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Abstract 
 
 
Various engineering problems imply rarefied gas flows that rely in the transition and free 

molecular regimes, e.g., micro and nano devices. The recent expansion of shale gas 

production where rarefied conditions are found in reservoirs exposed another area of 

application with a major importance. Continuum based methods like standard Navier-

Stokes equations break down in the transition regime and free molecular regime. In order 

to model such flows discrete methods are usually adopted. Boltzmann equation can 

theoretically be used to simulate rarefied gas flows. However, complexity of its collision 

integral limits its applications mostly to simple cases (i.e., one dimension problems). The 

direct simulation Monte Carlo method which mimics the Boltzmann equation is the 

dominant method for simulating rarefied gas flows. It has been tested in several engineering 

problems, ranging from nano scale flow to re-entry vehicles with very consistent results in 

comparison with experimental data and analytical solutions. Its computational cost is, 

however, enormous for complex cases. Observations from Crookes radiometer inspired 

extending the continuum methods so that they could capture non-equilibrium phenomena 

in small scales. In the present thesis two different hydrodynamic model are presented. The 

first one is based on the Korteweg expression and the second one is called “Bi-velocity”.  

Firstly, the two models are presented in their mathematical forms. The proposed models 

are then developed in open-source computational fluid dynamics solvers. The models are 

tested and benchmarked in different rarefied gas flows problems in the whole range of 

Knudsen number. We used problems that are found in micro and nano systems and tight 

porous media. Results from the hydrodynamic models are compared against experimental 

data where available and the direct simulation Monte Carlo method. The two extended 

hydrodynamic models show improved results in comparison with standard Navier-Stokes.  
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Chapter 1  
 
 

1.Introduction 
 

 

1.1. Motivation 

 
 
The aim of the current thesis is to present extended hydrodynamic models that are in pure 

continuum regime and are able to describe non-equilibrium flows. Continuum assumption 

is valid when the mean free path of moecules is smaller than the characteristic dimensions 

of the flow domain [1]. Thermodynamic equilibrium implies that the shear stress is linearly 

dependent on the rate of strain and the heat flux is linearly proportional to the temperature 

gradient[2]. The degree of non-equilibrium is described by the dimensionless Knudsen 

number which will be defined later. The inapplicability of existing continuum methods like 

the standard Navier-Stokes dates back to the 19th century, when Maxwell studied stresses 

in rarefied gases[3]. Hilbert identified the need of a continuum model that can describe 

non-equilibrium phenomena in his 6th problem in a series of mathematical problems [4].  

In the current study, we investigate the unconventional behavior of rarefied gas flows. Such 

problems can be found in cases where the length scale L is comparable to the mean free 

path λ of the gas molecules.  In the area of problems where environmental pressure occurs, 

we can find problems in nano or micro scales. The use of micro- and nano- 

electromechanical systems (MEMS/NEMS) has faced rapid increase as it has generated 

extensive research in fluid flows in ultra-small devices. Gas flows at micro- and nano-scale 

involve complex processes due to rarefaction, important gas-surface interactions, and inter-

molecular collisions [5]. Usually, this is in the scale of some µm. Applications are related, 

for example, to solid-state hard drive heat transfer, micro-fuel cells, micro-pumps, and 

micro-turbines. Other applications where rarefied gas flows are found include nano-

bridges, speed sensors, accelerometers and vacuum pumps.  
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In such applications the standard continuum model, the Navier-Stokes set of equations, 

cannot accurately predict the gas behaviour.  The failure of the continuum models starts 

when the heat flux and shear stress in the conservation of energy and momentum 

respectively can no longer be characterized by the macroscopic magnitude. Even with 

velocity slip and temperature jump boundary conditions the standard continuum method 

does not always accurately capture non-equilibrium flows.  

The use of statistical method starts with the kinetic theory of gases as represented in the 

Boltzmann equation that the famous Austrian physicist derived in 1872 [6]. Collisionless 

form of the Boltzmann equation is usually used in cases where the gas is in the free 

molecular regime. The study of rarefied gas requires also investigation of the interaction 

between the gas molecules and surrounding solid surface which is another area of research 

on its own. The Boltzmann kinetic equation should be accompanied with these boundary 

conditions. First numerical simulations regarding the Boltzmann equation appeared in late 

1960s[7]. This was due to the rapid expansion of the aerospace industry. The Boltzmann 

equation became a practical tool through the direct simulation Monte Carlo (DSMC) 

method for aerospace engineers in order to further investigate the problem in the upper 

atmosphere when there is a decrease in the ambient density with increasing height. The 

increase of height was followed with an increase of the speed and a peak in heat. 

Applications of these simulations have been applied to the Columbia space shuttle disaster 

in 2003 [8].  

It is widely accepted that in order to describe rarefied gas flows, discrete methods should 

be adopted. On the other hand, such methods are computationally intensive (and expensive) 

and even if they can be used in complex geometries, the need of High Performance (HPC) 

computer is required. Several extended hydrodynamics equations have been proposed in 

order to achieve consistent results and reduce dramatically the computational cost.  Higher-

order models such as Grad’s moments method [9], Burnett and super-Burnett [10], R13 

[11, 12] or R26 [13]. Such models are able to describe rarefied gas flows and non-

equilibrium effects in the case of nano-cavity for a Kn < 0.1. Comeaux et al. [14] showed 

that Burnett equations can violate the second law of thermodynamics and this finding may 

account past attempts to solve the Burnett equations. In addition, these models suffer from 

instability problems when using linearized stability analysis [15]. Garcia-Colin et al [16] 

claim that these problems with the Burnett equations are in reality limitations of those 

methods and they highlighted the need of better theories. Poisson [17], Maxwell [3], Gibbs 

[18] and Van der Waals [19] observed that fluid interface actually represents a rapid but 

smooth transition of physical quantities between the bulk fluid values. Van der Waals 
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proposed gradient theories for the interface based on thermodynamic principles and 

developed his idea that the interface has non-zero thickness and it is diffuse. He stated his 

theory of the interface based on his equation of state in order to predict the thickness of the 

interface. Based on this, Korteweg [20], proposed a model for transition phenomena in fluid 

mechanics by incorporating in the stress tensor the gradient of density ρ. Among other 

attempts are the extensions of higher-order models [21, 22]. Brenner firstly proposed the 

Volume Diffusion (or Bivelocity) theory [23] based on the thermophoresis phenomenon 

[23] and showed the existence of two different velocities. Brenner introduced the volume 

velocity. The Bivelocity fluids incorporates the mass and the volume velocity while the 

monovelocity fluids obey the Navier-Stokes-Fourier (NSF) equations. The Volume 

Diffusion equation model can also be viewed as extension to the Navier-Stokes.  

The recent developments in petrochemical industry and shale and tight gas reservoirs have 

generated a new area of research as applied to rarefied gases. According to the Energy 

Information Administration (EIA) the unproved technically recoverable resources of tight 

and shale gas on planet Earth are estimated as 7577 trillion cubic feet (tcf). Conventional 

gas reservoirs consist of pore size in the range of 1 to 100 micrometers where shale gas 

reservoirs can have pores in the range of 1 to 200 nanometers [24]. Micropore can be 

classified as pores with diameter less than 2 nm and mesopore as pores with diameter less 

than 50 nm [25]. Pore networks in unconventional gas reservoirs consist of pore networks 

from mineral matrix and organic matter. Mineral matrix pores vary from nanoscale to 

microscale (10nm – 100 µm) whereas the organic matter relies only in nanoscale (10 – 

750nm). Due to the existence of pores with several multitudes of sizes, transport processes 

in these types of reservoirs are  complex processes at micro (10-6 m) to nano-scale (10-9 m) 

[26].  Unconventional gas reservoirs have pressures in the range of 1 – 100 MPa [27]. Under 

those pressures and pore sizes the mean free path (λ) is comparable to the characteristic 

length of the pore and the gas is often in rarefied regime [5, 28]. Darcy’s Law, which was 

concluded from experiments and derived from continuum methods (Navier-Stokes 

equations), is no longer valid without any slip modification [29-32].  

In the present thesis, we will consider gas flows mainly in the transition and free molecular 

regime which can be characterized as dilute gases. We describe the dominant methods for 

simulating rarefied gases, discrete methods, and develop new hydrodynamics models. The 

new hydrodynamics models been implemented in an open source code using C++ in the 

OpenFOAM framework. The new developed codes are an actual extension on the 

compressible Navier-Stokes solver in OpenFOAM, called rhoCentralFoam. The main 

solver which follows the Volume Diffusion theory is called HWrhoCentralFoam taking the 
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initials of our current university and CCrhoCentralFoam for the Korteweg model.  The rest 

of the thesis provides with the fundamentals of rarefied gas dynamics and several test cases 

that the Volume Diffusion (or bi-velocity) theory has been tested on.  

 

 

 

1.2. Rarefied Gas Dynamics  
 
 
Rarefied gas dynamics can be defined as the study of gas flows in which the average 

distance between two subsequent collisions of a molecule (mean free path, λ) is comparable 

to the typical length (L) of the structure of the flow that is being considered. The Knudsen 

number (Kn) is introduced in order to characterize the degree of rarefaction and it is defined 

as the ratio of the molecular mean free path (λ) to the characteristic length of the flow: 
		

 𝐾𝑛 =
𝜆
𝐿 

 
(1.1) 

 

 
Rarefied gas flows can be modelled by different methods depending on the flow regime. 

The first classification of the different flow regimes has been made by Tsien depending to 

the degree of rarefaction [33]: 

 

• For Kn < 0.001: Continuum regime 

• For 0.001 ≤ Kn ≤ 0.1: Slip regime 

• For 0.1 < Kn ≤ 10: Transition Regime 

• For Kn > 10: Free molecular regime 

 

Continuum Regime: In the continuum flow regime, the number of collisions is high enough 

and the well-known Navier-Stokes set of equations can be used. The conventional no-slip 

boundary condition is considered to be valid since the flow in such occasion is in local 

thermodynamic equilibrium. Discrete methods are prohibited in such regime due to the 

intermolecular collisions which can lead to huge computational time that is required.  

 

Slip Regime: As the Knudsen number increases and becomes significant the gas surface 

interactions become less frequent and a layer in the order of one mean free path (λ), the 
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well-known Knudsen layer starts to form near the surfaces. The Knudsen layer cannot be 

studied with the standard Navier-Stokes and new methods such as the Boltzmann equation 

should be adopted. This non-equilibrium phenomenon (rarefaction effect) are accompanied 

by velocity slip and temperature jump at the walls. The gas velocity (Ug) and temperature 

(Tg) have different values than the surface values (Us and Ts). The NSF can be extended in 

this regime by using the Maxwell’s velocity slip [3] and Von Smoluchowski’s temperature 

jump boundary conditions [34]. In this regime, we find micro gyroscope accelerometer, 

flow sensors, micro nozzles and tight gas reservoirs as the pore diameter decreases.  

 

Transition Regime: This regime can be characterized as the most difficult regime for 

modeling and describing the flow and it attracts most of the research in our days. In the 

transition regime, the NSF equations are no longer valid and alternative methods should be 

adopted. The constitutive laws that define the stress tensor and heat flux are those that 

particularly break down and corrections (or extended hydrodynamics) are required. These 

extended hydrodynamics models equations are usually derived from the Boltzmann 

equation based on the Chapman-Enskog expansion of the velocity distribution function, ƒ. 

The Boltzmann equation can also be used in this regime since is valid at microscopic level. 

However, it is difficult to obtain an exact solution of the Boltzmann equation due to the 

non-linear nature of the collision integral.  The direct simulation Monte Carlo (DSMC) 

method offers an alternative way of solving the Boltzmann equation indirectly [35]. DSMC 

is the dominant method for solving problems in the transition regime. In the transition 

regime, we usually find applications such as hard disk drive and unconventional gas 

reservoirs where the mean free path (λ) becomes comparable to the characteristic length of 

the flow domain (L).  

 

Free Molecular Regime: In this regime, intermolecular collisions are rare and the mean 

free path is very large compared to the characteristic length of the flow system. The 

collision-less form of the Boltzmann equation is used as continuum fluid models fully break 

down. In this regime, the collision integral can be neglected and the Boltzmann equation 

can be solved. In this regime, we regularly find applications in the aerospace industry and 

planetary science. The DSMC can also be used.  

1.3. Kinetic Theory of Gases and Boltzmann Equation  
 

Kinetic theory of gases uses statistical based methods to describe dilute gas. Using 

probability theory and statistical mechanics it presents the gas properties using microscopic 
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interactions and collisions between molecules. The molecular collisions are considered 

always as binary collision in the kinetic theory of gases since the gas is dilute and it very 

unlikely that in a single collision event, three or more molecules will be involved.  Using 

the probability theory, it calculates macroscopic phenomena and values from the dynamic 

of molecules at a microscopic level [35].  

Starting by using classical Newtonian mechanics, the equations that describe the motion 

for all in a system can be expressed as: 

 

 
𝑚
𝑑@𝑟B
𝑑𝑡@ = FBE,

G

HIJ
HKL

 

 

(1.2) 

 

where m is the mass of a single molecule, 𝑟B is the position of that certain molecule. Fij 

represents the forced imparted in molecule i by molecule j. Like in the molecular dynamics 

(MD) technique which is a deterministic technique, the above equation is solved. Despite 

the new advances in high performance computers (HPC) and the use of parallelization 

techniques, MD are restricted in small scales and the time steps are often restricted to 

femtoseconds.  The main objective is to use probability theory together with averaging 

methods in order to obtain the macroscopic properties from microscopic data. In order to 

reduce the statistical noise there should be sufficient number of particles where the 

properties are being calculated from. It should be noted that dilute gas systems is usually 

assumed that all of the molecule energy is fully kinetic (ideal gas). Even though the kinetic 

theory can describe polyatomic gases and mixtures, the internal degrees of freedom 

dramatically increase and this makes the model extremely complex and infeasible to be 

solved. 

The dilute gas approximation in conjunction with the molecular chaos along with the 

kinetic theory lead scientists to the formulation of the Boltzmann equation which starts 

from the Liouville theorem.  

First, Maxwell in 1859 introduced his model of distribution of molecular velocities and he 

showed that a certain number of molecules have particular velocity within a specific range 

[36]. The Maxwell theory is generalized and called nowadays Maxwell-Boltzmann 

distribution. Several properties can be obtained from the Maxwell-Boltzmann distribution. 

Figure 1.1 illustrates the Maxwell-Boltzmann molecular speed distribution of oxygen at 

two different temperatures, 173K and 300K.   
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Figure 1-1: Maxwell-Boltzmann molecular speed distribution for oxygen gas 

 

Starting from the Liouville equation, which is fundamental in statistical mechanics the 

Boltzmann equation is derived. In principle, the Liouville theorem is six-dimensional space 

equation where three coordinates describe the velocity-space and three coordinates describe 

the location in physical-space. The Boltzmann equation for a single species and 

monoatomic gas can be written as follows: 

 

 
𝜕(𝑛𝑓)
𝜕𝑡

+ 𝑐
𝜕(𝑛𝑓)
𝜕𝑟

+ 𝐹
𝜕(𝑛𝑓)
𝜕𝑐

= 𝑛@
TU

V

W

XW
𝑓∗𝑓Z∗ − 𝑓𝑓Z 𝑐\𝜎dΩd𝑐Z 

 
(1.3) 

 

Where f is the velocity distribution function, n is the number density, F is the external body 

force, r and c are the position and velocity vectors respectively. The subscript * indicates 

the post-collision values and f, f1 are distribution function of two different types of 

molecules (c,c1), σ is the collision cross section and Ω is the solid angle. The Boltzmann 

equation can be employed to describe flows in all flow regimes. If the assumption of binary 

collisions and molecular chaos are met the equation can be used. Although the Boltzmann 

equation is valid for all Kn numbers it is enormously expensive to solve numerically even 

with the new capabilities with modern computers because of the non-linearity of the 

collision integral. In order to facilitate analytical solutions, simplified models for the 

collision integral are often proposed. Among these models is the Bhatnagar, Gross, Krook 

(BGK) model. Within the Boltzmann equation two prerequisites should kept in mind: 

Firstly, the fact that it is available only for dilute gas and only for binary collisions. During 
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collisions between molecules of class c and class c1 , the distribution function f of molecules 

of class c has been assumed to be uncorrelated with the distribution function f1 of class c1 

[5] .  The above equation is for single component or monatomic gas. However, in nature 

most of the gases are polyatomic gases where there is exchanges of translational and 

internal energies and more transport coefficients need to be introduced. Boltzmann 

equation is used for low Mach number flows and simple geometries. The first or the second 

(even the third) approximation of Chapman-Enskog expansion can be employed in order 

to solve the Boltzmann equation [37]. The first order approximation corresponds to the 

standard NSF set of equations. The second order approximation is the complex non-linear 

Burnett equations. The third order approximation is called super-Burnett equations. The 

Burnett and super-Burnett aim to be valid in the transition regime and extend the continuum 

fluid like models. However, there are concerns that higher order Burnett equations are not 

thermo-mechanically consistent and violate thermodynamic principles.  

1.4. Unconventional Gas Resources 

 
According to the U.S. Energy Information Administration (EIA) data the production of 

shale and tight gas consists more than 40% of the U.S natural gas production. As it can be 

seen in Figure 1.2 the production of shale and tight gas is expected to reach 55% by 2040. 

It is estimated that in the U.S the reserves from shale gas are estimated to be 500 – 1000 

trillion cubic feet (tcf) [38]. Previous works have shown that production from source or cap 

rocks can be economically substantial.  

The substantial amount of natural gas that can be found in tight and shale gas formations 

has enhanced research about transport phenomena occurring in such porous medium.  Most 

of the gas production from such formation occurs in the source rock where low permeable 

formations are usually found [39].  

 



 9 

 
Figure 1-2: US dry natural gas production (projected) 

 
Flow and recovery mechanisms in shale and tight gas reservoirs can be substantial different 

from those that occur in conventional gas reservoirs. Shale and tight gas reservoirs are 

usually ultra-tight rocks with relatively low pore connectivity and extremely low 

permeability. Pore sizes in shale matrix usually ranges from some nanometres to several 

hundreds of nanometres and under such conditions the pore sizes are comparable to gas 

mean free path. Unconventional gas reservoirs for example, can exhibit multi-mechanism 

flow which can be a combination of Darcy flow, Knudsen diffusion and the so called 

Klinkenberg effects [40].  

In order to improve the production from shale and tight gas reservoirs it is crucial to 

understand the gas flow mechanisms. Under conditions that exhibit in shale and tight gas 

reservoirs the flow is often in the slip flow and transition regime where standard Navier-

Stokes equations fail. This will be further discussed in the next Chapter.  

1.5. Project Objectives 
 
The objective of the current project is to develop continuum based methods that are able to 

describe gas flows in all rarefied flow regimes. In this work, the developed hydrodynamic 

models are compared with experimental data and other discrete methods that are widely 

used in order to describe rarefied gas flows. A detailed analysis, is performed on the 

proposed models in order to assess their ability to capture non-equilibrium phenomena in 

the whole range of Knudsen number.  

In the present study, the incompleteness of the standard continuum based Navier-Stokes 

equations to describe rarefied gas is presented through several problems. These serve as the 

basis of the need for new continuum based methods.   
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The direct simulation Monte Carlo (DSMC) method is the dominant way to describe 

rarefied gas flows in our days. However, the computational cost of this method is 

extensively high and it restricts its application up to the transition regime. In our research, 

DSMC will serve as a benchmark way for the new hydrodynamic models.     

The objectives of the thesis are to develop and benchmark on the free open source Open 

Field Operation and Manipulation (OpenFOAM) package the proposed extended 

hydrodynamics models. The new codes are tested against existing experimental data, 

analytical solution and results from other discrete methods, like the DSMC. In this work, 

the codes are tested for micro- and nano-structures where non-equilibrium effects dominate 

the flow.  We fully present all the numerical results obtained from the proposed models in 

various configurations in nano and micro devices.  

1.6. Key Developments 

 
The proposed models are developed in a C++  Computational Fluid Dynamics (CFD) 

solvers in the OpenFOAM framework. In the OpenFOAM framework the solver for solving 

compressible flow based on Navier-Stokes-Fourier is called rhoCentralFoam. The solver 

was developed by Greenshields et al. back in 2009 [41]. This solver will serve as the basis 

for the extension in the continuum theory. The two proposed solvers will allow us to 

compare them with the rhoCentralFoam and DSMC method in order to find out their ability 

to describe non-equilibrium flow. The first solver is based on the Korteweg model. Beside 

the Korteweg model, a new model that is based on Volume Diffusion (or Bi-velocity) 

theory is presented in its theoretical manner and developed as extension to 

rhoCentralFoam. Each solver involves new velocity slip and temperature jump boundary 

conditions respectively. These new developments enable the application of such problems 

in micro geometries where MEMS and NEMS problems are usually found.  The DSMC 

method is used to benchmark the new solvers. In addition, the DSMC is used for several 

different cases that are outlined below.  

 

In more detail, the main contributions of this work are: 

 

a) Use for the first time DSMC along with micro-CT images and simulate rarefied gas 

flows in unconventional gas reservoirs. The use of such method (micro-CT) can 

generate a new area of research not only for tight gas reservoirs but for planetary 

science in order to study gas flows through comet nucleus.  
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b) Development of a CFD solver in the OpenFOAM framework as an extension to the 

rhoCentralFoam. The solver is based on the volume diffusion (or bi-velocity) 

hydrodynamics and named HWrhoCentralFoam from the initials of Heriot-Watt 

University. 

c) Development of a CFD solver based on the Korteweg fluid like model as an 

extension of standard Navier-Stokes equations.  The solver is named 

CCrhoCentralFoam 

d) Benchmark of  HWrhoCentralFoam against DSMC and standard Navier-Stokes in 

lid-driven micro- cavity in a rarefied regime. 

e) Benchmark of HWrhoCentralFoam against Navier-Stokes-Fourier in a mixed-

convection problem. 

f) Comparison of HWrhoCentralFoam and CCrhoCentralFoam against experimental 

data and analytical solutions mass flow rate in a micro-channel in the whole range 

of Knudsen number. 

g) Development of new boundary conditions based on the Maxwell and Smoluchwski 

boundary conditions, in order to incorporate the new terms that have been added in 

the HWrhoCentralFoam and CCrhoCentralFoam. 

 

1.7. Thesis Outline 

 
In Chapter 2 we describe in detail the direct simulation Monte Carlo (DSMC) method 

which is the dominant method for simulating rarefied gas flows. The results that are 

obtained with our new volume diffusion (or bi-velocity) model are compared with the 

DSMC and with experimental data where these are available. In this chapter, the equations 

and methodology that DSMC uses to obtain macroscopic gas properties is also described 

in detail.  

The application of rarefied gas dynamics in porous media is of great interest and we 

describe the current challenges that the oil & gas industry is facing nowadays. The 

application of DSMC in porous media is investigated in Chapter 3. The application of 

DSMC was achieved by obtaining the porous structure with micro-CT imaging tool. The 

methodology of micro-CT is briefly described as it offers a great tool for applying discrete 

and hydrodynamics methods in porous media.  

In the next chapter, we perform an in-depth description of the volume diffusion and 

generally in hydrodynamics continuum models that have been developed during the past 

years. The development of the solvers in the OpenFOAM is extensively described.  
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Chapter 5 is used as a benchmark of our new compressible solvers and application of the 

volume diffusion theory and Korteweg model micro scale problems. A micro cavity case 

is tested and evaluated between NSF, DSMC and volume diffusion. In addition, a mixed-

convection case is also evaluated against the standard NSF. Finally, the volume-diffusion 

is tested against experimental data of mass flow rate in a micro-channel. The application of 

analytical solutions that arise from the volume-diffusion theory for predicting permeability 

of tight gas porous media are explained and offer an alternative area of applying this 

method.   

The key findings from the current research are discussed in Chapter 6. The results enabled 

the discussion about the future work that can be done based on the observations.  

 

1.8. Published Papers 
 
 
In the present thesis, the papers below have been published or submitted for publication in 

peer reviewed journals and conferences: 

 

 

1. Chariton Christou. and S.Kokou Dadzie, "Numerical Simulations of Rarefied Gas-

Flows in microchannels". Physical Review Fluids, Submitted 

 

2. Chariton Christou, and S. Kokou Dadzie. "An Investigation of Heat Transfer in a 
Cavity Flow in the Noncontinuum Regime." Journal of Heat Transfer139.9 (2017): 
092002. 
 

 

3. S. Kokou Dadzie and Chariton Christou, Bi-velocity gas dynamics of a micro lid-
driven cavity heat transfer subject to forced convection. International 
Communications in Heat and Mass Transfer, 2016. 78: p. 175-181. 
 

 

4. Chariton Christou, and S. Kokou Dadzie. "Direct-simulation Monte Carlo 
investigation of a Berea porous structure." SPE Journal 21.03 (2016): 938-946. 

 

 

5. Chariton Christou and S. Kokou Dadzie, 2016, July. Effects of volume diffusion in 

heat transfer in a cavity flow in non-continuum regime. Proceedings of the 30th 

International Symposium of Rarefied Gas Dynamics: AIP Conference 
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6. S. Kokou Dadzie and Chariton Christou, 2016, July. An investigation of Mixed-

Convection in a Rarefied Gas. Proceedings of the 30th International Symposium of 

Rarefied Gas Dynamics: AIP Conference 

 

7. Dadzie, S.K., Tubby, W.G. and Christou, C., NEGF2015/5 Investigation of various 

permeability laws in tight porous media. 

 

 

8. Chariton Christou and S.Kokou Dadzie, 2015, February. Direct Simulation Monte 

Carlo Method in Porous Media with Varying Knudsen Number. In SPE Reservoir 

Simulation Symposium. Society of Petroleum Engineers. 
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Chapter 2  
 

 

2.The direct simulation Monte Carlo 
method 

 

 

In this chapter, we briefly describe the direct simulation Monte Carlo (DSMC) algorithm 

and its possible applications in different type of problems. The aim of the chapter is to 

illustrate the importance of the DSMC method.  Capabilities and areas of applications of 

the DSMC method are discussed. 

 

2.1. DSMC Method 
 
DSMC was invented by Graeme A. Bird in 1963 [42]. The method is based on the kinetic 

theory of gas (subject to the molecular chaos). It does not aim to solve the Boltzmann 

equation directly but to mimic it.  DSMC and Boltzmann equation are based on the same 

physical principles. In other words, the Boltzmann equation plays a fundamental role in the 

origin of DSMC. The molecular collisions are considered in a probabilistic way rather than 

deterministic.  A simulated particle represents a number of real gas molecules. This belongs 

to the concept of molecular dynamics, which their concept is to simulate in particle level, 

but to restrict the number of molecules to a tractable figure. The number of simulated 

particle should be large enough so as to represent the global distribution of the real gas 

molecules. On the other hand, at the same time the number of simulated particles should 

be kept small enough in comparison to the real number of molecules. This is used in order 

to reduce the computational time of the simulations and in order to be able to run on the 

most advanced computers. It is stochastic particle-based method and the basic concept of 

it is to track every simulated particle in time and space and at the same time modifying its 

velocity components and position coordinates which are stored in memory through their 
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collisions and interaction with boundaries. Beside the fact that each simulated particle can 

represents a real number of molecules, another advantage of DSMC over molecular 

dynamics (MD) is that it can treat particle collision stochastically rather than 

deterministically.  

The DSMC method is based in the sense that the particle motion and intermolecular 

collisions are decoupled over discrete time steps of magnitude Δt. During a step Δt, each 

simulated particle travels a certain distance based on its velocity and then collision with 

another particle is executed. The time step should be small enough in respect to the mean 

free time, which can be defined as the average time between two subsequent collisions of 

a single molecule. The computational mesh is required, as in standard computational fluid 

dynamics (CFD) methods to perform near-neighbour collisions and to get the macroscopic 

properties. The flow field is divided into cells with linear size of Δx. The size of Δx should 

be small in comparison with the mean free path and it should be kept in general smaller 

than λ/3 [43]. The way that the collision pairs are chosen and how many of them are taking 

action is a key issue in ensuring the consistency of the method. The cells of it can be easily 

adapted to any geometrical shape and it can be applied in a variety of complex geometries 

(i.e porous medium). 

DMSC becomes popular during the 1970s due to an experimental verification obtained for 

a space shuttle in the transition regime [44]. In more detail, Bird used the DSMC to study 

the shockwave structure not only in single species but in gas mixtures as well [45]. The 

introduction of the Larsen-Borgnakke [46] model which restricts energy transfer in an 

inelastic collision between translational and rotational model which added later offered 

another option when dealing with polyatomic gases collisions.  In order to simulate realistic 

collision rates, and keep the computational level in a minimum level the no-time-counter 

(NTC) technique along with a sub-cell method are used and they become the standard 

approaches in DSMC [35, 47]. In this scheme, a particle pair is selected randomly within 

each cell, or within sub-cell regardless particles positions. Then, an acceptance-rejection 

procedure is followed. In the acceptance case a collision is performed between particles. In 

the case of rejection, a new particle pair is selected and this procedure (acceptance-

rejection) is repeated until the required number of candidate pairs in a selected cell at the 

set time step has been selected.  This indeed improves the accuracy of the DSMC by 

incorporating the collisions of particles with one other. In 1966 an experiment was 

performed of the shock wave problem for obtaining the molecular velocity distribution. 

The results were not published since they proved to be inconsistent with that time (1966) 

theoretical results. However, after 23 years (1989) these results get compared with DSMC 
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simulations and proved to be consistent [48]. That verification gave the DSMC the 

recognition. Along the most important challenges that DSMC faced was the scepticism 

regarding the relationship of it with the Boltzmann equation and if it does really solve it. 

In 1992 Wanger proved mathematically the convergence between DSMC and Boltzmann 

equation when he compared these two methods for a monoatomic gas in limiting case. 

DSMC can be characterized as a highly intensive method due to the need to track large 

number of particles and at the same time compute and store large number of collisions. 

Another important aspect is that in order to reduce the statistical scatter (or noise) a large 

number of time steps are required. Parallelization techniques can be used to reduce the 

computational time. Modern computing platforms, like High Performance Computers 

(HPC) can work with this method and reduce the computational time dramatically.  

Recently, a GPU (Graphics Processing Unit) code [49] has been developed and proved that 

the computational time can be reduced reasonably in comparison with a CPU code. 

 

2.2. DSMC Algorithm 
 
A DSMC simulation begins by dividing the flow field into several cell meshes by meeting 

the λ/3 criterion. The time step, Δt, is set next smaller than the mean collision time. The 

next step is to impose the simulated particles and the number of real molecules that each 

DSMC particle represents.  The molecular properties of the gas are then set by defining the 

molecular mass, m, the macroscopic density, temperature, T, and velocity that will be used 

to calculate the initial thermal velocity (from the Maxwell-Boltzmann distribution) at the 

set temperature for the DSMC particles. The next step is the selection of the intermolecular 

collision model between the Variable Hard Sphere (VHS), the Hard Sphere (HS) and the 

Variable Soft Sphere (VSS). The last part is to set the gas-surface interaction model, which 

can be selected, from a variety of available models. Figure 2.1 represents the basic 

flowchart (algorithm) that is being followed in a typical DSMC solver. This can be 

summarized in four steps: 1) move particle over the Δt time step; 2) apply the boundary 

conditions by introducing new particles at inlet boundaries, removing them from outlet 

boundaries and processing them for reflections with solid boundaries; 3) sort particles into 

the computational mesh and calculate the intermolecular collisions; 4) sample the average 

particle information. 
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Figure 2-1 DSMC algorithm flowchart 

 
 
 
Particle Movement 
 
The first of part of the simulation (algorithm) is to move a particle, i through the distance 

that is being determined by its velocity ci and the time step Δt. The new position is being 

calculated by the equation: 

 𝑟B,`ab = 𝑟B,cde + 𝑐B𝛥𝑡 
 (2.1) 
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The particles are inserted at the inflow boundaries and interactions with the boundaries are 

dealt within this step. There are three different types of boundary conditions model that are 

commonly used in DSMC. The first one deals with the flow particle across the inlet to 

obtain the desired freestream conditions. 

At the inlet, the particles are inserted based on the equilibrium Maxwellian number flux 

(molecular) across a boundary 𝑁B`: 

 

 
𝑁B` =

𝑛B`

𝛽(2𝜋
Z
@)

exp −𝑠@𝑐𝑜𝑠@𝜃 + 𝜋
Z
@𝑐𝑜𝑠𝜃(1 + erf 𝑠	𝑐𝑜𝑠𝜃 )  

 
(2.2) 

 

With 

 𝛽 =
𝑚

2𝑘v𝑇B`

Z/@
 

 
(2.3) 

 

and 

 𝑠 = 𝑐VLy𝛽 
 (2.4) 

 

 

where the subscript in denotes the properties at the inlet, n is the number density, θ is the 

angle between the velocity vector 𝑐VLy and the inlet. Where 𝑘v is the Boltzmann constant 

and Tin is the inlet temperature. The outlet procedure consists in deleting the particles that 

leave the system. 

In 1879 Maxwell proposed the first gas-surface interaction model for the kinetic theory of 

gases [50]. In this type of model a gas-surface interaction can be treated as specular or 

diffuse. When we have specular reflection, the surface is perfectly smooth and elastic. The 

particle velocity (normal to the surface) is reversed and those that are parallel to the surface 

remain unchanged. The diffuse reflection represents a microscopically rough surface. The 

velocity component is reset and the post-interaction velocity is not related with the pre-

interaction velocity. The post-interaction velocity is calculated based on the thermal 

equilibrium with the surface temperature and the direction of velocity is sampled from 

Maxwellian distribution with equal probability to all directions. In the case of a diffuse 

model, the user should have specified the accommodation that is required (Fig.2.2a)  
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(a)       (b) 

Figure 2-2 (a) Maxwell's diffuse and specular gas-surface interaction models and (b) Cercignani-Lampis-
Lord gas-surface interaction model 

 
 
Cercignani and Lampis (CL) in 1971 [51] proposed a new kinetic model for gas-surface 

interactions. The CL model is based on the definitions of αn and αt  which are 

accommodation coefficients for the kinetic energy and are associated with the normal and 

tangential components of velocity. As it can be observed from the Fig.2.2b, the reflect angle 

is function of the incoming particle angle. This model is quite simple and it has been used 

extensively. In 1991 Lord applied the Cercignani Lampis model to the DSMC simulations 

[52]. He also extended the model in order to have the ability to have diffuse reflections 

with incomplete energy accommodation and to account rotational and vibrational energy 

exchange at the surface. The model took its final form and applied to DSMC by taking the 

name Cercignani-Lampis-Lord (CLL) model.  

 
Particle Collisions 
 
Particles that are removed from the domain through the boundaries need to be re-inserted 

before the intermolecular collisions start. Collisions are treated probabilistically. The 

intermolecular collisions pairs are selected within the same cell. The sub-cell method can 

also be used in order to perform the intermolecular collisions in the same cell. Bird’s NTC 

scheme is the standard approach to perform the correct number of collisions. Particle i is 

chosen in random order (from all available particles) in the current cell and another particle 

j is chosen from the same cell to ensure neighbour collisions. Each pair is tested and the 

collision is accepted when: 

 

 
𝜎𝑐\ BE

𝜎𝑐\ z{|
> 𝑅� 

 
(2.5) 
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where Rf  is the random fraction which can take values between 0 and 1 and 𝜎	is the 

maximum product of collision cross-section and 𝑐\ is the relative speed between the pair . 

The probability of a collision to occur in the cell is given by: 

 
𝑃�cdd =

𝜎𝑐\
(𝜎𝑐\)z{|

 

 
(2.6) 

 

The NTC scheme is then used in order to achieve the correct collision rate. The number of 

possible collision pairs to be selected in a cell with N simulated molecules over the time 

step Δt is as follows: 

 
1

2𝑁 𝑁 − 1 𝐹G
(𝜎𝑐\)z{|𝛥𝑡/𝑉�add 

 
(2.7) 

 

where FN is the number of real gas molecules that the DSMC particle represents and Vcell  

is the volume of the cell. 

If we consider intermolecular collision (a collision between two molecules) with mass mi 

and mj   with velocities ci and cj respectively. The conservation of mass and momentum 

requires that: 

 𝑚B +𝑚E = 	𝑚B
∗ + 𝑚E

∗ 
 

(2.8) 

 

and  

 𝑚B𝑐B + 𝑚E𝑐E = 	𝑚B
∗𝑐B∗ + 𝑚E

∗𝑐E∗ 
 

(2.9) 

 

Where m* and c* denotes the post-collision mass and velocity component respectively.  

For elastic collisions, the centre of mass velocity can be defined as: 

 𝑐z =
𝑚B𝑐B + 𝑚E𝑐E
𝑚B + 𝑚E

=
𝑚B𝑐B∗ + 𝑚E𝑐E∗

𝑚B + 𝑚E
 

 
(2.10) 

 

and we know that: 

 
𝑐\ = 𝑐B − 𝑐E	and 𝑐\∗ = 𝑐B∗ − 𝑐E	∗ 

 
 

(2.11) 

 

The pre-collisions velocities can be obtained by combining equations (2.9) and (2.10): 

 𝑐B = 𝑐z + zH

zL�zH
𝑐\    and    𝑐E = 𝑐z − zL

zL�zH
𝑐\ (2.12) 
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and the post-collision velocities are: 
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zL
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∗
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(2.13) 

 

When considering the translational energies associated with the collision we define the pre-

collision translational energy as: 
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1
2𝑚B𝑐B@

=
1

2 𝑚B + 𝑚E 𝑐z@
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(2.14) 

 

The centre of mass velocity is unchanged so the post-collision translational energy is: 
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(2.15) 

 

It should be noted that in case of chemical reactions the post-collision reduced mass may 

differ from the pre-collision value. 

 

Sample flow properties 

 

DSMC is a particle-based method and usually engineers are interested in macroscopic flow 

properties rather than the microscopic. The macroscopic flow properties are recovered in 

DSMC by statistical averaging of the microscopic data after all collisions have been 

processed. For simplicity, we restrict the discussion in this section to monoatomic gas 

where no chemical reactions are taking place. To calculate the macroscopic properties, the 

cell system is used. The method takes into account that each simulated particle represents 

a real number of molecules. We start from the number density 

 

 𝑛 =
𝐹G𝑁
𝑉�add

 

 
(2.16) 
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Where, 𝐹G is the number of real molecules in the system and 𝑁 is the average number of 

DSMC particles in the cell. 

  

The mass density of ρ is defined as: 

 𝜌 = 𝑛𝑚 
 (2.17) 

 

where m is molecular mass. The macroscopic velocity that is noted as c0, or u can be 

denoted as the mean value of the particle velocities, 

 𝒖 = 𝑐V =
𝑐G

B�Z

𝑁  
 

(2.18) 

 

The thermal or peculiar velocity 𝒄′ is defined as: 

 𝑐� = 𝑐 − 𝑐V 
 (2.19) 

 

The pressure tensor p is: 

 𝐩 = 𝜌𝑐��𝑐�� 
 

(2.20) 

 

The velocity components in x, y and z directions represented by u, v and w respectively 

 
𝑐Z� = 𝑢′, 𝑐@� = 𝑣′, 𝑐�� = 𝑤′ 

 
 

(2.21) 

 

The macroscopic pressure scalar P is defined as the average value of the three normal 

components 

 𝑃 = 1/2𝜌(𝑢�@ + 𝑣�@ + 𝑤′@) 
 

(2.22) 

 

The viscous stress tensor τ is computed from the negative of the pressure tensor 

 𝜏 = −(𝜌𝑐��𝑐�� − 𝑝) 
 

(2.23) 

 

The translational temperature which for a monatomic gas equals the overall temperature is 

defined by: 

 𝑇�\{ =
1
3𝑘�

𝑚(𝑢�@ + 𝑣�@ + 𝑤′@) 

 
(2.24) 
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Assuming that there is no rotational and vibrational energy we can proceed to the 

computation of the heat flux vector q 

 

 𝒒 =
1
2𝜌𝑐

��𝑢� 
 

(2.25) 

 

 

2.3. dsmcFoam 

 
In the present study, the dsmcFoam and dsmcFoamStrath are used within the framework 

of OpenFOAM, which, use C++ toolbox. The OpenFOAM is a free (available online) 

computational fluid dynamics (CFD) package under a general GNU license. Based on 

Bird’s method, dsmcFoam has previously been used to solve several engineering problems 

[53]. Complex geometries are treated using structured and unstructured meshes with the 

snappyHexMesh tool. The dsmcfoam solver is featuring with particle initialisation in 

complex systems, particle tracking in structured and unstructured mesh as well as transient 

or steady state simulations. Force measurement tools are also included in dsmcFoam that 

can be used in aerospace engineering problems. 

Originally OpenFOAM came with the solver named dsmcFoam which includes several key 

features that have been described previously. However, in several simulations the extended 

solver dsmcFoamStrath is also used. This other solver includes chemical reactions option, 

vibrational mode and the Cercignani-Lampis-Lord (CLL) model. Both codes are fully 

parallelized, which means that each case can be decomposed and run on the number of 

available core to the user. Post processing is usually made through Paraview or Tecplot in 

which dsmcFoam compatible. In order to use dsmcFoam solver the six stages that are 

usually followed are: 

1) Computational mesh generation 

2) Set up initial conditions (boundaries, freestream properties, time step) 

3) Initialise dsmc particles (dsmcInitialise) 

4) Start DSMC simulation (dsmcFoam) 

5) Once steady state solution is achieved, enable time averaging process.  

A typical decomposition of a simple rectangular in an eight cores machine is being 

presented in Figure 2.3 
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Figure 2-3: Typical Parallel Decomposition (Simple) 

 
 
 

2.4. Limitations of DSMC 
 
Despite the fact that DSMC is a powerful tool for simulating rarefied gas flows in high-

speed applications and especially for simulating high Knudsen number flows even in 

complex geometries it has several weaknesses.  

DSMC is a computationally expensive method to simulate flows even in the transition 

regime. In fact, the error and uncertainty is proportional to the square of the number of 

samples (or simulated particles) [54]. If we want to calculate the bulk flow velocity, this is 

estimated using the mean velocity of all simulated particles in a cell. This can lead to very 

slow convergence if we take into account that in order to reduce the error by a factor of 2 

we need to increase the simulated particles by four times. This then leads to a huge 

computational time. For Kn < 0.1 DSMC seems to be inappropriate based on computational 

resources that is needed in comparison with continuum based numerical methods. For such 

Knudsen number it would be computationally more efficient to use continuum models such 

as Navier-Stokes-Fourier with temperature jump and velocity slip boundary conditions.  

The cell size should be smaller than λ/3. This is a limitation that can lead to significant 

errors. Larger cell sizes may result in diffusion errors. Breuer et al. studied a Rayleigh flow 

and showed that cell sizes bigger than the mean free path can lead to higher apparent 

viscosity [55].  

Hadjiconstantinou showed that the error in transport coefficients is proportional to the 

square of the time step. In principle, a wrong choice of time step Δt can lead the molecules 
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to travel through several cells before colliding. He characterizes that as discretization crime 

[21].  

Each cell should contain at least 20 simulated particles. If we run a case of a 3D box in the 

dimensions of 1µm x 1µm x 1µm for Kn = 0.1 it will have at least 27000 cells. Taking into 

account the minimum number of simulated particles we will need for such simulation at 

least over half millions of simulated particles. If we combine the restrictions for the time 

step, we can understand that this cannot be achieved on a standalone computer and an HPC 

will needed.  

Another disadvantage of DSMC is the large statistical error especially in low speed gas 

flows. In principle, in order to reduce the statistical noise in flows in the magnitude of 1m/s 

a very long time averaging is required. These statistical fluctuations decrease with the 

square root of the sample. Even though there are modified versions of DSMC in order to 

treat such flows, it is thought that it is one of the biggest disadvantages of it [56]. 

Another problem is the uncertainties in physical input parameters. This is especially in the 

intermolecular collision models. For example, the hard sphere (HS), variable hard sphere 

(VHS) and variable soft sphere (VSS) models are ideal for different type of problems [5]. 

The standard hard sphere models are ideal for monoatomic gases or for gases with small 

rotational and vibrational non-equilibrium effects. If someone would like to simulate gas 

mixtures, then the VSS model should be used since it introduces an additional power-law 

parameter and can give the necessary flexibility for these cases.  

In the next chapter, we will discuss how these limitations and uncertainties can be 

overcome by the incorporation and use of other extended hydrodynamic models that are 

based on the continuum theory.  
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Chapter 3  

 
3.Hydrodynamic Models 
 
 
In the present chapter, we firstly review the fundamental problem of proposing extended 

hydrodynamic methods in order to describe fluid flow based on the atomistic view to the 

laws of motion of continua.  After that, we present our newly developed extended 

hydrodynamic models and their computational fluid dynamics (CFD) codes.  

 

3.1. Overview 
 
 
Description of fluid motion was a problem exhibited since ancient civilizations. The Greek 

mathematician and physicist Archimedes (of Syracuse) was the first to propose a scientific 

study of motion of fluid in his study On Floating Bodies nearly 250BC.  

Among the firsts that proposed their theory about fluid motion was Isaac Newton when he 

stated that the shear stress between layers of fluid is proportional to the velocity gradient 

in the direction perpendicular to the layers. In a historical overview, we find the Daniel 

Bernoulli equation in 1738 when he proved that pressure is proportional to the acceleration. 

In other words, the Bernoulli equation is approximate relation between pressure, velocity, 

and elevation. Among the most noted works is the one by Leonhard Euler (Bernoulli’s 

associate) when he applied the Newton’s second law of motion to incompressible fluid 

dynamics and presented the Euler equations. The heat conduction equation was later 

presented by Joseph Fourier. One of the most noticeable works was from the Claude Navier 

in 1822 when he introduced the element viscosity in the Euler equation for more realistic 

and vastly more difficult problem of viscous flows. The general theory of stress was 

expressed a year later by Cauchy and according to his law a stress tensor exists which maps 

the normal to a surface to the traction vector acting on that surface. The so-called Navier-

Stokes equations were published when George Stokes published the complete set of 

equations in 1845. Until 1850 the description of flow was based on the continuum theory.  

In 1872, Ludwig Boltzmann published the Kinetic Theory of Gases. In this work, the 
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famous Boltzmann equation was introduced.  It is the most celebrated nonlinear kinetic 

equation even today (after 150 years). In principle Boltzmann equation describes the 

dynamics of slightly rarefied gas by taking into account the free flight of the particles and 

their collisions. 

 
Figure 3-1 Fluid Mechanics Milestones 

Even today, with the high advances in computational resources Boltzmann equation can be 

used for limited problems. Rarefied gases attracted more interest after Boltzmann proposed 
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his equation. In that manner, Maxwell proposed additional terms in the standard Navier-

Stokes equations in order to explain thermal creep in rarefied gases. The Maxwell 

additional terms were proposed in 1879 and in other words are boundary conditions. In 

1893, Johannes Diderik van der Waals introduced the thermodynamic theory of capillarity 

under the hypothesis of a continuous variation of density. At that period, (late 1800s) more 

attempts were started in order to capture non-equilibrium effects with continuum methods. 

In 1900 David Hilbert proposed twenty-three problems in mathematics.  During the time 

of writing only nine have fully resolved. The 6th Hilbert problem is Mathematical treatment 

of axioms of physics. Even today, the problem remains actually controversial due to the title 

of it. From the scientific perspective, the 6th Hilbert problem can be described as going from 

atomistic view to the laws of motion of continua. Several attempts have been made until 

today now claiming that have solved the problem. Based on the van der Waals approach, 

his PhD student, Korteweg, proposed the dynamics equations for fluids with capillarity. 

Korteweg model, can be simply described as extended Navier-Stokes equations. Several 

years later, 1917, David Enskog presented a systematic derivation of the Navier-Stokes 

equations from the Boltzmann equation. In 1932, Chapman and Cowling refined Enskog 

method; the well-known Chapman-Enskog expansion. Three years later, Burnett, presented 

a series of equations derived from Boltzmann equations using the Chapman-Enskog 

expansion. 

The above, describes the historical timelines in fluid mechanics in order to solve fluid flow 

under any condition. However, one can notice from the milestones (Fig.3.1) that lot 

problems arise in rarefied gases. Based on this manner we describe below continuum based 

methods and the kinetic theory in rarefied gas flows [57].   

 

3.2. Hydrodynamic Models in Rarefied Gas Dynamics 

 
As described above and in previous chapter, the description of rarefied gas flows remains 

difficult to solve by continuum methods. The limits of many continuum models are usually 

tested in rarefied gases and this is due to the fact that they should capture non-equilibrium 

phenomena that occur in the atomistic level.  Crookes in 1876 (Figure 3.2), performed an 

experiment with radiometer showed that the radiation intensity is indicated by the rotation 

speed of the mounted vanes on a spindle enclosed in an evacuated glass bulb [58]. The 

rotation of the vanes is driven by the rarefied gas flow in the bulb due to the temperature 

difference across the vanes. In other words, the radiometer when it was exposed to light 

then the vanes turn. 



 29 

 

 
Figure 3-2 Crooke’s Radiometer 

The work from Crookes enabled the research in rarefied gases. In the rarefied gases, the 

inhomogeneity of temperature field that can lead to gas motion is called “thermally induced 

flows”. Based on the idea of surfaces of discontinuity Gibbs published the theory of 

capillarity. Gibbs, developed the equilibrium thermodynamics of interfaces theory. Just 

after the Crookes radiometer, he recognized that a liquid-vapour interface actually 

represented a rapid but smooth transition of physical quantities between bulk fluid values 

[18]. The flow that is induced in the direction of a temperature gradient in a rarefied gas 

long channel with a temperature gradient along it is called thermal transpiration 

phenomenon.  

The mysterious observations (at that time) from Crookes radiometer were explained by 

Maxwell’s revolutionary paper in 1879 in terms of thermal creep. The fact that the thermal 

creep is representing a strictly linear phenomenon according to Maxwell’s paper gave the 

full explanation for Crookes radiometer and Reynold’s thermal transpiration phenomenon 

in gases [3]. In 1893, van der Waals proposed gradient theories based on thermodynamic 

principles for the interface for non-isothermal multiphase fluids. He introduced an equation 

of state and based on that he showed that the liquid-vapour interface becomes infinite as 

the critical temperature is approached [19]. In more detail, Van der Waals introduced the 

term 𝑐 𝛻𝜌 @ in the energy density, where c is a capillarity coefficient and ρ is the density. 

The theory of continuous transition layers which developed by van der Waals gave very 

close results with the Gibbs theory. 
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Figure 3-3 Rarefied Gas Milestones 

 

 

Few years later, a Dutch physicist Korteweg, a PhD student of Van der Waals, published a 

paper presenting a constitutive equation for the Cauchy stress that included density 
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gradients [20]. Korteweg theory was proposed for multiphase flows (liquid-vapor) to 

analyse their structure phase transitions under static and dynamics conditions [59]. The 

proposed model was incorporating new terms in the stress tensor depending on the gradient 

of the density ρ. The additional terms in Korteweg stress tensor may be viewed as an 

additional contribution to the Navier-Stokes. This idea was proposed after Korteweg made 

some considerations on the possible interactions between molecules in two neighboured 

infinitesimals representing volume elements. These nonlocal interactions of the molecules 

within the interface appear in the stress tensor in terms of density derivatives. The material 

coefficients that appear in the Korteweg stress tensor should vanish in order to be 

compatible with conventional thermodynamics and the second law [59]. In 1929, Epstein 

quantified the phenomenon of thermophoretic particle motion in gases on the basis of 

thermal creep [60]. This work, showed the importance of thermophoresis in a wide variety 

of applications. The Korteweg work was reviewed by Dunn and Serrin in 1985 [59]. As 

mentioned earlier, Dunn and Serrin showed that the classical Korteweg stress tensor is 

incompatible with the classical thermodynamic principles. As a result of this they 

concentrate on developing a thermodynamic structure which retains the purely thermal 

Clausius-Duhem inequality. In other words, the modification that Dunn and Serrin 

introduced in the energy equation, an additional term called interstitial working, u, as the 

rate of supply of mechanical energy across every material surface of the body [61].  The 

work from Dunn and Serrin represents different modifications from the rational 

thermodynamics point.  

In a series of papers, Sone presented the so-called ghost effect and he showed that the heat-

conduction equation is not appropriate to describe the temperature field in a gas at rest in 

continuum limit [62, 63]. Sone, concluded later that we will not know the behaviour of the 

gas in the continuum limit unless we know what happens when the gas is rarefied [64]. 

This work pioneered research about continuum mechanics and the inappropriateness under 

certain conditions even at the continuum limit (or the limit where the mean free path of the 

gas molecules or the Knudsen number of the system tends to zero). In all of these works, 

Sone studied fluids (or gas) at rest and where the pressure is uniform and the temperature 

field is determined by the heat-conduction equation. The ghost effect describes when 

something that does not exist in the limit of Kn ≈ 0, but it exists for a finite Kn, gives a 

finite effect on the behaviour of the gas in this limit. Sone concluded recently in his book 

that the Navier-Stokes set are inconsistent and there is a necessity of convection term in the 

energy equation and another higher order term in the momentum equation [57]. In 2004, 

Howard Brenner, Professor at MIT published a paper where he started a discussion if the 
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volume velocity of a fluid is equal to its mass velocity [65]. By that time, it was believed 

that the mass and volume velocity of a fluid are equal. Brenner, was inspired by the 

thermophoresis phenomenon and added a diffusion term in the momentum equation and 

especially in shear stress tensor. A year later, Brenner concluded his work and modified 

the Navier-Stokes equations with appreciable density gradients that previously appeared in 

the Van der Waals theory [66]. The bi-velocity theory of Brenner (that’s how is called) was 

come to add some other observations similar to what Sone did a few years later but from 

different perspective. First of all, Brenner observed that the density variations are caused 

by variation in temperature (similar to ghost effect). His theory was tested in several works 

and it was proved to be better than standard Navier-Stokes [67, 68]. The bi-velocity 

hydrodynamics were completed upon recognizing the need to suggest requirement that the 

constitutive equations within the new theory satisfy a condition of mechanical equilibrium. 

A summary of the Korteweg type hydrodynamics is summarized in Fig. 3.3. The bi-velocity 

theory is applicable in compressible flows and usually not in incompressible since the 

density is constant in such flows. Brenner’s theory should be viewed as strictly continuum 

in nature [69]. Dadzie presented a fully thermo-mechanically consistent set of equations 

without Chapman-Enskog expansion. This work remains until today the most consistent 

work of the bi-velocity hydrodynamics that is fully stable [70]. That work has been tested 

later in several other problems within its simplified forms[71, 72]. 

3.3. Development of new Hydrodynamic Models 
 
 
The diffuse interface theories are dated back to the initial work from van der Waals. That 

work pioneered the work for non-classical continuum and thermomechanical principles. 

This was followed later by Korteweg as well as by Dunn and Serin. Dunn and Serin 

introduced the notion of an interstitial work-flux contribution in the energy equation 

beyond the classical Fourier heat flux [59]. In a very recent work from Gorban and Karlin, 

it was concluded that Korteweg model is the first post Navier-Stokes equation which 

remains inside continuum mechanics and at the same time captures some non-equilibrium 

kinetic phenomena [73].  
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Figure 3-4 The Stairs of Reduction[74] 

 
Figure 3.4 shows the stairs of reduction which actually lead from the reversible 

microdynamics to irreversible macrokinetics [74]. Based on the above description and 

observation we continue with the two new hydrodynamics models. 

 

3.4. Compressible Korteweg fluid like model  
 
From Van der Waals theory of capillarity authors noted that near a liquid-vapour phase 

transition a thermodynamic formulation of the fluid flow equations includes contributions 

from a density gradient-energy term. This formulation introduces in the momentum 

equation a capillarity stress tensor [75]. This stress tensor also referred to as the Korteweg 

stress tensor may written [76] :   

 𝜫𝒌 = 𝛽
1
2
∇𝜌 @ + 𝛾𝜌∆𝜌 𝚰 + 𝛼(∇𝜌 ⊗ ∇𝜌) 

 
(3.1) 

 

where ρ is the fluid density, I is the identity tensor and the term 𝛼	(∇𝜌 ⊗ ∇𝜌) also 

sometimes referes to as the Korteweg tensor. One can note in the above equation the 

importance of gradient of density in the Korteweg tensor which can confirms Van der 

Waals theory. The phenomenological coefficients α, β, γ are material function dependent 
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upon ρ and called capillary coefficients. Their exact value and expression  are still elusive 

[77]. From a dimensional analysis, they may be represented as:  

 𝑎 = 𝛽 = 𝛾 = 𝛼∗
𝜇@

𝜌�
 

 
(3.2) 

 
Where 𝛼∗ is a scalar. The standard Navier-Stokes may then be modified by adding the 

Korteweg stress Eq.3.1, to its viscous stress tensor   The derivatives of the density that 

appear in the above stress tensor arise from the nonlocal interaction of the molecules within 

the interface. 

 

A compressible Korteweg fluid flow equations is therefore written as:  
 
Conservation of mass  
 

 
𝜕𝜌
𝜕𝑡
+ ∇ ∙ 𝜌𝑼 = 0 

 
(3.3a) 

 
 
Conservation of momentum 
 

 
𝜕𝜌
𝜕𝑡
+ ∇ ∙ 𝜌𝑼 = 0 

 
(3.3b) 

 
 
Conservation of total energy 
 

 
𝜕
𝜕𝑡

1
2
𝜌𝑈@ + 𝜌𝑒B` + ∇ ∙

1
2
𝜌𝑼𝟐𝑼 + 𝜌𝑒B`𝑼 + ∇ ∙ 𝑝𝑰 + 𝜫 ∙ 𝑼 + ∇ ∙ 𝑱 = 0 

 
(3.3c) 

	
 
where the shear stress term 𝜫 is given by,  

 𝜫 = −2𝜇𝛁𝐔
°
− 𝜫𝒌) 

 
(3.4) 

 
composed of the standard Navier-Stokes stress component   

𝜫𝒏𝒔 = −2𝜇𝛁𝐔
°

 
With  
 

 ∇𝑼
°
=
1
2
	 ∇𝑼 + ∇𝑼 −

1
3
𝐈∇ ∙ 𝑼 

 
(3.5) 

 
 
with ∇𝑼 denoting the transpose tensor of ∇𝑼 and I the identity matrix. 
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and the capillary stress tensor is 𝜫𝒌, Eq. 3.1. 
 
The heat flux, 𝑱, is given here as: 
 

 𝑱 = −𝑘∇𝑇 
 (3.6) 

 
 

3.5. Bi-velocity model 
 

Kinetic derivation of the volume diffusion continuum equations is based on the inclusion 

of an additional transport term originating from particle molecular level spatial diffusion 

[70]. The changes on the stress tensor are based on density gradients as Van der Waals and 

Korteweg proposed.  

Two different macroscopic fluid velocities can then be derived based on different averaging 

methods. Bi-velocity method recognizes the appearance of two (conceptually) different 

velocities. In one hand, the mass velocity Um is proportional to the mass flux and is found 

in the continuity equation. On the other hand, volume velocity, 𝑼𝒗, accounts for variation 

in volume occupied by the mass. A volume flux density relates the two: 

 	𝑼𝒗 = 𝑼𝒎 − 𝑱𝒄 
 (3.7) 

 
 
Where: 
 

 
𝑱𝒄 =	 −

²³
´
∇	𝜌 

 
(3.8) 

 
    
with  𝑘z  an additional transport coefficient: the molecular (or volume) diffusivity 
coefficient.  
 
 
Figure 3.1 depicts the two different concepts of macroscopic fluid velocity.  Flux 𝑱𝒄 may 

be viewed as a molecular level diffusive flux associated with the gas molecule 

concentration and −𝑱𝒄 is the gas volume diffusive flux. The Um and Uv are both macroscopic 

concepts by definition. It should be distinguished that in the volume diffusion theory the 

fluid particle does not represent a simple point of mass but a volume element. The bi-

velocity −𝑱𝒄 is oriented in the direction from high density to low density in the case of 

compression and the reverse in the case of expansion. With no density variation,  𝑱𝒄  

vanishes.  
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Figure 3-5: Representation of the mass velocity, Um and volume velocity Uv. Both velocities are macroscopic concepts. 

a) The macroscopic motion of a fluid element in a fluid without density variations, b) macroscopic motion in a fluid 
with density variations. The volume diffusion particles are much larger than molecules. The amount of mass (number of 

molecules) remain the same 
	

 
A resulting bi-velocity hydrodynamics set of equations are written [72] : 

 
Conservation of mass  
 

 𝜕𝜌
𝜕𝑡
+ ∇ ∙ 𝜌𝑼 = 0 (3.9a) 

 
 
Conservation of momentum 
 

 𝜕𝜌𝑼
𝜕𝑡

+	∇ ∙ 𝜌𝑼𝑼 + ∇ ∙ 𝑝𝑰 + 𝜫 = 	0 (3.9b) 
 
 

Conservation of total energy 
 

 𝜕
𝜕𝑡

1
2
𝜌𝑼𝟐 + 𝜌𝑒B` + ∇ ∙

1
2
𝜌𝑼𝟐𝑼 + 𝜌𝑒B`𝑼 + ∇ ∙ 𝑝𝑰 + 𝜫 ∙ 𝑼 + ∇ ∙ 𝑱𝒖 = 0 (3.9c) 

 
 
where the shear stress term 𝜫 is given by,  

 𝜫	 = 	𝜫𝒗 − 𝜌𝑱𝒄𝑱𝒄 (3.10) 

 
 
 

 𝜫𝒗 = 	−2𝜇	∇[𝑼𝒎	X	𝑱𝒄]
°

 
 

(3.11) 

 
 

Uv 

Um 
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and the energetic heat flux, 𝑱𝒖, is given by,  

 

 𝑱𝒖 = 	𝒒𝒗𝒆 + 𝑝𝑱𝒄 
 (3.12) 

 
 
The specific internal energy of the fluid is 𝑒B` = (3/2)	𝑅𝑇.  

 

In the set of equations (3.9) 𝒒𝒗𝒆 is the entropic heat flux given by the Fourier’s law [70] :   

 

 𝒒𝒗𝒆 = 𝒒𝒗 + 𝜌𝑒B`𝑱𝒄 = 	−𝑘∇𝑇 
 (3.13) 

 
 
The volume diffusivity coefficient may be related to dynamic viscosity, 𝜇, as: 

 
𝑘z ≡ 𝛼

𝜇
𝜌

 

 
(3.14) 

 
 
where our investigation led to α  as a rarefaction dependent parameter: 

 𝛼 =
1

PrKn
 

 
(3.15) 

 
 
Τhe mean free path, λ was calculate as: 

 
𝜆 =

2 5 − 2𝜔 7 − 2𝜔
15

𝑚
2𝜋𝑘v𝑇

Z
@ 𝜇
𝜌

 

 

 

 

with ω the temperature coefficient and m the atomic mass [78]. 

By substituting Eq 3.15 into Eq 3.14 and then into Eq 3.8 we have the final expression of 

the effective volume flux: 

 

 
𝑱𝒄 =	 −

¿
À&ÁÂÃ�

∇𝜌 
 
 

(3.16) 

 

One can solve the bi-velocity equations, either by incorporating the new terms in the 

stress tensor or by solving directly for volume velocity 
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3.6. Computational Fluid Dynamics (CFD) Hydrodynamics solvers in 
OpenFOAM 

 

Numerical implementations of the two set of hydrodynamics equations are done on the 

OpenFOAM platform. These are adaptations of the solver rhoCentralFOAM which 

comprises of a finite volume (FV) discretization using semi-discrete, non-staggered central 

schemes for colocated variables prescribed on a mesh of polyhedral cells that have an 

arbitrary number of faces and solved on a three-dimensional unstructured mesh of 

polygonal cells. RhoCentralFOAM was initially developed to simulate compressible flows 

with better shock capturing [41]. In this work the discretization of a finite volume (FV) is 

achieved using semi-discrete, non-staggered central schemes as proposed by Kurganov and 

Tadmor [79]. In general, the computational domain is divided in continuous control cells. 

Faces are either parts of outside boundaries and interests only one cell or are part of internal 

mesh and interest two cells. For rarefied gases, the fluid properties are not transported only 

by the fluid flow but from propagation of waves as well. For this reason, the construction 

of flux interpolations is from a neighbouring cell to a given face only. The present solver 

is based on central-upwind schemes of Kurganov and Tadmor; first order in time, second 

order in space. By default, all OpenFOAM solvers are three dimensional. Each solver is 

density-based solver and it uses a more physical form of the equations described in section 

3. The solver initially starts with solving the inviscid version of the set of conservative 

equations in an iterative order. Density-weighted fields are calculated first. The momentum 

density is calculated from 𝑼 = 𝜌𝑼𝒎  and the total energy density  𝐸 = 𝜌𝛦. Where the total 

energy is 𝐸 = 𝑒B` +
𝑼𝒎 �

@
	. The set of equations are consequently solved then for ρ, 𝑼 and 

𝐸.  Based on these the temperature, T, is evaluated by the subtraction of kinetic energy 

from the total energy as:  

 T =
1
c#

E
ρ
−
𝐔𝐦 @

2  

 
(3.17) 

 

Where 𝐶É is the specific heat capacity at constant volume. 

 

The momentum and heat diffusion are introduced in the compressible Navier-Stokes, 

rhoCentralFoam solver by the inclusion of necessary diffusive terms in the governing 

constitutive equations. 𝑼𝒎 and T are evaluated explicitly since the momentum and energy 

equations are solved explicitly as noted in the inviscid version above. The following 

procedure will be completely explicitly and all new solutions at the current time level (Δt) 
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would be calculated from convection, diffusion and boundary conditions from the previous 

level (Δt-1).  

The solver starts with the solution of the momentum equation by solving for 𝑼: 
 

 
𝜕𝑼
𝜕𝑡 + 𝛻 ∙ 𝑼𝒎𝑼 	+ 𝛻𝑝 = 0 

 
(3.18) 

 

Mass velocity is then updated by solving 𝑼𝒎 = 𝑼/ρ. This step is done before solving a 

diffusion correction for  𝑼𝒎 

 

 
𝜕𝜌𝑼𝒎
𝜕𝑡 − 𝛻 ∙ 𝜇𝛻𝑼𝒎 + 𝛻 ∙ 𝜇𝛻𝑱𝒄 − 𝛻 ∙ 𝜫a|Ê = 0 

 
(3.19) 

 

Where the terms in the stress tensor containing inter-component, coupling are treated 

explicitly for both methods. For the bi-velocity method this explicit component of the stress 

tensor is:  

 

𝜫a|Ê = 𝜇	 ∇𝐔𝐦 Ë − ∇𝐉𝐜 Ë −
2
3 tr ∇𝐔𝒎 𝐈 + (

2
3)tr(∇𝐉𝒄)𝐈 

 

In equation 3.19 we note the appearance of the term 𝛻 ∙ 𝜇𝛻𝑱𝒄 , which is neglected for the 

Korteweg solver. The Laplacian terms from the deviatoric tensor ∇ ∙ 	 (𝜇𝛻𝑼𝒎) and ∇ ∙

	(𝜇𝛻𝑱𝒄) are implemented implicitly and they form coefficients within the solutions 

matrixes, rather than values in the source vectors. For the boundaries in 𝑼𝒎 and 𝑱𝒄 are also 

implemented implicitly and condition is applied by direct substitution of the gradients at 

boundary faces. Similar procedure is followed to implement Korteweg compressible fluid 

model where the additional explicit component of the stress tensor is now:  

 

𝜫a|Ê = 𝜇	 ∇𝐔𝐦 Ë −
2
3 tr ∇𝐔𝐦 𝐈 +

𝜇@

2𝜌� ∇𝜌
@ +

𝜇@

𝜌@ ∆𝜌 𝚰 + 𝛼∗
𝜇@

𝜌� ∇𝜌 ⊗ ∇𝜌 

 

To obtain the solution for the energy equation, similar procedure is followed by first solving 
for 𝐸 as: 
 

 
𝜕𝐸
𝜕𝑡 + ∇ ∙ 𝑼𝒎 𝐸 + 𝑝 + ∇ ∙ 𝚷 ∙ 𝑼𝒎 = 	0 

 
(3.20) 
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The 𝑼𝒎 has been updated by the new terms that appear in Korteweg and bi-velocity model 

as in Eq. 3.19.  The temperature, T is updated from 𝜌, 𝐔𝐦 and 𝐸 from the equation 4.1 

before solving a diffusion correction equation for T: 

 
𝜕 𝜌𝑐É𝑇
𝜕𝑡 − ∇ ∙ 𝑘∇𝑇 − 𝑘𝑚∇ ∙

𝑝
𝜌 ∇𝜌 = 0 

 
(3.21) 

 

Here, in our solver we only correct the additional term ∇ ∙ Ê
´
∇𝜌  in the bi-velocity model 

and it is treated explicitly. However, the additional heat flux component also exists in 

principle in Korteweg theory. As the application in the present investigation concerns 

isothermal gas flow in microchannel, actual solution to the energy equation is of less 

importance.  

 

Boundary Conditions  
 
Maxwell type first-order slip boundary conditions are adopted to accompany the different 

hydrodynamics equations.  In more detail, we used the slip boundary conditions as 

presented below [3]:   

 

 𝑼𝒎 − 𝑼𝒘 = −
2 − σ*
σ*

λ
µ 𝝉𝒗 −

3
4
Pr	(𝛾 − 1)

𝛾p 𝐣 

 
(3.22) 

 
 
n is the unit normal vector defined as positive in the direction of the flow domain. Where 

𝐔𝐰 is the wall velocity,  σ* is the tangential momentum accommodation coefficient and 

where  𝝉𝒗 is the new tangential shear stress,  𝝉𝒗 = 	𝐒 ∙ (𝐧 ∙ 	𝜫𝒗). The tensor 𝐒 = 𝐈 − 𝐧𝐧 and 

𝐣 = 𝐉 ∙ 𝐒 

Further to the Maxwell slip, Smoluchowski developed temperature jump conditions which 

is driven by the heat flux to the surface in the normal direction [34].  

 T − TØ = −
2 − σÙ
σÙ

2γ
(γ + 1)Pr λ∇𝐧T 

 
(3.23) 

 

∇𝐧≡ 𝐧 ∙ ∇ is the component of the gradient normal to the boundary surface and n is the unit 

normal vector defined as positive in the direction of the flow domain. Tw is the wall 

temperature; γ is the specific heat ratio and σÙ the thermal accommodation coefficient and 
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can take values from 0-1. Where 0 corresponds to perfect energy exchange between the gas 

and the boundaries and 0 to no energy exchange.  
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Chapter 4  
 
 
 
 

4. Flow Through Porous Media 
 
 
 
In the current chapter the flow through porous media will be discussed. A single-phase flow 

is considered. Firstly, it is aimed to describe the representation of the porous media in 

computational domain and then the different methods that are used to simulate the gas flow. 

We concentrate on flows in high Knudsen numbers (Kn ≈ 1) with applications in oil & gas 

industry and planetary sciences. 

 

4.1. Overview 

 

Accurate description of fluid properties through complex porous media is of great 

importance for various engineering applications, varying from natural gas reservoirs to 

comets outgassing. It also plays a key role in other geosciences applications, including CO2 

storage. Accurate description of gas flow through porous media will help enhance global 

hydrocarbon production and ensure energy supply. As for the application in planetary 

sciences, it will help understanding the outgassing flow near the surface boundary layer 

when comets are close to perihelion. From such results, future space missions in comets 

will take advantage.    

Conventional gas reservoirs consist of pore size in the range of 1 to 100 micrometers where 

shale gas reservoirs can have pores in the range of 1 to 200 nanometers. Pore networks in 

unconventional gas reservoirs consist of pore networks from mineral matrix and organic 

matter. Mineral matrix pores vary from nanoscale to microscale (10nm – 100 µm) whereas 

the organic matter lies only in nanoscale (10 – 750nm). Due to the existence of pores with 

several multitudes of sizes, transport in those types of reservoirs is a complex process at 

micro (10-6 m) to nano-scale (10-9 m) [26]. Production from unconventional gas reservoirs 

such as tight and shale gas are now key role players in the global energy market. In these 

types of reservoirs, the gas is stored in mineral pores or adsorbed into organic matter. 
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Natural gas reservoirs consist of methane (90%), nitrogen (5%) and carbon dioxide (5%) 

[31]. Understanding transport mechanism in micro (10-6 m) to nano-scale (10-9 m) in natural 

gas reservoirs is crucial for accuracy in reservoir simulations. Gas-surface interactions at 

molecular scale for CH4, which the natural gas reservoirs consist mostly of, are also of great 

importance. As Fig 4.1 illustrates, unconventional gas reservoirs have pressures in the 

range of 1 – 100 MPa [27]. Under those pressures and pore sizes the mean free path (λ) is 

comparable to the characteristic length of the pore and the gas is often in rarefied regime 

[5, 28] . Investigation of gas properties in unconventional gas reservoirs depending on the 

Knudsen number has been conducted by only few researchers [80, 81].  

 

 

 
Figure 4-1 Knudsen number versus pore diameter (nm) at different pressures for methane at 100 oC 

 

In nanopores the gas velocity and gas temperature near the walls are not zero [81]. 

Klinkenberg noted the gas slip on the walls in micro and nanopores [40]. He noticed that 

for pores where the diameter is comparable to the mean free path the gas molecules move 

forward into the transport direction. Klinkenberg also noted that the gas slippage is 

responsible for increasing permeability. He introduced an equation for calculating the 

permeability by introducing some correction factors. Due to the fact that on the 

Klinkenberg equation the permeability is inversely proportional to the pressure, the 

Klinkenberg effect can be found for a wider range of pore size with lower pressure. Several 

slip models (i.e Maxwell, Beskok & Karniadakis) have been proposed to correct the NSF 

for a wide range of Knudsen number. However, these models are generally inadequate for 

Kn > 1 and flow rate at nanoscale are greater than that predicted by Darcy’s equation [30, 

31]. Darcy’s Law, which was concluded from experiments and derived from continuum 
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methods (Navier-Stokes equations), is no longer valid without any slip modification [29-

32].  

Comets are consisting of high porosity material and their production rate from sublimation 

is in the range of 3 x 1019-21 molecules/m2/s. The Rosetta mission from European Space 

Agency (ESA) is for the first time that a spacecraft is orbiting a comet for such an extended 

period, from the onset to the activity through-out the perihelion passage. Outgassing flow 

from the onset to perihelion is purely rarefied, ranging from the transition regime to the 

free molecular regime. Understanding of the flow near the surface of a comet will help 

future missions and especially the landing operations.  

Gas flows in such conditions is rarefied which lies in the transition or free molecular 

regimes. As mentioned, standard continuum methods are not appropriate for simulating 

these flows. Further to the complexity of gas flow, the structure of the porous medium in 

direct simulations is another important factor.  

 

4.2. Pore Scale Modelling and Imaging 

 

In order to estimate rock and flow properties at larger scales, modelling the fluid flows at 

the pore scale of a porous medium can provide an excellent tool to study and understand 

the physics of transport phenomena in porous media. In the past, experimental methods 

were used to characterize the pore space. The most common method to estimate the 

porosity was the mercury injection (mercury porosimetry) [82]. However, mercury 

injection cannot provide pore size distribution and can only give a calculated effective 

porosity. This method is not appropriate for micropores. The pore scale of porous media is 

in the range of 10-9 to 10-4 m.  The modern methods in computers capabilities allowed the 

simulation in complex geometries (like porous medium) using parallelization techniques. 

An accurate description of flow in porous media at pore scale will allow scientists up-scale 

the observations to the reservoir and comet scale. The characterization of the pore geometry 

and complex porous media occur when direct imaging methods become available for small 

scales.  

Scanning Electron Microscopy (SEM) technology is a method for obtaining 2D images in 

a very high resolution (up to nanometer scale). This type of image was used in the oil and 

gas industry several years ago. However, with this method the connectivity of the pore 

space remains unknown. Under particular circumstances it can give good information for 

tight rocks, like unconventional gas.  Furthermore, FIB (Focus Ion Bean)-SEM is used to 
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generate very high resolution three-dimensional images of small rocks. It should be noted 

that this method is destructive.  

During the past decade, new techniques have been revealed and offer an alternative method 

to represent rock. To generate high resolution 3D images of a porous media in small scale 

the X-Ray technique is used [83]. This method is used with laboratory instrumentation and 

it is named as micro-computed tomography (micro-CT) and the instrumentation can be 

seen in Fig.4.2. Initially, micro-CT was used in biomedical applications.  

 

 
Figure 4-2 Micro-CT Imaging Scanner 

 

For the applications in the porous medium, the core sample rotates (360 degrees) and the 

X-Ray is recording from different directions and angles the movement in order to produce 

a 3D representation image of the rock (Fig 4.3a). Different algorithms are used to represent 

the void and solid spaces [84]. In order to remove the noise of the obtained image, several 

filters are applied.  In our days, the resolution of such scanning can be well over 1000 

voxels in each direction. The output from a micro-CT scanner is a grey scale binary image 

as it can be observed from Fig 4.3b with an extension of .raw. The binarized image uses 0 

and 1 to represent void and (or) solid. The first step of the image processing is to visualize 

the binary image with different type of software. The image can be cropped into a 3D cubic 

and finally segmented into void and space. The segmentation step is important since it will 

generate the mesh on the image. The final result will be a binary 3D image in a stereo-

lithography file format.  
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a)	 	 	 	 	 	 	 	b)	

Figure 4-3 a) Micro-CT Imaging Rotating b) Output Binary Image 

It is widely accepted that the micro-CT high-resolution 3D images provide an excellent 

opportunity to simulate gas flow directly on the rock image and investigate the mechanisms 

the govern the flow at the pore scale. This will give the necessary information to accurately 

calculate macroscopic properties of the rock such as porosity and permeability. This type 

of image in computer-based simulation can offer helpful insights into the gas flow physics 

in pore scale and predict flow properties in porous media.  

In order to simulate flow (single or multiple phase) through binary pore-scales images there 

are usually two ways to model the flow. The first technique is called direct modelling (Fig. 

4.4a). In this method, the pore space is discretized using Cartesian mesh as most of the 

open source CFD packages use. This is actually a direct approach of the geometry and can 

represent the pore space geometry reasonably well. On the other hand, due to the large 

number of cells high computational requirements are required. This is mainly due to the 

large memory that is needed to handle all the necessary information for each cell depending 

on the method that is used. This technique has previously been applied directly on pore-

space images using the Lattice Boltzmann (LB) method [85]. The particle-based methods 

are easily applicable in such type of direct simulations. However, they are facing the 

problem of tracking and saving particles properties and collisions. The recent advances in 

HPC science allowed us to use parallel computing to efficiently run such simulations with 

inconsiderable problems. To date, several studies have been carried out to simulate single 

or two phase flows using direct modelling on pore space images [86].  It is expected that 

direct modelling on pore image that are extracted from micro-CT scanners will face 

considerable interest from researchers in the following years.   

 



 47 

 

 

                    
a)        b) 

Figure 4-4 a) Direct Modeling b) Network Modeling 

The most computationally efficient flow model is the network modelling. Network 

modelling (Fig. 4.4b) has attracted particular interest in two-phase flows and especially for 

applications related with the oil & gas industry. For the network extraction modelling, 

initially the image geometrical description (or representation) has to be replaced by a 

simpler method than direct modelling taking into account pores and throats. In last decade, 

the developments in pore scale images drive the research for network extraction methods 

through complex porous media. Dong et al compared different network extraction models 

on 3D images and they presented a new model that they have developed in order to better 

represent complex porous medium [84]. Even if with network modelling the computational 

resources that are required are extensively lower than with direct modelling the uncertainty 

of network model that is used governs the skepticism for this method.  

 

4.3. Using DSMC in micro-CT images 

 

4.3.1 Pre-processing 

 

As it was described previously, several tight and unconventional gas reservoirs have single 

phase flows within the transition and free molecular regime with Knudsen number greater 

than 0.1. Flows that belong to these regimes cannot be simulated with standard Navier-

Stokes equations and new methods should be adopted. In previous chapter, it was described 

that the DSMC is the dominant method for simulating rarefied gas flows. Since tight gas 
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reservoirs incorporate rarefied gas flows, DSMC offers a great tool for predicting gas 

properties. For the first time (according to our best knowledge) the DSMC is applied on 

micro-CT images of rock samples using direct modelling. This will offer a better 

understanding of the flow physics at a pore scale in tight gas reservoirs. The knowledge 

that will obtained from the DSMC simulations in micro-CT images will give an in-depth 

knowledge for tight gas reservoirs.  

The main challenge of simulations with direct modelling of the micro-CT images is the 

representation of the geometry in the OpenFOAM framework. The micro-CT scanning 

technology offers an excellent tool to capture and represent porous rocks with a resolution 

of some microns. The images that we are using have been obtained from different micro-

CT laboratories and scanners. One of the biggest challenges in dealing with direct 

modelling is the computational effort of the simulations. A typical micro-CT porous 

medium image can have more than 2 million grid blocks.  A typical DSMC simulation 

time-step takes usually five minutes for this number of blocks in a single intel XEON 

3.2GHZ processor. Typical DSMC simulations require one hundred thousand time steps to 

converge. Even with recent advances in parallel computing with eight cores then this 

simulation would require more than forty days to finish. In principle, these simulations are 

unfeasible not only from cores resources but for memory as well. In order to minimize the 

computational time decomposition techniques are regularly used to decompose the mesh. 

This will give the option to run the simulations on inter-connected nodes (more than 2000) 

with reasonable higher memory.  

 

 

 

 

 

 

 



 49 

    
a)        b) 

Figure 4-5 Domain Decomposition a) Simple b) Scotch 

 

In OpenFOAM there are several techniques to decompose the computational domain into 

sections according to the available number of cores. The method that is usually used is the 

Simple package (Fig.4.5a).  It splits the domain into sections by direction. A new graph 

partitioning package that is called Scotch has been proved to be more efficient than Simple. 

The decomposition method splits the computational domain so that each processor has the 

same number of particles. It provides increased computational efficiency and improves the 

load balancing (Fig.4.5b). The Scotch in 64 processors offers reduction of computational 

time by over 35% in comparison with Simple technique. In cases like porous media 

obtained from micro-CT the decomposition method and parallel computing offers a useful 

tool to decrease the computational time. This will allow us to perform simulations on 

relatively big micro-CT images of porous rocks and make assumptions about macroscopic 

properties.  We are using a Berea sandstone with resolution of 10µm. Each of the 

simulations are run on 64 processors in parallel. The Scotch package is used to decompose 

the computational domain and HPC is used. 

 

4.3.2 Running Simulations 

 

A Berea sandstone, 56nm wide, with over 1 million computational cells is benchmarked 

with DSMC. The 3D geometry was obtained using a microcomputed tomography (micro-

CT) with size of 10243 voxels. The boundary surfaces as well as the rock and inlet gas 

temperatures are set to 300K. For all cases, we used fully diffuse reflection. In DSMC for 

the diffuse reflection the porous medium and velocity should be defined. Simulations 

contain, in all cases, 2 million DSMC simulator particles and solved in parallel with twelve 
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processors. All cases are pressure driven flow configuration with a set inlet pressure on the 

left-hand side and a set outlet pressure on the right-hand side as illustrated in Fig. 4.6. For 

all simulations, the gas is assumed to be methane where the properties are as given in Table 

4.1. The gas-surface interaction model that was used in our simulations was the Maxwell 

model [3]. The variable hard sphere (VHS) collision model is used. The parameter, T is the 

temperature, m is the atomic mass, ξ is the fraction of cΔt/λ, ω is the temperature coefficient 

and dref is the species reference molecular diameter. The values of the Tref, ω, ξ, and m are 

given in the table [35]. Initial velocity for all Knudsen numbers is the same. The Knudsen 

number variation is achieved by varying the density. 

 
Table 4-1:  Flow Simulations Details 

 

 

 
Figure 4-6 Simulations Configuration 

 

Three different Knudsen cases have been tested as detailed in Table 4.2. For all the cases 

the cell size was smaller than the mean free path in order to meets the λ/3 criterion. The 

cases were run within OpenFoam [87]. The DSMC code that it has been used in the present 

work its part of this open source code software. OpenFOAM uses finite volume (FV) 

numerics to solve systems of partial differential equations ascribed on any three-

dimensional unstructured mesh of polygonal cells. The 3D porous structure was imported 

in OpenFOAM to produce a three-dimensional unstructured mesh with polygonal cells to 

Specie λ Tref (K) ω dref(x10-10)  
(m) 

m(x10-27) 
(kg) 

ξ Time Step 
(s) 

CH4 VHS 300 0.84 4.83 26.63 6.4 1.3 x 10 -8 
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solve the flow equations. The DSMC method is implemented in OpenFOAM in a parallel 

solver called dsmcFoam.  

 
Table 4-2 Simulations Parameters 

Case Kn Pin(Pa) Pout(Pa) Pin/Pout 
I 0.037 300000 200000 1.5 
II 0.37 30000 20000 1.5 
III 3.7 3000 2000 1.5 

 

The representation of the 3D geometry was obtained using ImageJ software. The rock type 

is the Berea sandstone (Fig. 4.7) in all cases. Figure 3 shows the pore volume in the model. 

Red arrow is X-axis, yellow is Y-axis and green is the Z-axis. 

 

 
Figure 4-7 3D Simulated Berea Porous Sample 

 

The normalized velocity profiles for the three cases are shown in Fig.4:8. For the Kn = 

0.037 the velocity was normalized with the maximum velocity. The same procedure was 

followed for Kn = 0.37 and Kn = 3.7. The left side represents the inlet pressure and the 

right the outlet in all profiles. From the results, we observe a channel in the middle of the 

porous media where the maximum speed is achieved. Because of the porous media 

geometry, the empty space in the right corner affects the motion of the fluid and the 

maximum velocity. Furthermore, the empty space in the left upper corner prevents the fluid 

to travel in that channel. For a highly rarefied gas (Kn = 3.7) the maximum velocity is 

significantly smaller than for the smaller Knudsen number (Kn = 0.037). Near the outlet 

we observe a higher velocity again because of the outlet pressure and a parabolic shape. 

For a Kn  = 0.37, in the early transition regime, the same phenomena can be seen but with 

not so high velocities at the three main points (inlet, middle, outlet) because of the lower 
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pressures intermolecular collisions are taking place less frequently. At Kn = 3.7 a more 

uniformly distributed velocity profile can be seen.   

In order to demonstrate that the 20 particles per cell that were used in all simulations was 

the appropriate number, we investigate a case of Kn = 3.7 for 50 particles per cell. From 

Fig. 4.8d it can be stated that there is no noticeable difference with Fig. 4.8c where 20 

particles per cell were used. Any small variation may be attributed to statistical noises. As 

a result of this the statistical noise that appears in the results depends mainly in the nature 

of the method and not on the simulated particles per cell. By increasing the simulated 

particles per cell, it wasn’t observed any noticeable change on the properties of the gas (i.e 

velocity profile).    

 

 
a) b) 

 
  c)                                 d) 

Figure 4-8 Velocity profile; a) Kn = 0.037, b) Kn = 0.37, c) Kn = 3.7, d) Kn = 3.7 (50 particles per cell) 

 
The normalized velocity profiles in Fig. 4.9 are taken in a certain 2D (in the center) slice 

of the porous media. These show some statistical noises in the results, which increase as 

the Knudsen number increases. For a lower Knudsen number, with more simulated 

molecules in the simulation the statistical error is less than in higher Knudsen numbers 

where the number of simulated particles is more important. Because DSMC is a statistical 

based method, the number of simulated particles affects the results as mentioned 

previously. In order to solve these statistical noise problems, the number of simulated 

particles may be increased to a higher number than 20 particles per cell that were used in 

our cases. We also run a simulation for Kn = 3.7 with 50 particles per cell (Fig. 4.9d) and 
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compare with results with 20 particles per cell (Fig. 4.9c). The results indicate unnoticeable 

changes between the two. This is in agreement with previous author observations with 

regards to the appropriate number of simulated particles in a cell [53, 88]. Those studies 

were, however, for simple geometries like the lid-driven cavity configuration. Results from 

Fig. 4.9 indicate that the appropriate number of simulated particles per cell is between 20 

and 50 even for complex geometries like this porous structure. The velocity is higher at the 

outlet for the lower Knudsen number case and follows a parabolic like shape. Fig. 4.9 shows 

the higher velocity occurs near the outlet. For Kn = 3.7, the red color near the outlet shows 

the existence of the highest velocity at the outlet. This higher velocity is shown in the cases 

of Kn = 0.37 and Kn = 3.7 by the green and yellow color respectively. The higher velocity 

is explained by the low pressure at the outlet [89].  The lowest velocities are observed near 

empty spaces for all three cases. The higher velocity occurs in a continuous area (no empty 

spaces) at the outlet of the porous structure for the three Knudsen numbers. It is observed, 

however, that for the higher Knudsen number, the velocity is more uniformly distributed 

with less difference between inlet and outlet. This may be attributed to less intermolecular 

collisions as the Knudsen number increases. 

 
 a)                                 b) 

 
c)                                 d) 

Figure 4-9 Velocity profile; a) Kn = 0.037, b) Kn = 0.37, c) Kn = 3.7, d) Kn = 3.7 (50 particles per cell) 

	

Fig. 4.10 represents the velocity profile at the inlet of the porous medium. For Kn = 3.7 the 

profile is more uniform as the wall effects become important in the transport mechanism. 
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For Kn = 0.37 the velocity profile nearly follows the profile for Kn = 3.7. For Kn = 0.037 

a parabolic like shape can be observed and the classical NSF behavior is approached. For 

all Knudsen numbers, the velocity near the walls is non-zero; demonstrating Klinkenberg 

slippage effects [40]. Previous authors have also noted that velocity profiles under these 

conditions are non-parabolic profiles [89].  

 

 
Figure 4-10 Normalised velocity profile in the pore cross-section at the inlet of the medium 

 

Fig. 4.11 shows the velocity distribution at the center of the medium in the y direction. At 

the upper wall, it can be seen that the higher velocity is for a Kn = 0.37 and the lower for 

Kn = 0.037. However, nearly in the middle of the channel, Kn = 0.037 has the highest 

velocity while Kn = 0.37 has the lowest. This may be attributed in less intermolecular 

collisions that occur in higher Knudsen numbers. On the lower wall, as the Knudsen 

number increases the velocity increases. The velocity near the walls is non-zero showing 

the existence of slip. It is interesting to note that for all Knudsen numbers, at the center of 

the structure, the velocity profile is parabolic.  
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Figure 4-11  Normalised velocity profile in the pore cross-section at 1/2 of the medium 

 

Fig. 4.12 shows the velocity profile on a cross section at the outlet of the porous structure. 

It can be observed that as the Knudsen number decreases, a more parabolic like shape is 

obtained.  From these results the inadequacy of NSF is for Kn > 0.1, since the classical 

parabolic-like shape is approached for Knudsen numbers lower than that value [89]. The 

loss of the parabolic like shape may be attributed to more gas-wall interactions.  

 

 
Figure 4-12 Normalised velocity profile in the pore cross-section at the outlet of the medium 

Summarizing the above, from the velocity profile it can be concluded that Knudsen number 

plays an important role in the whole porous strata.  As the Knudsen number decreases, a 

more parabolic like shape can be observed for the three sections (inlet, middle, and outlet). 

This is more pronounced at the outlet of the flow domain. The parabolic like shape decrease 

as the Knudsen number increases. Firouzi et al. showed previously that as pores become 

smaller the velocity profile does not follow the classical NS parabolic like shape [89].  
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Figure 4.13 represent the computed normalized pressure profiles for the three cases. For 

Kn = 0.037 the pressure was normalized with the maximum pressure of 4077501Pa. The 

same procedure was followed for Kn = 0.37 and Kn = 3.7 where the maxima were 

451779Pa and 43212Pa respectively. The pressure profiles for the three different Knudsen 

numbers do not show a significant change in our simulations, as the ratio inlet/outlet is 

constant.  Higher pressures can be observed near empty space surfaces where compression 

phenomena occur. 

 

 

   
                         a)            b)                            c) 

Figure 4-13 Pressure Profile; a) Kn = 0.037, b) Kn = 0.37, c) Kn = 3.7 

Fig. 4.14 shows the pressure distribution across the middle and in X direction. For the three 

different cases a pressure drop can be observed at the outlet, which is the result of the 

inlet/outlet pressures ratios that have been set for all cases to the same, i.e at a ratio of 0.6. 

The similarity observed between the different pressure profiles for the three different 

Knudsen numbers may be explained by the same constant inlet/outlet ratio used in the three 

cases.  

	

 
Figure 4-14 Normalised Pressure Profile 
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Fig. 4.15 shows the normalized temperature profiles for the three cases. For the Kn = 0.037 

the temperature was normalized with the maximum temperature of 456K. The same 

procedure was followed for Kn = 0.37 and Kn = 3.7 where the maxima were 432K and 

415K respectively. For all the case an almost uniformly distributed temperature is observed. 

We also observed that, as the Knudsen number increases the maximum temperature 

decreases. We note that intermolecular collisions become more frequent as the Knudsen 

number decreases, which may explain the maximum temperature rise. There is a decrease 

of 23 degrees from Kn = 0.037 to 0.37 and 15 degrees from Kn = 0.37 to 3.7. 

 

 
                      a)          b)                              c) 

Figure 4-15 Temperature Profile; a) Kn = 0.037, b) Kn = 0.37, c) Kn = 3.7 

 

Figure 4.16 shows the temperature distribution across the middle of the porous structure. 

The results are in full agreement with the 3D profiles for the three different cases. The 

temperature stays constant along the system. 

 
Figure 4-16 Temperature Profile 
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4.4. Permeability laws in tight porous media 
 

In 1856, French engineer Henry Darcy first provided a relation which permits the 

measurement of fluid flow through porous media [90]. The ability of a fluid to pass through 

the interconnected pore spaces of a rock denotes the degree of permeability possessed by 

the rock formation and it should be noted that Darcy permeability is purely a function of 

pore geometry. Darcy also recognized that for the measurement of fluid flow through 

porous media, the force which causes the fluid to flow (pressure gradient) and the viscosity 

𝜇 of the flowing fluid must also be taken into consideration. Darcy’s law is given as: 

 

 𝑄 =
𝑘𝐴|Ý{𝑃
𝜇𝐿

 

 
(4.1) 

 

Klinkenberg was the first person in the oil industry to identify the phenomena of slip [40]. 

He discovered that the rate of fluid flow through porous media at very low pressures (such 

as in low pressure gas shales) was actually more than predicted by Darcy’s law. He 

hypothesized that this was because under these conditions the velocity of molecules along 

the pore walls is not zero and this occurs when the diameter of the pore approaches the 

mean free path of the gas. Klinkenberg proposed the following equation for apparent 

(effective) gas permeability 𝑘{ which takes into account the additional consideration of gas 

slippage: 

 𝑘{ = 𝑘W 1 +
𝑏²
𝑃

 

 
(4.2) 

 

where 𝑃 is the average pressure, and 𝑘W is the reference/intrinsic permeability, which is 

purely a function of pore geometry, and is given by: 

 𝑘W =
𝜙𝑟Ê@

8𝜏
 

 
(4.3) 

 
 
where 𝑟Ê is the pore radius, 𝜙 the porosity and 𝜏 the tortuosity factors   [91]. The slippage 

factor 𝑏² relates to the mean free path of the gas and is given by: 

 𝑏² =
4𝑐𝜆𝑃
𝑟Ê

 

 
(4.4) 

 
 
where 𝑐 ≈ 1. 
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Klinkenberg approach generally works well in slip flow regimes. Few studies have been 

undertaken investigating fluid flows in the transition region. In 1999, Beskok and 

Karniadakis published their work which looked at rarefied gas flows in a wide range of 

Knudsen number (0 ≤ 𝐾𝑛 < ∞) (Beskok & Karniadakis, 1999). This enabled Civan and 

Florence to approximate apparent permeability as a function of Knudsen number. Civan’s 

equation is as follows [91]: 

 𝑏² =
4𝑐𝜆𝑃
𝑟Ê

 

 
(4.5) 

 

 𝑘{ = 𝑘W 1 + 𝛼c
𝐾𝑛v

𝐴 + 𝐾𝑛v
𝐾𝑛 1 +

4𝐾𝑛
1 + 𝐾𝑛

 

 
(4.6) 

 

Extracting the data provided by Civan for flows in the transition region: A = 0.178, B = 

0.4348 and 𝛼V = 1.358.  

The model derived by Florence for transition flow can be expressed as [92]: 

 𝑘{ = 𝑘W 1 + 4𝐾𝑛  
 (4.7) 

 

It is clear that, from Eq. 4.6 and Eq. 4.7 apparent gas permeability in porous media depends 

on Knudsen number.  

The present study takes an analytical approach towards generating a new Knudsen number 

which complies with Cooper et al. experimental data and thus providing enhanced solutions 

to Knudsen number dependent apparent gas permeability correlations. 

 

4.4.1 Mean Free Path Analysis 

 

Expressions for the mean free path of a gas differ between researchers, although similarities 

do exist. The mean free path expressions investigated in this work all contain the following 

common factor: 

 𝜆 =
𝜇 2𝑅𝑇
𝑃

 

 
(4.8) 

 
Maxwell provides two correlations for the mean free path of a gas. The first is [50]: 

 𝜆 = 2
2𝑃
𝜋𝜌

Z
@
.
𝜇
𝑃

 

 
(4.9) 
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The density in Eq. 4.9 can be eliminated in favour of the pressure via use of the ideal gas 

law:  

 𝑃 = 𝜌𝑅𝑇 → 𝜌 =
𝑃
𝑅𝑇

 

 
(4.10) 

 

Therefore, Maxwell’s first expression becomes: 

 𝜆 = 2
2𝑃𝑅𝑇
𝜋𝑃

Z
@
.
𝜇
𝑃
=

2
𝜋
×	𝜆 

 
(4.11) 

 

The second correlation Maxwell provides is as follows: 

 𝜆 =
3
2
𝜇

𝜋
2𝑃𝜌

Z
@
 

 
(4.12) 

 

Again, eliminating the density in favor of the pressure via the ideal gas law furnishes the 

expression: 

 𝜆 =
3
2
𝜇
𝜋𝑅𝑇
2𝑃@

Z
@
 

 
(4.13) 

 

Multiplying Eq. 4.13 by 2 2 to obtain  𝜆 yields: 

 

 𝜆 =
3 𝜋
4

×𝜆 

 
(4.14) 

 

Roy and Bird both provide a correlation for the mean free path of a gas using the Chapman-

Enskog expansion for the coefficient of viscosity in a hard sphere intermolecular collision 

model gas [37]. Roy’s expression is as follows [81]: 

 𝜆 =
𝜇
𝜌

𝜋
2𝑅𝑇

 

 
(4.15) 

 

Application of the ideal gas law to eliminate the density yields: 

 𝜆 =
𝜇𝑅𝑇
𝑃

𝜋
2𝑅𝑇

=
𝜋
2
𝜇

𝑅𝑇
𝑃

 

 
(4.16) 
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Multiplying Eq. 4.16 by 2 2 to obtain 𝜆 gives: 

 𝜆 =
𝜋
2
×𝜆 

 
(4.17) 

 

Bird’s expression is as follows [93]: 

 𝜆 =
16𝜇
5

2𝜋𝑅𝑇 XZ@/𝜌 

 
(4.18) 

 

Applying ideal gas law yields: 

 𝜆 =
16𝜇

5 2𝜋𝑅𝑇
𝑅𝑇
𝑃
=

16𝜇
5 2𝜋

𝑅𝑇
𝑃

 

 
(4.19) 

 

Multiplying Eq. 4.19 by 2 2 to obtain 𝜆 gives: 

 𝜆 =
16

5(2 𝜋)
𝜇 2𝑅𝑇
𝑃

=
8
5 𝜋

×𝜆 

 
(4.20) 

 

Ewart also uses a mean free path expression similar to that of the hard sphere model [94]: 

 𝜆 =
𝜋
2
	
𝜇
𝑃

2𝑅𝑇 

 
(4.21) 

 

where the mean free path coefficient of Ewart is: 

 𝑘éê =
𝜋
2

 

 
(4.22) 

 

leading to mean free path: 

 𝜆 = 𝑘éê×	𝜆	 
 (4.23) 

 
 
The various mean free path expressions are summarized in Table. 4.3 and presented 

schematically in Fig. 4.17 using Cooper et al. experimental data set which is described in 

following sections. 

As demonstrated in Fig. 4.17, the Knudsen number follows a similar trend for each author 

– the Knudsen number steadily decreases as pressure increases. However, the Knudsen 

number range varies significantly for Cooper et al. experimental data set. The ratio of 

highest Maxwell (2) to lowest (Roy) is 3:2. The same ratio can be obtained using the values 

for the highest and lowest mean free path coefficient 𝑘é presented in Table 4.3. 
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Figure 4-17 Variation of Knudsen number across Cooper et al. experimental range using the different mean free path 

expressions. 

 
Author kλ kλ 

[value] 

 
Ewart 

𝜋
2

 
 

1.25 

 
Bird 

8
5 𝜋

 
 

0.90 

 
Roy 

𝜋
2

 
 

0.89 

 
Maxwell (1) 

2
𝜋

 
 

1.13 

 
Maxwell (2) 

3 𝜋
4

 
 

1.33 

Table 4-3 Summary of the different coefficients kλ to the common factor, 𝜆. 

 

4.4.2 A Homogeneous Knudsen Number Approach  
 

An expression for the mass flow rate through a rectangular micro/nano-channel based upon 

volume diffusion theory accounting for slip and Knudsen diffusion is given in [68]: 

 

 𝑀 = 	
𝑤ℎ�𝑃c@

24𝐿𝜇í𝑅𝑇
𝑃@ − 1 1 + 𝐴𝐾𝑛c

1
𝑃 + 1

+ 𝐵𝐾𝑛c
𝑙𝑛𝑃

𝑃@ − 1
 

 
(4.24) 

 
 
where the various coefficients appearing therein are described in Table 3. The mass flux 

expression from Eq. 4.24 is obtained by dividing through by area (ℎ×𝑤) and leads to: 

 

 𝐽 = 	
ℎ@𝑃c@

24𝜇𝐿𝑅𝑇
𝑃@ − 1 1 + 𝐴𝐾𝑛c

1
𝑃 + 1

+ 𝐵𝐾𝑛c
𝑙𝑛𝑃

𝑃@ − 1
 

 
(4.25) 
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A B P Kno Kslip 

12𝐾ÝdBÊ 
24
𝑃𝑟𝑘é@

 𝑝B 𝑝c 𝑘é𝜆c 𝑑Ê 
𝜋
2
×

2
𝑘é

 

Table 4-4 Summary of the different coefficients (kλ) to the common factor, 𝜆. 

 

In Eq. 4.25, the hydraulic radius rh may be used. The hydraulic radius is defined as the flow 

area divided by the wetted perimeter of the conduit. If the cross-sectional area of the tube 

is assumed to be a square, rh is obtained by the expression: 

 𝑟ñ =
ℎ@

4ℎ
=
ℎ
4

 

 
(4.26) 

 

Rearranging equation (4.26) yields: 

 ℎ@ = 16𝑟ñ@ 
 (4.27) 

 

Therefore, the mass flux of a fluid through a cylindrical pipe can be calculated using the 

Dadzie and Brenner model in the following form:  

 

 𝐽 = 	
2𝑟ñ@𝑃c@

3𝐿𝜇𝑅𝑇
𝑃@ − 1 1 + 𝐴𝐾𝑛c

1
𝑃 + 1

+ 𝐵𝐾𝑛c
𝑙𝑛𝑃

𝑃@ − 1
 

 
(4.28) 

 

Cooper et al. provided an experimental data set studying the relationship between mass 

flux and pressure drop for argon gas in a straight cylindrical nanotube [95]. They 

determined slip coefficient for tubular carbon structures that have been produced by 

chemical vapor deposition on a porous alumina substrate. Commercially available porous 

anodic alumina filters (Whatman Anodisc) were used. After heating the tube to 

temperatures of 700, 750 and 800 °C in flowing argon, ethylene was introduced into the 

system at a flow rate of 150sccm (standard cubic centimeter per minute, cm3/s). 

Characteristics of Cooper et al. nanotube experiments are disclosed in Table 4.5: 
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T rh L 
300 [K] 117.5 x 10-9 [m] 60 x 10-6 [m] 
µ Po Pr 

2.22 x 10-5 [Pa s] 4800 [Pa] 0.68 
 

Table 4-5 Characteristics of Cooper et al. experimental set-up. 

Application of the mass flux Eq. 4.28 relative to Cooper et al. experimental data allows a 

consistent Knudsen number to be established. The solution of Eq. 4.28 is calculated using 

the value of kλ for each author previously obtained. So that the theoretical values for each 

author lie in agreement with Cooper et al. experimental data, kλ is multiplied by an 

alteration factor α. Table 4.6 summarizes this analysis. We obtain as a result 𝛼×𝑘é ≈ 6.0 

the new coefficient to 𝜆 for determining the mean free path that results in the same Knudsen 

number range among all authors. In other words, the actual Knudsen number range 

corresponding to same values among all authors and in agreement with Cooper et al. 

experiments and Eq. 4.28 is now 6.69-8.36.  

 
Table 4-6 Summary of values achieved following correction using mass flux Eq. 4.28 and Cooper et al. data. 

 

Figure 4.18 presents the resulting mass flux from Eq. 4.28 and the experimental data. The 

flux model provided by Javadpour [26] and the Hagen-Poiseuille flow (K/HP) analytical 

solution by Guo are also included in this comparison [96]. Agreement between Dadzie & 

Brenner corrected theoretical model and the experimental data is shown in Fig 4.18. This 

model was previously reported to predict mass flow rate in microchannel up to Kn of 5 

based on Eq. 4.24. It is adopted here for the analysis as it accounts for slip and Knudsen 

diffusion. The agreement in Fig. 4.18 is better than Javadpour and the K/HP, and becomes 

less accurate for high pressure differences.  

 

 

Author 𝜆 = 𝑘é×𝜆	
[10-7]m 

Kn Range α λ x α 
[10-6]m 

New Kn 
Range 

Ewart 3.28 - 4.09 1.39 - 1.74 4.80 1.57 – 1.97 6.69 – 8.36 
Bird 2.36 - 2.95 1.00 - 1.25 6.68 1.57 – 1.97 6.69 – 8.36 
Roy 2.32 - 2.89 0.98 - 1.23 6.80 1.57 – 1.97 6.69 – 8.36 

Maxwell (1) 2.94 - 3.38 1.25 - 1.57 5.34 1.57 – 1.97 6.69 – 8.36 
Maxwell (2) 3.47 - 4.34 1.48 - 1.85 4.53 1.57 – 1.97 6.69 – 8.36 
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Figure 4-18 Comparison between K/HP analytical solution, Javadpour’s model (with tangential accommodation 

coefficient equals to one), Dadzie and Brenner’s corrected model, and experimental data for pressure difference versus 
flux [95]. 

	

In order to assess the validity of our correction with regards to the Knudsen number, the 

corrected apparent permeability models are compared with original models proposed by 

Civan and Florence [91, 92]. This is shown in Fig. 4.19a and Fig. 4.19b.   

 

 
        a)                                               b) 

Figure 4-19 a) Comparison of apparent permeability versus radius between corrected models and original models and 
b) in the transition regime 

 

4.5. Summary  
 

We have investigated the application of rarefied gas flows through porous media. Rarefied 

gas flows through porous media can be found in applications for the oil and gas industry 

and planetary sciences. Tight and unconventional gas reservoirs often lie in the transition 

regime. In addition, comets outgassing also fall in the transition and free molecular regime. 

The breakdown of continuum methods in such flows through porous media can be shown 
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by the collapse of Darcy Law in order to predict permeability especially in tight porous 

media. 

The representation of porous media in computational methods which remains a challenge 

is achieved by using the micro-CT technology. We have used this technique in direct 

modelling with DSMC for simulations of gas flows. This was the first time that the micro-

CT was applied in DSMC method. For a porous media with such a complex geometry, it 

showed that Knudsen number plays an important role for the velocity profile.  The profile 

of the pressure and temperature show some similarities and for the three different cases. 

The temperature remains constant in the system with a slight decrease at the outlet for the 

three cases across the x direction. The pressure follows the same profile for all cases with 

a decrease that was set at the initial condition. Slight increase is observed at the middle of 

the profile demonstrating presence of empty space in the center. For all the Knudsen 

numbers, the parabolic-like shape is observed at the inlet and the middle of the channel for 

the geometry considered. As the Knudsen number increases the parabolic shape become 

non-obvious at the outlet. The Klinkenberg effect is also investigated for the different 

Knudsen numbers. Future work in this area using the direct simulation Monte Carlo method 

could include extending the study of gas transport to different samples of porous structures, 

like carbonates and other samples from tight gas formations. This would extend this 

investigation of the gas flow in porous media at micro and nano-scales. 

Further to the simulation of DSMC in micro-CT images in rarefied gas flows we have 

presented an analytical solution of the various permeability laws. It is reported that the 

valuation of the mean free path of a gas and thus the Knudsen number affects the 

interpretation of experimental data for permeability laws. Various correlations for 

quantifying the mean free path of a gas were summarized and compared in this work. Using 

experimental data provided by Cooper et al., and Dadzie & Brenner mass flow rate 

theoretical model, a new alteration factor has been introduced for the mean free path to 

characterize gas flow in nanotubes/shale-strata in the transition flow region. The effects of 

this modification were explored using Knudsen number dependent permeability 

correlations postulated by previous investigators. Results demonstrate a considerable 

discrepancy in the permeability numerical value. Similar investigations may be conducted 

using other mass flow rate equations such as those based on a direct solution to the 

Boltzmann kinetic equation.  

The recent advances in oil & gas industry and especially the exploration and production 

from unconventional gas reservoirs have emerged the research in rarefied gas flows through 

porous media. There have been performed only a few studies regarding such flows and in 
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more detail using DSMC. The recent developments in High Performance Computers (HPC) 

allowed us to run in parallel direct modelling simulations using particle based methods 

(DSMC). The inappropriateness of continuum methods can be proved by the failure of 

Darcy law in predicting the permeability and the comparison with experimental or 

historical data from natural gas reservoirs. Further to the applications in oil & gas industry 

the latest missions in exploring comets (i.e comet 67P Churyumov/Gerasimenko) have 

made the understand of physics in such flows essential. The application of high porosity 

micro-CT images in DSMC will definitely help scientist to understand the outgassing in 

comets. 
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Chapter 5  
 

 

5.Micro- and Nano-scale applications 
 

Since the two presented models in Chapter 3 are newly developed set of equations it is 

important to test them as for the theory and the developed CFD code. We compare results 

from them against experimental data, analytical solutions and numerical results from 

DSMC which is the dominant method for simulating rarefied gas flows. In the absence of 

any experimental data, the DSMC will serve as the benchmarking method. 

 

5.1. Introduction 
 

All methods are developed using computer simulations. The computer usage in our days 

plays an increasingly important role for solving fluid mechanics problems. With the help 

of High Performance Computers (HPC) the computational efficiency faced a considerable 

grow. This allowed scientists to solve complex problems in a wide range of different 

applications. 

Each newly developed CFD solver has to be tested for its accuracy and reliability. In order 

for the computational codes to considered reliable they have to have to pass through several 

test and processes of verification and validation. This will allow us comparing the results 

from newly developed models with other well-established methods. 

As for the validation procedure, we aim to compare results with experimental data (when 

available), analytical solution and numerical results from our DSMC codes or other DSMC 

results available in the literature. In house DSMC code is based on dsmcFoam with adding 

some new equations in order to calculate heat flux vectors. Since HWrhoCentralFoam and 

CCrhoCentralFoam are a newly CFD codes (based on pre-existing code) they should be 

verified and validated. Navier-Stokes will be the reference for improvement in the results. 

Most of the benchmark cases represent the challenge that Bi-velocity and Korteweg 

numerical models face as they most capture non-equilibrium effects, flow physics, 

Knudsen layers, anti-Fourier flux, expansion cooling phenomena and Knudsen paradox. 
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5.2. Applications 
 
The validation of the new CFD codes will come through an emerging engineering and 

energy field; the gas flow through microscale applications. 

The use of micro- and nano- electromechanical systems (MEMS/NEMS) has faced rapid 

increase as it has generated extensive research in fluid flows in ultra-small devices. Gas 

flows at micro- and nano-scale involve complex processes due to rarefaction, important 

gas-surface interactions, and inter-molecular collisions [5]. With advances in nano- and 

micro-electromechnical systems (MEMS/NEMS) in fabrication technology, understanding 

new mass and heat transfer processes in rarefaction regimes is of another great interest. 

Accurate modelling of gas flows at micro/nano scale involve in principle accurate 

modelling of rarefaction, gas-surface interactions and inter-molecular collisions [5] 

Classical continuum fluid equation models like the standard Navier-Stokes fail to describe 

flows under these conditions [97]. Gas flows in MEMS and NEMS are usually in the slip 

(0.001 £ Kn £ 0.1) and transition regimes (0.1 £ Kn £10) where atmospheric pressures can 

occur. In order to describe micro- and nano-scale flows, the Boltzmann-like kinetic 

equation for dilute gases is often adopted [98]. Due to the complexity of the collision term 

in the Boltzmann equation, approximation methods are often used. As the Knudsen number 

increases beyond the slip regime, NSF loses its validity. Molecular dynamics (MD) can 

capture nano-scale interactions and provide some accurate results. However, even with the 

capability of High Performance Computers (HPC), MD simulations can be extremely 

costly in terms of computational time. Moreover, time step in MD are restricted to 

femtoseconds and this could lead to thousands of years of CPU time [81]. Prediction of 

micro-channel flows using DSMC was carried out by Xue et al. and compared with Navier-

Stokes [99]. They concluded that the analytical solution of Navier-Stokes equations fails 

to predict flow due to the breakdown of the continuum assumption. Several other studies 

were carried out using DSMC to investigate the lid-driven cavity flow in transition and slip 

regimes. Mizzi et al. provided DSMC flow features in the cavity in the slip flow regime 

[100]. General agreement is reported between NSF and DSMC at Kn=0.02 and 0.05 in the 

velocity fields and differences for the temperature fields. Though understanding counter-

gradients heat transfer mechanism exhibited in the DSMC flow contours are still indistinct 

and are not predictable by NSF. Boundary treatment is determinant in DSMC flow feature 

predictions[101] . White et al. benchmarked DSMC for gas flow through micro-channels 

with bends and  demonstrate importance of the mesh size in corner regions in order to 

capture the size and shape of recirculation zones [102]. DSMC was also used to investigate 

gas flows in vacuum packaged MEMS devices by Lui et al. where it was shown that heat-
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transfer is weakened by rarefaction effects [103]. The significant impact on the direction 

of heat transfer with any increase in incomplete surface accommodation in a lid-driven 

cavity was stated later by John et al [104]. Mohammazadeh et al. simulated a micro cavity 

using DSMC and NSF. They showed the existence of unconventional heat transfer 

mechanism in the middle of slip flow regime. Furthermore, they concluded that the NSF 

equations are not accurate for a cavity flow for Kn < 0.1 [12]. Akhlaghi et al. studied 

recently wall heat transfer effects on the thermal behavior of Poiseuille flows with DSMC 

in micro/nanochannels and proved the existence of cold-to-hot heat transfer process in the 

cooling wall cases [105]. 

5.2.1. Lid-Driven Cavity for Bi-velocity (HWrhoCentralFoam) 
 
The lid-driven cavity problem is a fundamental configuration involving a simple geometry. 

It is often used for validation, benchmarking and testing new methods. Some previous 

studies showed the complexity involved in a lid-driven cavity flow in rarefied gases under 

non-equilibrium effects [12]. In the absence of experimental data, results obtained using 

DSMC are used to compare with extended hydrodynamic equations. Here we used the lid-

driven cavity problem to demonstrate how a volume diffusion continuum model can 

capture non-local-equilibrium phenomena in high Knudsen number heat transfer problems. 

This will be the first step for validation of the code and the theory. 

The lid-driven cavity problem considered is shown in Figure 5.1 and investigated at 

different Knudsen numbers. The top driven lid (B-C) moves in x direction with a fixed 

velocity 𝐔𝐰= 100 m/s while all other walls are stationary. All wall temperatures are set to 

a uniform value of 𝑇b= 273K in all cases. Table 1 summarizes the set-up conditions for the 

proposed problem. The cavity is of length 𝐿 = 10Xò𝑚. A monoatomic argon gas is used. 

The different Knudsen number was achieved by varying the pressure. Even though 

experimental data are not available for the proposed problem, it is used as a benchmark for 

new models. Furthermore, the violation of Fourier law even for low Knudsen numbers is a 

critical test for investigating new methods. Three different cases are tested with NSF and 

DSMC [106]. 

 
Table 5-1 Case Properties 

Gas Temperature (K) Initial Velocity (m/s) L (m) Wall Boundaries 
Argon 273 100 10Xò Fully Diffuse 

 

For Bi-Velocity the mesh containing 160 cells in each direction was selected after the 

results for 𝜌 and 𝛵 converged on the mesh of 100 cells. The courant number, 𝐶\	was set to 
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0.5 for all cases as for the continuum methods. The DSMC grid containing 200 x 200 cells 

is selected for the reported results [107]. The cell size is kept in all cases less than the mean 

free path (λ) as suggested by G.A.Bird [35]. The variable hard sphere (VHS) model is used 

for the DSMC and the collision pairs are chosen based on the no time counter (NTC) 

method [47]. Fifty particles per cell were initially set for all the cases in order to minimize 

the statistical noise. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Classical NSF is well known to be unable to capture flow features in transition regime (Kn 

> 0.1) even when corrected with slip-jump boundary conditions. A lid-driven cavity 

problem was investigated and compared between DSMC and regularized 13 moments 

equations (R13) [12]. It was shown that R13 equations describe temperature and heat flux 

compared to DSMC up to Knudsen number 0.1. The unconventional cold-to-hot heat 

transfer was observed for Kn > 0.05. Here we run our new bi-velocity (or volume diffusion) 

solver for three different cases: Kn = 10, Kn = 1 and Kn = 0.1. These are higher Knudsen 

numbers compared with the previous studies [108]. 

The boundary conditions for temperature jump and velocity slip that were imposed are 

those presented in the previous chapter. 

 
 
 
 
 

y 
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L 
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Figure 5:1 Configuration of the micro cavity flow problem 
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a) 

 

b) 

 

c) 

Figure 5-2 Temperature variation comparisons of three different models a) NSF b) DSMC and c) Bi-Velocity 

 

We start our investigation by first comparing the temperature profile among the Navier-

Stokes, DSMC and Volume-Diffusion for all Knudsen numbers among a center-line of the 
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cavity. Standard NSF (Fig.5.2a) shows slight variation for Kn = 0.1, with a maximum 

temperature two degrees higher than the initial conditions.  The left and right walls are 

predicted to be in relatively non-equilibrium conditions.  As the Knudsen number increases 

and goes to the transition and free molecular regimes the standard NSF do not predict any 

change in the temperature distribution and confirms their inapplicability in such high 

Knudsen numbers (Kn > 1).  DSMC (Fig.5.2b) and Volume Diffusion (Fig. 5.2c) show that 

in all Knudsen numbers, both walls are in non-equilibrium state. Both methods can predict 

very good temperature variations. However, Volume-Diffusion shows that the Knudsen 

layer is thicker for Kn = 1 and Kn = 10 than the one predicted by DSMC. 

Numerical results are presented below in the slip and transition flow regimes. For each 

Knudsen number entropic heat flux and energetic heat flux are depicted and compared with 

DSMC heat flux. 
 

 
a)     b)                                 c) 

Figure 5-3 Energetic heat flux a) and entropic heat flux b) lines overlaid on the temperature contour for Kn = 10 in 
comparison with DSMC heatflux c) 

 
Figure 5.3 compares heat flux lines overlaid the temperature contours. First, we observe 

that the entropic heat flux from the volume diffusion model displays a flow from the higher 

temperature corner to the lower temperature corner (Figure 5.3b), which is in perfect 

agreement with the Second Law. The phenomenon of cold-to-hot heat transfer concerns 

the energetic heat flux (Figure 5.3a). While the DSMC heat transfer also shows a heat flux 

from cold-to-hot, our new model predicts a more consistent energetic heat flux clearly from 

the left corner to right corner. The unconventional cold-to-hot heat transfer in the energetic 

heat flux is attributable to the additional term in the heat flux. The predicted temperature 

distribution is in general agreement with the DSMC. Equal minimum and maximum 

temperature was predicted from the two methods. The minimum temperature is decreased 

by four degrees from the initially set conditions, which shows strong non-equilibrium 

effects in the left corner. The expansion-cooling phenomenon occurring on the left wall 

shows that the gas temperature becomes lower than the wall temperature (Tg < Tw). Another 

phenomenon governed by viscous dissipation is captured by the volume diffusion model in 
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the right corner (Figure 5.3a).  For such high Knudsen number John et al performed similar 

case using DSMC and showed a heat transfer identical as the one presented in Figure 5.3c 

[104]. Their results are consistent with those performed from our DSMC code and the 

volume diffusion model. 

 

 
 

Figure 5-4 Variation of gas temperature near the top lid (y/L = 0.9) of the cavity for DSMC, NSF and Bi-Velocity at Kn 
= 10 

Figure 5.4 shows the temperature distribution near the top moving lid for the volume 

diffusion model, DSMC and NSF. Temperature obtained by NSF is constant. This means 

that NSF does not reveal any disequilibrium for that configuration. This model is therefore 

inadequate for such a high Knudsen number as expected. Volume diffusion model and 

DSMC show non-uniform temperature distribution as they capture the non-equilibrium 

imposed by the moving lid. Volume diffusion model predicts lower temperature near the 

left wall compared to DSMC. DSMC shows a “plateau” in the middle of the cavity while 

volume diffusion model shows a gradually increasing temperature from left to right. The 

maximum difference between the two models occurs in the middle of the cavity and is 

2.94%. 

 
a)                         b)         c) 

Figure 5-5 Energetic heat flux a) and entropic heat flux b) lines overlaid on the temperature contour for Kn = 1 in 
comparison with DSMC heatflux c) 
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In the mid-transition regime (Figure 5.5), for Kn = 1, entropic heat flux again follows the 

Second Law, i.e., a heat transfer from hot-to-cold. The energetic heat flux predicts cold-to-

hot heat transfer in agreement with DSMC prediction. This agreement between DSMC heat 

flux and volume diffusion energetic heat flux can be understood. In the DSMC particle 

based method heat flux is defined via particle kinetic energy. This particle kinetic energy 

is associated with indeed the energy equation and the energetic heat flux within the volume 

based continuum approach. The volume diffusion model predicts better the cold-to-hot heat 

transfer phenomenon compared to DSMC. General agreement is observed for the 

temperature profiles for the two methods. The same maximum temperature is predicted. 

 

 
 

Figure 5-6 Variation of gas temperature near the top lid (y/L = 0.9) of the cavity for DSMC, NSF and Bi-Velocity at  
Kn = 1 

For Kn = 1 (Figure 5.6), NSF is still inadequate in capturing the non-equilibrium imposed 

by the moving lid as it predicts a constant gas temperature. DSMC and volume diffusion 

again resolve the non-equilibrium structures with some differences in trend. The maximum 

relative difference between temperature values from the two methods is about 2.2%. In 

Figures 5.4 and 5.6 the temperature decreases at the left wall and increases at the right wall 

for DSMC and volume diffusion. 

 
a)     b)                                 c) 

Figure 5-7 Energetic heat flux a) and entropic heat flux b) lines overlaid on the temperature contour for Kn = 0.1 in 
comparison with DSMC heatflux c) 
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As the Knudsen number decreases, the energetic heat flux contour from the volume 

diffusion model become more similar to DSMC prediction (Figures 5.7a and 5.7c). 

Furthermore, entropic heat flux in Figure 5.7b is still consistent with the second law. Both 

methods predict a low temperature for the lower wall. Agreement is found for the minimum 

and maximum temperature.  Mohammadzadeh et al performed a DSMC study for a lid-

driven cavity with up to Kn = 0.1 m The heat transfer predicted from their DSMC model is 

matching volume diffusion results (Fig. 5.7a); see Ref [12]. 

 

 
 

Figure 5-8 Variation of gas temperature near the top lid (y/L = 0.9) of the cavity for DSMC, NSF and Bi-Velocity at Kn 
= 1 

Comparison of the three models at Kn = 0.1 is shown in Figure 8. NSF starts to exhibit 

some non-equilibrium effects at walls. Volume diffusion predicts thermal boundary layer 

at both walls characteristic of Knudsen layers connected with a nearly uniform temperature 

in the middle of the cavity, which is close to NSF value. Overall, NSF prediction is still 

different from the predictions by DSMC and volume diffusion. Agreement is found for the 

minimum and maximum temperature at the walls between DSMC and volume diffusion. 

Furthermore, the trends of the two methods are consistent and both methods show that left 

and right walls are in non-equilibrium state. The average relative difference between 

temperature values for the DSMC and the volume diffusion is about 2.4%. DSMC shows 

a temperature shoot near the right wall before converging to the wall temperature. Volume 

diffusion model has a rather more symmetrical profile. 

Figure 5.9a shows the u-velocity along a vertical line crossing the center of cavity between 

the three velocities normalized with the lid velocity (𝐔𝐰	= 100 m/s): the mass velocity 𝑼𝒎 

and the volume velocity 𝑼𝒗	within the volume diffusion model and the DSMC mass 

velocity 𝑼𝑫𝑺𝑴𝑪. The u-component of the mass velocity 𝑼𝒎	is zero at Kn = 10. The v-

velocity component of the three velocities is shown in Figure 8.b along a horizontal line 

crossing the center of the cavity. DSMC velocity profile lies between the volume velocity 
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and the mass velocity. The continuum mass velocity is however zero in both Figure 5.9a 

and b. The v-velocity from DSMC shows a v-velocity-slip near walls. The volume velocity 

is also non-zero at walls. Although the trend for these two velocities (𝑼𝒗	and 𝑼𝑫𝑺𝑴𝑪) is the 

same for that Knudsen number. The deviation in the v-velocity between the DSMC and the 

volume diffusion is observed in the Knudsen layer. At such high Knudsen number Knudsen 

layers cover most of the flow domain. 

 

 
 

a) 
 

 
b) 
 

Figure 5-9 Computed a) u-velocity profile plotted along a vertical line and b) v-velocity profile plotted along a 
horizontal line, crossing the center of the cavity at  UDSMC, Um and Uv  for  Kn = 10 

 
 
The normalized velocities components at Kn = 1 are shown in Figure 5.10. The u-velocity 

profiles are different between the three. The v-components are in Figure 5.10b. All 

velocities predict similar trend. However, 𝑼𝒗 is the closest to 𝑼𝑫𝑺𝑴𝑪. 
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a) 
 

 
b) 
 
 

Figure 5-10 Computed a) u-velocity profile plotted along a vertical line and b) v-velocity profile plotted along a 
horizontal line, crossing the center of the cavity at  UDSMC, Um and Uv  for   Kn = 1 

 
Figure 5.11 presents the velocities profiles for Kn = 0.1 where we observed agreement 

between the different velocity on the u-component and v-component as the Knudsen 

number is decreased. It can be observed that all velocities have nearly the same value for 

u-velocity-slip. DSMC predicts though slightly lower slip than volume diffusion in Figure 

5.11a.  The v-velocity component in Figure 5.11b shows that there is agreement between 

the three methods. However, volume diffusion predicts a slightly lower slip closer to 

DSMC 
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a) 
 

 
b) 
 
 

Figure 5-11 Computed a) u-velocity profile plotted along a vertical line and b) v-velocity profile plotted along a 
horizontal line, crossing the center of the cavity at  UDSMC, Um and Uv  for   Kn = 0.1 

 

 
 

a) 
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b) 
 
 

 
 

c) 
 

Figure 5-12 Shear stress profile along the horizontal line of the cavity for a) Kn = 10 b) Kn = 1 and c) Kn = 0.1 

 

Figure 5.12 shows the shear stress profiles along the horizontal line of the cavity. The shear 

stress has been normalized with respect to 𝝉𝟎 where 𝝉𝟎 = 0.5𝜌𝑼𝒘𝟐 . The variation of the 

shear stress for the three different Knudsen numbers is investigated and compared between 

the shear stress from DSMC (𝝉𝑫𝑺𝑴𝑪), NSF (𝝉𝒎) and volume diffusion (𝝉𝒗). For all the 

methods, the strength of the stress decreases as the Knudsen number decreases. 𝝉𝑫𝑺𝑴𝑪	and 

𝝉𝒎shear stress reduces significantly for large Kn and tend to zero for Kn > 10. For the large 

Knudsen numbers (Figure 5.11.a) 𝝉𝒗	is evidently high in comparison to others. 

Knudsen layer is usually defined as a kinetic boundary layer in rarefied gas flows near 

surfaces with thickness in the order of magnitude of the mean free path where the behavior 

of the gas cannot be captured in a standard continuum Navier-Stokes description. Gusarov 
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and Smurov Eq. 5.1 performed a numerical analysis of the Knudsen layer [109]. They 

concluded that the thickness of the Knudsen layer, z0.1, can be estimated by the position 

where the heat flow decreases by a factor of ten from its wall value. Using this criterion 

Figure 5.13 depicts the normalized Knudsen layer thickness (with the mean free path) as a 

function of Knudsen number between the three different methods investigated:  

 

 𝑞ú 𝑧V.Z = 	0.1𝑞ú	(0) 
 (5.1) 

 

where, 𝑞ú	(0) is the heat flux at the wall (x = 0). It can be observed that for the low Knudsen 

number (Kn = 0.1) the predicted Knudsen layer thickness appears the same between 

models.  In the transition regime (Kn = 1) the Knudsen layer becomes thicker for both 

DSMC and Volume Diffusion. These two methods prediction for the Knudsen layer 

expands toward the free molecular regime flow, Kn = 10. Overall, Volume Diffusion is in 

agreement with DSMC for the Knudsen layer thickness.      
 

 
Figure 5-13 Knudsen Layer Thickness across different Knudsen numbers 

We have presented a comparison between the newly developed volume-diffusion (or bi-

velocity) model with Navier-Stokes and DSMC using our in-house CFD codes. However, 

in a complete validation we have to compare it with other results reported in the literature 

for the same problem. Here we used the work done by John et al using DSMC for a lid-

driven cavity with slightly different Knudsen number and lid velocity as presented in table 

5.2 [108] . They performed an investigation of heat transfer in a lid-driven under non-

equilibrium conditions for a wide range of Knudsen number using DSMC. In order to check 

the validity of our model we compare the volume diffusion model with their simulations 
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for the highest Knudsen number (Kn = 8) in their work. Table 5.2 shows the case properties 

that were used in their simulations. 

 
Table 5-2 John et al case properties 

Gas Temperature (K) Initial Velocity (m/s) Kn Wall Boundaries 
Argon 273 50 8 Fully Diffuse 

 

In Fig.5.14 we compare normalized temperature profile along horizontal line crossing the 

center of the cavity. Both methods show that the left and right wall is under non-equilibrium 

conditions. It can be observed that the two methods are in good agreement. In addition, it 

can be observed that for the right wall the two methods are in excellent agreement. 

However, from the center of the cavity and to the left wall of the cavity the difference as 

for the temperature distribution increases slightly. 

 

 
Figure 5-14 Comparison of the normalized temperature along the center of the cavity 

 

5.2.2. Mixed-Convection Problem 
 

Lid-driven cavity flow problem is often used to benchmark new continuum fluid models as 

several investigations are carried out using the configuration [110, 111].Several heat 

transfer mechanics, namely, natural convection, forced-convection and mixed-convection 

are all investigated using hydrodynamic models as understanding thermal behaviours of a 

lid-driven cavity fuels applications in electronic cooling, manufacturing processes and 

others. For example, Iwatsu and Hyun provided a numerical study of three dimensional 

flows in a cubical container with stable vertical temperature stratification [112]. Ghasemi 

and Aminossadati presented the numerical study of mixed-convection in a lid-driven filled 
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with water and nanoparticles [113] . Cheng and Liu investigated effects of the cavity 

inclination on mixed convection heat transfer [114]. 

In the present study, we compare volume-diffusion with standard Navier-Stokes. Sketch of 

the problem under investigation and boundary conditions are shown in Figure 5.15. It is a 

two-dimensional square cavity of length 𝑊 = 50𝜇𝑚 and aspect ratio of one. The cavity is 

filled with compressible monoatomic argon, Ar, with negligible gravity force. The 

horizontal walls are adiabatic with the top moving at velocity 𝑼𝒘	= 100 m/s generating a 

forced convection. The left vertical wall is kept at the lower temperature (Tc = 273K) and 

the right vertical wall at the higher temperature (TH = 283K). 

 
 
 
 

 

 
 
 
 
 
 
 
 

The viscosity for the simulations was µ = 1,69 x 10-5 Pa s. Table 5.3 presents the flow 

characteristic numbers including the Reynold number (Re), Lewis number (Le) and Peclet 

number across the simulation range. Reynolds number is a dimensionless number and can 

be calculated by, Re = ρUD/µ, where D is the diameter and µ fluid viscosity. Lewis number 

is dimensionless number and is defined as the ratio of thermal to species diffusivity [115]. 

Peclet number is dimensionless number as well and it is the ratio of thermal energy 

convected to the fluid to the thermal energy conducted within the fluid. Mass transfer peclet 

number can be calculated as, PeL = WU/D*, where D* is the mass diffusion coefficient 

[116].  

 

 

 

 

 

 

x 

y 

TH 
TC 

W 

U = 100m/s 

Insulated 

Insulated 

Figure 5:15 Mixed-Convection Problem configuration 
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Table 5-3 Flow characteristic numbers across the simulation range 

Kn λ(m) W(m) Re Lewis 
Number 

Peclet 
Number 

Mass 
Transfer 
Peclet 
number 

0.001 5.0E-08 5.0E-05 296 7 195 1346 
0.005 2.5E-07 5.0E-05 290 7 191 1319 
0.01 5.0E-07 5.0E-05 258 7 170 1172 
0.5 2.5E-05 5.0E-05 66 7 44 302 
1 5.0E-05 5.0E-05 40 7 26 182 
10 5.0E-04 5.0E-05 4 7 3 20 

 

Figure 5.16 shows temperature and pressure distributions near the top wall. The top right 

wall region is the most in non-equilibrium state. At Kn = 0.001 NSF and volume diffusion 

methods predict the same temperature distribution with the lower temperature on the left 

wall and the higher on the right. From Kn = 0.005 differences in predictions by the two 

methods start to appear first in the top right-hand wall region. The difference between the 

two methods occurs around the peak temperature and becomes noticeable at Kn = 0.01 

where though the overall temperature trend remains similar. As we increase the Knudsen 

number to 1, NSF temperature profile becomes constant; i.e., NSF no longer captures any 

temperature variation caused by the movement of the top lid. NSF with slip and jump 

conditions fail completely to capture the disequilibrium in the flow field imposed by the 

moving lid. Volume diffusion model, however, shows a non-uniform temperature 

distribution with boundary layers near both walls typical of Knudsen layers. We also 

observed temperature jumps at both walls. The pressure profiles are normalized with P0 = 

97500Pa and are shown in Figure 5.16b. The pressure distribution is the same at all 

Knudsen numbers between the two methods. This means that, with the mixed convection 

configuration investigated here, no significant correction to the momentum equation is 

observed. Temperature and heat transfer processes are the most affected by the volume 

diffusion correction in that configuration. Meanwhile, the equality observed in the 

temperature profile for Knudsen number less than 0.001 with a deviation above that value 

confirms that the volume diffusion correction to NSF model is a way of distinguishing 

between the different flow regimes. 
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a) 
 
 

 
 

b) 
 

Figure 5-16 Comparison of the temperature a) and pressure b) profiles along the top wall 

Figure 5.17 shows the variation of maximum heat fluxes as a function of Knudsen number 

in the domain. Highest maximum heat flux is predicted by volume diffusion model. 

Energetic heat flux is always higher than the entropic heat flux and both are well above 

heat flux predicted by NSF. 
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Figure 5-17 Variation of maximum heat flux with respect to Knudsen number 

Figure 5.18 depict the temperature field at Kn = 0.001 along with the heat flux. Energetic 

heat flux and entropic heat flux for the volume diffusion model, and classical heat flux from 

the Navier-Stokes-Fourier are shown. We observe at that Knudsen number the same 

temperature contours for the three heat fluxes. The left wall is the cooling wall according 

to the set boundary conditions. The top right corner of the cavity has an increase in 

temperature due to viscous dissipation and strong non-equilibrium effects. The heat transfer 

is from hot-to-cold in the entire cavity. 

 

 
                              a)                             b)                       c) 

Figure 5-18 Temperature distribution and heat fluxes at Kn = 0.001 for the a) energetic heat flux(Ju), b) entropic heat 
flux(qve) and c) heat flux conventional NSF(qNSF) 

 

Contour plots for Knudsen number corresponding to the transition regime (Kn = 0.5) are 

in Figure 5.19. Lowest and highest temperatures as predicted by NSF and volume diffusion 

now differ by about 8 degrees. The temperature drop across the cavity obtained by volume 

diffusion is higher than that of NSF. The volume diffusion model (Fig 5.19a,b) shows the 

two top corners in non-equilibrium state. The lowest temperature occurs in the top left due 

to expansion cooling. Though, gas molecules leaving that region transport out, generally, 

higher translational kinetic energy. This is the indication of the direction of the energetic 

heat flux in Figure 5.19a in that corner. It is a demonstration of flow phenomena in which 

temperature is not systematically synonymous with the gas molecule translational kinetic 
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energy. Overall, heat transfers in Figure 5.19a are the results of combined mass diffusion 

and forced convection as effects of the disturbing moving lid can be seen along the top 

wall. Entropic heat flux in Figure 5.19b shows a flow from the top right corner, i.e. the 

highest temperature and non-equilibrium region, to cold areas. This is an explicit 

expression of the second law of thermodynamics corresponding to the configuration. From 

Figure 5.19a the higher temperature observed in the top right corner appears as a result of 

compression of gas molecules coming from the top and right walls at lower translational 

kinetic energy. Temperature variation predicted by the NSF is in Figure 5.19c. It simply 

depicts heat diffusion from higher kinetic energy region on the right, to the lower kinetic 

energy region on the left. Effects of the moving lid are almost non-existent in the NSF 

temperature contours. In contrast, in Figure 5.19a three main phenomena accompanying 

the energetic heat transfer process in the volume diffusion model may be stated: expansion 

cooling that takes place in the top left corner, compression in the right corner and the usual 

heat conduction transfer process. 

 

 
a)                             b)                       c) 

Figure 5-19 Temperature distribution and heat fluxes at Kn = 0.5 for the a) energetic heat flux (Ju), b) entropic heat 
flux(qve) and c) heat flux conventional NSF(qNSF) 

 

Temperature contours in the high transition regime is represented by Figure 5.20 at Kn=10. 

Phenomena observed in the early transition regime are now fully developed. NSF displays 

a constant temperature across the cavity, i.e. none of the disequilibrium conditions is 

captured by NSF. Energetic heat flux in Figure 5.20a from the volume diffusion model 

shows again non-equilibrium state. An unconventional energetic heat transfer from cold-

to-hot in the upper left corner as well as in the right corner occurs. The moving top lid 

induces these non-equilibrium effects. In Figure 5.20b, entropy flows from top right corner 

into the top left corner, which is again consistent with the second law. 
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a)                             b)                       c) 

Figure 5-20 Temperature distribution and heat fluxes at Kn = 10 for the a) energetic heat flux (Ju), b) entropic heat 
flux(qve) and c) heat flux conventional NSF(qNSF) 

 

Generally, volume diffusion process in the present forced convection configuration appears 

physically as a counter-diffusion process. That is, a process where molecules with lower 

translational kinetic energy diffuse toward higher translational energy region. The 

movement of gas molecules from the higher translational kinetic energy toward the lower 

regions is driven by advection by the moving lid (viz. Figure 5.7c). This is depicted in the 

variation of the mass transfer Peclet number in table 3; it varies from 1346 at Kn=0.001 to 

20 at Kn=10. 

In order to further investigate implications of the introduction of the two different flow 

velocities, the mass and volume velocity profiles are plotted along centerlines of the cavity 

for three different Knudsen numbers in Figures 5.21 and 5.22. For the low Knudsen number 

the two velocities profiles are identical. The clear difference is at Kn > 0.5. The volume 

velocity v-component in Figure 5.21b predicts nearly double the slip in the mass velocity. 

In fact, as Knudsen number increases the v-component of Um decreases and totally vanishes 

in the domain at Kn=10. The volume velocity becomes dominant flow velocity in the 

domain in the higher Knudsen number regime as the mass velocity vanishes. This is 

consistent with the pressure profile in Figure 5.16b. For Knudsen number 10 where the 

mass velocity totally vanishes, the advection of molecules into the left corner and out of 

the right due the moving lid are represented by the positive v-component of the volume 

velocity on the left wall and negative component at the right Figure 5.21c. 
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             a) 

 

 
b) 

 
 

 
c) 
 

Figure 5-21 Computed mass and volume v-velocity component profile plotted along a horizontal line, crossing the 
center of the cavity for a) Kn = 0.001, b) Kn = 0.5 and c) Kn = 10 
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The u-velocity profile along a vertical line crossing the cavity center is shown in Figure 

5.22. At Kn=0.001 mass and volume velocities have the same profile and no clear slip is 

observed at walls. For Kn = 0.5 both methods have similar trend but differences exist in 

the amount of slip at walls. There is a higher u-velocity slip for the volume velocity 

compared to the amount of slip in the mass velocity. For Kn = 10 in Figure 5.21c, the 

normalized mass velocity is zero with no slip effects. The volume velocity shows now a 

reverse profile. In addition, the u-velocity slip in the volume velocity becomes large. As 

for the v-velocity component the volume velocity dominates the domain as the Knudsen 

number increases. 

 
a) 
 
 

 
b) 
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c) 
 

Figure 5-22 Computed mass and volume v-velocity component profile plotted along a vertical line, crossing the center 
of the cavity for a) Kn = 0.001, b) Kn = 0.5 and c) Kn = 10 

 

5.3. Micro-channel Poiseuille flow  
 

The micro-channel is the only case that available experimental data will allow us to 

compare numerical results from the two CFD codes. The Bi-velocity and Korteweg along 

with NSF numerical results will be compared against the experimental data and analytical 

solution from Dadzie and Brenner [68]. The dimensions of the channel were accurately set 

to the original one from Ewart et al [94].  The purpose of their experiments was to complete 

the database of mass flow rate measurements, obtained for a gas flow in a single 

microchannel, ranging from the hydrodynamics regime to the near free molecular regime.  

Figure 23 illustrates the experimental and numerical set-up conditions for the 

microchannel.  



 92 

 
Figure 5-23 Schematic of the flow through a microchannel. The flow direction is represented by the red arrows for Pinlet 

and Poutlet. The blue dots show the gas molecules. Where L,W >> h 

 

The average pressure in the experiments ranges from 67000 to 30 Pa. The experimental 

method that was used to measure the mass flow rate through the microchannel involves the 

use of two large constant volume tanks that are much larger than the volume of the 

microchannel. More details of the experimental procedure can be found in Ewart et al [94]. 

Their data (mass flow rate results) are used as a benchmark for our simulations.  Fluid 

properties and physical coefficients that are used in the simulations are listed in table 5.4.  

The mean Knudsen number is defined: 

 
𝐾𝑛za{` = 	 𝑘é

𝜇
𝑃B`da� + 𝑃cý�da�

2
2𝑅𝑇 

 
(5.2) 

 

It can be noted that the length (L) and the width (W) of the micro-channel are extensively 
greater than its height.  
 
Table 5-4 Fluid Properties and microchannel physical coefficients 

W(m) L(m) h(m) Pr µ(Pa s) R(J/kg k ) 𝒌𝝀 
4.92 x 10-4 9.39 x 10-3 9.38x10-6 0.67 1.97513x10-5 2076.942 𝜋/2 

 

The extended boundary conditions are implemented in both methods for the full range of 

Knudsen number. In order to compare our simulations with experimental data and previous 

studies the figures are plotted in the nondimensional mass flow rate, Gm versus the mean 

Knudsen number. The dimensionless mass flow rate, Gm  can be calculated by: 

 

 𝐺z = 𝑀
𝑤ℎ@

𝐿 2𝑅𝑇
	(𝑝B`da� − 	𝑝cý�da�

XZ

 

 
(5.3) 
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The mass flow rate, 𝑀 through the microchannel is given by: 
 

 𝑀 = 𝑤 𝜌𝑈z𝑑𝑦
ñ

V
 

 
(5.4) 

 

While in previous studies [68, 117] the mass flow rate was expressed as an analytical 

solution in the present study we focus on the calculation of the mass flow rate directly from 

the numerical methods based on the Korteweg and bi-velocity models. The results from 

simulations that are based on hydrodynamics models for mass flow rate in microchannels 

have not been reported earlier.  

 

 
Figure 5-24 Comparison of the mass flow rate using Bi-Velocity and Korteweg against Navier-Stokes, Dadzie-Brenner 

and experimental data 

 

In Figure 5.24 we can observe the comparison of the dimensionless mass flow rates from 

experimental data with Korteweg. Bi-velocity and standard NSF models.  It is obvious that 

the standard Navier-Stokes fails in comparison with the experimental data in the whole 

range of Knudsen number that is been investigated by the experiment. Furthermore, it 

confirms that as the Knudsen number increases the dimensionless mass flow rate decreases. 

For the slip regime (0.01 < Knmean < 0.1) Bi-velocity, Korteweg and Dadzie-Brenner are in 

good agreement with the experimental data. For all methods, the normalized mass flow rate 

decreases as Knudsen number increases in this regime. In the early transition regime (0.1 

< Knmean < 1)  Bi-velocity and Dadzie-Brenner analytical solutions agree well with the 

experimental dimensionless mass flow rate. The Korteweg are close to experimental data 

but in not so good agreement. We can observe that the Korteweg mass flow rate diverges 
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from the experimental data for Kn = 0.2 - 0.6, while it has better agreement for Kn = 0.8 – 

1. For the transition regime (0.1 < Knmean < 10) the only method that is still in a very good 

agreement with the experimental data is the bi-velocity model. The Dadzie-Brenner 

solutions which are also based on the bi-velocity hydrodynamics agree well with the 

experimental data for Knmean < 5. However, it should be noted that these results are obtained 

using analytical solutions and different boundary conditions. The Korteweg model 

agreement starts to vanish for a Knudsen number higher than the unity. For the free 

molecular regime (10 < Knmean < 100) the bi-velocity is in excellent agreement with the 

experiment. At this regime, the Dadzie-Brenner theoretical work over-predicts the 

dimensionless mass flow rate. Interestingly the Korteweg model while it decreases the mass 

flow rate for Knmean < 10, it shows an increase for Knmean > 10 following the experimental 

data and Bi-velocity trend line. This may be attributed to the contribution of the additional 

shear stress tensor components as it was expressed previously.  

In 1909 Knudsen studied gas flows through tubes in the transition and free molecular 

regimes. From these results, the normalized volumetric flow rate showed a minimum at a 

Knudsen number near unity [118]: The Knudsen paradox. The present numerical solution 

by the Bi-velocity model and Dadzie-Brenner solution as shown in Figure 5.24 both capture 

the Knudsen paradox. This Knudsen paradox is usually difficult to capture using a Navier-

Stokes with slip conditions [119].   

In general, Figure 5.24 reveals that the two continuum hydrodynamic models which 

involved density gradient expressions in the shear stress constitutive equations are better in 

predicting this micro channel gas flow. This corroborates recent observations by Gorban 

and Karlin [73].   

 
 

a) 
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Figure 5-25 Normalized pressure distribution along the steamwise direction for various Knudsen numbers a) Kn = 
0.043, b) Kn = 1.07 c) Kn = 80.7 

 

Figure 5.25 presents the normalized pressure distribution along the streamwise direction 

for the Bi-velocity, Korteweg and Navier-Stokes with velocity and temperature jump 

boundary conditions. The convex curvature is captured by the three methods identically for 

the low Knudsen number. Difference between Bi-velocity and Korteweg is insignificant 

across the Knudsen number range. This may be explained by the fact that both method 

constitutive equations for the shear stresses contain the density gradient capillarity effects. 

For a higher Knudsen number that corresponds to the free molecular regime (Kn = 80) 

Navier-Stokes profile may be described as unphysical compared to the other two models 

that appear to predict a rather monotonic variation in the profiles from the low to the higher 

Knudsen number.   
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c) 
 

Figure 5-26 Velocity Profile alon the microchannel in cross section of the flow direction a) Kn = 0.043, b) Kn = 1.07 
and c) Kn = 80.7 
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Figure 5.26 shows velocity profile in a cross-section of the stream wise direction in the 

position where the flow is fully developed for all methods. For Kn = 0.043 the mass velocity 

as derived from the Navier-Stokes has a minor difference of 2.5m/s from Bi-velocity and 

Korteweg mass velocity. The velocity profile differs from the parabolic shape expected 

from a pure hydrodynamic regime pressure-driven flow.  The mass velocity decreases as 

the Knudsen number increases and vanishes for the Navier-Stokes at higher Knudsen 

number (Figure 5.26c) which is consistent with the no mass flow predicted by this model 

at higher Knudsen number. Bi-velocity predicts the highest mass velocity at the highest 

Knudsen number which is in agreement with the mass flow rate plotted in Figure 5.24.  

 

5.4. Computational Efficiency  
 

 
Figure 5-27 Comparison between DSMC and bi-velocity in CPU ratio with respect to Knudsen number 

 

5.5. Summary 

 
In this chapter, microscale rarefied gas flows have been undertaken within 

HWrhoCentralFoam and CCrhoCentralFoam against numerical, experimental and 

analytical solutions. From the present results, we have identified a very good agreement for 

the temperature profile in high Knudsen numbers for the HWrhoCentralFoam. In addition, 

the energetic heat flux Ju  has been proved to capture anti-Fourier heat transfer under non-

equilibrium conditions. For very low Knudsen numbers the heat flux from Navier-Stokes, 
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Bi-Velocity and DSMC agree, as it was expected. For higher Knudsen number the heat flux 

from Navier-Stokes still predicts a hot-to-cold heat transfer following the Fourier law. For 

Kn > 1 the DSMC and Volume Diffusion show a clear heat transfer from cold-to-hot.   

In general Volume Diffusion appears to account of non-local equilibrium effects where 

Navier-Stokes fails. Volume Diffusion model predicts temperature distribution for the 

various Knudsen number in general agreement with DSMC for the heat transfer cavity case. 

While the unconventional cold-to-hot heat transfer is confirmed in high Knudsen numbers, 

it follows the second law of thermodynamics as the Volume Diffusion theory distinguishes 

between entropic heat flux and energetic heat flux. Knudsen layer is observed for all the 

cases while Navier-Stokes fails to predict it. A numerical overshoot related to the use of 

the simplified form of the volume diffusion model is observed.  

Different heat transfer processes are observed for the mixed-convection problem. Volume 

velocity dominates the prediction of non-equilibrium effects in the upper left and right 

corners at high Knudsen number and affects temperature profiles across the cavity. 

Unconventional cold-to-hot heat transfer processes are predicted in the corners at transition 

regime.  

In the absence of experimental data DSMC served as the benchmark method for the new 

proposed models. However, for the microchannel pressure driven flow all the proposed 

models were compared with experimental and analytical data. Results illustrate that Bi-

velocity (and HWrhoCentralFoam) can show excellent agreement with experimental data 

for the whole range of Knudsen number as of the dimensionless mass flow rate. In addition, 

the capture of the Knudsen paradox confirms the Bi-velocity theory can capture non-

equilibrium effects. Korteweg and CCrhoCentralFoam can show good agreement for up to 

Kn = 1 and provide better results than standard Navier-Stokes.  
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Chapter 6  
 

 

6.Conclusions and Future Work 
 

 

 

6.1. Conclusions  

 
The development of two hydrodynamics models, Bi-velocity and Korteweg, were 

presented in the thesis. Two computational fluid dynamics (CFD) toolboxes in the open 

source software OpenFOAM were developed. The two CFD solvers are based on the pre-

existing density based solver called rhoCentralFoam. The bi-velocity hydrodynamics 

solver is called HWrhoCentralFoam and has taken its name from the Institution that hold 

the current research group. The Korteweg type like solver is called CCrhoCentralFoam 

and it has taken its name from the Initials of the author and developer. Both hydrodynamic 

solvers were presented along with new boundary conditions mounted for each model. The 

two new hydrodynamics models were compared with the direct simulation Monte Carlo 

(DSMC)  method results that are obtained through in-house DSMC solver, results available 

in the literature and experimental data where available. The current thesis focused on the 

theoretical and computational development of new theories as well as the benchmark of 

them (from computational perspective).  

Furthermore, this thesis presented an introduction to Korteweg type hydrodynamics as 

presented through the past century. In addition, we have outlined the pros and cons about 

presenting extended hydrodynamics models that remain purely in the continuum 

description and are able to capture some non-equilibrium effects. From the computational 

time perspective, several parallel efficiency studies were run. We have used the High-

Performance Computer (HPC) facility, Archie-West for over 100000 CPU hours as for the 

DSMC results and the dsmcFoam solver was found to be a very efficient but can mainly be 

used in HPC especially for complex cases (porous medium) on average. As for the 

proposed continuum based solvers (HWrhoCentralFoam and CCrhoCentralFoam) the 
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same cases with dsmcFoam were run but on standalone machines. In contrast with 

dsmcFoam we found that the continuum methods algorithms (HWrhoCentralFoam and 

CCrhoCentralFoam) can run effectively and efficiently in standalone machine with 

converged results in few hours. 

Results illustrate that good agreement for micro and nano-scale test cases with results 

compared with DSMC and experimental data. Our numerical results were found to be in 

excellent agreement as for the heat flux, temperature and mass flow rate with the compared 

data. However, for certain problems volume diffusivity coefficient in the Bi-velocity model 

was found to diverge the numerical results. Through benchmark with DSMC and 

experimental data we were able to quantify this coefficient for consistent results in several 

cases and for the whole range of Knudsen number.  

For rarefied gas flows the unconventional cold-to-hot heat transfer is confirmed in high 

Knudsen numbers, which follows the second law of thermodynamics as the Bi-velocity 

theory distinguishes between entropic heat flux and energetic heat flux. Knudsen layer is 

observed for Bi-velocity while Navier-Stokes fails to predict it. 

The benchmark of the numerical method and comparison with experimental data show the 

ability and consistency of the present theories.  The numerical approach also offers 

probably excellent analysis of rarefied gases, like Boltzmann equation.  Generally, 

Korteweg and Bi-velocity equations remain inside continuum mechanics and at the same 

time can capture non-equilibrium effects in non-continuum regime. Based on rarefied gas 

flow in a microchannel Korteweg shows better performance than the standard Navier-

Stokes equations and agrees well with experimental data for up to a Knudsen number near 

unity. Bi-velocity model is able to give excellent agreement with the experimental data as 

for the non-dimensional mass flow rate for the whole range of Knudsen number in the 

numerical method even for the free molecular regime. One of the non-equilibrium effect 

that is captured from the Bi-velocity model is the Knudsen paradox. Bi-velocity equations 

have shown the paradox at Knudsen number near unity as observed by other researchers. 

Bi-velocity model shows admirable results for the pressure and velocity distributions for 

the micro channel configuration. Korteweg model extends Navier-Stokes validity.  

In general, the continuum based methods are extensively faster than the particle method in 

the whole range of Knudsen number. Results for the micro and nano scale problems 

illustrate that Bi-velocity model can give at least good results on average 10 times faster 

than DSMC. Especially, convergence of the Bi-velocity and Korteweg algorithm was found 

to occur very quickly in all regimes for several cases. The accuracy of the converged flow 

properties was found to depend on grid and cell size. This is in contrast with DSMC, where 
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the microscopic and macroscopic flow properties are proportional to the cell size and the 

time-step.  

Beside our work in development of extended hydrodynamics models for rarefied gas flows 

we apply such method for flows in tight porous media. The type of porous medium where 

the flow is rarefied is in tight and shale gas reservoirs where gas flow fail in the transition 

and slip flow regime. To investigate the rarefied gas flow through porous medium with 

numerical simulations (DSMC) the microcomputer tomography (micro-CT) technology 

was used for the 3D representation of the rock as computational domain. According to our 

knowledge this was the first time that the DSMC method was used directly on micro-CT 

technology images. This technology, enable us to illustrate in precise way the rock where 

rarefied gas flow occurs. The resolution of such micro-CT rock image that was used is in 

the scale of some µm. Firstly, we presented a DSMC study for 3D Berea sandstone for a 

pressure-driven flow of methane (CH4) at different Knudsen numbers, within the slip and 

transition regimes. Due to large number of computational cells, the simulations were run 

on a High-Performance Computer for this case as well. For a porous media with such a 

complex geometry, it showed that Knudsen number plays an important role for the velocity 

profile.  The profile of the pressure and temperature show some similarities and for the 

three different cases. For all the Knudsen numbers, the parabolic shape is observed at the 

inlet and the middle of the channel. As the Knudsen number increases the parabolic shape 

become non-obvious at the outlet. The Klinkenberg effect is also investigated for the 

different Knudsen numbers for a first time with the DSMC method.  

Based on the interest for tight porous we perform an in depth analytical solution for a 

consistent prediction of permeability in such type of reservoirs. Various correlations for 

quantifying the mean free path of a gas were summarized and compared in this work. Using 

experimental data provided by Cooper et al., and Dadzie & Brenner mass flow rate 

theoretical model, a new alteration factor has been introduced for the mean free path to 

characterize gas flow in nanotubes/shale-strata in the transition flow region. The effects of 

this modification were explored using Knudsen number dependent permeability 

correlations postulated by previous investigators. Results demonstrate a considerable 

discrepancy in the permeability numerical value.  
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6.2. Future Work 

 
The developed hydrodynamic models and algorithms as well as results from porous 

medium simulation that are developed and presented in this thesis shows the opportunity 

to carry out some future suggested work as: 

Development of new hydrodynamic model as a combination of Korteweg and bi-velocity 

theory. 

Further analysis and new boundary conditions for the hydrodynamics models. 

Application of micro-CT porous media images in planetary sciences using DSMC and 

comparison other continuum models. 

New permeability law that will be derived from bi-velocity model and non standard Navier-

Stokes as Darcy law. This will enable to compare it with experimental data and 

permeability obtained through micro-CT. In such occasion, we may be able to understand 

we in our days’ unconventional gas reservoirs tend to produce more than it was expected. 

Is that connected with Knudsen paradox? For a complete evaluation, we suggest calculating 

permeability with DSMC. 

  This work serves as a basis for further analysis of rarefied gas flows through tight porous 

media. In this work, we limited our analysis only on the Berea sandstone in order to 

investigate the flow behaviour. In order to establish a fundamental understanding of gas 

flow through tight porous media, more simulations on sandstone samples are required. 

Finally, and most important, the application of hydrodynamics models in such type of 

porous media will enable possibly faster (than discrete methods) and accurate results. This 

will enable us to apply them in the scale of kilometres where natural gas reservoirs usually 

are.  
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