as a function of

the extension of the cloud.

on the dynamics of the core). We therefore expect that the vortex core is subjected

to two type of forces: a Lorentz-like force fB = qv × Bv, with Bv = ∇0 × Av

the effective magnetic field felt by the core (having defined ∇0 ≡ d/dr0) and an

electric-type force due to the scalar potential, and given by fE = −∇0Uv. In order

to determine their explicit expressions, we start by calculating the effective magnetic

field

Bv = ∇0 ×
∫

dr [mnBu0 + (n0 − nB)A]

=

∫

dr [mnB∇0 × u0 +∇0n0 ×A+ (n0 − nB)∇0 ×A].

(5.14)

In order to obtain the second line in Eq (5.14) we used the vector identity∇×(fV) =

(∇f) × V + f (∇×V), where V is a generic vector field, and f a differentiable

function. Among the three different terms in Eq.(5.14), only the first one gives a

contribution different from zero, which is

B(1)
v =

∫

drmnB (∇0 × u0)

= −mnB

∫

dr∇× u0 (r− r0)

= −~nB

∫

dr∇× êz × (r− r0)

|r− r0|2

= −~nB êz

∮

dℓ · êz × (r− r0)

|r− r0|2

= −~nB êz

∫ 2π

0

dθ

= −hnB êz,

(5.15)
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Figure 5.3: Polar coordinates used in the text.

where h = 2π~ is the Planck constant, and we defined the line element as dℓ =

(r− r0) dθ. The other two contributions are zero, as

B(2)
v =

∫

dr [∇0n0 (r− r0)]×A

= −
∫

dr [∇n0 (r− r0)]×A

= ∓1

2

∫ 2π

0

dθ

∫ +∞

0

dr r
(

∇n2
0

)

×A1

= ∓|A1|
2

(
∫ 2π

0

dθ sin θ

)(
∫ ∞

0

dr r∇n2
0

)

= 0,

(5.16)

and

B(3)
v =

∫

dr (n0 − nB) (∇0 ×A)

= ±
∫

dr (n0 − nB) (A1 ×∇n0)

= ∓1

2

∫

dr∇
[

(n0 − nB)
2]×A1

= ∓|A1|
2

(
∫ 2π

0

dθ sin θ

)(
∫ ∞

0

dr r∇
[

(n0 − nB)
2]
)

= 0.

(5.17)

In Eqs. (5.16) and (5.17), θ is the angle between the radial and the laser propagation

direction, the latter identified by the wave vector k (see Fig. 5.3). Combining the

results (5.15), (5.16) and (5.17), the effective magnetic field felt by the vortex core

is equal to

Bv = B(1)
v = −hnB êz, (5.18)
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and the resulting Lorentz-like force has the form

fB = qv×Bv

= hnB êz × v.
(5.19)

This force physically represents a Magnus effect, as is orthogonal to the velocity of

the core, and originates from the relative motion between the vortex, which carries

a net vorticity, and the condensate bulk.

The electric-like force takes instead the form

fE = qEv = −∇0Uv

= ∇0

(
∫

drn0u0 ·A
)

= ±∇0

(

A1 ·
∫

drn2
0 (r− r0)u0 (r− r0)

)

,

(5.20)

and can be calculated explicitly by using the vector identity ∇ (V1 ·V2) = V1 ·
(∇V2) + V2 · (∇V1) + V1 × (∇×V2) + V2 × (∇×V1), where V1 and V2 are

generic vector fields. In our case V1 ≡ A1 and V2 =
∫

drn2
0 (r− r0)u0 (r− r0). As

a consequence, the only contribution different from zero is

fE = ±A1 ×
(

∇0 ×
∫

drn2
0 (r− r0)u0 (r− r0)

)

= ∓A1 ×
(
∫

dr∇×
[

n2
0 (r− r0)u0 (r− r0)

]

)

= ∓A1 × êz

∮

C∞

n2
0 (r− r0)u0 (r− r0) · dℓ

= ∓n2
B

~

m
(A1 × êz)

∫ 2π

0

dθ

= ±hnB êz ×
(

nBA1

m

)

= ±hnB êz × va,

(5.21)

where we defined the effective velocity va ≡ nBA1/m induced by the vector poten-

tial. In Eq. (5.21) we used the Stoke’s theorem to convert the surface integral which

appears in the second line, into a line integral. Such an integral is evaluated along

the path C∞ given by the boundaries of the system. Comparison of Eq. (5.21) with

Eq. (5.19) shows that an extra force acts on the vortex core, due to the effective

velocity va induced in the system by the vector potential. The intrinsic nonlinearity
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of the vector potential makes the magnitude of this force depending on the particle

density in the system.

5.3 Equation of motion

Once we know the effective forces at play, we are in the position to determine the

motion of the vortex core, given suitable initial conditions. We consider here the

case of an initially stationary vortex, for which r0 = 0 and v = 0 at the initial time

t = 0. The equation of motion for the vortex core

Mv
d2r0
dt2

= qv ×Bv + qEv, (5.22)

can be conveniently rewritten as

d2r0
dt2

= ω êv × (v ± va) , (5.23)

where we defined the angular frequency ω = hnB/Mv. In order to integrate Eq. (5.23),

it is convenient to project it in the directions parallel and perpendicular to the direc-

tion of propagation of the laser beam, which we indicate as r
‖
0 and r⊥0 respectively.

In terms of the vortex velocity, the projected equations take the form

dv‖
dt

= −ω v⊥, (5.24a)

dv⊥
dt

= ω
(

v‖ ± va
)

, (5.24b)

where va ≡ |va|. Differentiating one of them and substituting into the other, they

can be solved yielding the components for the velocity

v‖(t) = ±va [cos (ωt)− 1] , (5.25a)

v⊥(t) = ±va sin (ωt) . (5.25b)

These can be readily integrated, finally giving the trajectory of the vortex core

r‖(t) = ±hv [sin (ωt)− ωt] , (5.26a)

r⊥(t) = ±hv [1− cos (ωt)] , (5.26b)
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Figure 5.4: Motion of the vortex core described by Eqs. (5.26a) and (5.26b) in the

text.

with hv = va/ω = |A1|nB/mω. In Eqs. (5.26a) and (5.26b), the plus (minus)

sign refers to the case of a condensate of atoms in the + (−) dressed state. The

motion described by these equations is fully characterized by two quantities that are

the frequency ω and the characteristic length hv. The former depends only on the

mass of the atomic species and on the structure of the vortex. The latter depends

instead on the structure of the vortex and on the strength of the nonlinear potential,

which in turn depends on the atom-light interaction parameters and on the number

of particles. The motion is periodic with period T = 2π/ω, made of a series of

curved trajectories of maximum height hv, separated by the distance dv = 2πhv (see

Fig. 5.4). In terms of the healing length, the characteristic length of the motion,

takes the value
∣

∣

∣

∣

hv
ξ

∣

∣

∣

∣

=
π

2
ε
ξ

λ
ζ

(

L

ξ

)

, (5.27)

where here ε = nB(g11 − g22)/~Ωr is the coherent versus collisional interaction per-

turbative parameter, and λ = 2π/|k| is the wave length of the laser field. In typical

ultra-cold atoms experiments, ξ ∼ 1µm. Taking ε ∼ 0.1, the wavelength of the laser

beam to be λ = 600 nm and a size of the atomic cloud for which L/ξ ∼ 100, the

ratio between the characteristic length hv of the core motion and the healing length

can be of the order of a few units. Despite this value being small, the motion of the

vortex should be distinguishable and therefore experimentally detectable.

In order to test the analytic results, we solve numerically the Gross-Pitaevskii equa-

tion (3.61) for the + component of the condensate, with A+ and W+ given in
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Eqs. (5.1) and (5.2), with A0 = 0. We consider a cloud in a square geometry,

with periodic boundary conditions in x-direction and confined by a hard-wall po-

tential along the y, providing a homogeneous density which approximates the infinite

homogeneous cloud assumed in the analytical description developed above. We de-

termine the initial state of the system by solving Eq. (3.61) in the imaginary time

without the current non-linearity, which leads to the situation represented in Fig.

5.5, where two vortices with opposite flow circulation appear in order to match

the periodic boundary conditions. By running the simulations for the same system

with double and half of its original size, we checked that the mutual interaction

between the two vortices, as well as between the vortices and the boundaries does

not affect the motion of the vortices. We solve the GP equation for the system

characterized by the values of the physical parameters that, in dimensionless units,

are |A1| /(~LsZ) = 0.03, 0.06, 0.09 and 2gm/(~2Z) = 1.0, where Ls is a reference

length scale in the plane of the condensate, and Z is its thickness. Energy is in units

of ~2/2mL2
s and time in units of 2mL2

s/~. These parameters can be related to phys-

ical values by for instance choosing the atomic mass of Ytterbium ∼ 10−25Kg, the

length Ls = 10µm, the combinations of the scattering lengths a11−a22 = 100 nm and

(a11+a22+2a12)/4 = 4 nm, the Rabi frequency Ωr = 10 kHz, the wave length for the

incident laser beam to be λ = 628 nm, and the density of the cloud 6.25×1014 cm−3,

having assumed the effective thickness of the cloud to be 0.1µm.

It is important to stress here that we do not expect a perfect match between the

analytical and the numerical solutions as, in the analytic model, we made the as-

sumption that the density and phase profiles around the vortex core do not change

in time, and that the motion of the vortex is adiabatic in the sense that no phonons

or any other excitations are induced in the condensate. In reality the vortex is dis-

torted by the presence of the current nonlinearity due to an effective local scattering

length being different on either side of the vortex core (see Fig. 5.5(c)). The stronger

the nonlinearity the more distorted the vortex becomes. This will change the value

of the effective vortex mass, which consequently affects both the time scale and the

length scale in the dynamics. A better match between the analytical predictions

and the results of the numerical simulation can in principle be attained in the limit

of very weak current nonlinearity. However, in such a limit, the time scale for the

dynamics in question becomes longer, and the amplitude of the cyclic motion of the
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vortex core decreases as seen from equations (5.26a), (5.26b) and (5.27).

The ansatz used to derive the analytic results presented above is the simplest one,

which however is still able to capture the main features of the vortex motion. In

order to reduce the spurious effects due to the actual non-adiabaticity of the motion,

we look to the short time scale dynamics ωt . 2π (see Fig. 5.6). We recognize in

the numerical curves the basic features suggested by the theoretical model: i) The

direction of the forces acting on the vortices reproduce the theoretical predictions,

with the transversal motion (that is in the direction r⊥) being in opposite directions

for vortices with opposite circulation. ii) The amplitude of the motion scales linearly

with the intensity of the nonlinear potential, to a good approximation. It should be

noted however, that the simple model here developed is not able to closely reproduce

the motion of the core, especially at long time scales.

In conclusion, we have developed a minimal model that accounts for the motion of a

vortex in a condensate, when nonlinear synthetic potentials act on the system. As for

the case of standard (that is linear) gauge potentials, the vortex core feels an effective

force which is orthogonal to the direction of the vector potential, which explicitly

depends on the particle density in our case. Comparison with numerical simulations

of the GP equation shows a qualitative agreement for the motion of the vortex core,

in particular at the early time, when the key features of the motion predicted by the

model can be recognized. The model fails however in closely matching the results

of the numerical simulation, for reasons that can be ascribed to the hypothesis of

adiabatic motion, on which the model here developed relies. A better description

for the vortex dynamics could be achieved by developing more complex models

which take into account non adiabatic effects. Still in the framework of a variational

approach to the problem, a generalization of the model here presented would be

possible by introducing extra variational parameters other than the core’s position,

accounting for eventual asymmetries in the density and/or phase profiles of the order

parameter.
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(a) (b)

(c)

Figure 5.5: Density (a) and phase (b) profiles of the condensate wave function at

t = 0, used as initial condition for the numerical simulation. (c) Density distribution

of the cloud after t = 2.5 in units of 2mL2
s~. Deformations in the density are

visible, in contrast to the ideally symmetric ansatz used in the analytical model.

Dimensionless units are used in the figures. We used the values of the parameters

|A1| /(~LsZ) = 0.03 and 2gm/(~2Z) = 1.0
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Figure 5.6: Numerical simulation of the early time motion ~t/2mL2
s = 0.05

(ωt ≈ 1.5) of the vortex and anti-vortex cores, given by the initial conditions in

Figs. 5.5(a,b). We used the values of the parameters 2gm/(~2Z) = 1.0 and

|A1| /(~LsZ) = 0.03 (blue), 0.06 (black) and 0.09 (red).
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Part III − Analogue gravity with two-component

condensates
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Chapter 6 Analogue Gravity with nonlinear gauge poten-

tials

With this chapter we start the second part of the thesis, which is devoted to the topic

of analogue gravity. We will show that non-trivial effective spacetime configurations

for phonons can be simulated by taking advantage of the extra degree-of-freedom

introduced in the system by the nonlinear vector potential, that cannot be attained

in any easy way with usual flowing condensates.

After a brief introduction to the black hole laser effect in single component conden-

sates reported in Chapter 7, we study in Chapter 8 the equivalent phenomenon in a

two-component pseudo-spin systems. There we do not consider the atoms subjected

to any gauge potential. The reason is that, as we will see in the following, the non-

linear potentials are not effective in creating new horizons in the system, which are

induced by the flow velocity only.

6.1 Introduction

Einstein’s theory of gravitation and the Standard Model of particles and interactions

represent so far our best description of nature. General relativity is the classical

theory of spacetime, whose dynamics and interactions with matter fields have been

postulated by Einstein in his famous equation Rµν − Rgµν/2 = 8πGTµν/c
4, which

relates the geometry of spacetime to the matter and energy content of the universe

(see for example [151, 152]). The Standard Model describes the building blocks of

the universe we live in as quantized excitations of these fields. Both these theories

have found so far an excellent experimental confirmation, but they rely on mutually

contradicting hypotheses.
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Modern quantum field theories (QFT) are developed in absence of gravity, i.e. based

on the hypothesis of a fixed flat (Minkowskian) spacetime, which constitutes the

background on which physical phenomena take place. The theory of general rela-

tivity, on the other hand, contradicts this view since it describes the spacetime as

a dynamical object that bends and ripples as any other field. This implies that a

fixed background metric does not exist but, instead, the physics need to be back-

ground independent. The origin of this apparent contradiction has to be ascribed

to the fact that these theories represent approximations, at different energy scales,

to a yet unknown more fundamental one. Many attempts have been made and

many different routes have been pursued in order to arrive at a more general theory

unifying all the known fundamental interactions, including gravity (see [153] for a

comprehensive review). However, a common plague of all these attempts is the lack

of any experimental data, that could lead towards one direction or the other and,

eventually, provide a definitive test for the sought theory.

Quantum field theories on curved spacetime (QFTCS) represent a first step towards

including the effects of gravity into the dynamics of quantum matter fields, and is

expected to provide at least some insight into the structure of the still unknown more

fundamental theory [24, 25]. The approach is similar to the semi-classical theory of

the interaction of an atom with an electromagnetic field, where light is considered as

a classical field governed by the Maxwell equations, while the internal structure of the

atom is quantized. In the QFTCS case, this approach treats the interaction between

spacetime and matter fields by considering the former as a classical field, whose

dynamics is described by Einstein’s theory of general relativity, while the latter as

quantized fields. The predictions of QFTCS did open the door to a plethora of new

intriguing effects which were unexpected in a Minkowskian background. Prominent

example are the evaporation of black holes (BH) in the form of a thermal Hawking

radiation [26, 27], or the particle creation by an expanding, or more generally non

stationary universes [24, 25, 28–32].

Hawking radiation consists of the emission of thermal particles from an astrophysical

black holes, characterized by a temperature whose value is inversely proportional to

the black hole mass. The typical value of this temperature, for ordinary black holes is

of the order of less than a micro-kelvin [26, 27], which makes its detection extremely
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difficult and unlikely with state-of-the-art astrophysical observational techniques.

Because of this reason, the direct observation of Hawking radiation from astrophys-

ical objects cannot provide so far a useful test for the validity of QFTCS. However,

Hawking radiation is not a phenomenon relevant only to gravitational systems, but

is instead a purely kinematical effect of quantum fields living on a curved spacetime

and experiencing an event horizon. This consideration has been first pointed out

by Unruh in [154], which is considered a milestone of the modern field of analogue

gravity.

Analogue gravity is in a sense another realization of the quantum simulators paradigm,

aimed to reproduce in a fully controllable system, curved spacetime quantum field

theory phenomena [3, 4, 155]. Despite its name, it is important to stress from the

very beginning that analogue models for gravity do not reproduce the dynamics pre-

dicted by general relativity. In other words, the dynamics of the emerging effective

spacetime is not described by the Einstein equations, but by the underlying dynam-

ics of the system instead, which is characteristic to the specific analogue model. It

instead allows us to study kinematical aspects of gravitation, with phenomena such

as Hawking radiation and cosmological particle creation which rely on the spacetime

structure only.

After Unruh’s seminal paper, many proposals appeared seeking for Hawking radi-

ation, and more generally QFTCS analogues in a multitude of physical systems.

These attempts include gravity (i.e. surface) waves in flowing water [156–160], light

propagation in dielectric media and slow light [161–183], phonon excitations in rings

of trapped ions [184, 185], nonlinear optical systems [186–193], ultra-cold fermions

[194], superconducting circuit QED [195, 196], quantum fluids of light [197, 198]

and BEC [199–210]. A common purpose of all these different models is the study

of the effective dynamics of the elementary excitations in the system that, in the

presence of an inhomogeneous background, behave as if they were propagating in a

curved effective spacetime. Choosing opportunely the background state, a specific

spacetime configuration needed to investigate some QFTCS effect of interest can in

principle be engineered.

Because of the high level of controllability reached in state-of-the-art experiments
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with cold atoms, nowadays atomic BECs represent one of the most promising frame-

works for the implementation of this program. Since the mid-2000s, a surge of

activity has been devoted to this, with particular emphasis on the investigation

of the Hawking physics. After the first numerical evidence of analogue Hawking

radiation in atomic condensates [211] and the characterization of its observable

consequences [212–214], more recently the attention has been devoted to quantum

entanglement signatures [215]. Other cosmological phenomena, such as analogue

particle creation by expanding universes or cosmic inflation have also been investi-

gated [216–222].

From the experimental point of view, recent years have seen impressive advances.

The first experimental realisation of sonic black hole configurations in a flowing

atomic BEC has been achieved in [223], and set the root towards the experimen-

tal investigation of (sonic) Hawking radiation in an atomic condensate. The field

has seen a leading role played by Jeff Steinhauer, at the Technion institute in Is-

rael. He developed the technique useful for creating sonic horizons by accelerating

a BEC down from a waterfall -like potential, and developed the techniques needed

for detecting small fluctuations in the populations of phonons [224, 225]. In [223]

he created the analogue of a charged black hole, which is endowed with two (black

and white) horizons. Based on this first preliminary achievement, he investigated

the black-hole lasing effect (described in details in the next chapter), claiming the

observation of the related self-amplifying Hawking radiation. This result has been

debated by the community, in relation to the origin of the observed instability [226–

228], and in particular whether it arises because of the lasing mechanism or because

of competing effects such as the Bogoliubov-Čerenkov radiation [229].

Very recently, pioneering first evidence of Hawking particles from an analogue black

hole has been reported, again by Steinhauer, in [230]. Here a footprint of the parti-

cles emitted from the vacuum has been observed in the density correlation function

of the system, which has been proven to have a key role in order to reveal the emis-

sion of (positive energy) Hawking particles and of its negative energy companion,

respectively outside and inside the horizon [215].

Further experimental work on analogue systems has been done, with the aim of
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studying particle creation phenomena originating from non-adiabatic modulation of

the vacuum state of a condensate [231, 232]. The aim of the research is to elucidate

physical effects such as cosmological particle creation or dynamical Casimir effect

[24, 25, 233].

The aim of this chapter is to extend the theory of BEC models for gravity in order

to include the effects of the nonlinear synthetic potentials introduced in Chap. 3.

It is worth noting here that the same arguments hold also for models based on

superfluids of light [198], in which the same kind of nonlinear potentials has been

proven to arise working with nonlinear optical media [234].

6.2 The effective spacetime

An effective spacetime emerges for phonons in a condensate, whose dynamics mimic

the physics of a scalar field on curved spacetime. We report here the derivation of

the effective (acoustic) metric, for the case of a BEC whose atoms are subjected to

the action of nonlinear gauge potentials. We show, and this is the first result of this

second part of the thesis, that the presence of the nonlinear potentials endows the

effective spacetime with new interesting features, enriching the physics that can be

investigated.

We consider the simplest yet non-trivial case, in which two internal states of the

atoms are coupled by a monochromatic laser beam with wave vector k. It is worth

stressing here that the structure of the effective spacetime depends on the details of

the atom-light interaction. Different spacetime configuration can thus be engineered

by properly tuning the spatial profile of the interaction parameters, which are the

Rabi frequency, the detuning from the atomic resonance and the phase of the cou-

pling field. We choose the light-matter interaction parameters in such a way that

the dressed states of the atoms are symmetric superpositions of the bare internal

states, in which case the mixing angle in Eq. (3.22) takes the value θ = π/2. As

already noted in Chap. 5, the linear term of the vector potential A0 = −~k/2 is

constant in this case and can be disregarded, leaving the vector potential in the

form A = ±nA1, with A1 = (g11 − g22)k/(8Ωr). The same happens for the scalar
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potential W = ~
2|k|2/8m, which can be gauged away by a simple redefinition of the

condensate wave function.

By using the Madelung representation for the order parameter ψ =
√
n eiS, the

nonlinear Schrödinger equation (3.61), can be written in terms of the continuity and

(quantum) Euler equations

∂n

∂t
+∇ ·

[

n

(

~

m
∇S − A

m

)]

= 0, (6.1)

~
∂S

∂t
=

~
2

2m

∇
2√n√
n

− ~
2

2m
(∇S)2 ± 2nA1 ·

(

~

m
∇S − A

m

)

+ n

(

n|A1|2
2m

− g

)

.

(6.2)

The dynamics of the small amplitude fluctuations of the system is obtained from

Eqs. (6.1) and (6.2) by writing the density and phase field as n = n0 + n1 and

S = S0 + S1 respectively, where n1 and S1 represent excitations on top of the

background values n0 and S0. Retaining first order terms in n1 and S1 only, we

obtain the linearized hydrodynamics equations

∂n1

∂t
+∇ ·

[

n1

(

v0 ∓ n0
A1

m

)

+ n0
~

m
∇S1

]

= 0, (6.3)

~
∂S1

∂t
= −~

(

v0 ∓ n0
A1

m

)

·∇S1 − n1

(

g ∓ 2A1 · v0+
n0|A1|2
m

)

, (6.4)

with the zeroth order component v0 of the velocity field in the condensate defined

as mv0 = ~∇S0 ∓ n0A1. Note that in Eq. (6.4) we neglected the quantum pressure

term. This assumption is equivalent to working in the hydrodynamic regime kξ → 0

in which the dispersion relation of the Bogoliubov elementary excitations is linear

(see Chapter 2). By substituting the density n1, obtained from (6.4), into Eq.(6.3)

we finally get the following equation for S1

∂

∂t

[

− 1

g′

(

~
∂S1

∂t
+ ~

(

v0 ∓ n0
A1

m

)

·∇S1

)]

+∇ ·
[

n0
~

m
∇S1 −

1

g′

(

v0 ∓ n0
A1

m

)(

~
∂S1

∂t
+ ~

(

v0 ∓ n0
A1

m

)

·∇S1

)]

= 0.

(6.5)

Here, we defined the coupling constant g′ =
(

g ∓ 2A1 · v0+
n0|A1|

2

m

)

which is renor-

malized taking into account the effect of the nonlinear potential. The analogy with
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the dynamics of fields propagating on a curved spacetime relies on Eq. (6.5) which,

introducing the (3+ 1)-dimensional spacetime coordinates xµ ≡ (t; xi), can be writ-

ten in the compact form

∆S1 ≡
1√−g

∂

∂xµ

(√−ggµν ∂S1

∂xµ

)

= 0. (6.6)

It shows that the dynamics of the phase fluctuations in the condensate has the form

of a wave equation for a scalar field in a spacetime characterized by the (contravari-

ant) metric tensor

gµν =
1

n0cs





−1 − (v0 ∓ va)
j

− (v0 ∓ va)
i
[

c2sδ
ij − (v0 ∓ va)

i (v0 ∓ va)
j
]



 . (6.7)

In Eq. (6.7), vja is the component of the velocity va = n0A1/m induced by the

nonlinear vector potential, already introduced in Chapter 5, c2s = g′n0/m = c2 ∓
2va · v0 + v2a is the local speed of sound in the condensate (with va = |va|), while
c2 = gn0/m is the value it would take in absence of the potential (see Chap. 2). The

(covariant) metric tensor is obtained by inverting the matrix in Eq. (6.7), and reads

gµν =
n0

cs





− (c2 − v20) − (v0 ∓ va)
j

− (v0 ∓ va)
i δij



 . (6.8)

It shows that the net effect of the nonlinear vector potentials is to induce an extra

term in the components of the metric mixing the space and time coordinates in

the laboratory reference frame. By posing va = 0, we recover the usual results of

hydrodynamic models for gravity. It is an effective metric which is conformal to

the Schwarzschild metric, written in the so-called Painlevè-Gullstrand coordinates

[3, 235, 236]. Note that the g00 components (as well as the pure spatial components

gij, with i, j = 1, 2, 3) are not affected by the nonlinear potential. This means that

the sonic regime, and thus the appearance of acoustic horizons in the system is

induced by the physical velocity only. As a consequence, the Hawking temperature

of the acoustic black hole is not modified by the effective nonlinear potential, and

keeps the form [3]

kBTH =
~gH
2πcH

, (6.9)

where cH is the value of the bare sound velocity and gH is the surface gravity, both
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evaluated at the horizon [3]

gH =
1

2

∂ (c2 − v20)

∂n

∣

∣

∣

∣

H

. (6.10)

Despite the effective velocity va induced by the nonlinear potentials not being ef-

fective in creating sonic horizons in a condensate, it represents an extra degree of

freedom that can be used in order to design effective spacetimes for photons. First

and foremost, Eq. (6.8) reveals that a nontrivial curved spacetime can be induced

even for a static condensate, for which the physical velocity v0 of particles is zero.

The off-diagonal terms, mixing space and time component of the metric are charac-

teristic of rotating spacetimes (such as the spacetime of a rotating black hole) and

can be exploited for example in order to design analogues of ergoregions. Moreover,

effects such as cosmological particle creations, or dynamical Casimir effect, that is

the particle creation process triggered by the parametric amplification of the vacuum

fluctuations in the presence of time-dependent boundary conditions, can now be rel-

atively easily implemented by simply modulating in time light-matter interaction

parameters, such as the Rabi frequency or the detuning.
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Chapter 7 The Black hole laser

In this Chapter we retrace the arguments following the original paper [237], where

the black hole laser has first been predicted, in the framework of a wave packet

description of the fields. It is worth noting that an equivalent description of the

same phenomenon exists based on the study of the spectrum of the field eigenmodes

[238–241].

7.1 Introduction

Hawking’s prediction that black holes emit radiation is probably the most fascinating

and at the same time ambiguous consequences of quantum field theories in curved

spacetime. At the origin of the ambiguity is Hawking’s original derivation, which

suffers from a conceptual inconsistency due to the assumption that the semi-classical

theory of the interaction between gravity and quantum fields is valid at arbitrary

scales. This problem is known in literature as the trans-Planckian problem. At high-

energies, and at length scales of the order of the Planck length, quantum gravity

effects are supposed to come into play, with signatures of the microscopic spacetime

structure in the macroscopic effective dynamics of quantum fields. Such a signature

is presumably encoded in a deviation from the fully relativistic invariance at energy

scales of the order of the Planck scale.

In this respect, the knowledge of the microscopic physics underlying analogue models

would allow us to get an insight, although very indirect, into any possible effects of

trans-Planckian degrees of freedom of quantum fields on the Hawking physics. As a

quantum field theory in curved spacetime is supposed to be the low-energy limit of

a more fundamental theory, we have shown in the previous chapter that analogue

gravity models represent an effective theory for the low-energy excitations of the
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underlying system. Such an effective theory breaks down at some characteristic

length scale, which is the equivalent of the Planck length. In BEC models, this

length is provided by the healing length, for which the (long wave) hydrodynamic

description breaks down. At such short length scales (high energies) the theory

acquires superluminal (for the case of a BEC for example) or subluminal character,

and Lorentz-invariance is lost.

Working with specific subluminal and superluminal models, many authors have

shown that the spectrum of the particles emitted from analogue black holes is still

thermal provided field modes with energy of the order of the black hole tempera-

ture are considered and the energy scale characteristic of this short scale physics is

much higher than the other energy scales in the sytem [242–245]. However, things

dramatically change when configurations characterized by an inner (white) and a

outer (black) horizon are considered. As we will see in the next section for the

case of superluminal bosonic fields, the Hawking emission between the two horizons

is unstable and gets self-amplified, leading to a phenomenon known as black hole

lasing [237]. The radiated flux of excitations grows exponentially in time, as a result

of the emergence of a lasing cavity, in which the negative energy companions of

the Hawking particles bounce back and forth between the two horizons stimulating

further emissions.

Experimental observation of the classical counterpart of this mechanism, which is

the instability of a classical field propagating in such kind of a spacetime, has been

claimed in [246] in the framework of BEC analogue models. Whether the instabil-

ity observed is due to the lasing phenomenon or to competing effects such as the

Bogoliubov-Čerenkov radiation [229] is still debated [226, 227].

7.2 A superluminal field theory

Following the original derivation of the black hole lasing mechanism by Corley and

Jacobson [237], we shall consider a non-interacting complex scalar field theory whose

action is suitably modified and leads to a superluminal dispersion at high frequencies.

We will use units in which c = ~ = 1 throughout the chapter.
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7.2.1 The action

For simplicity we consider the field propagating in a 1 + 1 Lorentzian spacetime,

whose ordinary relativistic (Lorentz invariant) action has the form

S =
1

2

∫

dtdx
√−g gµν (∂µφ∗) (∂νφ). (7.1)

We consider a spacetime of the type defined in Eq. (6.8), setting va = 0 and omitting

the conformal factor, for which the line element is given by (we omit the subscript

in v0 for brevity)

ds2 = dt2 − [dx− v(x) dt]2 . (7.2)

By inserting in Eq. (7.1) the (contravariant) metric tensor gµν relative to the space-

time in Eq. (7.2) (see Eq. 6.7 with va = 0 and the conformal factor omitted), the

action in Eq. (7.1) can be written in the extended form

S =
1

2

∫

dtdx
[

|(∂t + v∂x)φ|2 − |∂xφ|2
]

. (7.3)

From a general relativistic point of view, the action in Eq. (7.3) can be more

straightforwardly obtained from the definition of the (contravariant) metric tensor

gµν ≡ uµuν−sµsν in terms of the unit vector fields uµ and sν , which are respectively

tangent and orthogonal to the free-fall world lines of the spacetime. They can be

obtained by noting that the tangent vector to a generic curve xµ(t) is defined in the

standard coordinate basis (∂t, ∂x) as T
µ = ∂t + (dx/dt) ∂x, given the free-fall world

lines, with time-like curves for which dx−v dt = 0. Therefore u ≡ uµ∂µ = ∂t+v(x) ∂x

and s ≡ sµ∂µ = ∂x. Looking at the problem from a hydrodynamic point of view,

we recognize in the first term of the Lagrangian density in Eq. (7.3) the total time

derivative of the field written in the Eulerian formalism. In other words, such a term

represents the time derivative in the reference frame (t′, x) co-moving with the flow-

ing fluid (which is the reference frame of free-falling observers in general relativity

terminology), written in the lab coordinates (t, x). Because of these considerations,

we see that the action in Eq. (7.3) describes nothing else than the dynamics of a

standard (that is Lorentz invariant), non-interacting, complex scalar field in the

free-falling reference frame:
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S =
1

2

∫

dt′dx
[

|∂t′φ|2 − |∂xφ|2
]

=
1

2

∫

dt′dx
[

(∂µ′φ∗)
(

∂µ
′

φ
)]

.

(7.4)

We modify this action by adding an extra term, suitably selected to provide a

superluminal propagation for the high frequency modes of the field. We take this

term of the form − |∂2xφ|
2
/k20, so that the action of the theory now reads

S =
1

2

∫

dtdx

[

|(∂t + v∂x)φ|2 − |∂xφ|2 −
|∂2xφ|

2

k20

]

. (7.5)

The wave vector k0 provides the characteristic scale at which the effects of the new

term becomes relevant, and thus a significant deviation from linearity appears in the

dispersion relation. Physically, such a length scale is meant to be the characteristic

length of the micro-structure of spacetime on which the field propagates. At such

short length scales the field is able to probe this fine structure and new phenomena

appear, which results in the extra term added to the effective action. In the context

of BEC gravity analogues for example, this characteristic length scale is given by

the healing length of the condensate at which the hydrodynamic description breaks

down, and the spectrum of the (density) elementary excitations is not linear any

more but get the characteristic Bogoliubov form in Eq. (2.40).

7.2.2 The spectrum

Minimising the action in Eq. (7.5), by varying φ∗, results in the equation of motion

for the field [237, 245, 247]

(∂t + ∂xv) (∂t + v∂x)φ = ∂2xφ− ∂4xφ

k20
. (7.6)

The invariance of the action under global phase transformations of the field φ → eiθφ

(with θ = const) implies the existence of a conserved current, because of the Noether

theorem [248, 249]. The spatial integral of the time component of this current is

conserved in time and serves as a conserved inner-product of the Hilbert space, when
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evaluated with solutions of the field equation. It takes the form

(f, g) = i

∫

dx [f ∗ (∂t + v∂x) g − g (∂t + v∂x) f
∗], (7.7)

with f(x, t) and g(x, t) both solutions of the equation of motion Eq. (7.6).

Since the metric in Eq.(7.2) is stationary (and also invariant under time reversal,

that is static), a solution to the field equation Eq.(7.6) can be written in the form

φ = e−iωt f(x), where ω is called the Killing frequency and is conserved in time. In

the case of BEC analogues, it corresponds to the frequency of the Bogoliubov exci-

tations in the laboratory reference frame, respect to which the system is stationary.

The name “Killing” comes from general relativity literature, and is the frequency

associated with the derivative of the field in the direction given by a vector field that

is a generator of an isometry for the spacetime. In our case, the metric does not

depend on time and the Killing vector field is oriented in each point towards the ∂t

direction. Given this ansatz, the equation of motion (7.6) reduces to the ordinary

differential equation (ODE) for the space component of the field

− 1

k20
φ(iv) +

(

1− v2
)

φ′′ + 2v (iω − v′)φ′ − iω (iω − v′)φ = 0, (7.8)

where we used the prime (′) to denote a derivative with respect to x. In the simplest

case of constant v, the system is invariant under space translations, and plane waves

of the form f(x) = eikx are solutions of Eq. (7.8). By assuming that v(x) is not

constant but varies slowly in space compared to λ = 2π/k, it is reasonable to suppose

that f(x) keeps the same form as above, except that k (or λ) varies slowly with x.

In mathematical terms this hypothesis is stated by the conditions ∂xv/k ≪ 1 and

∂xk/k
2 ≪ 1. With these assumptions Eq. (7.8) can be solved by using the WKB

approximation [108] according to which, to leading order, the field solution can be

written as

f(x) = exp

[

i

∫

dx k(x)

]

. (7.9)

By inserting Eq. (7.9) into (7.8), and taking into account the above assumptions,

we get the dispersion relation in the lab frame [237, 245, 247]

[ω − v(x)k]2 = F 2(k) ≡ k2 +
k4

k20
. (7.10)
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The function F (k) is the positive solution to the equation above, and represents the

dispersion relation in the local free-falling reference frame, as the free-fall frequency

ω′ is related to the Killing frequency ω by the Galilean transformation

ω′ = ω − v(x)k. (7.11)

By comparing Eq. (7.10) with Eq. (2.40), we see that the function F (k) models

the Bogoliubov spectrum for the sonic excitations in a BEC, with 1/k0 being the

equivalent of the healing length. By fixing the values of ω and v, the allowable

values of k are found by solving Eq. (7.10). It is a fourth order polynomial equation

in the wave vector k, so four roots are expected. The nature of these solutions

can be qualitatively revealed solving the equation by using a graphical method, in

which we look for the intersection points between the straight line ω − vk and the

±F (k) curves. In what follows we consider v < 0. Analysis of Figs. 7.1(a,b) reveals

that when |v| < vcr, with vcr ≈ 3 (ω/k0)
2/3 /2 ≈ 1 assuming ω/k0 ≪ 1, only two

solutions are real, the other being complex. These solutions correspond to ones we

would get (k = ±ω) in the case of a standard relativistic field theory. Following the

notation of [237, 245, 247] we label the positive solutions as k+s and we disregard

the negative one because it is irrelevant for the following analysis. In the supersonic

regime |v| > 1 , all the four roots are real instead. We denote the largest positive

root as k+, disregard the other positive norm solution because it is not relevant for

what follows, and indicate the two negative solutions (with negative norm) as k−

and k−s respectively (the subscript s indicates the solution smaller in magnitude).

A key feature of the supersonic regime (v < −1), which we will see will be crucial

for the onset of the Hawking physics, is the appearance of solutions with negative

free-fall frequencies.

The group velocity vg of a wave packet in the lab frame is defined as

vg =
∂ω

∂k
= −|v| ± dF

dk
, (7.12)

where ±dF/dk is the corresponding quantity in the free-fall reference frame. It is

thus determined by the relative weight between the free-fall group velocity and |v|.
From Figs. 7.1(a,b) it is easy to deduce that this quantity is positive for solutions

belonging to the (+s) and (±) branches of the dispersion relation, while is negative
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Figure 7.1: Modes of the superluminal field in the laboratory reference frame. (a)

Graphical solution of Eqs. (7.10) and (7.11) in the text. Continuous (dashed) black

lines represent the dispersion relation relative to positive (negative) norm solutions,

in the co-moving reference frame. The green and yellow straight lines allows for

Galilean transformation into the laboratory frame for |v| > 1 and |v| < 1, re-

spectively. (b) Dispersion relation of the field modes in the laboratory frame, for

supersonic (black) and subsonic (green) velocities.

for (−s).

7.2.3 Quantization

In order to identify the amount of particles created by the black hole, we briefly

illustrate the quantization procedure of the field. Other than the positive Killing
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frequency modes, the positive free-fall frequency modes will also be relevant for

the quantization. They are formally defined as solutions of Eq. (7.6) satisfying the

relation

(∂t + v∂x) f(t, x) = −iω′f(t, x), (7.13)

with ω′ > 0. Positive free-fall or Killing frequency wave packets are given by sums

of the corresponding solutions.

To quantize the field we assume that φ̂(t, x) is a self-adjoint operator, solution of

Eq. (7.6), satisfying the canonical commutation relations
[

φ̂(t, x), π̂(t, x′)
]

= iδ(x−
x′), where π̂(t, x) ≡ δL/δ (∂tφ) = (∂t + v∂x) φ̂ is the conjugate momentum (density)

field. We define the operator a(f) associated to a normalized solution f(t, x) of the

wave equation as

a(f) ≡ (f, φ̂). (7.14)

Given Eq. (7.14) and the above commutation relation for the field and its conjugated

momentum, the commutation relation between annihilation and creation operators

of particles respectively in the f and g solution of the field equation, takes the form

[a(f), a†(g)] = (f, g). (7.15)

Eq. (7.15) shows that the nature of the a(f) operator depends on the norm of f . For

positive norm solutions a(f) behaves as an annihilation operator while, for negative

norm solutions instead, it acts as a creation operator, and in particular it is equal

to

a(f) = −a†(f ∗), (7.16)

where a(f ∗) is an annihilation operator since f ∗ has positive norm. The remaining

commutation relations read [237, 245, 247]

[a(f), a(g)] = −(f, g∗) [a†(f), a†(g)] = −(f ∗, g). (7.17)

7.3 Lasing mechanism

Retracing the work [237], we present here a qualitative analysis of the propagation of

a wave packet in a spacetime of the type described by Eq. (7.2), with v(x) changing
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Figure 7.2: Velocity profile v(x) giving rise to a lasing cavity. A supersonic region

is enclosed between two subsonic regions and delimited by a white hole and a black

hole.

in space in such a way that an outer (black) and an inner (white) horizon are present

in the system (see Fig. 7.2). We assume that v(x) changes slowly enough that the

wave packet propagation can be described through the WKB approximation. Such

a description is valid except in the vicinity of the two horizons, where the WKB

approximation breaks-down [237, 245, 247] and mode conversion between positive

and negative wave vector branches of the dispersion relation takes place. We aim to

demonstrate that, whenever the spacetime is endowed with two horizons, the system

is unstable and gives rise to the so-called black hole lasing.

To this aim, we follow the procedure commonly used in the literature on Hawking

physics, and trace the evolution of a given final state of the field backward in time.

Such backward evolution is depicted in Fig.7.3. Outside the black horizon, the

velocity field v(x) is subsonic and, as it can be inferred from Fig. 7.1(a), two field

solutions exist with fixed ω > 0. In terms of these solution, the wave packet can be

decomposed in general as

φ(x) = a+sψ+s(x) + aψ(x). (7.18)

Here we indicated by ψ(x) the positive norm mode with negative wave vector. We

indicate by φout the final state of the field, which represents the boundary condition

of the problem, and we consider given by an outgoing (right-moving) wave packet
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prepared in the (+s) branch of the dispersion relation, which leaves the black horizon

on the outer side. Such a wave packet is detected at the late times by an observer

placed outside far from the outer horizon, and can be regarded as a Hawking particle

leaving the black horizon. Far away from the black horizon, in the subsonic upstream

region, the field is thus given as

φout(x) = ψ+s(x). (7.19)

Ψn,+

Ψn,-

Ψn,-s

Ψn-1,+

Ψn-1,-

Ψn-1,-s

Ψn-2,+

Ψn-2,-

Ψn,+s

Ψn-1,+s

Ψout,+
s

Sn

Sn-1

Sn-2

BHWH

Figure 7.3: Illustration of the lasing mech-

anism discussed in the text. Green (yel-

low) lines refer to positive (negative) norm

field wave packets.

Following its evolution backward in

time, the packet moves leftward, and

approaches the black horizon from the

outer side. Getting closer to the

horizon, it blue-shifts (its wave vector

grows) as the magnitude of v increases

and so does the slope of the straight line

in Fig. 7.1(a), while the intercept is fixed

since the spacetime is stationary and

thus ω is conserved during the evolution.

Once it reaches the horizon, the packet

propagates superluminaly and crosses it,

ending up into the + branch of the dis-

persion relation.

As it can be seen from Fig.7.4(a), the

transition from the outer to the in-

ner side of the black horizon is smooth

within the WKB approximation, with

the packet remaining in the same (pos-

itive wave vector, positive free-fall fre-

quency) branch of the dispersion rela-

tion. In the same figure, such smooth

evolution is indicated by arrows in the

dispersion curve. However, as antici-

pated above, close to the horizon the WKB approximation breaks-down and mode
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conversion from a positive wave vector, positive free-fall frequency, into negative

wave vector, negative free-falling frequency modes takes place. Between the two

horizons, the velocity field is supersonic, and four field solutions exist. In terms of

these solutions, the field can in general be decomposed in this region as

φ(x) = a+ψ+(x) + aψ(x) + a∗−sψ
∗
−s(x) + a∗−ψ

∗
−(x). (7.20)

Since the final state of the field is a purely outgoing wave packet, only conversion into

modes with positive group velocity is allowed. As a consequence, only packets with

wave vectors in the branches + and − are created in the region between the horizons.

In Figs.7.3 and 7.4, such non-WKB evolution is indicated by a line originating

from a point, in contrast to the continuous lines which represent the smooth WKB

evolution. We indicate these packets by ψn,+ and ψn,−, where the subscript n is

a discrete index having the meaning of time. The field is thus composed by the

combination φ(x) = an,+ψn,+(x) + a∗n,−ψ
∗
n,−(x). Going further backwards in time,

they keep propagating leftwards away from the black horizon, until they reach the

inner (white) horizon. The group velocity of the ψn,+ packet remains positive across

it, and therefore it reaches the region on the left of the horizon in the form of a

ψn,+s packet. Also in this case, partial mode conversion into the (−s) branch of

the dispersion takes place, so that a left-moving (in the case of forward in time

evolution) packet is generated, which propagates backward in time toward the black

horizon. On the other hand, the ψn,− packet cannot cross the inner horizon where

its group velocity drops to zero. It thus remains in the negative wave vector branch

and propagates back toward the black horizon as a (−s) packet. Again, partial mode

conversion from the negative to the positive wave vector modes occurs, with part of

the ψn,− packet crossing the horizon as a (+s) packet. Combining the contributions

from ψn,+ and ψn,−, the state of the field is composed by the ψn,+s packet emitted in

the inner side of the white horizon, which propagates away from it backward in time,

and the ψn,−s packet which propagates instead back towards the black horizon (see

Fig. 7.4(b)). When the ψn,−s packet reaches the black horizon, its group velocity

drops to zero and again partial mode conversion to the positive wave vector modes

occurs. A pair of ψn−1,+ and ψn−1,− packets are thus created, which run again

towards to the inner horizon (see Fig. 7.4(c)) and the evolution described above

repeats.
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Figure 7.4: Illustration of the WKB and mode conversion processes involved in the

lasing mechanism.

92



Chapter 7: The Black hole laser

The result of the above analysis is that, because of the superluminal character of the

dispersion relation of the field, the wave packet propagates indefinitely backward in

time, in a cyclic bouncing of the negative free-fall frequency component of the field

back and forth between the two horizons. In order to deduce the (past) fate of the

system, we note that the fundamental process of the described cyclic evolution is

the transformation of a wave packet (−s) at the generic time step n, into orthogonal

(+s) and (−s) packets at the time step n− 1 (see Fig.7.3):

ψn,−s → ψn−1,+s + ψn−1,−s. (7.21)

Since the norm is conserved we have, after one cycle

||ψn,−s||2 = ||ψn−1,+s||2 + ||ψn−1,−s||2, (7.22)

where we indicated the norm in terms of the inner product as ||f ||2 = (f, f). Since a

packet belonging to the (+s)[(−s)] branch has positive [negative] free-fall frequency

and therefore positive [negative] norm under Eq.(7.7), it follows from Eq. (7.22) that

||ψn−1,−s||2 is larger in magnitude than ||ψn,−s||2. As this process repeats during the

(past) evolution, the magnitude of the negative free-fall frequency component of the

field between the horizons, as well as of the emitted (+s) component, gets amplified

by a fixed amount each cycle, resulting in a exponential amplification in time.

We have thus shown that a so-called lasing cavity is created in the system, which is

delimited by the two horizons. Here the negative free-fall frequency component of

the field experiences an endless exponential amplification, together with the emitted

positive free-fall frequency component.

7.4 Particle production

Let us consider now the case of a quantum field. We show in what follows that

the quantum counterpart of the black hole lasing instability can be read in terms of

spontaneous creation of particles by the double horizons geometry. To this aim, we

need to define the state of the field in some space-like hypersurface Σ of the space-

time. This would represent the initial condition, to which the particle production is
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referred. Since we are interested in spontaneous particle creation (as the Hawking

radiation is), we assume that the field is in the free-fall vacuum |0Σ〉 defined by the

condition a(f)|0Σ〉 for all positive free-fall frequency modes f on the initial time

hypersurface. The amount and the nature of the particles created from vacuum,

crucially depends on the hypersurface Σ on which the initial condition is posed. We

consider first the hypersurface Σ ≡ Σn shown in Fig.7.3. We showed in the previous

section that, propagating the final state of the field backward in time, in correspon-

dence of Σn, the field is composed by the combination of + and − components:

ψΣn
= ψn,− + ψn,+ (note that here ψΣn

is normalized but ψn,+ and ψn,− are not).

Since the inner product in Eq.(7.7) is conserved in time, we have

(ψout, φ̂) = (ψn,−, φ̂) + (ψn,+, φ̂) (7.23)

or, in terms of the annihilation and creation operators defined in Eqs.(7.14) and

(7.16)

a(ψout) = −||ψn,−|| a†(ψ∗
n,−) + ||ψn,+|| a(ψn,+). (7.24)

Given the Eqs.(7.24) and (7.15), it results that the number of particles created in

the final wave packet from the vacuum at the hypersurface Σn, is equal to

N(ψout) =
〈

0Σ
∣

∣ a†(ψout)a(ψout)
∣

∣0Σ
〉

= −||ψn,−||2. (7.25)

Analogously, if we pose the initial condition on Σm instead, with m < n, the amount

of particles created results in

N(ψout) =
〈

0Σm

∣

∣ a†(ψout)a(ψout)
∣

∣0Σm

〉

= −||ψm,−||2. (7.26)

Both Eqs. (7.25) and (7.26) show that the amount of particles created is given by

the (negative of the) norm of the negative free-fall frequency component of the wave

packet. Thus, following the results of the previous section, the number of particles

created from vacuum grows exponentially in time. Moreover, because of the multiple

bounces that the final state of the system undergoes between the two horizons in its

backward evolution, the spectrum of the emitted particles deviates in general from

the thermal Hawking prediction [237, 245, 247]. A thermal distribution is found

just for the particles that are emitted from a single horizon, that is if we consider

the initial conditions to the field on the hypersurface Σn. In this case, the norm
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of the negative free-frequency packet follows a thermal distribution at the Hawking

temperature TH = κ/2π where κ is the surface gravity at the horizon. This result

is valid for wave packets with Killing frequency κ ≤ ω ≪ k0 and shows that the

standard Hawking effect occurs even in the presence of a superluminal field theory,

provided we consider a temperature of the horizon and energies of the field much

less than the energy scale at which the new physics appears [237, 245, 247].
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In this chapter we present a numerical study of the (classical) black hole laser phe-

nomenon in the context of pseudo-spin two-component atomic BECs. See Butera et

al. arXiv:1702.07533 (to appear in Phys. Rev. A). Our goal is to prove the occur-

rence of the lasing effect in the spin modes rather than in the usual density modes

of the system. The latter are equivalent to the elementary excitations we introduced

in Chapter 2 for single component condensates, and represent local oscillations in

the density of the total number of particles, while the former are fluctuations in

the excess of atoms in one component with respect to the other. As we will show

in what follows, this setup brings with itself a number of experimental advantages

that are promising, in contrast to standard single-component systems. Despite very

recent pioneering first evidence of Hawking particles originating from an analogue

black hole in a single component atomic BEC [230] has been claimed, the Hawking

radiation is in fact an extremely tiny effect, and its observation is exceptionally

challenging also in the framework of ultra-cold gases.

We address the problem using a mean-field approach based on the Gross-Pitaevskii

theory, introduced in Chapter 2 for single component condensates. Its generalization

to two-component systems is straightforward and will be introduced in this chapter.

As we will show, this approach is successful in proving the possibility of achiev-

ing, under suitable conditions, a black hole lasing instability in the spin branch of

the elementary excitation of the system, and the existence of Hawking conversion

phenomena at the horizons. However, it of course fails in describing the quantum

features of Hawking emission, when it is triggered by the zero-point fluctuations

of the fields. The work presented in this chapter represents a first step towards

the study of (spontaneous) Hawking physics in a coherently coupled two-component

BEC, which may lead to a more complete understanding of the fundamental quan-
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tum aspects of the phenomenon.

We start the chapter in Sec. 8.1 by describing in detail the physical system at hand,

and introduce the generalization of the Gross-Pitaevskii theory for a two-component

condensate. We will see that a symmetric and a polarized ground state exist for the

system, depending on the value of the coherent and collisional interaction parame-

ters. We then discuss the Bogoliubov theory for the elementary excitations showing

that, because of the dual component nature of the system, two different branches

appear, which are the aforementioned spin and density modes. We will address in

Sec. 8.2 a number of experimental considerations, aimed to show the advantages

brought by the proposed setup to the investigation of the Hawking physics (and its

related phenomena), compared to standard single component condensates. In the

following sections we present the main results of the work. Working with an effective

one-dimensional uniform condensate, we study first in Sec. 8.3 the propagation of a

wave packet, initially prepared in the spin branch of the excitations, when a lasing

region is prepared in the system. We will show that all the relevant physics emerges

straightforwardly in this case, such as the mode conversion at the two horizons, the

self-amplification of the radiation inside the cavity, and the exponentially growing

amplitude of the Hawking emission from the cavity.

We will consider in Sec. 8.4 again the uniform system, but with a random noise ini-

tially imprinted over its ground state. The aim here is to characterize the strength of

the instability in terms of the interaction parameters of the system, which determine

the supersonic regime inside the lasing region. We finally discuss in Sec. 8.5 the same

physics, but in the experimentally more feasible case of a one-dimensional cloud con-

fined by a harmonic potential. Here we highlight some observable consequences of

the higher-order coupling between the spin and the density modes.
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8.1 The physical system

8.1.1 Gross-Pitaevskii equations and the ground state

We consider a condensate composed by two-level atoms which are assumed to inter-

act via a spin-dependent s-wave contact interaction, and whose internal states are

coherently coupled between each other. Such coupling can be provided for example

by an external laser field, as we discussed in the previous sections, which we consider

perfectly resonant with the atomic transition for simplicity, and thus described by

the Hamiltonian in Eq. (3.21), with ∆ = 0. Within the meanfield approximation, the

dynamics of the system is described by a generalization of the GP equation (2.13),

that takes into account the multiple internal degrees of freedom of the atoms. Two

coupled equations arise in our case, for the order parameters ψi (i = a, b) of the two

components, which read [250]

i~
∂ψa

∂t
=

[

− ~
2

2m
∇

2 + Va,ext(r) + ga|ψa|2 + gab|ψb|2
]

ψa + κψb, (8.1)

i~
∂ψb

∂t
=

[

− ~
2

2m
∇

2 + Vb,ext(r) + gb|ψb|2 + gab|ψa|2
]

ψb + κ∗ψa. (8.2)

In Eqs. (8.1) and (8.2) κ is the Rabi frequency defined in Eq. (3.21) (with the factor

~/2 included into the definition) whose magnitude determines the strength of the co-

herent coupling, while gi (with i = a, b, ab) are the meanfield interaction parameters

relative to the different scattering channels, and are related to the corresponding

scattering lengths ai as gi = 4π~2ai/m, with m the mass of the atomic species. Any

external confining potentials, selectively applied to the two components, are taken

into account by the terms Vi,ext (i = a, b). The Eqs. (8.1) and (8.2) can be obtained

by extremezing the action S =
∫

dtdrL, with the Lagrangian density having the

form

L =
∑

i=a,b

(

−i~ψ∗
i

∂ψi

∂t
+ |∇ψi|2 + Vi,ext ni +

gi
2
n2
i

)

+
∑

i,j=a,b
i 6=j

(gij
2
ninj + κiψ

∗
i ψj

)

,

(8.3)

where κa ≡ κ and κb ≡ κ∗.

In what follows we work in the Thomas-Fermi limit introduced in Chapter 2, accord-

ing to which the the kinetic energy terms can be neglected in Eq. (8.3). By writing
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the order parameters in the Madelung representation as ψj =
√
nje

iφj (j = a, b), the

energy density reads

ǫ =
ga
2
n2
a+

gb
2
n2
b +gabna nb+2|κ| cosφ√nanb+Va,extna+Vb,extnb−µ(na+nb), (8.4)

where µ is the chemical potential. Here we introduced the phase φ ≡ φab +φκ, with

φab ≡ φb − φa and φκ the phase characterizing the coherent coupling κ = |κ| eiφκ.

The energy density in Eq.(8.4) is minimum when cosφ = −1, that is for φab + φκ =

(2n+1)π with n ∈ N. In the following we will choose κ < 0, so that the phase of the

two components is the same (φab = 0). Given these assumptions, the ground state

of the system is obtained by minimizing Eq.(8.4) with respect to variations in the

densities na and nb. We consider the fully symmetric case, in which the strength of

the mean field interaction parameters between atoms in the same states a and b is

the same, as well as the external trapping potential. In these conditions ga = gb = g

and Va,ext = Vb,ext = Vext, and we obtain the following equations which define the

ground state of the system

(

g − gab +
|κ|√
nanb

)

(na − nb) = 0, (8.5)

(

g + gab −
|κ|√
nanb

)

(na + nb) = 2 (µ− Vext) . (8.6)

From Eq. (8.5) we see that two possible solutions exists, corresponding to the van-

ishing of one or the other factor in the left-hand-side. By denoting the local density

of particles n = na + nb and the population difference δn = na − nb, these are [250]

(GS) δn = 0 (gab ≤ g̃ab) , (8.7)

(GA) δn± = ±n

√

1−
(

1− g̃ab/g

1− gab/g

)2

(gab > g̃ab) . (8.8)

The GS state is symmetric (that is neutral) since there is an equal number of

particles in both the internal states, while GA is anti-symmetric (or polarized) in

the sense that there is an excess of atoms in one of the internal atomic levels with

respect to the other. The equilibrium of one or the other state depends on the

strength of the inter-species interaction parameter gab with respect to the critical

value g̃ab = g + 2|κ|/n. For values gab < g̃ab the symmetric state is the true ground

state for the system, until a bifurcation occurs at gab = g̃ab and the minimum
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Figure 8.1: Ground state polarization as a function of the inter-species mean field

interaction parameter gab, with a fixed value the value of the Rabi frequency |κ|/gn =

0.1. The black curves identify the fully symmetric system, for which δg = δVext = 0.

A sharp bifurcation occurs in this case for gab = g̃ab. The yellow dotted curves

show the numerical solution of Eq. (8.10) for the non-symmetric case δg/g = 0.1,

δVext = 0. The green curves reproduce the approximate solution in Eq. (8.10).

energy state become polarized (see Fig. 8.1, were the polarization of the system

is shown as a function of gab). This sharp bifurcation characterizes the perfectly

symmetric condensate only, and is removed by introducing any kind of asymmetry

in the system. This happens for example by choosing different trapping potentials

for the two species, that is Va,ext 6= Vb,ext, and/or a different interaction strength

between atoms in the same level a and b, that is ga 6= gb. Under such conditions,

a certain polarization is always present in the system. Taking for example ga = g,

gb = g+ δg and Va,ext = Vext, Vb,ext = Vext + δVext, the excess of particles δn is found

by solving the equation

(

g̃ab − gab +
δg

2

)

δn− δg

2
n +

2|κ|
n
δn





1
√

1− (δn/n)2
− 1



− δVext = 0, (8.9)

whose numerical solution is shown in Fig. 8.1 for δVext = 0, with particular values

of the interaction parameters. In the limit δn/n≪ 1 a simple solution can be found

in the form

δn =
δg n/2 + δVext
g̃ab − gab + δg/2

. (8.10)

Eq. (8.6) provides instead information about the particle density, and yields the TF
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profile

n(r) = 2

(

µ+ |κ| − Vext(r)

g + gab

)

. (8.11)

Here we note that the particle density explicitly depends on the atom-light inter-

action energy that is, in other words, on the magnitude of the Rabi frequency κ.

We will see in Sec. 8.2, and this represents the main advantage of working with

two- instead than single-component systems, that such dependence can be removed

by working with more complex atomic structures such as the Λ-scheme introduced

in Chapter 3. In such a configuration, with suitable choices of the values of the

parameters, the density is insensitive to variations in the strength of the coherent

coupling and we will show that a lasing cavity for the spin modes can be relatively

easily created drastically limiting the onset of spurious excitations in the system.

Working with non-homogeneous systems, it is important to note that the critical

value g̃ab defined above becomes space dependent. It could thus happen that gab <

g̃ab in some regions of the condensate and gab > g̃ab in others. In this case we are

in a situation in which both the neutral and polarized phases coexist in the system

[250]. Considering a trapping potential with the minimum at r = 0, we work in what

follows in the conditions for which gab < g̃ab(r = 0), which guarantees that the entire

system is in the symmetric ground state. The reason of this choice is due to the

fact that the spin and density branches of the Bogoliubov excitations decouple on

a symmetric background, while they hybridize in the case of an asymmetric ground

state. This is a condition that we need in order to demonstrate the occurrence of

the lasing effect in the spin branch only.
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8.1.2 Bogoliubov excitations

We treat the elementary excitations of the system within the Bogoliubov formalism

introduced in Chapter 2, and write the order parameters in the form

ψi = e−iµt/~(ψi0 + eiφi0ψi1) (i = a, b), (8.12)

where we indicated by ψi0 and ψi1 the condensed and the excited components re-

spectively. By substituting Eq. (8.12) into Eqs. (8.1) and (8.2), with





ψi1 (r)

ψ∗
i1 (r)



 =





ui(r)

vi(r)



 e−iω′t +





v∗i (r)

u∗i (r)



 eiω
′t (i = a, b), (8.13)

and retaining terms up to first order in ψi1, we obtain the eigenvalue problem for

the Bogoliubov ui and vi functions, and the corresponding spectrum. We consider

the simplest case of a homogeneous system (Va,ext = Vb,ext = 0 for example), for

which the eigenmodes take the form of plane waves ui (r) = uie
ik·r, vi (r) = vie

ik·r,

with ui and vi constant coefficients. The following results can be extended to non-

homogeneous TF condensates, for which the local density approximation can be

safely applied. We restrict ourself to the case of a symmetric mean field interaction

ga = gb = g and consider excitations living on top of a neutral background state,

which is characterized by na = nb = n/2, δn = 0. With these assumptions, the

Bogoliubov-De Gennes equations take the form

Lv = ~ω′v, (8.14)

where v = (ua, va, ub, vb)
T is the vector collecting the u and v Bogoliubov coefficients,

and the Bogoliubov operator L is defined as

L =

















h gn
2

gabn
2

gabn
2

−gn
2

−h −gabn
2

−gabn
2

gabn
2

gabn
2

h gn
2

−gabn
2

−gabn
2

−gn
2

−h

















, (8.15)

with h ≡ ~
2k2

2m
+ gn

2
+ |κ|. Due to the symmetry of the underlying condensate, the

excitations decouple into two channels that are the density and the spin branches

introduced above. The problem is thus more conveniently written in the density
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ψd1 = (ψa1 + ψb1)/2 and spin ψs1 = (ψa1 − ψb1)/2 basis. An expansion analogous

to Eq. (8.13) can be defined for ψd1 and ψs1, with the density and spin Bogoliubov

coefficients ud, vd and us, vs related to ua, va and ub, vb by

ud =
(ua + ub)

2
, vd =

(va + vb)

2
, (8.16)

us =
(ua − ub)

2
, vs =

(va − vb)

2
. (8.17)

In this basis, the full eigenvalue problem in Eq. (8.14) diagonalizes into the two

independent sets of equations:

Ldvd = ~ω′
dvd, (8.18)

Lsvs = ~ω′
svs, (8.19)

where vd = (ud, vd)
T , vs = (us, vs)

T , and the density and spin Bogoliubov operators

are defined respectively as

Ld =





~2k2

2m
+ n

2
(g + gab)

n
2
(g + gab)

−n
2
(g + gab) −(~

2k2

2m
+ n

2
(g + gab))



 , (8.20)

and

Ls =





~2k2

2m
+ n

2
(g − gab) + 2|κ| n

2
(g − gab)

−n
2
(g − gab) −(~

2k2

2m
+ n

2
(g − gab) + 2|κ|)



 . (8.21)

Diagonalization of Eqs. (8.20) and (8.21) yields the spectra for the two branches,

which have the form [250]

(~ω′
d)

2 =
~
2k2

2m

[

~
2k2

2m
+ (g + gab)n

]

, (8.22)

(~ω′
s)

2 =
~
2k2

2m

[

~
2k2

2m
+ (g − gab)n+ 4|κ|

]

+ 2|κ| [(g − gab)n+ 2|κ|] . (8.23)

The spectrum in Eq. (8.22) is analogous to the result in Eq. (2.40), obtained for the

case of a single component condensate, and corresponds to density fluctuations in

the system. Here both the g and gab mean field coupling constants appear, since

collisions for particles both in the same and different internal state takes place.

Eq. (8.23) gives instead the spectrum of the spin excitations, that are oscillations in

the relative population of atoms in different internal state. As usual, in the Bogoli-

ubov formalism, the positive (negative) energy solutions correspond to modes with
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the positive (negative) norm defined in Chapter 2, that is ||ψi1||2 =
∫

dr (|ui|2 − |vi|2)
(i = d, s).

As can be seen from Fig. 8.2(a), a peculiar feature of the spin spectrum is the
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Figure 8.2: Dispersion relation for the density (black) and spin (green) modes, in the

laboratory reference frame. Continuous and dashed curves represent positive and

negative norm solutions, respectively. Values of the parameters used: |κ|/gn = 0.8,

gab/g = 0.8. (a) Subsonic (subcritical) case, v = 0. (b) Supersonic (supercritical),

2mξv/~ = −4.

gap appearing in the low energy limit. This prevents us from introducing a hydro-

dynamic description for these excitations, since the dispersion relation is not linear
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in the long wave length limit and a characteristic propagation speed cannot be de-

fined. As a consequence, the definition of an effective metric for these (massive)

quasi-particles, as done in Chapter 2 for phonons, is not obvious [201]. Moreover,

the low-energy gap is in principle a drawback for the investigation of the lasing effect

in the spin modes, since it makes it more difficult to attain the supersonic regime.

However, we shall see in the following that the supersonic regimes for spin modes

can still be achieved.

8.1.3 Moving condensates

The spectra in Eqs. (8.22) and (8.23) have been calculated in the reference frame in

which the condensate is at rest, that is the frame co-moving with the superfluid. In

the laboratory reference frame, i.e. the one in which the condensate is seen by static

observers as moving with velocity v, the corresponding expressions are obtained by

the Galilean transformation

~ωi = ~ω′
i + ~kv (i = d, s) , (8.24)

where ωi is the frequency in the laboratory frame, and ω′
i is the corresponding value

in the co-moving frame, given by Eqs. (8.22) and (8.23). In this reference frame,

we say that the superfluid is moving supersonically (subsonically) with respect to

the density modes, when the magnitude |v| of its background velocity exceeds (is

smaller than) the local speed of sound, which is defined as cd = limk→0 ωd(k)/k =
√

(g + gab)n/2m. The corresponding regimes for the spin modes can be defined by

adopting a more general definition according to which, in the supersonic regime,

there exist modes with positive (negative) norm having a negative (positive) energy

in the laboratory frame. Conversely, in the subsonic regime, modes with positive

(negative) norm can only have positive (negative) energy in the laboratory frame.

This definition coincides with the one reported above for the density modes, and

gives the critical velocity

vcr =

{

~
2

2m

[

(g − gab)n+ 4|κ|
(

1 +

√

1 +
(g − gab)n

2|κ|

)]}1/2

, (8.25)
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for the spin excitations. The relation between the particular hydrodynamic regime

and the properties of the excitations modes stated above, can be inferred by com-

paring Fig. 8.2(a) and Fig. 8.2(b), where the density and spin spectra are shown

for a condensate moving in the laboratory frame with supersonic (or supercritical in

the case of spin modes) speed. From the same figures we see that the number and

the type of solutions to Eq. (8.24) strictly depends on the hydrodynamic regime. In

particular, for the spin branch, whenever the flow is subcritical, two positive (nega-

tive) norm solutions exist with wave vectors k = kR1 and k = kL1 for each ω > ωg

(ω < −ωg), where ωg is a threshold value equal to the size of the gap of the dispersion

relation when v = 0. The labels R and L we used in the above definitions, indicate

solutions with positive (right-moving solutions) or negative (left-moving solutions)

group velocity vg = dω/dk in the laboratory frame. Since the dispersion relation is

of fourth order in k, two other complex solutions exist, conjugated to each other,

which represent exponentially growing or decreasing evanescent waves and are thus

unable to sustain a propagating particle. If the flow is supercritical instead, the

scenario is much richer since for |ω| < |ωt|, with ωt a threshold value which depends

on the strength of the supersonic regime, two additional positive (negative) norm

propagating solutions appear with negative (positive) frequency ω < 0 (ω > 0),

indicated in Fig. 8.2(b) as R2 and L2. The appearance of these extra solutions is

exactly what makes the onset of the Hawking physics possible, as pairs of particles

with opposite energy can be created in such conditions, while conserving the total

energy of the system. The same considerations apply to the density branch, with

the difference that, in such a case, ω′
g = 0 since the dispersion relation is not gapped.

8.2 Experimental considerations

8.2.1 Λ-level atomic scheme

The discussion in the previous section gives a hint on the techniques that could be

used in order to create effective horizons in a condensate. What we need is to make

the velocity of the superfluid exceeding a certain critical velocity, which is the speed

of sound for the density modes or the velocity in Eq. (8.25) for the spin modes. To

this aim, we can either change in space the former, by opportunely designing the
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Figure 8.3: Resonant Raman coupled Λ-level atom.

trapping potentials in order to accelerate part of the superfluid up to supersonic

speed [223, 230, 246], or modulate in space the latter. Working with the density

modes, this can be accomplished by locally modifying the speed of sound by tuning

the mean field interaction constants g and gab. This can be done by exploiting

for example Feshbach resonances in order to modify the scattering lengths of the

atomic interactions. In the case of spin modes instead, the supercritical regime can

be attained by locally modifying the gap in the dispersion relation. This can be

done by tuning the magnitude of the Rabi frequency κ, which is the amplitude of

the field which couples the internal states of the atoms. It is in this respect that the

investigation of the Hawking physics in a two-component system brings the main

advantages. As can be seen from Eq. (8.11), the a posteriori local modification

of the interaction parameters induces an inhomogeneity in the chemical potential

and, consequently, the onset of spurious excitations in the condensate, which could

overwhelm the Hawking signal and, for the case here addressed, the self-amplification

mechanism of black hole lasing. This effect could be in principle compensated by

suitably tailoring external potentials Vext(r), a task that is exceptionally challenging

as it requires an extreme fine tuning of the experimental parameters.

This difficulty can be overcome by working with the spin modes of a condensate,

once we replace the simple two-level atomic configuration discussed so far, with

the Raman-coupled Λ-scheme for the atomic levels introduced in Chapter 3 and

reported here in Fig. 8.3. We show in the following that the effective Hamiltonian

describing the ground subspace projection of the internal dynamics of the atoms,

naturally allows us to compensate any inhomogeneity in the chemical potentials
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due to a spatial dependence of the coherent coupling strength. For simplicity, and

without affecting the generality of the following arguments, we consider the case of a

two-fold degenerate ground manifold spanned by the {|a〉, |b〉} states, each of them

we assume coupled to the excited state |c〉 by a far off-resonant electromagnetic

field of Rabi frequency κa and κb respectively, and detuned by ∆ from the atomic

resonance. With this choice of the parameters, the Raman transition between the

ground states |a〉 and |b〉 is resonant, that is δ = 0 (see Chapter 3).

The operator describing the internal coupling between the atomic levels has been

introduced in Chapter 3 and reads

UΛ = κa|c〉〈a|+ κb|c〉〈b|+ κ∗a|a〉〈c|+ κ∗b |b〉〈c|. (8.26)

To derive the effective ground state dynamics, we start from the Schrödinger equa-

tion describing the full internal dynamics of the atoms, which reads

[H0 + UΛ] |ψ〉 = E|ψ〉. (8.27)

Here we indicated by H0 = ∆ |c〉〈c| the free atomic Hamiltonian (see Eq. (3.30)

with δ = 0 in the present case), and by |ψ〉 =
∑

i=a,b,c ci|i〉 the generic internal state
of the atom, with energy E. By projecting Eq. (8.27) onto the excited state (via

the projector Q ≡ |c〉〈c|) and onto the ground state manifold (via the projector

P ≡ |a〉〈a|+ |b〉〈b|), we get the coupled equations

H0 (Q|ψ〉) +QUΛP (P |ψ〉) = E (Q|ψ〉) , (8.28)

H0 (P |ψ〉) + PUΛQ (Q|ψ〉) = E (P |ψ〉) , (8.29)

having used the properties of the projectors

P = P †, P 2 = P, (8.30)

Q = Q†, Q2 = Q. (8.31)

By solving for (P |ψ〉) from Eq.(8.29), and substituting into Eq.(8.28), we get the

energies of the interacting system. Because of the far off-resonance nature of the

coherent coupling to the |c〉 state, the interaction UΛ can be treated as a small

perturbation with respect to the free Hamiltonian H0. In other words this means
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considering |κa|, |κb| ≪ ∆ so that, to the first order, the perturbed energies reads

E+ = ∆+∆E, (8.32)

E− = −∆E, (8.33)

where ∆E = (|κa|2 + |κb|2) /∆ is the first order correction due to the coherent

coupling. Conversely, we can solve for (Q|ψ〉) from Eq. (8.28) and substitute the

result into Eq. (8.29), obtaining the projection of the Schödinger equation onto the

ground subspace, which reads

[H0 + Ueff] (P |ψ〉) = E (P |ψ〉) , (8.34)

with

Ueff(E) = (PUΛQ)
1

E −H0

(QUΛP ), (8.35)

the energy dependent effective coupling Hamiltonian. Eq. (8.35) is still exact at this

stage. By evaluating it for the unperturbed ground energy E = 0, we finally get the

effective coupling Hamiltonian up to second order in UΛ

Ueff(E0) =

[ |κa|2
−∆

|a〉〈a|+ |κb|2
−∆

|b〉〈b|+ κ∗aκb
−∆

|a〉〈b|+ κaκ
∗
b

−∆
|b〉〈a|

]

. (8.36)

The Eq. (8.36) describes the effective interaction between the internal levels |a〉
and |b〉, mediated by their coupling with the excited state |c〉. It shows the same

type of non-diagonal terms as in Eq. (3.30), with κ replaced by the combination

−κaκ∗b/∆. Moreover, diagonal terms appear that were not present in the simple

two-level model, and that represent the main advantage in considering the atomic

Λ-configuration instead of the simpler two-level scheme. These terms have the role

of extra potentials, and can be used to balance an eventually inhomogeneous spatial

profile of the Rabi frequencies, in order to maintain the value of the chemical poten-

tial constant through the system. This prescription can be accomplished for example

by considering the real and equal amplitudes for the Rabi frequencies κa = κb = κ̃.

In this case, the effective coherent coupling takes the form κ = −κ̃2/∆, which is the

same as the extra potential term for both the |a〉 and |b〉 atomic states. Inserting

these quantities into Eq.(8.11), we see that the two contributions cancel out and the

chemical potential no longer depends on the coherent coupling. As a consequence,

any inhomogeneity in the Rabi frequency, introduced in order to create a supercrit-
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ical region for the spin modes of the condensate, does not modify the local value of

the chemical potential, which remains constant through the system.

8.2.2 Efficiency of the mode conversion

A further issue concerning the experimental investigation of the Hawking physics

in the spin modes of a two-component condensate is related to the efficiency of the

mode conversion at the horizons between the positive and negative norm modes. The

efficiency of such a process is related to the strength of the off-diagonal coupling in

the Bogoliubov operator for the spin excitations in Eq.(8.21), which is proportional

to the difference g−gab between the interaction parameters for atoms in the same and

different internal states. For typical atoms used in modern cold-atoms experiments,

such values are close to each other. In Rb87 for example, the relevant scattering

lengths are such that gab ≈ 0.97 g [251]. Because of this reason, the mode conversion

at the horizons is strongly attenuated, practically inhibiting any possible observation

of the lasing phenomenon, or any other effect related to the Hawking physics.

Higher values of |g − gab| can be attained for example by exploiting Feshbach reso-

nances, in order to modulate the relative value of the cross-state versus same-state

scattering lengths. Another method that could be pursued consists in using three

different one-dimensional atomic clouds condensed in three parallel potentials of the

type depicted in Fig.8.4. In this configuration the coherent coupling is provided

by the hopping of particles from the clouds a and b into c, a process that could

even be artificially assisted, for example by using a laser field, if necessary. The

contact interaction between particles in a and b is due to the superposition of the

two condensate wave functions, and is thus much weaker than the contact interac-

tion between particles in the same cloud, that is ga, gb ≫ gab. However, the lasing

mechanism will not be affected since, as noticed, the relevant quantity in this case is

the difference g− gab. A lasing region can be prepared with this set-up by tuning in

space the hopping strength. This can be done by suitably tailoring the spatial profile

of the coupling fields and/or the geometry of the potentials, varying the distance

between the atomic guides a and b or changing the height of the potential which

confines the cloud c.
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Figure 8.4: Coherently coupled Λ-scheme implemented with three atomic clouds in

elongated potentials. The coupling is provided by the hopping of atoms from the

clouds a and b into c, whose strength can be controlled by modulating the horizontal

d and/or vertical h distance between the clouds. a) Cross-section, b) top-view of

the experimental setup.

8.3 Wave packet propagation

In this section we show how the black hole lasing comes about in the spin modes

of a two-component condensate. We perform numerical simulations for a one-

dimensional system, which represents the simplest configuration useful to investi-

gate the lasing phenomena. As already mentioned in the previous chapters, effective

one-dimensional configurations can be experimentally realized by tightly confining

an atomic cloud in the transverse direction, in order to freeze-out the corresponding

atomic degree of freedoms. In these quasi-one-dimensional systems, the interaction

between particles preserves a three-dimensional character, even though the effective

kinematic is one-dimensional.

We start by discussing the propagation of a (spin) wave packet through an infinite

untrapped condensate. In the numerical simulations we model such a system as

a ring with periodic boundary conditions, in which an absorbing region has been

implemented, where all the excitations on top of the condensate are suppressed.

This prescription allows us to avoid interference effects between packets traversing

the ring, effectively simulating a spatially unbounded system.
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We prepare a lasing cavity for the spin excitations only, by modulating the strength

of the coherent coupling in space, i.e. the spatial profile of the Rabi frequency

κ, keeping the values of g and gab fixed. Here we use the simplest configuration,

involving a piece-wise constant profile, and choose the values of κ in such a way that

the spin modes attain the supercritical regime in a finite region (the lasing cavity),

while they are subcritical elsewhere. Following the consideration in Sec. 8.2, we

included in the simulation the potential terms needed to compensate the resulting

inhomogeneity in the chemical potential.

In the following, we investigate the dynamics of the system both in the absence and

in presence of the lasing conditions, in order to emphasize the different behaviour in

the two situations. In the former case we observe standard scattering phenomena

because of the discontinuities in the Rabi frequency profile, which is the emission

of transmitted and reflected components. The physics in the latter case is instead

much richer, because of the appearance inside the cavity of negative norm solutions

with positive energy, and the onset of the lasing instability. As we will see, the early

time dynamics shows the conversion between positive and negative norm packets

(and vice versa) at the BH and WH horizons. At late times instead, the appearance

of unstable modes in the cavity dominates the scene, resulting in the exponential

amplification of the field, and of the emitted Hawking radiation.

For the sake of generality, we express the results of the simulations in the dimension-

less units L̄ = L/ξ, t̄ = ~t/(2mξ2), ω̄ = ~ω/gn and n̄ = nξ for lengths, time, energy

and density respectively. Here we took as reference value for lengths the healing

length ξ =
√

~2/2mgn, where by g is hereafter meant the effective one-dimensional

mean field coupling constant. It is defined in terms of the corresponding three-

dimensional value g3d and the effective transverse area St of the cloud as g = g3d/St.

The following simulations have been run considering a condensate of N = 103 atoms,

leftward flowing through a ring of length L̄ = 1000. The initial state of the conden-

sate is characterized by a linear phase profile θ(x̄), which is equal for both the com-

ponents, and characterized by the winding number w =
[

θ(L̄)− θ(0)
]

/2π = 90. For

standard condensates of atoms with masses of the orderm ∼ 10−25Kg and ξ ∼ 1µm,

this value corresponds to a physical flow velocity v of the order v ∼ 1mm/s. The

value for the (dimensionless) meanfield coupling strength we used is gab/g = 0.8.
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Figure 8.5: Spin-modes dispersion relations: non-lasing configuration. (a) Down-

stream and upstream regions: κ/gn = −0.16, gab/g = 0.8. (b) Cavity region:

κ/gn = −0.12, gab/g = 0.8.

8.3.1 Non-lasing regime

We start by discussing the simpler non-lasing case. The Figs. 8.5(a,b) show the

dispersion relations of the spin modes, relative to the values κ̄ = −0.16 and κ̄ =

−0.12, that we choose respectively inside and outside the cavity region. The latter

is L̄c = 79 long and located around x̄ = 500, while the absorbing region has been

designed around the edges of the ring at x̄ = 0 and x̄ = 1000. We solved the

time evolution of the system by implementing a step-by-step integration of the GP

equations (8.1) and (8.2), using the time-splitting method, and solving the kinetic

terms by the iterated Crank-Nicholson algorithm. We discretize the space domain

with a grid of 1024 points and chose the time step ∆t̄ = 0.001 which guarantees the

numerical stability of the integration scheme.

We take as initial condition of the simulation, at t̄ = 0, a spin wave packet living on

top of the homogeneously flowing condensate described above (see Fig. 8.6(a)), and

located in the downstream region on the left of the cavity. Such a packet is composed

by wave vector components Gaussian distributed around the value k̄ ≡ kξ = 0.80,

with width ∆k̄ = 0.04, in the d-R1 branch of the dispersion relation (hereafter we

will add the prefixes d, u, cav to the mode labels, in order to identify the downstream,

upstream and cavity regions of the system to which they refer). The group velocity

of the packet is positive in the laboratory frame, and propagate rightwards towards

the cavity. Its energy is ω̄ = 0.15 in the laboratory frame.
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Figure 8.6: Wave packet propagation in the real space, for the non-lasing configu-

ration of the system defined by the set of parameters given in the text. The dashed

lines enclose the cavity region. (a) Initial condition of the simulation. (b,c) State of

the spin density respectively at ~t/2mξ2 = 800 and 3400.

We report the result of the simulation both in the physical and in the wave vector

domains. From the state of the system in the real space, reported in Figs. 8.6(b,c)

respectively at the time instants t̄ = 800 and t̄ = 3400 , which in real units corre-

spond to t = 16ms t = 68ms for the condensate parameters mentioned before, we

clearly see the absence of the lasing instability. Fig. 8.6(b) show the propagation of

the components transmitted and reflected by the cavity, respectively in the upstream

and downstream regions, with a residual component still present inside the cavity.

At the late time instead (Fig. 8.6(c)) no excitations are left in the system, since all

the wave packets have been annihilated by the absorbing region. More information

about the processes involved can be gained from the evolution of the system in the

114



Chapter 8: Spin Black hole laser

wave vector domain, reported in Figs. 8.7(a-c). Here we show the time evolution of

the spatial Fourier transform of the spin density δn respectively in the downstream,

cavity and upstream regions. Since the density is a real quantity, the negative and

positive wave vector regions of the Fourier transform carry the same information,

being one the complex conjugate of the other: δn(−k) = δn∗(k). For this reason,

we just report the positive (k > 0) Fourier components.

By inspection of the dispersion relations in Figs. 8.5(a,b), we deduce the expected

central wave vectors components for the transmitted and reflected packets in the

regions inside and outside the cavity. Since the frequency in the laboratory frame

is conserved in time, such wave vectors are given by the spin modes with ω̄ = 0.15

which comply with the boundary conditions (that is a rightward propagating packet,

located in the downstream region at t̄ = 0). These modes are identified by dashed

lines in Figs. 8.7(a-c), and match the results of the simulations. Fig.8.7(a) shows the

initial wave packet in the d-R1 mode, which is visible up to time t̄ ≈ 300 at which

it enters into the cavity with the simultaneous emission of a leftwards propagating

reflected d-L1 packet, which in turns disappears around t̄ ≈ 1500 annihilated by

the absorbing region close to x̄ = 0. Fig.8.7(b) reports the wave vector content of

the field inside the cavity, and shows at t̄ ≈ 300 the appearance of the wave packet

transmitted from the downstream region. It is localized in the cav-R1 branch of the

dispersion relation, and propagates rightwards towards the up-stream region, until

it gets reflected, around t̄ ≈ 450, by the right edge of the cavity, onto the cav-L1

branch. This latter component is too weak for being visible in the figure, but it can

be recognized in the cut shown in fig.8.8(d). Fig.8.7(c) finally shows the wave vector

content of the spin density in the up-stream region. Here we see, at t̄ ≈ 450, the

wave packet transmitted by the cavity, which is annihilated by the absorbing regions

at t̄ ≈ 1400. Figs.8.8(a-d) finally show the plots of the spatial Fourier transform of

the spin density at the time instants indicated in Figs. 8.7(a-c), in order to provide

a clearer comparison between the observed and the expected radiation content.
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(a) (b)
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Figure 8.7: Wave packet propagation in the wave vector domain, for the non-lasing

configuration of the system defined by the set of parameters given in the text. (a)

Downstream region. The d-R1 wave vector components of the initial wave packet

are clearly visible. The d-L1 components corresponding to the wave packet reflected

by the WH are barely visible and indicated by an arrow. (b) Cavity region. The

cav-R1 and cav-L1 wave packets, transmitted through the WH horizon and reflected

by the BH horizon respectively. The latter is indicated by an arrow and is barely

visible in the figure. (c) Upstream region. The u-R1 packet transmitted through

the cavity.
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Figure 8.8: Non-lasing configuration. Wave vector content of the spin density of the

system, at the time instants indicated in Figs. 8.7(a-c) by the vertical lines. In the

figures, the dashed lines indicate the central wave vector expected by inspection of

the dispersion relations shown in Figs. 8.5(a) and 8.5(b). (a,b) Downstream region.

a) Initial condition of the simulation, b) ~t/2mξ2 = 800, wave packet reflected by

the WH horizon. (c) Upstream region. ~t/2mξ2 = 800, wave packet transmitted

through the cavity. (d) Cavity region. ~t/2mξ2 = 500, wave packets transmitted

through the WH and reflected by the BH horizon.
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Figure 8.9: Spin-modes dispersion relations: lasing configuration. (a) Downstream

and upstream regions: κ/gn = −0.12, gab/g = 0.8. (b) Cavity region: κ/gn =

−0.01, gab/g = 0.8.

8.3.2 Lasing regime

We consider here the same system as before, given the values κ̄ = −0.01 and

κ̄ = −0.12 for the coherent coupling strength inside and outside the cavity respec-

tively. We see from the dispersion relations in Figs. 8.9(a,b) that the cavity region is

supercritical in this case and is delimited by a WH horizon on the downstream side

and a BH horizon on the upstream side. The downstream and upstream regions are

still subcritical, and the instability is expected to arise. We study the propagation

of a wave packet, initially located again in the downstream region, and prepared

in the d-R1 branch of the subsonic dispersion relation with wave vector content

centred on the value k̄ = 0.93. Its group velocity is positive in the laboratory frame,

and propagates rightwards towards the WH horizon. The energy is again equal to

ω̄ = 0.15. As before we reported the results of the simulation both in the physical

(Fig. 8.10) and the wave vector (Fig. 8.11) domains. With respect to the previous

section, novel phenomena arise in the present case because of the presence inside

the cavity of negative norm modes with the same energy ω̄ = 0.15. Colliding with

the WH horizon, the wave packet gives rise to a reflected component propagating

leftwards back into the downstream region as a d-L1 packet, and a transmitted com-

ponents propagating rightwards through the cavity, towards the BH horizon, on the

cav-R1 branch. At the same time, mode conversion takes place at the WH horizon,

generating a negative norm cav-R2 transmitted component, propagating rightwards

along the cavity towards the BH horizon. The same type of processes take place
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Figure 8.10: Wave packet propagation in the real space, for the lasing configuration

of the system defined by the set of parameters given in the text. The dashed lines

enclose the cavity region. (a) Initial condition of the simulation. (b) State of the

spin density at ~t/2mξ2 = 800: transmitted and reflected components are visible in

the upstream and downstream regions respectively. The incipient instability can be

seen inside the cavity. (c) State of the spin density at ~t/2mξ2 = 5000: the unstable

modes are clearly visible inside the cavity, together with the corresponding radiation

emitted in the down- and up-stream regions.
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when the cav-R1 and cav-R2 packets encounter the BH horizon. A transmitted

u-R1 component appears in the subcritical upstream region, and leaves the cavity,

whose quantum counterpart represents a Hawking particle propagating towards a

static observer far from the BH horizon. In addition, reflection and mode conver-

sion processes takes place at the BH, generating positive norm cav-L1 and negative

norm cav-L2 packets leftwards propagating through the cavity and heading back

towards the WH horizon. This phenomenon is visible in the results of the numerical

simulation reported in Figs 8.11(a-d), at early times (t̄ / 1500), and in the cuts

shown in Fig. 8.12. Fig. 8.10(b) shows the solution in the physical space at an

intermediate time instant: wave packets transmitted and reflected in the upstream

and downstream subcritical regions respectively are visible, together with a radia-

tion component inside the cavity. The onset of the lasing mechanism is evident in

Figs. 8.11(a-e) at the later times. Here we see that certain modes of the supercritical

cavity region are unstable and get amplified in time (Fig. 8.11(b)). By comparing

the characteristic wave vectors of these modes with the spectrum in Fig. 8.9(b), we

notice that the most unstable modes are the one with energy ω̄ = 0.12. However,

by the procedure illustrated in the next section, we verified that the most unstable

modes are actually the ones close to ω̄ = 0, in accordance with [240]. In the present

case the modes close to ω̄ = 0.12 are dominant since they are closest to the triggering

wave packets, and so are excited first. Growing modes of the same energy are visible

also in the subcritical downstream and upstream regions, as a consequence of the

leakage of radiation from the cavity. The exponential character of the amplification

is shown in the plots in Figs. 8.13(a-i).

The unstable dynamics of the system can be inferred also from the results in the

physical space, and at later times, shown in Fig. 8.10(c).
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Figure 8.11: (Continued in the following page).
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Figure 8.11: Wave packet propagation in the wave vector domain, for the lasing

configuration of the system defined by the set of parameters given in the text.

Qualitatively different early time (t̄ ≤ 1500) and late time regimes (t̄ ≥ 1500) can

be identified. Features corresponding to these regimes are reported in white and

green, respectively. (a) Downstream region. At early times, the d-R1 wave vector

components of the initial packet appear, together with the d-L1 components relative

to the packet reflected by the WH horizon. At the late times, the leakage of the self-

amplified radiation from the cavity appears in the d-L1 modes. (b) Cavity region.

The cav-R1 packet transmitted through the WH appears, together with the cav-L1

component reflected by the BH, which is barely visible in the figure and indicated by

an arrow. At the late times unstable modes appear in the simulation. (c) Upstream

region. At the early time, the u-R1 packet transmitted through the cavity appears

while, at the late times, it is evident the leakage into the u-R1 mode of the self-

amplified radiation from the cavity. (d,e) Magnified views of the regions enclosed

by the dashed white rectangles in panel (b). In (d), the cav-L1 packet reflected by

the BH horizon is now clearly visible, together with the early times excitation of the

cav-R2 and cav-L2 modes. In (e) the focus is on the unstable mode.
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Figure 8.12: Lasing configuration at the early time. Wave vector content of the

spin density of the system at the time instants indicated in Figs. 8.11(a-e), in the

downstream, upstream and cavity regions. The dashed lines indicate the central

wave vector expected by inspection of the dispersion relations shown in Figs. 8.9(a)

and 8.9(b). (a,b) Downstream region. a) Initial condition, b) ~t/2mξ2 = 500,

reflected wave packet by the WH horizon. (c) Upstream region. ~t/2mξ2 = 500,

wave packet transmitted through the cavity. (d) Cavity region. ~t/2mξ2 = 800,

negative norm components are now present because of the supercritical motion of

the condensate for the spin modes.
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Figure 8.13: Lasing configuration at the late times: (a,c,e) wave vector content of the

spin density at ~t/2mξ2 = 5000, in the downstream, upstream and cavity regions,

respectively. The pictures show the dominant unstable modes in the cavity and their

leakage in the downstream and upstream regions. (b,d,f,g,h,i) Time evolution of the

unstable modes in the three different regions. The exponential character of the

self-amplification is clearly visible. The panel (i) (as well as (e)) shows the kξ = 0

instead of the expected unstable kξ = 0.04 because the wave vector resolution in

the simulation is equal to 0.08.
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8.4 White noise amplification

The analysis of the wave packet propagation discussed in the previous section, al-

lowed us to unravel the new physics which emerges because of the supercritical flow

of the condensate. We showed that negative (positive) norm modes with positive

(negative) energy appear, and mode conversion between modes with different norm

take place at the WH and BH horizons. Moreover, the results of the previous section

showed the existence of unstable modes in a cavity, which is a consequence of the

black hole lasing mechanism. The purpose of this section is to characterize such

an instability, and qualitatively investigating its dependence on the strength of the

supercritical regime attained in the cavity.

To this aim, we analyze the dynamics of the same system considered in the previous

section, with a cavity length now equal to L̄ = 196, posing different initial conditions

for the simulation: we prepare the condensate in its ground state, and superimpose a

random noise on it. We pose a cut-off to the noise, at a wave vector kcut larger than

the one at which ω = 0 in the dispersion relation of the spin modes, around which

the most unstable modes are expected and which thus result seeded by the initial

condition. Also, we ensure that the Nyquist prescription 2kcut < kmax = 2π/∆x is

satisfied, preventing the possible occurrence of spurious aliasing effects. The scope of

the analysis is to identify the most unstable modes, characterize their frequency, and

qualitatively study the relative instability in terms of the strength of the supercritical

regime attained in the cavity. The initial random noise imprinted on the system is

justified from an experimental point of view, as fluctuations in the local particle and

spin components are always present in an experiment for both technical and thermal

reasons.

We run the simulations considering again a piece-wise constant profile for the Rabi

frequency, with the value κ̄ = −0.5 in both the subcritical downstream and upstream

regions, and values inside the cavity in the range κ̄ = −0.011 –−0.030. We take the

value of the mean field coupling constant gab/g = 0.8, and use the same integration

scheme as before. We discretize the space domain using a grid of 4096 points, and

choose the time step ∆t = 0.0004. In Fig. 8.14 are reported a few snapshots of the

spin density of the system at different time instants, for the case κ̄ = −0.015 inside
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Figure 8.14: Noise amplification in the lasing configuration characterized by the

values gab/g = 0.8 and κ̄ = −0.015 (κ̄ = −0.5) for the interaction parameters inside

(outside) the cavity. Panels (a-c) show the spatial profile of the spin density at the

times t̄ = 0, t̄ = 3000, and t̄ = 4500 respectively, given the random white noise

initially imprinted to the system. (d) The supercritical dispersion relation for the

spin modes inside the cavity, given the above values of the parameters.

127



Chapter 8: Spin Black hole laser

the cavity. The dynamical evolution of the system shows the onset of rightwards

propagating unstable modes with short wavelength, which get converted at the BH

horizon into leftward propagating, long wavelength modes. These in turn collide on

the WH horizon, get converted into short wavelength modes, rightwards propagat-

ing towards the BH horizon, and the cycle repeats, enhancing the content of the

field inside the cavity. It is interesting to note that, since the dispersion relation

outside the cavity is highly gapped, no modes are available where the zero frequency

radiation enclosed in the cavity could leak, and the coupling between the cavity and

the downstream and upstream subcritical regions results extremely weak. This is

evident from the time evolution of the spin component of the system reported in

Fig. 8.14(a-c). The negative and positive energy radiation created by the mode con-

version precesses which take place at the horizons, remains thus confined within the

cavity. This can be seen from the insets in the same figures, where it is shown the

spectral content of the radiation inside the cavity. This result in contrast with what

obtained in Sec. 8.3 for the case of the wave packet propagation. There, propagating

modes were available outside the cavity, which thus resulted strongly coupled with

the outside subcritical regions (see Fig. 8.10).

The exponential character of the self-amplification can be inferred from Fig. 8.15.

Given different values of the Rabi frequency κ, here we show the time evolution of

the magnitude Mn of the spin density inside the cavity, which we define as

Mn =

∫

cavity

dx δn2(x). (8.37)

From these and analogous results for the other values of the Rabi frequency, the

amplification rates displayed in Fig. 8.16 are readily deduced by evaluating the

steepness of the curves at the earlier times. At the later times, nonlinear behaviour

of the system beyond the Bogoliubov theory come into play.

The wave vector characterizing the unstable modes can be inferred from the spectral

content of the signal inside the cavity, shown in the insets of Figs. 8.14(a-c). In the

case examined two pairs of peaks appear, close to the intersection point of the spin

dispersion relation with ω̄ = 0 (indicated in the insets by the dotted lines), which

confirms that the most unstable modes are the one closest to the zero frequency, as
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Figure 8.15: Evolution in time of the magnitude of the spin density inside the lasing

cavity, for different values of the amplitude |κ| of the Rabi frequency. The values

used for |κ| are indicated in the figure aside each curves.

predicted in [239, 240]. Similar behaviour occurs for the other values of the Rabi

frequency we considered, for which the system is also unstable. These values can

be deduced from Fig. 8.16, where the dimensionless value of the amplification rate

Γ = 1/tc (with tc the characteristic time scale of the exponential self-amplification

Mn ∼ exp(t/tc)) as a function of κ is reported. The figure shows an oscillatory

behaviour of Γ, convoluted with an overall decreasing trend with the strength of the

coherent coupling. Such oscillations can be ascribed to the discrete nature of the

modes sustained by the cavity between the two horizons: by varying the value of

|κ|, we are in fact effectively changing the amplitude of the gap in the dispersion

relations and therefore the wave-vectors for which it attains the zero energy. As a

consequence, new cavity modes enter or leave the supersonic regime, resulting in the

observed oscillatory profile. Moreover we infer, again from the same figure, that the

instability is switched off when the spin modes become subcritical inside the cavity,

as expected. A close analysis of the dispersion relations reveals that such a transition

happens close to the value κ̄ = −0.11 which is not far from the value κ̄ = −0.10

which can be inferred from Fig. 8.16. The reason for this small discrepancy is due

to the limit of the resolution achievable in determining the amplification rate, which

is intrinsic to the time-splitting algorithm we used to solve the time evolution of the

system.
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Figure 8.16: (a) The rate Γ̄ of the exponential amplification exp(Γ̄t̄) of the spin

excitations inside the cavity, plotted as a function of the strength of the coherent

coupling. The value of κ/gn at which the supercritical-subcritical transition is ex-

pected to occur in the cavity is indicated by the dotted line. The inset shows a

magnified view of the region inside the dashed rectangle. (b) Comparison of the

amplification rate profile for two different lengths of the lasing cavity: L/ξ ≈ 196

(solid blue), L/ξ ≈ 195 (dashed red).

As a final remark, we analyze how the amplification rate is modified by a change in

the length of the cavity. To this aim we focus the analysis on the range of values

of the Rabi frequency used in the inset in Fig. 8.16. We consider the cavity 0.5%

shorter than its original size, obtaining the amplification rate shown in Fig. 8.16(b),

where it is contrasted with the one obtained with the original length of the cavity.

The overall shape of the two profiles look very similar, where the two curves are

slightly shifted only. The shift is due to the fact that variations in the cavity length

are in fact effectively equivalent to varying the value of the Rabi frequency. A change

in the value of the Rabi frequency modifies the gap of the spin dispersion relation,

and thus the wave-vector at which the dispersion relation intersect the ω = 0 axes,

leaving unchanged the characteristic wavelength of the cavity modes. Conversely, by

changing the cavity length we change the wavelength of the cavity modes, without

affecting the gap in the dispersion relation.
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8.5 The trapped condensate

The aim of the previous sections was to give a clear evidence of the occurrence

of the black hole lasing in the spin branch of the excitations in a symmetric, co-

herently coupled, quasi-one-dimensional two-component condensate. The choice to

work with a uniform configuration was not casual, but deliberately made in order

to take advantage of the translational invariance of the system, and the consequent

continuity of the Bogoliubov spectra. This allowed us to precisely identify in the

simulations the phenomenology of the Hawking physics, which is the appearance of

negative (positive) norm modes with positive (negative) energy, the mode conver-

sion mechanism at the WH and BH horizons, and the existence of unstable modes

in the cavity, which is at the basis of the black hole lasing phenomenon.

We consider in this section the experimentally more feasible case of a harmonically

trapped condensate. It is not our intention to provide in the following any quanti-

tative analysis of the phenomena since this was the object of the previous sections.

Moreover, for a more complete study, the exact Bogoliubov spectrum for the spin

excitations in the non-homogeneous system should be calculated. The latter could

be relatively easily calculated numerically, but this is not the purpose of the present

work. With an experimental investigation in mind of the spin black hole lasing, our

aim in this last section is to show the occurrence of this phenomenon in the spin

modes of a non-homogeneous system, when the lasing conditions are met. In order

to define the latter conditions, we take as guide a local density approximation of the

spectrum in Eq. (8.23).

We modulate in space the strength of the coherent coupling in order to create a

finite supercritical cavity in the center of the trap, once the condensate is set in

motion with a proper velocity. Rather than using a step-like profile for the Rabi

frequency κ as in the previous sections, we use here the more realistic shape

κ =
∆

2

[

tanh

(

x− xl
s

)

− tanh

(

x+ xr
s

)]

+ κ0, (8.38)

depicted in Fig. 8.17. This profile is characterized by the following parameters: i)

the asymptotic value κ0 of the Rabi frequency far from the cavity, ii) the difference
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Figure 8.17: Spatial profile of coherent coupling strength κ/~ω0 (in units of χ) used

in the simulations.

∆ between the values of the Rabi frequency inside and outside the cavity, iii) the left

and right delimiting positions xl and xr of the latter, iv) the steepness of the walls

which is related to s. In contrast to what was done in the previous sections, it is more

convenient here to define lengths in units of the oscillator length ℓ0 =
√

~/2mω0,

where ω0 is the characteristic frequency of the trapping potential, and time is in units

of 1/ω0. We indicate quantities in these units by a double bar on top of the symbols,

to distinguish with the single bar used in previous sections. The values of the

parameters can be translated between the two units by the coefficient χ ≡ gn/~ω0, in

which n is the particle density of the homogeneous system considered in the previous

sections. In particular we have the following transformation laws, respectively for

length and time

¯̄L/L̄ =

√

1

χ
, ¯̄t/t̄ =

1

χ
, (8.39)

from which immediately follows that ¯̄E/Ē = ¯̄ω/ω̄ = χ, ¯̄n/n̄ =
√
χ for energy,

frequency and particle density respectively.

In order to show the occurrence of the lasing phenomenon in the harmonically

trapped condensate, we consider a set of parameters already used in Sec. 8.4 for

the ring geometry. We use in particular the values gab/g = 0.8 and κ̄ = −0.01,−0.5

for the mean field and coherent coupling respectively, with the latter values referring

to the regions inside and outside of the cavity. We reproduce the same physical con-

ditions as for the ring geometry, by choosing the number of particles in the cloud in

such a way that the density in the center of the trap is equal to the density consid-

ered for the uniform system. In the Thomas-Fermi approximation (see Eq. (8.11)),
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this is equal to n(0) = 2 (µ+ |κ|) / (g + gab), with the chemical potential related to

the number of particles by the normalization condition

N =

∫

dxn(x) =
2

3π

(

µ+ |κ|
~ω0

)3/2
St

ℓ0 (a+ aab)
. (8.40)

In terms of the particle density in the center of the trap we can thus write χ =

gn(0)/~ω0. Its value provides a measure for the validity of the Thomas-Fermi ap-

proximation (that is χ≫ 1). In the simulations we considered χ = 200. We use the

values ¯̄xr = −¯̄xl = 7.2, so that the cavity has approximatively the same length as

in the Sec. 8.4. The same velocity v̄ = 2k̄ = 4π × (90/L) = ¯̄v/
√
χ considered in the

previous section is achieved in the center of the trap (x̄ = 0), by initially locating

the condensate in ¯̄x = ¯̄v = 16 at ¯̄t = 0 and letting it freely oscillate under the effect

of the harmonic potential, while the spatial profile of ¯̄κ is kept constant. We finally

choose the steepness parameter ¯̄s = 0.1. The results shown in Fig. 8.18 confirm

the occurrence of the lasing in the spin modes also for the harmonically trapped

condensate. As a further check, the same simulation has been run with the value

κ̄ = −0.2 inside the cavity, for which the flow is everywhere subsonic. As expected,

no instability appears in this case.

Fig. 8.18 also show that, while at early times the total density profile remains smooth

and unaffected by the instability in the spin degrees of freedom, at later times,

when the amplitude of the spin excitation has grown large enough, a significant

modulation shows up also in the total particle density profile. This interplay between

the spin and density modes is due to the higher-order, nonlinear couplings beyond

the Bogoliubov theory. From a heuristic point of view, this effect can be associated

to the back-reaction of Hawking radiation on the background metric, in which the

spin degrees of freedom play the role of the quantum field theory, while the density

represent the underlying metric.

The higher order character of this effect can be quantitatively assessed in Fig. 8.18(h),

where we display the time evolution of the standard deviation of the modulation in

the density and spin components with respect to their equilibrium values. With

exception made for the early times, where the system is in a transient regime, a

fast exponential-like amplification appear for both quantities. In particular, it is
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Figure 8.18: a-g) Lasing in a harmonically trapped condensate. The figures show

snapshots of the spin (blue) and density (red) components at different time instants.

The insets show magnified views focused around the lasing cavity. The values of the

parameters are given in the text. h) Lin-log plot of the time evolution of the standard

deviation of the fluctuations in the density (red) and spin (blue) components with

respect to their equilibrium values.
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evident that the modulation in the total density grows faster than the one in the

spin component of the system, confirming that the former are indeed a higher-order

effect beyond the Bogoliubov theory.
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The work presented in this thesis places itself in the general framework of quantum

simulation with cold atomic gases, and in particular in the context of synthetic

magnetism with neutral atoms and BEC based analogue models for gravity. In

the former case, we worked with synthetic gauge fields in a particular configuration

which makes them nonlinear, that is explicitly depending on the particle density in

the system. This type of a gauge field emerges due to a collisionally induced detuning

in combination with synthetic magnetism arising from light-atom coupling. The

nonlinear character gives rise to interesting novel dynamics. The current-dependent

nonlinearity that results in the mean field description of the condensate, induces

a chirality that opens up unexpected perspectives in applications which require

a directionality in the system, such as in the emerging fields of atomtronics and

analogue gravity.

We investigated in the first part of the thesis, the effects the chirality has on the

stability and dynamical properties of the rotating state of a condensate. In Chap. 4

we showed that by properly shaping the profile of the light-matter interaction pa-

rameters, a nonlinear term appears in the Gross-Pitaevskii equation, which is pro-

portional to the angular momentum of the condensate itself. We highlighted that

two different interpretations can be made for this nonlinearity in terms of a density

modulated angular velocity added to the cloud or as a modification of the mean field

coupling constant. In the latter case, the resulting effective interaction gets stronger

or weaker depending on the sign of the angular momentum of both the condensate

and the external laser beam. As a consequence, it may happen that the rotating

state of the condensate is energetically favourable compared to the corresponding

non-rotating state. We showed that this regime is attained for configurations of

the laser light characterized by high values of the orbital angular momentum per
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photon.

In Chap. 5 we studied the effects of the nonlinear gauge fields on the effective

dynamics of a vortex in a condensate. We developed the simplest, yet nontrivial,

variational formulation of the problem, obtaining the equation of motion for the

vortex core, in which a density dependent additional force appears as an effect of

the nonlinear potentials acting on the atoms.

Apart from their fundamental interest, the above results gives an example of how

the chirality induced by the nonlinear fields provides a tool to control the physical

behaviour and the properties of a condensate. These novel phenomena could find

applications for example in the fields of atomtronics, where the goal is to exploit

the tunability of a BEC in order to build the atomic analogues of electronic devices

such as diodes or switches, and eventually new quantum devices for measuring and

sensing. In this respect, the directional dependence built into the system by the

nonlinear synthetic gauge fields, provides a crucial ingredient to this goal, which is

not straightforward to achieve with standard BECs.

The results presented in Chapters 6 and 8 form the second part of the thesis, which

is devoted to the topic of analogue gravity models with two-component systems. We

analyzed first the effects of the aforementioned density-dependent gauge fields in this

context, showing that they provide an extra degree of freedom that can be used in or-

der to design novel spacetimes experienced by phonons in a condensate. By properly

designing the space profiles and temporal modulation of the light-matter interaction

parameters, a wide range of nontrivial effective spacetimes can be implemented, en-

riching the physics that can be simulated compared to standard, single-component,

analogue models.

The results of Chapter 6 concluded the work dedicated to the study of density-

dependent gauge fields. In the last part of the thesis, we discussed the promise

of multicomponent, spinorial atomic Bose-Einstein condensates as analog models of

gravity. The motivation for using these more complex set-ups is due to the fact that,

while preliminary claims of the observation of correlated excitations emanating from

a sonic black hole have been recently reported [230], a clear and widely accepted
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experimental evidence of the occurrence of Hawking physics is not available yet

and many questions are still open. The spontaneous Hawking radiation is in fact

a tiny effect, and its experimental observation is extremely challenging also in the

framework of analogue systems. In this respect, we showed that the two-component

set-up is promising, compared to single-component configurations. Working with

the spin rather than the density branch of the excitations offers clear advantages

from an experimental point of view, since many spurious effects that typically plague

the experimental realization of effective horizons and the detection of the Hawking

signal in single component condensates can be tamed. Moreover, by simply shaping

the amplitude profile of the coherent coupling between the internal states of the

atoms, a wide variety of hydrodynamic regimes for the spin modes, and different

number and shapes of the horizons can be achieved.

The work presented in Chap. 7, discusses first steps towards the investigation of the

spontaneous Hawking radiation originating from analogue black holes, in the spin

modes of a coherently coupled, two-component, atomic Bose-Einstein condensates.

Using a mean-field formalism based on a (classical) Gross-Pitaevskii theory, we in-

vestigated the so-called black hole lasing mechanism in the spin branch of the excita-

tions of the system. This approach successfully revealed the possibility of achieving

a black hole lasing instability under suitable conditions, and the existence of Hawk-

ing conversion phenomena at the horizons. We showed how a black hole lasing phe-

nomenon can emerge in the spin modes of a flowing one-dimensional, two-component

atomic condensate in both spatially homogeneous and harmonically trapped geome-

tries. For the homogeneous case, we studied the propagation of a wave packet of

spin excitations through the lasing cavity, and identified the self-amplification of

the unstable modes inside the cavity. The rate of such self-amplification was fur-

ther characterized as a function of the coherent coupling amplitude between the two

components by initially imprinting a random noise into the system. The oscillatory

behaviour found in the amplification rate reflects the discreteness of the modes sus-

tained by the lasing cavity. We finally confirmed that the effect is preserved also in

the experimentally more realistic situation of a harmonically trapped condensate.

Furthermore, we highlighted that the nonlinear coupling, at higher order in the

Bogoliubov theory, between the spin and density degrees of freedom may be heuris-

tically associated to the back-reaction of Hawking radiation onto the background
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metric. The classical mean field approach developed of course fails in correctly de-

scribing the quantum features of the Hawking emission when this is triggered by

zero-point fluctuations of the fields, but represents a solid starting point towards

future investigations of the quantum features of the phenomenon, since the classical

process of conversion between positive and negative norm modes at the two horizons

is at the basis of the fully quantum Hawking emission.

At a much higher level of technical difficulty, and as a further and most challeng-

ing perspective, the experimental advantages provided by the two-component set-up

could be useful in the investigation of the finer details of Hawking radiation, such

as the back-reaction of the emitted particles on the black hole horizon, where it

is crucial to isolate the quantum effects from the background hydrodynamics. We

expect this to provide a deeper understanding of the microscopic mechanism un-

derlying the process of (analogue) black hole evaporation due to Hawking emission,

hopefully providing a deeper (even if very indirect) insight also on more fundamental

questions related to astrophysical black holes and the so-called information paradox

[252].

As a last point concerning the promise of spinorial BECs as analog models of grav-

ity, it is worth mentioning the perspectives for investigating the phenomenon of

superradiance originating from an analogue rotating black hole. Compared to single

component systems, using spin modes appears advantageous because of the different

length scales that characterize the spin and density component, respectively. The

much larger value of the spin healing length, compared to the density one, ensures

in fact the existence of a wide ergoregion where radiation enhancement effects can

take place on top of a homogeneous density background far from the vortex core,

where negative norm spin modes are well defined.
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144



Bibliography

[75] L. Onsager. Nuovo Cimento Suppl., 6:249, 1949.

[76] W. F. Vinen. Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 240:114–127, 1957.

[77] W. F. Vinen. Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 240:128–143, 1957.

[78] W. F. Vinen. Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 242:493–515, 1957.

[79] H. E. Hall and W. F. Vinen. Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, 238:204–214, 1956.

[80] H. E. Hall and W. F. Vinen. Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, 238:215–234, 1956.

[81] W. F. Vinen. Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 260:218–236, 1961.

[82] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, M. J. Holland, J. E.

Williams, C. E. Wieman, and E. A. Cornell. Phys. Rev. Lett., 83:3358–3361,

1999.

[83] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Phys. Rev. Lett.,

84:806–809, 2000.

[84] J. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle. Science, 292:476–9,

2001.

[85] G. B. Arfken and H. J. Weber. Mathematical methods for physicists. Academic

press, Oxford, 2005.

[86] A. L. Fetter. In K. T. Mahanthappa and W. E. Britten, editors, Lectures in

Theoretical Physics, volume XI-B, page 351. Gordon and Breach, New York,

1969.

[87] E. Lundh, C. J. Pethick, and H. Smith. Phys. Rev. A, 55:2126–2131, 1997.

[88] F. Dalfovo and S. Stringari. Phys. Rev. A, 53:2477–2485, 1996.

[89] A. A. Svidzinsky and A. L. Fetter. Phys. Rev. Lett., 84:5919–5923, 2000.

145



Bibliography

[90] A. L. Fetter. Rev. Mod. Phys., 81:647–691, 2009.

[91] P. O. Fedichev and G. V. Shlyapnikov. Phys. Rev. A, 60:R1779–R1782, 1999.

[92] L. D. Landau and E. M. Lifshitz. Mechanics (Vol. 1). Butterworth-Heinemann,

Oxford, 1976.

[93] Y. Aharonov and D. Bohm. Phys. Rev., 115:485–491, 1959.

[94] Y. Aharonov and D. Bohm. Phys. Rev., 123:1511–1524, 1961.

[95] M. V. Berry. Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 392:45–57, 1984.

[96] R. Dum and M. Olshanii. Phys. Rev. Lett., 76:1788–1791, 1996.

[97] P. M. Visser and G. Nienhuis. Phys. Rev. A, 57:4581–4591, 1998.
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[159] G. Rousseaux, P. Mäıssa, C. Mathis, P. Coullet, T. G. Philbin, and U. Leon-

hardt. New J. Phys., 12:095018, 2010.

[160] S. Weinfurtner, E. W. Tedford, M. C. J. Penrice, W. G. Unruh, and G. A.

Lawrence. Phys. Rev. Lett., 106:021302, 2011.

[161] U. Leonhardt and P. Piwnicki. Phys. Rev. A, 60:4301–4312, 1999.

[162] F. Baldovin, M. Novello, S. E. Perez Bergliaffa, and J. M. Salim. Class.

Quantum Grav., 17:3265, 2000.

[163] U. Leonhardt. Phys. Rev. A, 62:012111, 2000.

[164] U. Leonhardt and P. Piwnicki. Phys. Rev. Lett., 84:822–825, 2000.

[165] M. Visser. Phys. Rev. Lett., 85:5252, 2000.

[166] U. Leonhardt and P. Piwnicki. Phys. Rev. Lett., 85:5253, 2000.

[167] B. Reznik. Phys. Rev. D, 62:044044, 2000.

[168] V. A. De Lorenci, R. Klippert, M. Novello, and J. M. Salim. Phys. Lett. B,

482:134–140, 2000.

[169] M. Novello, V. A. De Lorenci, J. M. Salim, and R. Klippert. Phys. Rev. D,

61:045001, 2000.

[170] M. Novello and J. M. Salim. Phys. Rev. D, 63:083511, 2001.

[171] I. Brevik and G. Halnes. Phys. Rev. D, 65:024005, 2001.
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