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Abstract

The second order linear wave equation is simple in representation but its numer-
ical approximation is challenging, especially when the system contains waves of
high frequencies. While 10 grid points per wavelength is regarded as the rule of
thumb to achieve tolerable approximation with the standard numerical approach,
high resolution or high grid density is often required at high frequency which is often
computationally demanding.

As a contribution to tackling this problem, we consider in this thesis the discret-
ization of the problem in the framework of the space-time discontinuous Galerkin
(DG) method while investigating the solution in a finite dimensional space whose
building blocks are waves themselves. The motivation for this approach is to re-
duce the number of degrees of freedom per wavelength as well as to introduce some
analytical features of the problem into its numerical approximation.

The developed space-time DG method is able to accommodate any polynomial
bases. However, the Trefftz based space-time method proves to be efficient even
for a system operating at high frequency. Comparison with polynomial spaces of
total degree shows that equivalent orders of convergence are obtainable with fewer
degrees of freedom. Moreover, the implementation of the Trefftz based method is
cheaper as integration is restricted to the space-time mesh skeleton.

We also extend our technique to a more complicated wave problem called the
telegraph equation or the damped wave equation. The construction of the Trefftz
space for this problem is not trivial. However, the flexibility of the DG method
enables us to use a special technique of propagating polynomial initial data using
a wave-like solution (analytical) formula which gives us the required wave-like local
solutions for the construction of the space.

This thesis contains important a priori analysis as well as the convergence ana-
lysis for the developed space-time method, and extensive numerical experiments.
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Chapter 1

Introduction

Time-dependent wave models such as the acoustic and the elastic wave equations

are very important in the scientific and engineering fields. Many industries such

as the mining industry, the aviation industry, and other engineering industries have

found these models indispensable in their applications. Areas of applications include

medical ultrasonic, seismology, electromagnetism and non-destructive testing.

Despite their numerous applications, it has remained challenging to develop effi-

cient numerical methods capable of approximating and predicting the propagation

as well as the behavior of these models, especially when the system contains waves of

high frequency (equivalently short wavelength). This problem is due to the oscillat-

ory nature of the solutions of the models, and standard discrete spaces with standard

numerical methods only approximate the solutions for exceedingly fine mesh which

often results in high computational cost.

A similar challenge is encountered in the time-harmonic wave problems as ap-

proximations of the Helmholtz equation with large wave number (see [66] and [132]).

The development of better and improved numerical schemes capable of repres-

enting the oscillatory phenomena with reduced computational time has been an

important and active area of research in the field of computational acoustics, and

we are motivated to show in this thesis the development of such a method supported

with mathematical analysis by investigating special discrete spaces whose elements

are local solutions of the transient wave equations.

We focus on developing and analyzing a method in the framework of finite ele-

1



Chapter 1: Introduction

ment methods which utilizes the wave-like functions of the targeted partial differen-

tial equation (PDE) in its approximation space. This new method is in the class of

the Trefftz methods for wave equations in the time-domain. The space-time quasi-

optimality result proven in this thesis does not depend on the use of Gronwall’s

inequality in contrast to the standard approach for time-dependent a priori bounds.

In order to reduce computational complexity and to increase the speed of approx-

imation, the proposed Trefftz spaces give us the advantage of reducing the number of

degrees of freedom per wavelength and also the advantage of restricting integration

only to the space-time skeleton of the mesh. This idea has been proven successful

in the time-harmonic regime and we show in this thesis that it is equally successful

also in the time-domain.

In the rest of this chapter, we briefly describe the initial-boundary value problems

(IBVPs) that will be considered in this thesis. In Section 1.2, we discuss the standard

discretization method. We conclude the chapter with an outline of the thesis.

1.1 Wave problems in time domain

We are interested in two cases: The general acoustic wave equation and the damped

wave equation which is also known as the telegraph equation. We consider the

relevant IBVPs with different classical boundary conditions in the bounded spatial

domain Ω subset of Rd, d = {1,2,3}. We also present variational or weak formu-

lations for each case as solutions are sought for in the subspace of Sobolev space

H1(Ω).

Although the proposed method should be applicable to other wave equations

in the time-domain such as Maxwell’s equations which govern the realm of electro-

magnetism and the Schrödinger equation which describes the evolution of quantum

particles, we do not consider them in this thesis. We refer readers to [16, 63, 97]

and [42] for extensive description, applications and analytical motivations.

2



Chapter 1: Introduction

1.1.1 The acoustic wave equation

The propagation of acoustic waves in heterogeneous isotropic media with small amp-

litude can be represented by the wave equation

ü −∇ ⋅ (a∇u) = 0, (1.1.1)

which is often coupled with initial data

u(x,0) = u0 u̇(x,0) = v0. (1.1.2)

For a derivation, see Chapter 3 of [16]. The solution u is the perturbed pressure

which depends on the position vector x and on time variable t; a ≡ a(x) could be

a matrix or a scalar function of x while ∇ and ∇⋅ denote the usual gradient and

divergence operators. If a ≡ 1, then ∇ ⋅ ∇ = ∆ which is the usual Laplace operator.

This model can be used to represent mechanical vibrations with small amplitude. In

this case the scalar solution u could represent the vertical displacement of an elastic

membrane in 2 spatial dimensions (2d) (or a string in 1 spatial dimension (1d)).

The acoustic wave model is usually equipped with different boundary conditions

(BCs). If the value of u is given on the boundary, we have a Dirichlet boundary

condition; if the normal derivative n ⋅∇u is prescribed (n is the outward unit normal

to the boundary ∂Ω), we have a Neumann boundary condition. There is also an

impedance boundary condition u̇t+γ ∂u∂n = 0 which models semi-reflecting boundaries

and often appears when approximating problems of unbounded domains by absorb-

ing boundary conditions. The combination of the Dirichlet and the Neumann data

is called the Robin boundary condition. Mixture of these boundary conditions on

different parts of the domain is also possible.

Another boundary condition (may be regarded as interface condition) different

from the above classical BCs is the so called transmission condition that is usually

prescribed at the interface of two subdomains of Ω. This condition is important

when dealing with wave problems consisting of piecewise homogeneous subdomains

or materials, such as piecewise change in speed or density at different parts of Ω (see

3



Chapter 1: Introduction

Chapter 2 of [42] ). For instance let Ω1 and Ω2 be two subdomains of Ω and let Γ12

be the boundary between them. Let u1 = u∣Ω1 and u2 = u∣Ω2 with a ≡ a1 in Ω1 and

a ≡ a2 in Ω2 be the restricted values of u in Ω1 and Ω2 respectively where a1 and a2

are constant in the respective subdomains, then we have the following transmission

conditions defined on the interface

uj = uk, aj∂nuj = ak∂nuk on Γjk, (1.1.3)

where n is the exterior normal to Ωj (or Ωk).

Before we present different weak formulations for the acoustic wave equation, we

give some notation. Let u be a scalar function of Rd, d = {1,2,3}, we define the

general partial differential operator

Dα =
∂p

∂xα1
1 . . . ∂xαdd

, (1.1.4)

where α = {(α1 . . . αd) ∈ Nd ∶ ∣α∣ = ∑
d
j=1αj = p, p ∈ N}. We denote by Hm(Ω) the

Sobolev space [37]

Hm(Ω) = {u ∈ L2(Ω) ∶Dαu ∈ L2(Ω),∀α, ∣α∣ ≤m} , (1.1.5)

where, when m = 1, we have

H1(Ω) = {u ∈ L2(Ω) ∶
∂u

∂xj
∈ L2(Ω) ∀j = 1, . . . , d} , (1.1.6)

and L2(Ω) represents the space of square integrable functions over Ω. The subspace

of functions in H1(Ω) whose traces vanish at the boundary ∂Ω is given by

H1
0(Ω) = {u ∈H1(Ω) ∶ u = 0 on ∂Ω} . (1.1.7)

Now if we set up the homogeneous wave equation with zero Dirichlet boundary

condition, with the assumption that u0 ∈ H1
0(Ω) and v0 ∈ L2(Ω), then the following

4
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variational formulation defined holds: Find u(⋅, t) ∈ H1
0(Ω) such that for t ∈ R+

∫
Ω
üv dx + ∫

Ω
a∇u ⋅ ∇v dx = 0 ∀v ∈H1

0(Ω). (1.1.8)

If the boundary condition is the non-zero Neumann condition ∂u
∂n = g(x, t) with

u0 ∈ H1(Ω) and v0 ∈ L2(Ω), then we have the variational formulation: Find u(⋅, t) ∈

H1(Ω) such that for t ∈ R+

∫
Ω
üv dx + ∫

Ω
a∇u ⋅ ∇v dx = ∫

∂Ω
ag v ds ∀v ∈H1(Ω). (1.1.9)

Finally if the impedance boundary condition is prescribed on the boundary with

u0 ∈ H1(Ω) and v0 ∈ L2(Ω), then we have the variational formulation: Find u(⋅, t) ∈

H1(Ω) such that for t ∈ R+

∫
Ω
üv dx + ∫

Ω
a∇u ⋅ ∇v dx = −∫

∂Ω

1

γ
au̇ v ds ∀v ∈H1(Ω). (1.1.10)

All the variational formulations defined above must be coupled with the initial data

(1.1.2). If u0 ∈ H1(Ω) and v0 ∈ L2(Ω), we can prove the existence and uniqueness

of (weak) solution 1 u(x, t) ∈ L2([0, T ];H1(Ω)) for t ∈ [0, T ], T ≤ ∞ with u̇(x, t) ∈

L2([0, T ];L2(Ω)) and 2 ü(x, t) ∈ L2([0, T ];H−1(Ω); see, Chapter 3, Section 8 of [88].

1.1.2 The telegraph equation

The telegraph equation gives the representation of the modified form of the wave

equation when the effect of a dissipative force such as friction is non negligible. The

equation appears with different names in different areas of applications; for example,

it is called the telegraph equation in electricity (transmission line equation) (see,

Section 1 − 6 of [63] and Chapter 7 of [42]), heat wave equation in heat conduction

problems (see, survey paper [81]) and damped wave equation in mechanical wave

1The spaceLp
([0, T ];V ) with 1 ≤ p ≤∞ is referred to as Bochner spaces, with V being a Banach

space with norm ∥ ⋅ ∥V [88]
2H−1(Ω) is referred to as the dual of H1

(Ω) [85].
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Chapter 1: Introduction

propagation (see, Chapter 2 of [42]). The equation is given by

ü −∇ ⋅ (a∇u) + αu̇ = 0, (1.1.11)

where the parameter α denotes the damping constant and the unknown scalar solu-

tion u could be the amplitude of a damped wave or propagated temperature in a

heat conduction problem.

Similarly, if we set up the damped wave problem with zero Dirichlet boundary

condition, we can define the following variational form: Find u(⋅, t) ∈ H1
0(Ω) such

that for t ∈ R+

∫
Ω
üv + ∫

Ω
a∇u ⋅ ∇v + ∫

Ω
αu̇v = 0 ∀v ∈H1

0(Ω), (1.1.12)

and if the boundary condition is of Neumann type, e.g., ∂u
∂n = g(x, t), then we have

the weak formulation to be: Find u(⋅, t) ∈ H1(Ω) such that for t ∈ R+

∫
Ω
üv dx + ∫

Ω
a∇u ⋅ ∇v dx + ∫

Ω
αu̇v = ∫

∂Ω
ag v ds ∀v ∈H1(Ω). (1.1.13)

Finally, for impedance boundary condition, the weak formulation is given to be:

Find u(⋅, t) ∈ H1(Ω) such that for t ∈ R+

∫
Ω
üv dx + ∫

Ω
a∇u ⋅ ∇v dx + ∫

Ω
αu̇v = −∫

∂Ω

1

γ
au̇ v ds ∀v ∈H1(Ω). (1.1.14)

The variational formulations above must be presented with the initial data also with

the same assumption as in the undamped wave problem.

1.2 Standard discretizations of time dependent

wave equations

The classical methods that have been employed for the spatial discretization of

the wave equation are the finite element method (FEM) and the finite difference

method (FDM). These methods are often coupled with finite difference time stepping

6



Chapter 1: Introduction

schemes for the full discretization of wave problems. FDM and FEM are regarded

as the standard numerical methods in the scientific community. These classical

methods have their advantages as well as limitations but ways have been derived to

circumvent their different limitations.

The FDM is regarded as the oldest numerical method for differential equations

in history (see [69] [105], [37] and [79]). The method is well known and appreciated

for its simplicity and efficiency in approximating wave problems on a uniform mesh.

Spatial discretization with FDM often leads to semi-discrete formulations which offer

flexibility in choosing any time discretization scheme [69].

Despite the attractive advantages offered by the method, its efficiency is limited

when employed to problems on complex geometries or grids with non-conforming

boundaries [79]. Methods such as mesh adaption technique [53] and local mesh

refinements (see, [40], [38], [39], [90] and [89]) may be necessary to circumvent this

issue. Furthermore, stability bottleneck due to CFL restrictions for explicit finite

difference schemes usually requires the use of complex techniques such as local time

stepping methods [130] to circumvent the problem. Another drawback to the use

of FDM for wave problems is the requirement of high-density grid/extremely fine

mesh (see [1] and [93]) for a system with high frequency content which can be

computationally intolerable. Despite the disadvantages, the method is still well

appreciated, applied and studied.

A more flexible spatial discretization method that handles complex geometries

effectively is the FEM (see [79], [69] and [93]). The method has been investigated,

extended and applied successfully in many areas of applications including wave prob-

lem simulations ([74], [37]). Other advantages offered by the method include high

order accuracy, possibility of hp-adaptivity and freedom to choose any time discret-

ization scheme for complete discretization [69]. However, the explicit form of the

method for wave problems may require a local time stepping or an implicit time

stepping technique to circumvent stability issue [60]. Furthermore, the requirement

of exceedingly fine mesh [93] or high order methods in both space and time [37] for

accurate solution at high frequency can be computationally expensive.

7



Chapter 1: Introduction

Despite the above limitations, the method is still considered as the most effective

classical method for full wave simulations.

1.3 Aims and outline of thesis

In this thesis, we develop and analyse a family of space-time discontinuous Galerkin

(DG) methods that can utilize special Trefftz spaces for the solutions of second order

wave equations. The main purpose for this is to search for approximations in finite

dimensional spaces whose building blocks are waves themselves.

The use of Trefftz spaces offer vital advantages such as systematic discretization

in space and time for easy implementation, inclusion of analytical features of the

wave equation in the approximation spaces and reduction in computational com-

plexity during implementation.

We organise the thesis as follows. In Chapter 2, we review DG methods as well

as Trefftz methods for the wave equation. We also give an overview of space-time

methods for the wave equation. We conclude the chapter with reviews of special

inequalities that will be needed for analysis in the dissertation. In Chapter 3, the

Trefftz space-time DG method is constructed for the acoustic wave equation. The

chapter also includes analysis such as the existence of solution in the Trefftz space,

the rates of convergence and a best approximation result. We end the chapter with a

brief extension of the idea to a wave problem with transparent boundary condition.

In Chapter 4, we extend the Trefftz space-time technique to a damped wave

equation. The construction of the Trefftz space with good approximation properties

is the major non-trivial work in the chapter. We also give relevant analysis similar

to Chapter 3 but rates of convergence are proved only in one spatial dimension. In

Chapter 5, we show the performance of the method through a series of numerical

experiments. We verify the rates of convergence numerically and we compare the

performance of the Trefftz spaces with the polynomial spaces of total degree which

has more degrees of freedom per wavelength.
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Chapter 2

Literature review and background

knowledge

In this chapter we review the discontinuous Galerkin (DG) method; its history and

its extension to second order wave problems are briefly discussed. We also present

an overview of the Trefftz space method whose emergence in recent years has been a

new direction for the development of efficient methods in the time-domain acoustic

problems. We shall review its application and its extension in time-harmonic regime

as well as in time-domain (transient domain). In Section 2.4, we extend our reviews

to the space-time techniques for the wave equation in order to put the developed

method in perspective.

At the later part of this chapter, we present important inequalities, error bounds

and approximation properties in finite dimensional spaces which are background

information for the analysis of the developed method. Finally, we conclude the

chapter with a brief note on the software employed in the thesis.

2.1 Review of the DG method

Discontinuous Galerkin (DG) methods are classified as special finite element meth-

ods that allow the use of discontinuous functions in their test and trial spaces for the

approximation of partial differential equations [47]. This class of methods dates back

to 1973 when it was first introduced and applied by Reed and Hill to approximate a

9



Chapter 2: Literature review and background knowledge

linear hyperbolic PDE called the neutron transport equation [108]. However, it was

not until the late 80s that the scientists in the research community started to exploit

the attractive properties and approximating power possessed by this class of meth-

ods. The advantages include flexibility in changing the degrees of polynomials even

locally on some elements in the mesh, high parallel efficiency, high order accuracy,

and flexibility in approximating on complex geometry. The DG methods have been

found successful in many areas such as electromagnetism [31, 36, 62], meteorology

and weather forecasting [35, 56], fluid flow [13, 29, 68] and acoustics [5, 119, 61].

In the early 70s, Aubin Nitsche [101, 102] developed a method similar to the DG

method where discontinuous functions were used in approximating an elliptic prob-

lems. He introduced a penalty term to enforce continuity in his method. Later in

1973, Babuška [7] merged Nitsche’s approach with the basic idea of the DG method

into the finite element framework and this evolved to be the origin of different in-

terior penalty DG (IPDG) methods. In the late 70s, the foundation of IPDG method

was established by Baker, Wheeler, Arnold, Delves, and Hall [128, 2, 46, 11, 4, 3].

Extension to other versions such as non-symmetric interior penalty DG (NIPG)

method and incomplete interior penalty DG (IIPG) was due to the works of Re-

viere, Oden, Baumann, Babuška, Wheeler, Girault, Dawson, and Sun in the 90s

[111, 45, 8, 110, 47].

DG methods have experienced a tremendous development over the years (more

than a decade), we shall therefore summarise the development and the extensions

of this class of methods with relevant literatures. The first analysis for the DG

method was carried out by Lesaint and Raviart in 1974 [87] while the error estimate

was improved by Johnson, Nävert, and Pitkäranta in 1986 [80]. Extension to time-

dependent hyperbolic PDEs was carried out by Chavent and Cockburn in 1989 [24]

and the order of convergence was improved by Cockburn and Shu using the explicit

Runge-Kunta time discretization scheme [33]. The extension of the DG methods to

hyperbolic conservation laws by Cockburn et al in the series of papers [32, 33, 28, 34]

was seen as a great breakthrough in the development of this class of methods where

a framework to approximate nonlinear time-dependent hyperbolic problems was

10
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established. We refer the reader to survey and review papers [30, 3, 115, 4] for more

on the history and the development of DG methods.

In the context of second order wave problems, Wang and his co-workers in [125]

classify the existing variants of the methods into three categories which are, space-

only DG methods, time only DG methods and space-time DG methods. Space

only DG formulation follows the usual (spatial) semi-discretization but with the

DG approach and suitable time-stepping schemes are then employed for its time

discretization. Reformulation to a system of first order has been studied in [100, 25].

If an explicit time stepping scheme such as the leapfrog method is employed for

the time discretization of the semi-discretrized method, then the derived complete

explicit scheme will be under the influence of the CFL restriction [43] and special

techniques such as local time stepping methods or implicit time stepping methods

maybe required to overcome stability restriction, see, [48], [60] and [49].

The time only DG methods on the other hand involve the use of standard finite

element shape functions which are strongly continuous across elements of a single

time step but discontinuous across successive time steps [125]. This class of DG

methods offers stability advantages as well as the allowance of high-order integration

schemes in contrast to the explicit space only DG methods. Concrete examples can

be found in [72] for elastodynamics and in [117] for acoustic wave problems .

The third category is the most recent class of DG methods for wave problems in

the time-domain. Methods under this class partition the (space-time) domain sys-

tematically into space-time elements and basis functions that are continuous within

the space-time element but discontinuous across element boundaries in both space

and time are employed in the approximation space. This approach often leads to

implicit space-time methods, however, careful adjustment in the space-time mesh

partitioning may lead to a semi-explicit space-time method [96]. The first space-time

DG method that utilizes wave-like basis functions has been studied in [106, 125] and

the extension of the idea to Maxwell’s equations has been studied in [83, 50].
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2.2 Overview of the Trefftz space method

The Trefftz method is a class of numerical methods that involves the use of functions

that satisfy the targeted partial differential equation. In the framework of finite

elements, this method utilizes functions that satisfy the targeted PDE locally in its

approximation space. The origin of this method can be traced back to 1926 when

it was first employed by a German mathematician named Erich Trefftz [122] for the

Laplace equation. Since then different versions of the method have been developed,

analysed, and applied to a different range of PDEs by scientists and engineers [131].

Recently, the attractive advantages and flexibility of the method have attracted

scientists in computational mathematics to study the method and different variants

are being proposed for different PDEs. The attractive advantages include but are

not limited to fewer degrees of freedom to obtain the same accuracy compared to

standard polynomial space and flexibility in incorporating the analytical properties

of the targeted PDE.

The use of the Trefftz method for the approximation of wave problems have

been studied in the literature. In the time-harmonic domain (both acoustic and

electromagnetism), the so-called plane-wave DG method [54] and the ultra-weak

variational formulation [22] are examples of well-studied Trefftz methods. The use

of this method in this regime does not only help in reducing the number of basis

functions locally but also helps in reducing the computational complexity that may

arise from evaluating integrals over spatial elements in their variational formulations

[57, 15]. Moreover, analytical features such as dominant directions and oscillatory

character of the wave can be incorporated in the approximating spaces of the vari-

ational methods [14].

The excellent performance of the Trefftz method in the frequency regime has

motivated the research community to investigate the method in the corresponding

time-domain (see Section 2.4).

All the works cited above are in the framework of the DG method and hence

we can infer that the DG framework provides the capacity to accommodate Trefftz

spaces for the solution of PDE of interest and acoustic wave problems.
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2.3 Review of time stepping methods for wave

problems

Discretization of the time-dependent wave equation in space either by FEM or DG

method is not enough for the full simulation of the problem. One still requires a

time stepping method to achieve a fully discretized scheme and for the purpose of

developing a time stepping method. The usual practice is the use of finite difference

time stepping schemes such as leapfrog, Runge-Kutta, and Crank-Nicolson schemes

after splitting the semi-discretized scheme into systems of first order in time (see,

[25],[26] and [100]). However, second-order leapfrog or Newmark scheme can be used

directly on the semi-discretized formulation without splitting into systems of first

order [61].

The type of time stepping method employed determines the form of the fully

discretized method which can be either explicit or implicit. Explicit methods solve

for the solution of a system at a later time tn+1 directly from known values at previous

states tn, tn−1. For example, the semi-discretized formulation of the wave equation

(1.1.1) where DG is employed spatially can be written compactly as

(ü, v)Ω + a(u, v) = 0, (2.3.1)

where a(⋅, ⋅) represents a DG bilinear form and v is a test function from a finite

dimensional space. Employing the leapfrog time discretization to discretize (2.3.1)

in time introduces a second-order central difference scheme which gives

(
Un+1 − 2Un +Un−1

k2
, v)

Ω

+ a(Un, v) = 0, (2.3.2)

where Un represents the solution at tn and k > 0 is the time step, and tn = nk.

Rearranging now, we have

(Un+1, v)Ω = 2(Un, v)Ω − (Un−1, v)Ω − k
2a(Un, v).
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If we introduce the usual standard basis functions such that the discrete solution

Un can be represented locally as a linear combination of these basis functions, i.e.,

Un = ∑
P
i=1α

n
i (t)φ(x), then the fully discretized scheme can be written compactly as

MUn+1 = 2MUn −MUn−1 − k2AUn, (2.3.3)

where M represents the global DG mass matrix and A represents the global DG

stiffness matrix. Clearly, the solution at each time step is given by a closed form

formula involving the solution of previous time steps. Although we still need to

solve a linear system at each time step, the idea of mass lumping technique can be

introduced in this case to speed up the computation [99, 114, 85]. Explicit meth-

ods are cheap, easier to implement, and easier to parallelize compared to implicit

methods. However, small time-steps must be chosen in order to avoid numerical

instability. Moreover, the smallest element in the mesh during refinement process

controls the maximum time-step allowed by the CFL condition [60]. Techniques such

as locally implicit time stepping or local time stepping methods are often required

to circumvent stability problems [48].

Implicit methods, on the other hand, give the solution of a system at a later time

tn+1 by solving coupled sets of equations involving the later state and previous states.

For example, note that the semi-discretized formulation (2.3.1) can be written as

Mα̈(t) +Aα(t) = 0, (2.3.4)

where we have introduced the standard basis functions locally on each element to

derive the above equation. If we split the semi-discretized formulation (2.3.4) into

first order system we have

Mα̇(t) =Mη(t)

Mη̇(t) +Aα(t) = 0.

(2.3.5)
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Employing the Crank-Nicolson time discretization gives

M (
ηn − ηn−1

kn
) +A(

αn−1 + αn
2

) = 0

M (
αn − αn−1

kn
) =M (

ηn−1 + ηn
2

) .

(2.3.6)

Compactly in block matrix form we have

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M
kn
2
M

kn
2
A M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αn

ηn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M
kn
2
M

−
kn
2
A M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αn−1

ηn−1.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.3.7)

Obviously, the scheme is implicit and it involves solving a linear system with large

matrix at each time step. Moreover, mass lumping technique cannot be employed in

this case because of the presence of the stiffness matrix within the block matrix on

the LHS. Implicit methods are in general expensive compared to explicit methods

but in contrast, they allow larger time steps in implementation.

The shortcomings of the method of lines 3 approach which gives rise to either

implicit or explicit methods have motivated the use of space-time discretizations as

alternative techniques for wave problems simulation [109, 104, 91]. Space-time DG

methods may be implicit, however, a special mesh discretization technique called the

tent pitching (see, [123],[96], and [116]) can be employed to transform space-time

methods into quasi-explicit methods where only solutions on the space-time front

are stored and the rest of the computation is treated explicitly. Hence we could have

a reduction in computer memory usage as well as local time stepping advantage.

2.4 Review of space-time methods for the wave

equation

In this section, we briefly review some of the works done by practitioners in the field

of numerical partial differential equations that are pertinent to the development of

our method. These works stand as stepping stone and are crucial to the formulation

3Method of lines approach involve discretizing separately usually in space first and later in time
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of the Trefftz space-time discontinuous Galerkin method.

The origin of the space-time method can be traced back to the late 80s when Hul-

bert and Hughes [73] developed this class of methods for elastodynamics problems.

The framework of the method was based on the success of the time discontinuous

Galerkin method for first order systems. This also motivated the extension of the

time discontinuous Galerkin method to second-order hyperbolic problems. Stabil-

ity of the schemes was controlled or enforced by means of stabilizing operators in

least-squares form

aGLS(u, v) ∶=
N−1

∑
n=0
∫
In
(ü −∆u, v̈ −∆v)Ω + ([∇u] , [∇v])Γdt, (2.4.1)

where Γ represents the skeleton of the mesh and the spatial discontinuity across each

element edge e along a slab is denoted by the spatial jump [u] ∣e ∶= u+n++u−n−. The

method allows the use of high-order time integration schemes and stability is less

of an issue compared to the semi-discretized approach with explicit time stepping

scheme. This class of methods developed in [72, 73] are now classified as the time

only DG methods since they allow the shape functions to be discontinuous only

across successive time steps [125]. The extension and the success of the approach

can also be seen in [118, 117] for the acoustic problem.

In 1993, the time only DG technique was introduced directly into approximat-

ing second-order wave equation by Johnson, see, [78] without the inclusion of the

Galerkin least square stability. He was able to prove the optimal rate of conver-

gence using polynomial basis functions which are piecewise linear both in space and

in time. Costanzo and Huang in 2005 [41] extended the work done by Hulbert and

Hughes [72, 73] to completely unstructured meshes. They developed an uncondi-

tionally stable space-time method for the elastodynamics problem. Unconditionally

stable in this context implies that the Galerkin least square term is not necessary

for the stability of the scheme. However, the error analysis was not provided in the

paper.

Finally, the use of non-standard basis functions in the DG approximation space

as a means to enrich the space of approximation was introduced in [106]. These basis
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functions are wave-like analytical solutions of the wave equation defined locally on

each space-time element K × In, with In = (tn, tn+1)

Sh(K × In) = {v(x, t) = v0 +

p−1

∑
`=1

J

∑
j=1

β`j(ct − x ⋅ α
(K,n)
j )`, v0, v`,j ∈ R, x ∈K, t ∈ In} ,

(2.4.2)

where α
(K,n)
j , ∣α

(K,n)
j ∣ = 1, represent directions of propagation. For example in one

spatial dimension, we have two directions of propagation and hence the approxim-

ation on a space-time element is

v(x, t) = v0 + v1(ct − x) + v2(ct − x)
2 + ⋅ ⋅ ⋅ + vp(ct − x)

p

+ vp+1(ct + x) + vp+2(ct + x)
2 + ⋅ ⋅ ⋅ + v2p(ct + x)

p.

(2.4.3)

In higher spatial dimensions, directions of propagation can be incorporated in the

construction of local solutions by using the equi-distributed idea of Cessenat and

Després in [22], (see Section 3.4 and Subsection 5.3.2).

In contrast to other time-space method discussed above, the basis functions

introduced in the approximation space are discontinuous in space along slab and

discontinuous in time across the slab. However, the stability of the scheme was

enforced by means of a Lagrangian multiplier. Below is the variational formulation

of the approach when a ≡ 1:

N−1

∑
n=0
∫
In

((ü, v̇)Ω + (∇u,∇v̇)Ω)dt

+ (⟦u̇(tn)⟧, v̇(t
+
n))Ω + (⟦∇u(tn)⟧,∇v(t

+
n))Ω + ∫

In
([v̇] , λ)Γdt = 0,

subject to

∫
In
([u̇] , µ)Γdt = 0,

where ⟦u(x, tn)⟧ = u(x, t+n)−u(x, t
−
n) denotes the temporal jump which measures the

pointwise gradient due to the discontinuity across the time slab. Kretzschmar et al

in [82] modified the DG formulation of Monk and Richter [96] for Maxwell’s problem

by introducing the local solutions of the type (2.4.2) in the approximation spaces of

their formulation. Extension of the same idea for the wave equation on unstructured
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meshes can be found in [94]. This class of methods is generally classified as the space-

time DG method because they allow the shape functions to be discontinuous both

in space and in time .

For the development of our method, we propose to use the technique of [106]

but in contrast to them, we enforce continuity and stability in space by an interior

penalty approach instead of the Lagrangian multipliers. This helps us to restrict

the number of degrees of freedom only to the number of wave-like basis functions

per element and the entries of our linear system are therefore reduced. The choice

of the penalty terms introduced in our bilinear form is crucial for the theoretical

analysis and for the practical behaviour of the method for the case of lowest order

basis functions.

2.5 Important inequalities

In this section, we cover briefly useful inequalities that are usually employed in the

analysis of DG methods. These inequalities emerged as a result of various theorems

and lemmas which we quote and we refer readers to the texts cited for their proofs.

We present the following definitions before we proceed.

Definition 2.5.1 (Shape-regularity). A family of meshes {Th} h > 0 is said to be

shape-regular if there exists %0 such that for any K ∈ Th, %K = hK/ρK ≤ %0, where ρK

denotes the diameter of an inscribed circle in K and hK = diam(K) [6, 47, 55, 51].

Definition 2.5.2. A family of meshes {Th} is said to be quasi-uniform iff it is shape

regular and ∃ a c such that hK ≥ ch ∀ h and ∀ K ∈ Th .

Definition 2.5.3. Let Th be a mesh of Ω, we define the finite element space to be

V p
h = {v ∈ L2(Ω) ∶ v∣K ∈ Pp(K)∀K ∈ Th}, where Pp denotes the space of polynomials

of order not more than p.

2.5.1 Broken Sobolev spaces

The idea of broken Sobolev spaces is a very important concept in the analysis of

DG methods. We refer readers to [47, 110] for details. To explain the concept in
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this thesis, we focus on the Sobolev space H1(Ω). Let Th be a regular subdivision

(or a mesh) of a Lipschitz domain Ω into a set of simplices. We define the Sobolev

space H1(K) for any K ∈ Th to be

H1(K) ∶= {v ∈ L2(K) ∶
∂

∂xj
∈ L2(K)∀j = 1, . . . , d}, (2.5.1)

and the broken Sobolev space is defined as

H1(Th) ∶= {v ∈ L2(Ω) ∶ ∀K ∈ Th, v∣K ∈H1(K)}. (2.5.2)

The above definition is crucial for the proper definition of the trace inequality in the

discontinuous Galerkin context as we shall see in the next subsection.

2.5.2 Trace theorem and inequalities

It is well known that the functions in Sobolev spaces Hs(Ω), s ≥ 0, are defined by

Lebesgue integrals only up to measure zero and the definition of the restriction of

such functions to the boundary is not clear since the boundary has exactly zero

measure. A trace theorem however gives answer to the question of defining the

restriction of Sobolev functions on the boundary. In the following we state a version

of the trace theorem found in [110, 113, 65].

Theorem 2.5.4. Let Ω be a bounded Lipschitz domain with boundary ∂Ω and let

n denote the outward normal vector. There exist trace operators γ0 ∶ Hs(Ω) Ð→

Hs−1/2(∂Ω) and γ1 ∶ Hs(Ω) Ð→ Hs−3/2(∂Ω) for s ≥ 1, which define the restriction

of function v and the restriction of its normal derivative n ⋅ ∇v to the boundary ∂Ω

as linear maps from the Sobolev space on Ω to the Sobolev space on the boundary

∂Ω. Furthermore, the operators are surjective and if v ∈ C1(Ω̄), then γ0v = v∣∂Ω and

γ1v = n ⋅ ∇v∣∂Ω.

Theorem 2.5.5 (Stability estimate [20, 47]). Let Ω be a bounded domain with

Lipschitz boundary ∂Ω. Then there exists a constant C such that

∥v∥L2(∂Ω) ≤ C∥v∥
1/2
L2(Ω)∥v∥

1/2
H1(Ω), ∀v ∈H1(Ω). (2.5.3)
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In the context of discontinuous Galerkin methods, the continuous trace inequality

(2.5.3) can be extended to broken Sobolev spaces based on the definition of the

later. We can infer from (2.5.3) that there exists a constant C (which depends on

the shape-regularity of the mesh) independent of h such that (see, e.g., [47])

∥v∥L2(∂K) ≤ C∥v∥
1/2
L2(K)∥v∥

1/2
H1(K), ∀v ∈H1(Th), K ∈ Th. (2.5.4)

The standard local trace inequalities which incorporate the edge length ∣e∣, the

local meshsize hK = diam(K), and the area ∣K ∣ of a simplex K in the mesh Th are

given by [110, 85]

∥γ0v∥L2(e) ≤ C ∣e∣1/2∣K ∣−1/2(∥v∥L2(K) + hK∥∇v∥L2(K)), s ≥ 1,

∥γ1v∥L2(e) ≤ C ∣e∣1/2∣K ∣−1/2(∥∇v∥L2(K) + hK∥∇2v∥L2(K)), s ≥ 2.

(2.5.5)

The corresponding discrete version of the inequalities are derived via equivalence of

norm in finite dimensional space; (see Chapter 2 of [110] ). Let Pp(K) denote the

space of polynomials of degree not more than p, then the discrete trace inequalities

are defined as follows

∥v∥L2(e) ≤ C̃ ∣e∣1/2∣K ∣−1/2∥v∥L2(K), ∀v ∈ Pp(K), e ∈ ∂K,

∥∇v ⋅ n∥L2(e) ≤ C̃ ∣e∣1/2∣K ∣−1/2∥∇v∥L2(K), ∀v ∈ Pp(K), e ∈ ∂K,

(2.5.6)

where C̃ is independent of the simplex diameter hK and the function v but depends

on the degree p of the polynomial. The above inequality (2.5.5) and (2.5.6) are very

useful in the DG analysis. We refer to [88] for the general theory of trace and [127]

for the explicit estimates of the constant C̃ when the mesh elements are intervals,

triangles and tetrahedra.

2.5.3 Inverse inequalities

Another important set of inequalities are the inverse inequalities. We state the

following theorem to present them (see, [113, 51]).

Theorem 2.5.6. Let K be a simplex in a quasi-uniform mesh Th of Ω with parameter
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%0 and let e be an edge of K. Then for all v ∈ V p
h , we have the following inverse

estimates:

∥∇v∥L2(K) ≤ Ch
−1
K ∥v∥L2(K),

∥v∥2
L2(e) ≤ Ch

−1
K ∥v∥2

L2(K), ∀v ∈ Pp(K),

(2.5.7)

where the constant C depends on the order of polynomial p, but independent of the

element diameter hK and the function v.

Other forms of inverse inequalities in different norms are given in [113, Theorem

4.76] A more general framework for the construction of inverse inequality is presented

in [27].

2.5.4 Cauchy-Schwarz inequality

Another useful inequality that often occurs in the analysis of finite element methods

is the Cauchy-Schwarz inequality, (see e.g., [47, 113]). We present the inequality as

follows: let v,w ∈ L2(Ω), then

∫
Ω
vw ≤ ∥v∥L2(Ω)∥w∥L2(Ω). (2.5.8)

2.5.5 Gronwall inequality

Another useful inequality that is usually employed in the analysis of time dependent

problems is the Gronwall inequality. We state both the continuous and the discrete

forms of the lemma from [110].

Lemma 2.5.7. Let f, g, h be piecewise continuous non-negative functions defined on

[a, b]. Assume that g is non-decreasing and that there exists a positive constant C

independent of t such that

f(t) + h(t) ≤ g(t) +C ∫
t

a
f(s)ds, ∀ t ∈ (a, b).

Then

f(t) + h(t) ≤ g(t)eC(t−a), ∀t ∈ (a, b). (2.5.9)
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2.6 L2-projection and error bound

2.6.1 The orthogonal L2−projection

The L2−projection or orthogonal L2-projection Phv gives the approximation to v in

the form of an average. Let v ∈ L2(K), then the L2-projection Phv satisfies

∫
K
(v − Phv)w = 0 ∀w ∈ Pp(K). (2.6.1)

The function v being approximated need not to be continuous. Moreover, the L2-

projection also satisfies

∥v − Phv∥L2(K) ≤ ∥v −w∥L2(K) ∀w ∈ Pp(K) (2.6.2)

and hence is the best approximation to the function v with respect to the L2−norm.

The following lemma gives the bound on the orthogonal L2 approximation error

(see, [47, 6]).

Lemma 2.6.1. Let K be a simplex in Th and let Phv denote the L2(K)−orthogonal

projection onto Pp(K). Then for s ∈ {0, . . . , p + 1} and any v ∈Hs(Ω), there holds

∥v − Phv∥Hm(K) ≤ Ch
s−m
K ∥v∥Hs(K) ∀m ∈ {0, . . . , s}, (2.6.3)

where C is independent of K and mesh size h = maxK∈Th hK.

For example if m = 0, we have the following error bound [6]

∥v − Phv∥L2(K) ≤ Ch
s
K∥v∥Hs(K). (2.6.4)

Shape regularity assumption on Th is not required for the estimate (2.6.4) [47].

2.6.2 Approximation properties in polynomial space

In this subsection, we state two theorems that summarise the bounds on the error

for any function v in the Sobolev space Hs(K) defined on simplex K and on the
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edge e of K. We refer to [9, 10, 112] for the origin of the theorems.

Theorem 2.6.2. Let K be a simplex with diameter hK and let v ∈Hs(K) for s ≥ 1

and p ≥ 0 an integer. Then there exists a constant C independent of v and hK and

a function ṽ ∈ Pp(K) such that ∀ 0 ≤ q ≤ s,

∥v − ṽ∥Hq(K) ≤ Ch
min(p+1,s)−q
K ∣v∣Hs(K). (2.6.5)

The next theorem gives the bound on the approximation error on the edge e of

K see, [112] or [47].

Theorem 2.6.3. Let K be a simplex with diameter hK. Let e denote the edge or

face of K and nK denotes the outward normal to ∂K. Then there exists a constant

C1 independent of K and hK and an approximation ṽ ∈ Pp(K) such that

∥ṽ − v∥L2(e) ≤ C1h
min(p+1,s)−1/2
K ∣v∣Hs(K), (2.6.6)

and if s ≥ 2, then there exists a constant C2 independent of K and hK such that

∥∇(ṽ − v)∣K ⋅ nK∥L2(e) ≤ C2h
min(p+1,s)−3/2
K ∣v∣Hs(K). (2.6.7)

2.7 MATLAB and Chebfun software

Numerical experiments in this thesis are carried out with the aid of MATLAB. The

software provides a well-equipped platform for the creation of meshes, the execu-

tion of numerical algorithms as well as viewing the results of simulation graphically.

MATLAB also provides a good environment for the use of a package called ‘Cheb-

fun2’ that we employed in our implementation.

Chebfun2 is MATLAB-based software that computes and approximates functions

of two variables over a specified rectangular domain [a, b] × [c, d] up to machine

precision (relatively up to 10−15). The development of the first version of the software

was to approximate functions of one variable based on the idea that smooth functions
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can be approximated efficiently by polynomial interpolation at Chebyshev points

xj = cos(
jπ

n
) , 0 ≤ j ≤ n, (2.7.1)

or by expansion in Chebyshev polynomials [107]. This version was released in 2004.

In 2013, the extension of the software to compute functions of two variables as well

as vector-valued functions was released and named Chebfun2.

The development of Chebfun2 rests on the univariate representations and al-

gorithms of the original Chebfun [120]. Moreover, the salient observation that many

functions of two variables can be approximated efficiently by low rank functions mo-

tivated the extension [121, 59, 59]. For example, given a real valued function f(x, y)

defined on [−1,1]×[−1,1], the value of the function can be obtained optimally using

the singular value decomposition (SVD):

f(x, y) =
∞
∑
j=1

αjφj(x)ψj(y), (2.7.2)

where φj, ψj, j = 1 . . . are univariate rank 1 functions and are orthogonal in

L2([−1,1]2), αj, j = 1 . . .∞ are non-increasing real sequences of singular values

[120]. Now the optimal rank k approximant fk to f is obtained by truncation

f(x, y) ≈ fk(x, y) =
k

∑
j=1

αjφj(x)ψj(y), (2.7.3)

where αj, j = 1 . . . k decays depending on the smoothness of the function being

approximated.

This idea is introduced numerically in Chebfun2 by sampling fk on n×n Chebychev

tensor grid and computing the SVD of the sampled matrix. Then the optimal k rank

matrix in the discrete 2−norm is obtained by coupling the first k singular values with

the left and right singular vectors.

Chebfun2 offers simple syntax and many MATLAB commands are overloaded in

the software. To avoid confusion, the name of the software is Chebfun2 with capital

”C” while its MATLAB object is chebfun2. We present below a simple code snippet

2.1 of Chebfun2 operation and its output in Figure 2.2 and in Figure 2.3.
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1 x = chebfun2 (@(x , y ) cos (x ) , [ - 1 1 -1 1 ] ) ;
2 y = chebfun2 (@(x , y ) s i n (y ) , [ - 1 1 -1 1 ] ) ;
3 f = s in ( x . ∗y ) ;
4 p lo t ( f ) ,
5 x l ab e l ( 'x ' , ' i n t e r p r e t e r ' , ' l a t ex ' , ' FontSize ' , 12)
6 y l ab e l ( 'y ' , ' i n t e r p r e t e r ' , ' l a t ex ' , ' FontSize ' , 12)

Figure 2.1: Code snippet showing chebfun2 object in MATLAB.

Figure 2.2: Chebfun2 operation in MATLAB.

x =

chebfun2 object (1 smooth surface)

domain rank corner values

[ -1, 1] x [ -1, 1] 1 [0.54 0.54 0.54 0.54]

vertical scale = 1

y =

chebfun2 object (1 smooth surface)

domain rank corner values

[ -1, 1] x [ -1, 1] 1 [-0.84 -0.84 0.84 0.84]

vertical scale = 0.84

f =

chebfun2 object (1 smooth surface)

domain rank corner values

[ -1, 1] x [ -1, 1] 6 [-0.44 -0.44 0.44 0.44]

vertical scale = 0.75

Figure 2.3: Approximation of higher rank function by two rank 1 functions .
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Chapter 3

Analysis of Trefftz space-time DG

method for the wave equation

In this chapter, we develop and analyse a space-time discontinuous Galerkin method

utilising special non-standard polynomial bases called Trefftz basis functions for

the scalar undamped wave equation in second order formulation. The DG method

considered is motivated by the class of interior penalty DG (IPDG) methods, as well

as by the classical work of Hulbert and Hughes [73, 72]. The choice of penalty terms

included in the bilinear form is essential for both the theoretical analysis and for the

practical behaviour of the method for the case of lowest order basis functions (not

necessary for the practical behaviour of higher order basis functions ).

The motivation and objective behind the use of Trefftz basis functions is to reduce

the number of degrees of freedom per wavelength required to obtain accurate results.

This idea has been found very successful in practice, especially in the frequency

domain [22, 95], where the prominent example is the use of plane wave bases in the

approximation spaces. The approach brings along some advantages which include

efficient and effective method that can approximate problems with energy at high

frequencies and simplification of the computational task as implementation can be

restricted to the space-time skeleton of the mesh.

The most natural way of including space-time Trefftz functions is within the

confines of a space-time DG method. In this work, we restrict the construction of

our method to space-time slabs while descritizing the wave equation in primal form
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to ensure solvability on each time-step, as well as to aid the presentation and the

analysis of the method. However, with minor modifications, completely unstructured

space-time meshes could, in principle, be used with the proposed space-time DG

frame-work. This construction leads to a stable, dissipative scheme for general

polynomial bases.

We organise the rest of this chapter as follow. In Sections 3.1 and 3.2, we con-

struct the space-time IPDG method beginning with space-time polynomial spaces

and we prove its stability. We proceed in Section 3.3 to analyse polynomial Trefftz

spaces and we prove quasi optimality. Finally in this Chapter, we prove conver-

gence rates for the method in spatial dimension d = 1,2,3; moreover we also provide

hp−version a priori bounds for d = 1.

3.1 Model problem

We consider the acoustic wave equation

ü −∇ ⋅ (a∇u) = 0 in Ω × [0, T ],

u = 0 on ∂Ω × [0, T ],

u(x,0) = u0(x), u̇(x,0) = v0(x), in Ω,

(3.1.1)

where Ω is a bounded Lipschitz domain in Rd, ∂Ω its boundary and 0 < ca ≤ a(x) ≤

Ca, (x ∈ Ω) a piecewise constant function. If Ω1 and Ω2 are two subsets of Ω with

the boundary Γ separating them and with a ≡ a1 in Ω2 and a ≡ a2 in Ω2, then if we

denote by u1 = u∣Ω1 and u2 = u∣Ω2 we further have the transmission conditions

u1 = u2, n ⋅ a1∇u1 = n ⋅ a2∇u2 (3.1.2)

where n is the exterior normal to Ω1 (or Ω2).

Let u0 ∈H1
0(Ω) and v0 ∈ L2(Ω), then (3.1.1) has a unique weak solution U with

U ∈ L2([0, T ];H1
0(Ω)), U̇ ∈ L2([0, T ];L2(Ω)), Ü ∈ L2([0, T ];H−1(Ω)), (3.1.3)
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see [88, Theorem 8.1]. Furthermore, according to [88, Theorem 8.2], the solution is

continuous in time with

U ∈ C([0, T ];H1
0(Ω)), U̇ ∈ C([0, T ];L2(Ω)). (3.1.4)

We denote throughout the discussion the space of all solutions of 3.1.1 by

X ∶= {U ∣ U weak solution of (3.1.1) ∀u0 ∈H
1
0(Ω), v0 ∈ L

2(Ω)} , (3.1.5)

and the weak solution depends on the coefficient a(x).

3.2 Construction of space-time finite element space

We aim to discretize this problem by a new time-space interior penalty discontinuous

Galerkin method. In principle, this could be done on a general time-space mesh,

however for the simplicity of presentation (and implementation) we construct a time

discretization 0 = t0 < t1 < ⋅ ⋅ ⋅ < tN = T and locally quasi-uniform spatial-meshes Tn of

Ω consisting of open simplices such that Ω = ∪K∈TnK, with K ∩ K̃ = ∅, for K, K̃ ∈ Tn

and K ≠ K̃. Therefore the space-time mesh consists of time-slabs Tn × In, where

In = (tn, tn+1), τ = tn+1 − tn.

The discrete space-time approximation space will consist of piecewise polynomi-

als on each time-slab, given by the local space-time finite element space:

Sh,pn ∶= {u ∈ L2(Ω × In) ∶ u∣K×In ∈ Pp(Rd+1), K ∈ Tn} ,

where Pp(Rd+1) is the space of polynomials of total degree p in d + 1 variables; the

complete space-time finite element space on Ω × [0, T ], will be denoted by

V h,p ∶= {u ∈ L2(Ω × [0, T ]) ∶ u∣Ω×In ∈ S
h,p
n , n = 0,1, . . . ,N − 1}.

We require some notation. The skeleton of the mesh, is defined by Γn ∶= ∪K∈T ∂K

and the interior skeleton by Γint
n = Γn ∖ ∂Ω; the time-step counter n will be omitted
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for brevity, when confusion is unlikely to occur. Moreover, we define the union of

two skeletons of two subsequent meshes by Γ̂n ∶= Γn−1 ∪ Γn 3.1.

xΩ

t

T

tn−1

tn Γn

Γn−1

0

Figure 3.1: An example of a space-time mesh. Skeletons Γn and Γn−1 are highlighted
with black dots. The union of the two is denoted by Γ̂n.

Let us denote by K+ and K− two spatial elements sharing a face e = K̄+ ∩ K̄− ⊂

Γint, with respective outward normal vectors n+ and n− on e. For u ∶ Ω → R and

v ∶ Ω → Rd, let u± ∶ e → R and v± ∶ e → Rd be the traces on e with limits taken from

K±. We define the respective jumps and averages across each face e ∈ Γint by

{u} ∣e =
1

2
(u+ + u−), {v} ∣e =

1

2
(v+ + v−),

[u] ∣e = u
+n+ + u−n−, [v] ∣e = v+ ⋅ n+ + v− ⋅ n−;

if e ⊂K+ ∩ ∂Ω, we set {v} ∣e = v+ and [u] ∣e = u+n+. Further, we define the temporal

jump by

⟦u(tn)⟧ = u(t
+
n) − u(t

−
n), ⟦u(t0)⟧ = u(t

+
0).

We denote the spatial meshsize by h ∶ Ω × [0, T ] → R, defined by h(x, t) = diam(K)

if x ∈ K for K ∈ Tn and t ∈ In; when x ∈ e = K̄+ ∩ K̄−, we set h(x, t) ∶= {h} to be

the average. Finally, we assume that there exist cT > 0 such that

diam(K)/ρK ≤ cT , ∀K ∈ Tn, n = 0,1, . . . ,N − 1, (3.2.1)

where ρK is the radius of the inscribed circle of K.

For simplicity of the presentation only, we shall, henceforth, assume space-time
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shape-regularity diamK ∼ ∣In∣ for all K ∈ Tn; this allows us to consider one space-

time meshsize hnK = diam(K×In) per space-time element. Finally the broken spatial

gradient will be denoted by ∇nv, given by (∇nv)∣K ∶= (∇v)∣K for all K ∈ Tn, and

a v ∈ C(In;H1
0(Ω)) + Sh,pn ; collectively, we shall denote the broken gradient by ∇̃v

defined as

(∇̃v)∣Ω×In ∶= (∇nv)∣Ω×In , n = 0, . . . ,N − 1,

for v ∈ C(∏
N−1
n=0 In;H1

0(Ω))+V h,p, which means we allow v to be discontinuous both

in space and in time.

3.3 Development of a space-time discontinuous

Galerkin method

To derive the weak form suitable for DG discretisation we will follow an energy

argument. We begin with the assumption that the governing equation (3.1.1) has

a smooth solution u and the test function v ∈ X + V h,p. The standard symmetric

interior penalty discontinous Galerkin weak formulation on the time-slab In when

tested with v̇ is given by

(ü, v̇)Ω×In + (a∇̃u, ∇̃v̇)Ω×In − ({a∇u} , [v̇])Γn×In

− ([u] ,{a∇v̇})Γn×In + (σ0 [u] , [v̇])Γn×In = 0,

(3.3.1)

where

σ0(x, t) ∶= Cσ0p
2h(x, t)−1, (3.3.2)

for a positive constant Cσ0 independent of p and h. This immediately motivates the

definition of discrete energy Eh(t, v) at t ∈ In along a time-space slab:

Eh(t, v) ∶=
1

2
∥v̇(t)∥2

Ω +
1

2
∥
√
a∇̃v(t)∥2

Ω +
1

2
∥
√
σ0 [v(t)] ∥

2
Γn − ({a∇v(t)} , [v(t)])Γn

.

(3.3.3)

We prove in Lemma 3.3.2 that the energy Eh(t, v) is non-negative.
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Now, choosing v = u as test function in (3.3.1) and summing over n, we have

0 =
N−1

∑
n=0
∫
In

d

dt
(

1

2
∥u̇∥2

Ω +
1

2
∥
√
a∇̃u∥2

Ω − ({a∇u} , [u])Γn
+

1

2
∥
√
σ0 [u]∥

2
Γn)dt

= Eh(t
−
N , u) −Eh(t

+
0 , u) −

N−1

∑
n=1

⟦Eh(tn, u)⟧.

We discover that we need to modify the formulation (3.3.1) in order to allow for

discontinuity in time and also to control the term ⟦Eh(tn, u)⟧ which has no definite

sign. Therefore, we employ the upwind algebraic product rule

⟦f(u(tn))⟧⟦g(u(tn))⟧

= ⟦f(u(tn))⟧g(u(t
+
n)) + ⟦g(u(tn))⟧f(u(t

+
n)) − ⟦f(u(tn))g(u(tn))⟧,

(3.3.4)

to each term in (3.3.1) to have

N−1

∑
n=0

(ü, v̇)Ω×In + (⟦u̇(tn)⟧, v̇(t
+
n))Ω

+ (a∇̃u, ∇̃v̇)
Ω×In

+ (a⟦∇̃u(tn)⟧, ∇̃v(t
+
n))Ω

− ({a∇u} , [v̇])Γn×In − (⟦{a∇̃u(tn)}⟧, [v(t
+
n)])Γn

− ([u] ,{a∇v̇})Γn×In − (⟦[u(tn)]⟧,{a∇v(t
+
n)})Γn

+ (σ0 [u] , [v̇])Γn×In + (σ0⟦[u(tn)]⟧, [v(t
+
n)])Γn

+ (σ1 [u] , [v])Γn×In + (σ2 [a∇u] , [a∇v])Γn×In = B
init(v),

(3.3.5)

where Binit is defined by

Binit(v) ∶= (v0, v̇(t
+
0))Ω + (a∇̃u0, ∇̃v(t

+
0))Ω

− ({a∇u0} , [v(t
+
0)])Γ0

− ([u0] ,{a∇v(t
+
0)})Γ0

+ (σ0 [u0] , [v(t
+
0)])Γ0

.

(3.3.6)

The special penalty terms with non-negative parameters σ1 and σ2 in the weak

formulation do not affect the consistency of the method; the need for their inclusion

as well as the choice of σ1 and σ2 will become apparent in the convergence analysis.

Note also that the last two terms in the definition of Binit are zero if the initial data

is continuous in space.
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Thus, we have arrived at a space-time DG method, which can be thought of

in two ways: as a method for obtaining a discrete solution on a fixed space-time

domain Ω × [0, T ] or as a time-stepping method. The former viewpoint will be

important for the proof of convergence estimates while the latter will be useful

for the implementation of the method. Consequently we define the following three

bilinear forms to describe these two viewpoints:

An(u, v) ∶= (ü, v̇)Ω×In + (u̇(t+n), v̇(t
+
n))Ω

+ (a∇u,∇v̇)Ω×In + (a∇u(t+n),∇v(t
+
n))Ω

− ({a∇u} , [v̇])Γn×In − ({a∇u(t+n)} , [v(t
+
n)])Γn

− ([u] ,{a∇v̇})Γn×In − ([u(t+n)] ,{a∇v(t
+
n)})Γn

+ (σ0 [u] , [v̇])Γn×In + (σ0 [u(t
+
n)] , [v(t

+
n)])Γn

+ (σ1 [u] , [v])Γn×In + (σ2 [a∇u] , [a∇v])Γn×In ,

(3.3.7)

Bn(u, v) ∶= (u̇(t−n), v̇(t
+
n))Ω + (a∇̃u(t−n), ∇̃v(t

+
n))Ω

− ({a∇u(t−n)} , [v(t
+
n)])Γn

− ([u(t−n)] ,{a∇v(t
+
n)})Γn

+ (σ0 [u(t
−
n)] , [v(t

+
n)])Γn

,

(3.3.8)

and

A(u, v) ∶=
N−1

∑
n=0

An(u, v) −
N−1

∑
n=1

Bn(u, v), (3.3.9)

which is just the same as the left-hand side of (3.3.5). We present the method with

the following definition.

Definition 3.3.1. Given subspaces Xn ⊆ S
h,p
n , the time-stepping method is described

by: find un ∈Xn, n = 1,2, . . . ,N − 1, such that

An(u
n, v) = Bn(u

n−1, v), for all v ∈Xn, (3.3.10)

and

A0(u
0, v) = Binit(v), for all v ∈X0. (3.3.11)

Equivalently, given a subspace X ⊆ V h,p, the full space-time discrete system can be
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presented as: find u ∈X such that

A(u, v) = Binit(v), for all v ∈X. (3.3.12)

Before we prove the stability and consistency of the method, we prove the fol-

lowing immediate lemma arising from the bilinear forms and the energy (3.3.3).

Lemma 3.3.2. The energy Eh(t, v) defined in (3.3.3) is non-negative.

Proof. It suffices to bound the last term of the energy Eh(t, v) and we shall employ

the classical inverse inequality ∥v∥2
∂K ≤ Cinvp2∣∂K ∣/∣K ∣∥v∥2

K , for all v ∈ Pp(K), (see,

Chapter 2 for review). Note that

({a∇v(t)} , [v(t)])Γn = ∫
Γn

(
σ0

2
)−1/2 {a∇v(t)} (

σ0

2
)1/2 [v(t)]

≤
κ

2 ∫Γn
(
σ

2
)−1∣ {a∇v} ∣2ds +

1

2κ ∫Γn
(
σ0

2
)∣ [v] ∣2ds

≤ Ca ∑
K∈Tn
∫
∂K

∣∇v(t)∣2ds +
1

2κ ∫Γn
σ0∣ [v(t)] ∣

2ds

≤ ∑
K∈Tn

cT CaCinvp2

cah
(n)
K

∫
K
∣
√
a∇v(t)∣2dx +

1

2κ ∫Γn
σ0∣ [v(t)] ∣

2ds,

where we have used the Young’s inequality in the second line and the inverse in-

equality in the last line. If we choose Cσ0 large enough, then the energy Eh(t, v)

is non-negative not only for smooth v but also for functions in V h,p. In particular,

choosing κ = 2 with

Cσ0 ≥ c
2
T CaCinv/ca (3.3.13)

is sufficient so that

∣({a∇v(t)} , [v(t)])Γn ∣ ≤
1

4
∥
√
σ0 [v(t)] ∥

2
Γn +

1

2
∥
√
a∇̃v(t)∥2

Ω, (3.3.14)

ensuring the non-negativity of the energy.

Lemma 3.3.3. It holds that for w ∈ X + V h,p,

An(w,w) = Eh(t
−
n+1,w) +Eh(t

+
n,w) + ∥

√
σ1 [w] ∥2

Γn×In + ∥σ2 [a∇w] ∥2
Γn×In , (3.3.15)
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for n = 0,1, . . . ,N − 1, and

A(w,w) = Eh(t
−
N ,w) +Eh(t

+
0 ,w) +

N−1

∑
n=1

(
1

2
∥⟦ẇ(tn)⟧∥

2
Ω +

1

2
∥
√
a⟦∇̃w(tn)⟧∥

2
Ω

− ( (⟦{a∇̃w(tn)}⟧, ⟦[w(tn)]⟧)Γn
+

1

2
∥⟦

√
σ0 [w(tn)]⟧∥

2
Γn)

+
N−1

∑
n=0

(∥
√
σ1 [w]∥2

Γn×In + ∥
√
σ2 [a∇w]∥2

Γn×In).

(3.3.16)

Proof. The identities follow from the definitions of the bilinear forms and the energy

Eh(t,w). We give the proof for the time stepping bilinear form (3.3.7) below

An(w,w) =
1

2

d

dt
∥ẇ(t)∥2

Ω×In + ∥ẇ(t+n)∥Ω +
1

2

d

dt
∥a∇̃w∥2

Ω×In

+ ∥a∇̃w(t+n)∥
2
Ω −

d

dt
( [w] ,{a∇w} )

Γn×In
− 2( {a∇w(t+n)} , [w(t+n)] )Γn

+
1

2

d

dt
∥
√
σ0 [w] ∥2

Γn + ∥
√
σ0 [w(tn)] ∥

2
Γn + ∥

√
σ1 [w] ∥2

Γn×In + ∥
√
σ2 [a∇w] ∥2

Γn×In

=
1

2
∥ẇ(t−n+1)∥

2
Ω −

1

2
∥ẇ(t+n)∥

2
Ω + ∥ẇ(t+n)∥

2
Ω +

1

2
∥a∇̃w(t−n+1)∥

2
Ω

−
1

2
∥a∇̃w(t+n)∥

2
Ω + ∥a∇̃w(t+n)∥

2
Ω − ( [w(t−n+1)] ,{a∇w(t−n+1)} )

Γn
+ ( [w(t+n)] ,{a∇w(t+n)} )

Γn

− 2( {a∇w(t+n)} , [w(t+n)] )Γn
+

1

2
∥
√
σ0 [w(t−n+1)] ∥

2
Γn −

1

2
∥
√
σ0 [w(t+n)] ∥

2
Γn

+ ∥
√
σ0 [w(t+n)] ∥

2
Γn + ∥

√
σ1∥

2
Γn×In + ∥

√
σ2 [a∇w] ∥Γn×In

=
1

2
∥ẇ(t−n+1)∥

2
Ω +

1

2
∥ẇ(t+n)∥

2
Ω +

1

2
∥a∇̃w(t−n+1)∥

2
Ω +

1

2
∥a∇̃w(t+n)∥

2
Ω

− ( [w(t−n+1)] ,{a∇w(t−n+1)} )
Γn
− ( [w(t+n)] ,{a∇w(t+n)} )

Γn
+

1

2
∥
√
σ0 [w(t−n+1)] ∥

2
Γn

+
1

2
∥
√
σ0 [w(t+n)] ∥

2
Γn + ∥

√
σ1 [w] ∥2

Γn×In + ∥
√
σ2 [a∇w] ∥2

Γn×In ,

(3.3.17)

which leads to

An(w,w) = E(t−n+1,w) +E(t+n,w) + ∥
√
σ1 [w]∥2

Γn×In + ∥
√
σ2 [a∇w]∥2

Γn×In . (3.3.18)

The discrete bilinear form can be proved in the same way.
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Note that, when n = 0 in particular, we have

A0(w,w) = E(t−1 ,w) +E(t+0 ,w) + ∥
√
σ1 [u]∥

2
Γ0×I0 + ∥

√
σ2 [a∇w]∥2

Γ0×I0 = B
init(w).

(3.3.19)

Theorem 3.3.4 (Consistency and Stability). Let the spaces Sh,pn for n = 0, . . . ,N −1

be given. Then the following statements hold:

1. Let u be the (weak) solution of (3.1.1) with u0 ∈H1
0(Ω) and v0 ∈ L2(Ω). Then

u satisfies (3.3.12).

2. For Cσ0 satisfying (3.3.13) and for any v ∈ V h,p and t ∈ (0, T ), the energy

Eh(t, v) is bounded below as

Eh(t, v) ≥
1

2
∥v̇(t)∥2

Ω +
1

4
∥
√
a∇̃v(t)∥2

Ω. (3.3.20)

Further, let un ∈ Sh,pn , n = 0, . . . ,N − 1, satisfy (3.3.5). Then, Eh(t−N , u
n) ≤

Eh(t−1 , u
0).

Proof. The first statement follows from the derivation of the formulation and the

regularity of the unique solution u; see (3.1.3) and (3.1.4). To prove the second

statement we proceed as follows. Combining (3.3.12) with (3.3.16) gives the energy

identity

Eh(t
−
N , u) = B

init(u) −Eh(t
+
0 , u) −

N−1

∑
n=1

1

2
∥⟦u̇(tn)⟧∥

2
Ω +

1

2
∥
√
a⟦∇̃u(tn)⟧∥

2
Ω

+
N−1

∑
n=1

(⟦{a∇̃u(tn)}⟧, ⟦[u(tn)]⟧)Γ̂n
−

1

2
∥
√
σ0⟦[u(tn)]⟧∥

2
Γ̂n

−
N−1

∑
n=0

∥
√
σ1 [u]∥

2
Γn×In −

N−1

∑
n=0

∥
√
σ2 [a∇u]∥

2
Γn×In .

(3.3.21)

Using (3.3.19) with the above, the energy identity (3.3.21) can be written as

Eh(t
−
N , u) = Eh(t

−
1 , u) −

N−1

∑
n=1

(
1

2
∥⟦u̇(tn)⟧∥

2
Ω +

1

2
∥
√
a⟦∇̃u(tn)⟧∥

2
Ω

− (⟦{a∇̃u(tn)}⟧, ⟦[u(tn)]⟧)Γ̂n
+

1

2
∥
√
σ0⟦[u(tn)]⟧∥

2
Γ̂n

+ ∥
√
σ1 [u]∥

2
Γn×In + ∥

√
σ2 [a∇u]∥

2
Γn×In),

(3.3.22)
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for u, with u∣Ω×In ∈ Sh,pn , n = 0,1, . . . ,N − 1. Arguments used to prove the non-

negativity of the discrete energy, also show that the discrete energy decreases at

each time-step.

3.4 Polynomial Trefftz spaces

We consider the discrete space of local polynomial solutions to the wave equation,

where we make an additional assumption on the mesh and on a(x) ∈ Rd×d that allows

us to define the Trefftz spaces. Such polynomial spaces have been employed in the

literature; see for example [83, 129, 92].

Assumption 3.4.1. Let the diffusion coefficient a(x) and the mesh be such that

a(x) is constant in each element K ∈ Tn for each n.

Definition 3.4.2 (Polynomial Trefftz spaces). Let Sh,pn,Trefftz ⊆ Sh,pn be a subspace

of functions satisfying locally the homogeneous wave equation on any space-time

element K × In:

Sh,pn,Trefftz ∶= {v ∈ Sh,pn ∶ v̈(t, x) −∇ ⋅ (a∇v) (t, x) = 0, t ∈ In, x ∈K, K ∈ Tn} .

The space on Ω × [0, T ] is then defined as

V h,p
Trefftz = {u ∈ L2(Ω × [0, T ]) ∶ u∣Ω×In ∈ S

h,p
n,Trefftz, n = 0,1 . . . ,N − 1} ⊆ V h,p.

For example, functions in this space could be polynomial plane waves given by

(t + a−1/2α ⋅ x)j, ∣α∣ = 1, α ∈ Rd, j ∈ {0, . . . , p}, (3.4.1)

where α is a direction vector.

Proposition 3.4.3. The local dimension of the Trefftz space in Rd is given by

dim(Sh,pn,Trefftz(K)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2p + 1 d = 1

(p + 1)2 d = 2

1
6(p + 1)(p + 2)(2p + 3) d = 3

.
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Proof. We shall make use of the polynomial plane waves for the proof of this pro-

position. For d = 1, note that we have maximum of two directions fixed for all

polynomial order j > 0, hence we have 2j polynomial plane waves. Now including

piecewise constant term gives 2j + 1 linearly independent plane waves. For d = 3

in [129] it is shown that the dimension of the Trefftz, homogeneous polynomials of

degree j is (j + 1)2 (This also corresponds to the total linearly independent plane

wave polynomials for chosen order j), hence the total dimension is given by

p

∑
j=0

(j + 1)2 = 1
6(p + 1)(p + 2)(2p + 3).

The case d = 2 can be proved in similar way by noticing that the dimension of the

Trefftz, homogeneous polynomials of degree j is 2j + 1.

The idea of involving the directions of propagation can be introduced in the basis

functions. For example, if the dominant directions are not known a priori, the idea

of equi-distributed directions of the form

αi =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(2π(i−1)
m )

sin(2π(i−1)
m )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.4.2)

where m = 2j + 1 can be used to fill up the Trefftz space in two dimensions (see

(3.4.1)).

Dim 1D 2D 3D

Poly 1
2(p + 1)(p + 2) (p+1)(p+2)(p+3)

6
(p+1)(p+2)(p+3)(p+4)

24

Trefftz 2p + 1 (p + 1)2 (p+1)(p+2)(2p+3)
6

Table 3.1: Local dimensions for Trefftz spaces and polynomial spaces with respect to d
spatial dimension.

3.4.1 Existence and uniqueness in the Trefftz space

In this subsection, we prove the existence and uniqueness of solution in the Trefftz

space by investigating the property of the obtained DG energy norm. We discover

that the DG energy norm is indeed a norm on the subspace of Trefftz polynomials.
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Figure 3.2: Plot of Trefftz basis functions in 1−dimension on reference space-time element
(0,1) × (0,1).

This also includes piecewise linear polynomials as V h,p
Trefftz = V

h,p for p = 1.

Proposition 3.4.4. With the choice of Cσ0 as in (3.3.13) and σ1, σ2 > 0, bilinear

forms An(⋅, ⋅) and A(⋅, ⋅) give rise to two semi-norms

∣∣∣v∣∣∣n ∶= (An(v, v))
1/2
, v ∈ Sh,pn

and

∣∣∣v∣∣∣ ∶= (A(v, v))
1/2
, v ∈ V h,p.

These are in fact norms on Trefftz subspaces Sh,pn,Trefftz and V h,p
Trefftz.

Proof. Recalling (3.3.18) and using the positivity of the energy Eh(t, u) (4.5.2), we

deduce that ∣∣∣v∣∣∣2n ≥ 0 and is hence a semi-norm.

Suppose ∣∣∣v∣∣∣n = 0 for v ∈ Sh,pn,Trefftz. Then, a∇v and v have no jumps across the

space skeleton and hence v is a weak solution of the homogeneous wave equation

on Ω × In with zero initial and boundary conditions. Uniqueness implies v ≡ 0 and

hence that ∣∣∣⋅∣∣∣n is a norm on this space.

The analysis of ∣∣∣⋅∣∣∣ is similar recalling (3.3.16), which shows that ∣∣∣⋅∣∣∣ is a semi-

norm if the stabilization parameter is chosen correctly. Proceeding as in the first
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case, shows that it is in fact a norm on the Trefftz spaces.

Corollary 3.4.5. Under the conditions of the above proposition and with initial

data u0 ∈ H1
0(Ω), v0 ∈ L2(Ω), the discrete system (3.3.12) with X = V h,p

Trefftz has a

unique solution.

Proof. The uniqueness of the solution to (3.3.12) over the Trefftz space X = V h,p
Trefftz

follows from A(⋅, ⋅) being a norm on this space. Existence of the solution to the

linear system follows from uniqueness.

We present the convergence analysis of the Trefftz based method in the next

subsection.

3.4.2 Convergence analysis

The convergence analysis guarantees quasi-optimality of the proposed method. We

proceed with the following proposition.

Proposition 3.4.6. Let w ∈ X + V h,p
Trefftz and v ∈ V h,p

Trefftz, then

∣A(w, v)∣ ≤ C⋆∣∣∣w∣∣∣⋆∣∣∣v∣∣∣,

for some constant C⋆ > 0 and

∣∣∣w∣∣∣2⋆ =
1

2

N

∑
n=1

(∥ẇ(t−n)∥
2
Ω + ∥

√
a∇w(t−n)∥

2
Ω + ∥

√
σ0 [w(t−n)] ∥

2
Γn + ∥σ

−1/2
0 {a∇w(t−n)} ∥2

Γn)

+
N−1

∑
n=0

(∥
√
σ1 [w]∥2

Γn×In + ∥
√
σ2 [a∇w]∥2

Γn×In + ∥σ
−1/2
2 {ẇ}∥2

Γint
n ×In

+ ∥σ
−1/2
1 {a∇ẇ}∥2

Γn×In + ∥σ0σ
−1/2
1 [ẇ]∥2

Γn×In) .
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Proof. Integrating by parts first in time and further in space we have

(ẅ, v̇)Ω×In + (a∇w,∇v̇)Ω×In

= − (ẇ, v̈)Ω×In − (a∇ẇ,∇v)Ω×In

+ (ẇ(t−n+1), v̇(t
−
n+1))Ω − (ẇ(t+n), v̇(t

+
n))Ω

+ (a∇w(t−n+1),∇v(t
−
n+1))Ω − (a∇w(t+n),∇v(t

+
n))Ω

= − ([ẇ] ,{a∇v})Γn×In − ({ẇ} , [a∇v])Γint
n ×In

+ (ẇ(t−n+1), v̇(t
−
n+1))Ω − (ẇ(t+n), v̇(t

+
n))Ω

+ (a∇w(t−n+1),∇v(t
−
n+1))Ω − (a∇w(t+n),∇v(t

+
n))Ω ,

since v ∈ V h,p
Trefftz, using the identity

− (a∇ẇ,∇v)Ω×In = (ẇ,∇ ⋅ a∇v)Ω×In − ([ẇ] ,{a∇v})Γn×In − ({ẇ} , [a∇v])Γint
n ×In ,

in the second step. Further integrations by parts in time yield

− ([ẇ] ,{a∇v})Γn×In

= ([w] ,{a∇v̇})Γn×In − ([w(t−n+1)] ,{a∇v(t
−
n+1)})Γn

+ ([w(t+n)] ,{a∇v(t
+
n)})Γn

,

and

− ({a∇w} , [v̇])Γn×In + (σ0 [w] , [v̇])Γn×In

= ({a∇ẇ} , [v])Γn×In − (σ0 [ẇ] , [v])Γn×In

− ({a∇w(t−n+1)} , [v(t
−
n+1)])Γn

+ ({a∇w(t+n)} , [v(t
+
n)])Γn

+ (σ0 [w(t−n+1)] , [v(t
−
n+1)])Γn

− (σ0 [w(t+n)] , [v(t
+
n)])Γn

.
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Substituting these into (3.3.7), we obtain

An(w, v) = ({a∇ẇ} , [v])Γn×In − ({a∇w(t−n+1)} , [v(t
−
n+1)])Γn

− (σ0 [ẇ] , [v])Γn×In + (σ0 [w(t−n+1)] , [v(t
−
n+1)])Γn

− ({ẇ} , [a∇v])Γint
n ×In − ([w(t−n+1)] ,{a∇v(t

−
n+1)})Γn

+ (ẇ(t−n+1), v̇(t
−
n+1))Ω + (a∇w(t−n+1),∇v(t

−
n+1))Ω

+ (σ1 [w] , [v])Γn×In + (σ2 [a∇w] , [a∇v])Γn×In .

(3.4.3)

Therefore

A(w, v) =
N−1

∑
n=0

An(w, v) −
N−1

∑
n=1

Bn(w, v)

=
N−1

∑
n=0

( ({a∇ẇ} , [v])Γn×In − (σ0 [ẇ] , [v])Γn×In − ({ẇ} , [a∇v])Γint
n ×In

+ (σ1 [w] , [v])Γn×In + (σ2 [a∇w] , [a∇v])Γn×In )

+
N

∑
n=1

( (ẇ(t−n), ⟦v̇(tn)⟧)Ω + (a∇w(t−n), ⟦∇v(tn)⟧)Ω

− ({a∇w(t−n)} , ⟦[v(tn)]⟧)Γn
− ([w(t−n)] , ⟦{a∇v(tn)}⟧)Γn

+ (σ0 [w(t−n)] , ⟦[v(tn)]⟧)Γn
),

(3.4.4)

where we have adopted the notational convention

⟦f(t−N)⟧ ∶= f(t−N).

It is now clear how to estimate most of the terms to obtain the stated result using

the Cauchy-Schwarz inequality. The first two terms on the right hand side in the

above sum are estimated as follows

(σ
−1/2
1 ({a∇ẇ} − σ0 [ẇ]),

√
σ1 [v])

Γn×In
≤ ∥σ

−1/2
1 ({a∇ẇ} − σ0 [ẇ])∥Γn×In∥

√
σ1 [v]∥Γn×In ;

for the third term, we have

({ẇ} , [a∇v])Γint
n ×In ≤ ∥σ

−1/2
2 {ẇ}∥Γint

n ×In∥
√
σ2 [a∇v]∥Γint

n ×In .
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Remark 3.4.7. Note that (3.4.3) shows that for Trefftz functions the bilinear form

can be evaluated without computing integrals over the volume terms Ω×In. This can

bring considerable savings, especially in higher spatial dimensions.

Theorem 3.4.8. Let U ∈ V h,p
Trefftz be the discrete solution of the Trefftz space-time

discontinuous Galerkin method and let u ∈ X be the exact solution. Then

∣∣∣U − u∣∣∣ ≤ inf
V ∈V h,p

Trefftz

(C⋆∣∣∣V − u∣∣∣⋆ + ∣∣∣V − u∣∣∣),

where ∣∣∣⋅∣∣∣⋆ is defined in Proposition 3.4.6.

Proof. By Galerkin orthogonality

A(V −U, v) = A(V − u, v),

for any V, v ∈ V h,p
Trefftz. Hence, by Proposition 3.4.6,

∣∣∣V −U ∣∣∣2 = A(V −U,V −U) = A(V − u,V −U) ≤ C⋆∣∣∣V − u∣∣∣⋆∣∣∣V −U ∣∣∣

giving

∣∣∣U − u∣∣∣ ≤ ∣∣∣V −U ∣∣∣ + ∣∣∣V − u∣∣∣ ≤ C⋆∣∣∣V − u∣∣∣⋆ + ∣∣∣V − u∣∣∣.

To conclude this subsection we show that in the case of Trefftz polynomials, the

discrete norm can be bounded below by an L2-temporal norm. For simplicity of the

presentation only, we shall, henceforth, make use of the following assumption.

Assumption 3.4.9. We assume that diam(K × In)/ρK×In ≤ cT , for all K ∈ Tn,

n = 0,1, . . . ,N − 1.

Proposition 3.4.10. For any v ∈ Sh,pn,Trefftz it holds

∥v̇∥2
Ω×In + ∥a1/2∇̃v∥2

Ω×In ≤ (tn+1 − tn)e
C̃(tn+1−tn)/h (∥a1/2∇̃v(t+n)∥

2
Ω + ∥v̇(t+n)∥

2
Ω) ,
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where

C̃ = cT Cinvp
2Ca and h = min

x∈Ω
h(x, t), t ∈ In.

The same estimate holds with t+n replaced by t−n+1. Consequently, with the Assump-

tion 3.4.9 we have

∥V̇ ∥2
Ω×(0,T ) + ∥

√
a∇̃V ∥2

Ω×(0,T ) ≤ Ce
C̃cT τ ∣∣∣V ∣∣∣2⋆

for all V ∈ V h,p
Trefftz with a constant C > 0 independent of the meshsize and τ = max

n
τn.

Proof. Note that for an element K with exterior normal ν

d

dt
(1

2∥v̇(t)∥
2
K + 1

2∥a
1/2∇v(t)∥2

K) = (v̈(t), v̇(t))K + (a∇v(t),∇v̇(t))K

= (ν ⋅ a∇v(t), v̇(t))∂K

≤ ∥ν ⋅ a∇v(t)∥∂K∥v̇(t)∥∂K

≤ 1
2∥ν ⋅ a∇v(t)∥

2
∂K + 1

2∥v̇(t)∥
2
∂K

≤ Cinvp
2∣∂K ∣/∣K ∣ (1

2∥a∇v(t)∥
2
K + 1

2∥v̇(t)∥
2
K) ,

≤ CaCinvp
2cT h

−1
K (1

2∥
√
a∇v(t)∥2

K + 1
2∥v̇(t)∥

2
K) ,

where we have used the Cauchy-Schwarz inequality in the third line, Young’s in-

equality in the fourth line and the discrete trace inequality (2.5.6) in the fifth line.

The Gronwall inequality (2.5.9) now gives us

1
2∥a

1/2∇v(t)∥2
K + 1

2∥v̇(t)∥
2
K ≤ eCK,max(t−tn)/hK (1

2∥
√
a∇v(t+n)∥

2
K + 1

2∥v̇(t
+
n)∥

2
K)

≤ eCK,max(tn+1−tn)/hK (1
2∥

√
a∇v(t+n)∥

2
K + 1

2∥v̇(t
+
n)∥

2
K)

as well as

1
2∥

√
a∇v(t)∥2

K + 1
2∥v̇(t)∥

2
K ≤ eCK,max(tn+1−tn)/hK (1

2∥
√
a∇v(t−n+1)∥

2
K + 1

2∥v̇(t
−
n+1)∥

2
K)

for all t ∈ [tn, tn+1]. Integrating in time and summing over all K gives the required

result.
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The above two results allow us to conclude that we can also bound the error in

a more standard norm.

Corollary 3.4.11. Under the hypothesis of Theorem 3.4.8 and under Assump-

tion 3.4.9, we have

∥U̇ − u̇∥Ω×[0,T ] + ∥
√
a∇̃(U − u)∥Ω×[0,T ] ≤ C inf

V ∈V h,p
Trefftz

(
√
τ ∣∣∣V − u∣∣∣⋆

+ ∥V̇ − u̇∥Ω×[0,T ] + ∥
√
a∇̃(V − u)∥Ω×[0,T ]),

for some constant C independent of u, U and the mesh parameters.

Proof. Using the triangle inequality and the above proposition we have that for any

V ∈ V h,p
Trefftz

∥U̇ − u̇∥Ω×[0,T ] + ∥
√
a∇̃(U − u)∥Ω×[0,T ] ≤ ∥U̇ − V̇ ∥Ω×[0,T ] + ∥

√
a∇̃(U − V )∥Ω×[0,T ]

+ ∥V̇ − u̇∥Ω×[0,T ] + ∥
√
a∇̃(V − u)∥Ω×[0,T ]

≤ C
√
τ ∣∣∣U − V ∣∣∣⋆ + ∥V̇ − u̇∥Ω×[0,T ] + ∥

√
a∇̃(V − u)∥Ω×[0,T ].

3.5 A priori error bounds

The special form of the exact solutions to the wave equation give rise to special

approximation results, for which, as we will show, the Trefftz basis is sufficient to

deliver the expected rates of convergence for the proposed method. The quasi-

optimality estimate below does not depend on the use of the Gronwall’s inequality

that is often used for the a priori bound for time-dependent problems (see, [23, 126,

77, 124, 84, 71]).

Lemma 3.5.1. Let the setting of Theorem 3.4.8 hold, let V ∈ V h,p
Trefftz be an arbitrary
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function in the discrete space, and let η = u − V . Then

∣∣∣U − u∣∣∣2 ≤ C
N−1

∑
n=0

∑
K∈T n

Ca(
p2

τn
(min{1,

τ 2
n

h2
K

}∥η̇∥2
K×In + ∥∇η∥2

K×In)

+ τn(∥∇η̇∥
2
K×In +min{1,

h2
K

τ 2
n

}p−1∥D2η∥2
K×In)

+
(h2

Kτn)

p4
∥D2η̇∥2

K×In +
p4

h2
Kτn

∥η∥2
K×In),

(3.5.1)

where U ∈ V h,p
Trefftz is the discrete solution.

Proof. Theorem 3.4.8 implies

∣∣∣U − u∣∣∣ ≤ C⋆∣∣∣η∣∣∣⋆ + ∣∣∣η∣∣∣.

We shall now estimate each term of the norms on the right-hand side. We shall re-

peatedly use the standard trace estimate ∥v∥2
∂ω ≤ C(diam(ω)−1∥v∥2

ω+diam(ω)∥∇v∥2
ω),

for v ∈H1(ω), where ω is a subset of Rk, k = 1 . . . , d + 1. We proceed as follows

N

∑
n=1

∥η̇(t−n)∥
2
Ω =

N

∑
n=1

∑
K∈T n−1

∥η̇∥2
K×{t−n}

≤ C
N−1

∑
n=0

∑
K∈T n

(
Cap

τn
∥η̇∥2

K×In +
τn
Cap

∥η̈∥2
K×In)

≤ C
N−1

∑
n=0

∑
K∈T n

(
Cap

τn
∥η̇∥2

K×In +
τn
Cap

∥∇ ⋅ a(⋅)∇η∥2
K×In)

≤ C
N−1

∑
n=0

∑
K∈T n

Ca(
p

τn
∥η̇∥2

K×In +
τn
p
∥∆η∥2

K×In).

We prefer to retain an explicit dependence on the polynomial degree p at this point,

as it will be of relevance in the error analysis for d = 1. In analogous fashion, we

also have

N

∑
n=1

∥
√
a∇η(t−n)∥

2
Ω ≤ C

N−1

∑
n=0

∑
K∈T n

Ca(
p

τn
∥∇η∥2

K×In +
τn
p
∥∇η̇∥2

K×In).
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Next, we estimate the penalty term:

N

∑
n=1

∥
√
σ0 [η(t

−
n)] ∥

2
Γn ≤ C

N−1

∑
n=0

∑
K∈T n

Ca(
p3

τnhK
∥η∥2

∂K×In + p
τn
hK

∥η̇∥2
∂K×In)

≤ C
N−1

∑
n=0

∑
K∈T n

Ca(
p4

τnh2
K

∥η∥2
K×In +

p2

τn
∥∇η∥2

K×In

+
p2τn
h2
K

∥η̇∥2
K×In + τn∥∇η̇∥

2
K×In).

Similarly, we also have

N

∑
n=1

∥σ
−1/2
0 {a∇η(t−n)} ∥2

Γn ≤ C
N−1

∑
n=0

∑
K∈T n

Ca(
hK
pτn

∥∇η∥2
∂K×In +

τnhK
p3

∥∇η̇∥2
∂K×In)

≤ C
N−1

∑
n=0

∑
K∈T n

Ca(
1

τn
∥∇η∥2

K×In +
h2
K

p2τn
∥D2η∥2

K×In

+
τn
p2

∥∇η̇∥2
K×In +

h2
Kτn
p4

∥D2η̇∥2
K×In).

Next, we choose σ1∣∂K∩Γn×In = Cap
3/(hτn), and we have

N−1

∑
n=0

∥
√
σ1 [η]∥

2
Γn×In ≤ C

N−1

∑
n=0

∑
K∈T n

Ca(
p4

τnh2
K

∥η∥2
K×In +

p2

τn
∥∇η∥2

K×In).

Further, we choose σ2 = hK/(Caτn), to have

N−1

∑
n=0

∥
√
σ2 [a∇η]∥

2
Γn×In ≤ C

N−1

∑
n=0

∑
K∈T n

Ca(
p2

τn
∥∇η∥2

K×In +
h2
K

p2τn
∥D2η∥2

K×In).

The next term is treated as follows:

N−1

∑
n=0

∥σ
−1/2
2 {η̇}∥2

Γint
n ×In ≤ C

N−1

∑
n=0

∑
K∈T n

Ca(
p2τn
h2
K

∥η̇∥2
K×In +

τn
p2

∥∇η̇∥2
K×In).

Continuing, we have

N−1

∑
n=0

∥σ
−1/2
1 {a∇η̇}∥2

Γn×In ≤ C
N−1

∑
n=0

∑
K∈T n

Ca(
τn
p2

∥∇η̇∥2
K×In +

τnh2
K

p4
∥D2η̇∥2

K×In).

Finally, we estimate

N−1

∑
n=0

∥σ0σ
−1/2
1 [u̇]∥2

Γn×In ≤ C
N−1

∑
n=0

∑
K∈T n

Ca(
p2τn
h2
K

∥η̇∥2
K×In + τn∥∇η̇∥

2
K×In).
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The remaining terms in ∣∣∣η∣∣∣ are treated completely analogously.

To complete the error analysis, we need to prove the existence of an appropriate

approximation uh ∈ V
h,p

Trefftz of the exact solution. If the exact solution is sufficiently

many times continuously differentiable within each space-time element, we can con-

struct such an approximation locally with the following proposition.

Proposition 3.5.2. Let J ⊂ Rd+1 be a star-shaped with respect to a ball B ⊂ J . Then

there exists a projector

Πp ∶Hp+1(J)→ Pp(J)

such that for any v ∈Hp+1(J)

∥Dβ(v −Πpv)∥J ≤ C(diam(J))p+1−β∥v∥Hp+1(J), ∣β∣ ≤ p, (3.5.2)

and further if v satisfies the wave equation v̈ − ∇ ⋅ a∇v = 0 in J then so does Πpv.

The constant C depends on p and on the shape of J .

Proof. We can define Πpv to be the averaged Taylor polynomial of order p centered

at y and evaluated at x, i.e.,

Πpv(x) = ∑
∣α∣≤p

1

α! ∫B
Dαv(y)(x − y)αφ(y)dy, (3.5.3)

where φ ∈ C∞0 (Rd+1) is an arbitrary cut-off function satisfying ∫B φ = 1 and suppφ =

B; [see Chapter 4 of [20]]. Then the Bramble-Hilbert lemma gives us the approx-

imation property required, [see Lemma 4.3.8 of [20]]. Therefore, it only remains to

show that Πpv satisfies the wave equation if v does. For the cases p ≤ 1, the proof is

clear. For the cases, p ≥ 2, the result follows from the property of averaged Taylor

polynomials

DαΠpv = Πp−∣α∣Dαv, ∣α∣ ≤ p.

Applying such a projector to the exact solution and combining this with Lemma 3.5.1

gives us a proof of the convergence order of the discrete scheme.
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Theorem 3.5.3. Let the exact solution u ∈ X be such that for each space time

element K × In, u∣K×In ∈H
s+1(K × In) for some 0 ≤ s ≤ p. Then

∣∣∣U − u∣∣∣ ≤ C (
N−1

∑
n=0

∑
K∈T n

(h
(n)
K )2s−1∥u∥2

Hs+1(K×In))

1/2

≤ C(u)hs−1/2, (3.5.4)

where h = maxK,n h
(n)
K and

C(u) = (
N−1

∑
n=0

∑
K∈T n

∥u∥2
Hs+1(K×In))

1/2

.

The above estimate gives the upper bound for a standard space-time energy

norm (see Chapter 5).

3.5.1 hp-version error analysis for d = 1

We show in this subsection that the Trefftz basis is sufficient to deliver the expected

hp-version a priori error bounds for d = 1, along with a proof of the exponential

convergence of the p-version space-time DG method for the case of analytic exact

solutions.

To discuss the Trefftz-basis case for d = 1, let K = [x0, x1], and start from the

basic observation that the exact solution to the wave equation on each space time

element is of the form

u(x, t)∣K×In = F
1
n,K(a−1/2x + t) + F 2

n,K(a−1/2x − t), (3.5.5)

where we can define F 1 and F 2 by

F 1
n,K(a−1/2x + t) = 1

2u(x, t) +
1
2v(x, t), (x, t) ∈K × In

and

F 2
n,K(a−1/2x − t) = 1

2u(x, t) −
1
2v(x, t), (x, t) ∈K × In,

where

v(x, t) = a1/2
∫

t

tn
ux(x, τ)dτ + a

−1/2
∫

x

x0
ut(x

′, tn)dx
′.
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It is not difficult to see that these are well-defined, i.e., that the right-hand sides

indeed depend only on a−1/2x ± t by virtue of satisfying the equations a1/2fx ∓ ft = 0

respectively.

For Î ∶= (−1,1), we define the H1-projection operator λ̂p ∶ H1(Î)→ Pp(Î), p ≥ 1,

defined by setting, for û ∈H1(Î),

(λ̂pû)(x) ∶= ∫
x

−1
π̂p−1(û

′)(η)dη + û(−1), x ∈ Î ,

with π̂p−1 being the L2-orthogonal projection operator onto Pp−1(Î).

Now, upon considering the linear scalings ψ1
n,K ∶ Î → J1

n,K , K ∈ Tn, such that

J1
n,K ∶= ( min

(x,t)∈K×In
{x + ct}, max

(x,t)∈K×In
{x + ct}),

and ψ2
n,K ∶ Î → J2

n,K , K ∈ Tn, such that

J2
n,K ∶= ( min

(x,t)∈K×In
{x − ct}, max

(x,t)∈K×In
{x − ct}),

we define the univariate space-time elemental projection operators λip, i = 1,2, piece-

wise by

(λipF )∣Jin,K
∶= λ̂ip((F ○ ψin,K)∣Î), K ∈ Tn, n = 0,1, . . . ,N − 1.

Using these, we can now define the Trefftz projection Πpu of a function u of the form

(3.5.5) element-wise by

(Πpu)∣K×In ∶= λ
1
pF

1
n,K(x + ct) + λ2

pF
2
n,K(x − ct), (3.5.6)

K ∈ Tn, n = 0,1, . . . ,N − 1. The approximation properties of Πp follow from the

respective properties of λip, i = 1,2. Space-time shape regularity implies J in,K ∼ h
(n)
K ,

i = 1,2.

We denote by Φ(p, s) the quantity Φ(p, s) ∶= (Γ(p − s + 1)/Γ(p + s + 1))
1
2 , with

p, s real numbers such that 0 ≤ s ≤ p and Γ(⋅) being the Gamma function; we also

adopt the standard convention Γ(1) = 0! = 1. Making use of Stirling’s formula,
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Γ(n) ∼
√

2πnn−
1
2 e−n, n > 0, we have, Φ(p, s) ≤ Cp−s, for p ≥ 1, with 0 ≤ s ≤ p and

C > 0 constant depending only on s.

We have the following hp-approximation results for λip, i = 1,2.

Lemma 3.5.4. Let v ∈ Hk+1(J), for k ≥ 1, and let h = diam(J) with J ; finally let

λp be any of the λip, i = 1,2. Then the following error bounds hold:

∥v − λpv∥J ≤ Cp
−1Φ(p, s)hs+1∣v∣s+1,J , (3.5.7)

and

∥v′ − (λpv)
′∥J ≤ CΦ(p, s)hs∣v∣s+1,J , (3.5.8)

with 0 ≤ s ≤ min{p, k}, p ≥ 1.

Also, let v ∈Hk+1(J), with k ≥ 2. Then, the following bound holds:

∥v′′ − (λpv)
′′∥J ≤ Cp

3/2Φ(p,m)hm−1∣v∣m+1,J , (3.5.9)

with 1 ≤ m ≤ min{p, k}. Finally, let v ∈ Hk+1(J), with k ≥ 3. Then, the following

bound holds:

∥v′′′ − (λpv)
′′′∥J ≤ Cp

7/2Φ(p, l)hl−2∣v∣l+1,J , (3.5.10)

with 2 ≤ l ≤ min{p − 1, k}.

Proof. The proof of (3.5.7) and (3.5.8) for the H1-projection λip can be found in

[Theorem 3.17 of [113]]. For the proof of (3.5.9) [see, Theorem 4.2 of [55]] while the

proof of (3.5.10) follows along the same lines as in the proof of (3.5.9) from [55].

These hp-approximation estimates imply the following bound.

Theorem 3.5.5. Let u∣K×In ∈H
k+1(K×In), for k ≥ 3 be the exact solution to (3.1.1).

Then, for space-time meshes satisfying Assumption 3.4.9, the following error bounds

hold:

∣∣∣U − u∣∣∣2 ≤ Cp3Φ2(p, s)
N−1

∑
n=0

∑
K∈T n

diam(K × In)
2s−1∣u∣2s+1,K×In , (3.5.11)
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for 3 ≤ s ≤ minp + 1, k and h = maxK,n{diam(K × In)}, with C(u) > 0 constant,

independent of p, h u, and U . Moreover, if u is analytic on a neighbourhood of Ω,

there exists r > 0, depending on the analyticity region of u in a neighbourhood of

Ω × (0, T ), such that

∣∣∣U − u∣∣∣2 ≤ C(u)p3 exp(−rp)
N−1

∑
n=0

∑
K∈T n

∣K × In∣diam(K × In)
2s−1. (3.5.12)

Proof. The proof of (3.5.11) follows by combining the hp-approximation bounds

from (3.5.4) with Lemma 3.5.1.

For (3.5.12), we work as follows. Analyticity of u implies that there exists a

d > 0, such that for all s ≥ 0,

∣u∣s,K×In ≤ Cd
sΓ(s + 1)∣K × In∣

1/2. (3.5.13)

Using this, setting s = γp for some 0 < γ < 1, along with Stirling’s formula, we arrive

at the bound

Φ2(p, γp)∣u∣2γp+1,K×In ≤ C((2γd)2γ (1 − γ)
1−γ

(1 + γ)1+γ )

p

∣K × In∣,

with the precise choice of γ remaining at our disposal. The function

F (γ) ∶= (2γd)2γ (1 − γ)
1−γ

(1 + γ)1+γ ,

has a minimum at γmin ∶= (1 + 4d2)−1/2, giving F (γmin) < 1. Setting, now r =

1/2∣ logF (γmin)∣, the result follows.

Remark 3.5.6. The bound (3.5.11) is suboptimal in p by one order. This is a

standard feature of hp-version DG methods whose analysis requires the use of hp-

type inverse estimates. It is possible to slightly improve on this result and obtaining

only 1/2 order p-suboptimal bounds, using the classical hp-approximation results from

[21, 9], instead of the H1-projection operator as done above. These results, however,

are not suitable for the proof of the exponential rate of p-convergence.
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3.6 Space-time DG with transparent boundary

condition

In this section we extend the analysis of the space-time DG technique to the case of

mixed boundary conditions. We define the undamped wave problem with Dirichlet

boundary condition and transparent boundary condition. We begin with the devel-

opment of the scheme for this case and we proceed with a basic a priori analysis

which includes the existence and uniqueness analysis as well as consistency and sta-

bility of the scheme. The numerical simulations which show the behaviour of the

method in line with theoretical findings are presented in Chapter 5.

3.6.1 Model problem

We consider the wave problem

ü −∇ ⋅ (a∇u) = 0 in Ω × [0, T ],

u = 0 on ΓD × [0, T ],

∂nu + u̇ = 0 on ΓT × [0, T ],

u(x,0) = u0(x), u̇(x,0) = v0(x), in Ω,

(3.6.1)

where ΓD and ΓT denote the Dirichlet and transparent boundaries respectively and

the whole boundary ∂Ω = ΓD ∪ ΓT . Also ΓD ∩ ΓT = ∅.

For the development of the approximating scheme, we follow the energy argument

as before. We assume again that the exact solution u of the system is smooth and

we let v ∈ X + V h,p. The corresponding standard symmetric DG formulation when

the system is tested by v̇ is given by

(ü, v̇)Ω×In + (a∇̃u, ∇̃v̇)Ω×In − ({a∇u} , [v̇])Γnint∪ΓD×In

−([u] ,{a∇v̇})Γnint∪ΓnD×In − (σ0 [u] , [v̇])Γnint∪ΓnD×In + (au̇, v̇)ΓnT×In = 0.

(3.6.2)

Note that the Dirichlet boundary is penalised and stabilised along with the interior
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interfaces while the transparent boundary is separated. Choosing v = u in (3.6.2)

motivates the use of the following discrete energy

Eh(t, u) =
1

2
∥u̇∥2

L2(Ω) +
1

2
∥
√
a∇̃u∥2

L2(Ω) − ({∇u} , [u])Γnint∪ΓnD
+

1

2
∥
√
σ0 [u] ∥

2
(Γnint∪ΓD).

(3.6.3)

Now following the same steps as in Section 3.3 leads to the following weak formula-

tion for the problem

N−1

∑
n=0

(ü, v̇)Ω×In + (⟦u̇(tn)⟧, v̇(t
+
n))Ω

+ (a∇̃u, ∇̃v̇)Ω×In + (⟦a∇̃u(tn)⟧, ∇̃v(t
+
n))Ω

− ({a∇u} , [v̇])Γnint∪ΓnD×In − (⟦{∇̃u(tn)}⟧, [v])Γnint∪ΓnD

− ([u] ,{a∇v̇})Γnint∪ΓnD×In − (⟦[u(tn)]⟧,{a∇v})Γnint∪ΓnD

− (σ0 [u] , [v̇])Γnint∪ΓnD×In + (σ0⟦[u(tn)]⟧, [v(t
+
n)])Γnint∪ΓnD

+ (σ1 [u(tn)] , [v(tn)])Γnint×In + (σ2 [∇u(tn)] , [∇v(tn)])Γnint×In + (au̇, v̇)ΓnT×In = B
init(v),

(3.6.4)

where

Binit(v) = (v0, v̇(t
+
0))Ω + (∇̃u0, ∇̃v(t

+
0))Ω

− ({∇u0} , [v(t
+
0)])Γnint∪ΓnD

− ([u0] ,{∇v(t
+
0)})Γnint∪ΓnD

+ (σ0 [u0] , [v(t
+
0)])Γnint∪ΓnD

.

(3.6.5)

We have again arrived at a space-time discrete scheme for the stated wave problem

which can be described in two ways: as a method for obtaining a discrete solution

on a fixed space-time domain Ω × [0, T ] or as a time-stepping method. We define
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the following bilinear forms to present the two viewpoints:

An(u, v) = (ü, v̇)Ω×In + (u̇(t+n), v̇(t
+
n))Ω

+ (a∇̃u, ∇̃v̇)Ω×In + (∇̃u(t+n), ∇̃v(t
+
n))Ω

− ({a∇u} , [v̇])Γnint∪ΓnD×In − ({∇u(t+n)} , [v])Γnint∪ΓnD

− ([u] ,{a∇v̇})Γnint∪ΓnD×In − ([u(t+n)] ,{∇v})Γnint∪ΓnD

− (σ0 [u] , [v̇])Γnint∪ΓnD×In + (σ0 [u(t
+
n)] , [v(t

+
n)])Γnint∪ΓnD

+ (σ1 [u(tn)] , [v(tn)])ΓnD∪Γnint×In + (σ2 [∇u(tn)] , [∇v(tn)])Γnint×In + (u̇, v̇)ΓnT×In

(3.6.6)

Bn(u, v) = (u̇(t−n), v̇(t
+
n))Ω + (∇u(t−n),∇v(t

+
n))Ω

− ({∇u(t−n)} , [v(t
+
n)])Γnint∪ΓnD

− ([u(t−n)] ,{a∇v(t
+
n)})Γnint∪ΓnD

+ (σ0 [u(t
−
n)] , [v(t

+
n)])Γnint∪ΓnD

(3.6.7)

and

A(u, v) =
N−1

∑
n=0

an(u, v) −
N−1

∑
n=1

bn(u, v), (3.6.8)

which is equal to the left-hand side in (3.6.4).

Definition 3.6.1. Given subspaces Xn ⊆ S
h,p
n , the time stepping method is described

by: find un ∈Xn, n = 0, . . . ,N − 1 such that

An(u
n, v) = Bn(u

n−1, v), for all v ∈Xn, (3.6.9)

and

A0(u
0, v) = Binit(v), for all v ∈X0. (3.6.10)

Equivalently, given a subspace X ⊆ V h,p, the full space-time discrete system is presen-

ted as : find u ∈X such that

A(u, v) = Binit(v), for all v ∈X. (3.6.11)
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Lemma 3.6.2. The following identities hold for u ∈ X + V h,p:

An(u,u) = Eh(t
−
n+1, u) +Eh(t

+
n, u) + ∥

√
σ1 [u] ∥

2
Γn×In + ∥

√
σ2 [u] ∥

2
Γn×In + ∥

√
av̇∥2

ΓT×In ,

(3.6.12)

for n = 0, . . . ,N − 1, Γn = Γnint ∪ ΓnD and

A(u,u) = Eh(t
−
N , u) +Eh(t

+
0 , u) +

N−1

∑
n=1

1

2
∥⟦u̇(tn)⟧∥

2
Ω +

N−1

∑
n=1

1

2
∥⟦a∇̃u(tn)⟧∥

2
Ω

+
N−1

∑
n=1

(⟦{a∇̃u(tn)}⟧, ⟦[u(tn)]⟧)Γ̂n
+
N−1

∑
n=1

1

2
∥⟦

√
σ0 [u(tn)]⟧∥

2
Γn

+
N−1

∑
n=0

∥σ1 [u] ∥
2
Γn×In +

N−1

∑
n=0

∥
√
σ2 [∇u] ∥

2
Γn×In +

N−1

∑
n=0

∥u̇(tn)∥
2
ΓT×In

. (3.6.13)

Proof. The identities follow from the definition of the bilinear forms and the energy

Eh(t, u), see 3.3.3.

Theorem 3.6.3 (Consistency and Stability). Let the spaces Sh,pn for n = 0, . . . ,N −1

be given. Then the following statements hold:

1. Let u be the (weak) solution of (3.6.1) with u0 ∈H1
0(Ω) and v0 ∈ L2(Ω). Then

u satisfies (3.6.11).

2. For sufficiently large σ0, and for any v ∈ Sh,pn and t ∈ In, the energy Eh(t, v) is

bounded below as

Eh(t, v) ≥
1

2
∥v̇(t)∥2

Ω +
1

4
∥∇v(t)∥2

Ω. +
1

4
∥
√
σ0 [v(t)]∥

2
Γn . (3.6.14)

Further, let un ∈ Sh,pn , n = 0, . . . ,N − 1, satisfy (3.6.4). Then

Eh(t
−
N , u

n) ≤ Eh(t
−
1 , u

0).

Proof. Statement 1 follows from the derivation of the formulation and the regularity

of the unique solution u. We discover that the jump terms vanish when u is sub-

stituted into the scheme and we are left with the original problem (3.6.1). We have

already shown that the energy Eh(t, v) is non-negative and bounded below by same

quantity in 3.3.2. For the rest of the proof, we follow the same argument in 3.3.4 to
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arrive at

Eh(t
−
N) = Eh(t

−
1 , u) −

N−1

∑
n=1

(
1

2
∥⟦u̇(tn)⟧∥

2
Ω +

1

2
∥⟦

√
a∇̃u(tn)⟧∥

2
Ω

− (⟦{a∇u(tn)}⟧, ⟦[u(tn)]⟧)Γn +
1

2
∥⟦

√
σ0 [u(tn)]⟧∥

2
Γn

+ ∥
√
σ1 [u] ∥

2
Γn×In + ∥

√
σ2 [∇u] ∥

2
Γnint×In

) −
N−1

∑
n=1

∥u̇(tn)∥
2
ΓnT×In

(3.6.15)

which also shows that the method is dissipative.

Proposition 3.6.4. With σ0 chosen sufficiently large and σ1, σ2 > 0, the bilinear

forms an(⋅, ⋅) and a(⋅, ⋅) derived for (3.6.1) give rise to two semi-norms

∣∣∣v∣∣∣n ∶= (an(v, v))
1/2
, v ∈ Sh,pn

and

∣∣∣v∣∣∣ ∶= (a(v, v))
1/2
, v ∈ V h,p.

These are in fact norms on Trefftz subspaces Sh,pn,Trefftz and V h,p
Trefftz.

Proof. We note that the bilinear form an(v, v) can be expressed as

an(v, v) = Eh(t
−
n+1, v)+Eh(t

+
n, v)+∥

√
σ1 [v] ∥

2
Γn×In +∥

√
σ2 [v] ∥

2
Γint×In +∥

√
av̇∥2

ΓT×In ≥ 0.

(3.6.16)

This immediately implies that an(v, v) is a semi-norm. Now suppose ∣∣∣v∣∣∣n = 0 for

v ∈ Sh,pn,Trefftz, then v solves the homogeneous wave equation with zero initial condition,

zero Dirichlet boundary condition and zero impedance boundary. Therefore with

v ≡ 0, implies ∣∣∣v∣∣∣n is a norm on Sh,pn,Trefftz. The analysis for a(v, v) can be shown in

similar way, see Subsection 3.4.1.

The convergence result can be established by following the same argument as

used in Subsection 3.4.2.
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Chapter 4

Analysis of Trefftz space-time DG

method for the damped wave

equation

In this chapter, we extend the idea of the Trefftz space-time DG method to a scalar

damped wave equation in second order formulation. In comparison with the es-

tablished analysis of undamped wave problems, the Trefftz space-time analysis for

the damped wave problem is a bit different and complicated as the wavelike basis

functions are not readily available in terms of polynomials.

To resolve this non-trivial aspect of the analysis, we employ the solution (ana-

lytical) formula of the PDE in the approximation space, i.e., the discrete (local)

solutions are derived by propagating polynomial initial data using the solution for-

mula of the PDE.

This approach guarantees local functions with good approximation properties

and by construction we still preserve the already proven local dimensions of the

Trefftz space for general linear wave equations. In addition, this approach establishes

a general method for generating local Trefftz basis functions for general linear wave

equations in time domain.

We organise this chapter as follows. In the next section we introduce the damped

wave model and define necessary notation for settings in Sobolev spaces. In Sec-

tion 4.3, we construct the Trefftz space with the idea of a particular solution for-
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mula. We proceed in Section 4.4 to present the space-time IPDG for the damped

wave equation and we show its stability. Finally, we prove convergence for the case

d = 1 spatial dimension.

4.1 Model problem

We consider the telegraph equation

ü −∇ ⋅ (a∇u) + αu̇ = 0 in Ω × [0, T ],

u(0) = 0 on ∂Ω × [0, T ],

u(x,0) = u0(x), u̇(x,0) = v0(x), in Ω,

(4.1.1)

where Ω is a bounded Lipschitz domain in Rd, ∂Ω its boundary, α ∈ R>0 and 0 <

ca ≤ a(x) ≤ Ca a piecewise constant function. We also have that if Ω1 and Ω2 are

two subsets of Ω with the boundary Γ12 separating them and with a ≡ a1 ∈ Ω1 and

a ≡ a2 ∈ Ω2, then if we denote by u1 = u∣Ω1 and u2 = u∣Ω2 , we have the transmission

conditions

u1 = u2, a1∂nu1 = a2∂nu2, on Γ12, (4.1.2)

where n denotes the exterior normal to Ω1 or (Ω2). The existence of a unique

(weak) solution for the damped wave equation, and even for non-linear damped

wave problems, has been studied in literature. If u0 ∈ H1
0(Ω) and v0 ∈ L2(Ω), then

(4.1.1) has a unique (weak) solution u

u ∈ L2([0, T ];H1
0(Ω)), u̇ ∈ L2([0, T ];L2(Ω)), ü ∈ L2([0, T ];H−1(Ω)). (4.1.3)

Furthermore, the solution is continuous in time with

u ∈ C([0, T ];H1
0(Ω)), u̇ ∈ C([0, T ];L2(Ω)). (4.1.4)

We refer readers to Chapter 7 of [52] and the following papers with other works

cited therein for reference [75, 19, 67, 18, 17].
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4.2 Space-time finite element (polynomial) space

In this section we discuss the construction of the time-space discretization of the

problem just as in Chapter 3. We also present a polynomial space of approximation

as the method can accommodate any space of approximation including orthogonal

polynomial spaces.

For simplicity of presentation and implementation, we construct a time discret-

ization 0 = t0 < t1 < ⋅ ⋅ ⋅ < tN = T and locally quasi-uniform spatial meshes Tn of Ω

consisting of open simplexes such that Ω = ∪K∈TnK. Therefore the space-time mesh

consists of time-slabs Tn×In, where In = (tn, tn+1) and τn = tn+1− tn. For the purpose

of comparison, we recall the local discrete space of piecewise polynomials on each

space-time slab defined as:

Sh,pn = {u ∈ L2(Ω × In) ∶ u∣K×In ∈ Pp(Rd+1), K ∈ Tn}, (4.2.1)

where Pp is the space of polynomials of total degree p and the complete space-time

polynomial space on Ω × [0, T ] defined as:

V h,p = {u ∈ L2(Ω × [0, T ]) ∶ u∣Ω×In ∈ S
h,p
n , n = 0,1, . . . ,N − 1}. (4.2.2)

We maintain the notation for the skeleton of the mesh as Γn ∶= ∪K∈Tn∂K as well as

the interior skeleton Γint = Γn ∖ ∂Ω. The definition of averages and jumps as well as

other mesh parameters remain the same as in Chapter 3.

4.3 Construction of Trefftz spaces for the damped

wave equation

To construct Trefftz spaces with good approximation properties for this problem is

not trivial. However, flexibility of the DG method allows us to construct Trefftz

spaces using the analytical solution of the damped wave problem. We begin with a

vital assumption on a(x).
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Assumption 4.3.1. Let a(⋅) and the mesh be such that a(⋅) is constant in each

element K ∈ Tn for each n.

Definition 4.3.2 (Non-polynomial Trefftz spaces). Let Sh,pn,Trefftz be a subspace of

functions satisfying locally the homogeneous damped wave equation on any space-

time element K × In:

Sh,pn,Trefftz ∶ = {v ∈ L2(Ω × In) ∶ v∣K×Insatisfies v̈(t, x) −∇ ⋅ (a∇v) (t, x) + αv̇ = 0,

with v(x, tn) ∈ Pp(Rd), v̇(x, tn) ∈ Pp−1(Rd), t ∈ In, x ∈K, K ∈ Tn} ,

(4.3.1)

where Pp and Pp−1 denote spaces of polynomials of total degrees p and p− 1 respect-

ively. The space on Ω × [0, T ] is now defined as

V h,p
Trefftz = {v ∈ L2(Ω × [0, T ]) ∶ v∣Ω×In ∈ S

h,p
n,Trefftz, n = 0,1 . . . ,N − 1} .

Unlike the undamped wave problem studied in Chapter 3, the Trefftz functions

for the damped wave equation are not readily available in terms of polynomials.

Therefore we generate the local solutions by propagating polynomial initial data in

time using a solution formula. For example in one spatial dimension, we discover

that the d’Alembert-type progressive wave solution formula of the form (see[98, 64]),

uh(x, t) =
1

2
[uh0(x − ct) + u

h
0(x + ct)] exp(−tα/2)

+
α

4c
exp(−tα/2)∫

x+ct

x−ct
uh0(s){I0 (ρ(s)

tα

2
) +

1

ρ(s)
I1 (ρ(s)

tα

2
)}ds

+
1

2c
exp(−tα/2)∫

x+ct

x−ct
vh0 (s)I0 (ρ(s)

tα

2
)ds,

(4.3.2)

can be used to propagate initial data uh0(x) ∈ Pp and vh0 (x) ∈ Pp−1 in time, where

ρ(s) = ρ(s;x, t) =
√

1 − (x − s)2/(ct)2 and Iν is the modified Bessel function of the

first kind of order ν. Note that uh0 and vh0 are traces of the Trefftz space on the

space-time slab Ω × Ih, Ih = [0, h] and uh(x, t) propagates the initial data in time.

Moreover the propagated (local) initial data could be monomials (see Table 4.1),

orthogonal polynomials or scaled polynomials.
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uh0 = 1 vh0 = 0
x 0
⋮ ⋮

xp 0
0 1
0 x
⋮ ⋮

0 xp−1

(4.3.4)

Table 4.1: Example of polynomial initial data

The local degrees of freedom still remains 2p+1 for the case of spatial dimension

d = 1 based on the derivation of u0 and v0 from polynomial spaces Pp and Pp−1

respectively. In general, the local dimension of the Trefftz spaces for spatial dimen-

sions d = {1,2,3} can be determined by adding up the number of propagated initial

data in Pp(K) and Pp−1(K), i.e.,

dimSh,pn,Trefftz = dimPp(K) + dimPp−1(K). (4.3.3)

Therefore, the local degrees of freedom in spatial dimensions d = 2 and d = 3 remains

(p + 1)2 and (p + 1)(p + 2)(2p + 3)/6 respectively.

The two integrals in (4.3.2) can be approximated by quadrature and hence we

rewrite

∫

x+ct

x−ct
uh0(s){I0 (ρ(s)

tα

2
) +

1

ρ(s)
I1 (ρ(s)

tα

2
)}ds (4.3.5)

as

ct∫
1

−1
uh0(ctq + x){I0 (ρ((ctq + x))tα/2) +

1

ρ(ctq + x)
I1 (ρ((ctq + x))tα/2)}dq,

(4.3.6)

where we have used the relation

q =
2s − a − b

b − a
(4.3.7)

of the Gaussian quadrature defined on [−1,1]. We can now explicitly define ρ(s) as
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a function of q by the change of variable:

ρ(q) =
√

1 − q2. (4.3.8)

Therefore the integral can be written explicitly

ct∫
1

−1
uh0(ctq + x)

⎧⎪⎪
⎨
⎪⎪⎩

I0 (
√

1 − q2
tα

2
) +

1
√

1 − q2
I1 (

√
1 − q2

tα

2
)

⎫⎪⎪
⎬
⎪⎪⎭

dq. (4.3.9)

In similar way, the second integral becomes

ct∫
1

−1
vh0 (qct + x)I0 (

√
1 − q2

tα

2
)dq. (4.3.10)

The derived local solutions are dependent on the size of the physical space-time

element K ×In and hence transformation to a reference element cannot be employed

in this case. In our implementation procedure, we compute the basis functions in

advance which is expensive. In order to speed up the implementation process, we

take the advantage of the low rank property in Chebfun2 to make the implementation

process faster, (see, Snippet 4.1 for Chebfun2 code and Table 4.2 for the ranks of

the basis functions). The MATLAB function ‘solbasis’ in the code snippet computes

each ith basis function in advance. We present the plot of the Trefftz basis functions

in 1−dimension up to order 4 below in Figure 4.2.

1 func t i on Z=computebasischeb (p , a , h)
2 P=2∗p+1;
3 c=1; N=20; domx=[0 h ] ;
4 dom2=[domx ,0 h ] ;% space - time l o c a l domain
5 Z=c e l l (P, 1 ) ;
6 f o r i =1:P % Chebfun2 in use
7 Z{ i}=chebfun2 (@(x , t ) s o l b a s i s ( i , x∗h , t ∗h , h , c , p , a ,N) ,dom2) ;
8 end

Figure 4.1: Code snippet for the basis functions.
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Figure 4.2: Plot of Trefftz basis functions in 1−dimension on reference space-time element
(0, h) × (0, h), h = 0.5.

Basis functions Rank
Z{1} 1
Z{2} 1
Z{3} 2
Z{4} 2
Z{5} 3
Z{6} 1
Z{7} 1
Z{8} 2
Z{9} 2

Table 4.2: Ranks of the constructed 1−dimensional Trefftz Basis functions (see Fig-
ure 4.2).
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4.4 Space-time DG method for the damped wave

equation

We shall follow an energy argument just as in Chapter 3 in deriving the weak form

for the PDE. Assume that u is a smooth solution of (4.1.1) and let v ∈ X + V h,p or

v ∈ X + V h,p
Trefftz. The standard symmetric IPDG weak formulation on the time-slab

In when tested with v̇ is given by

(ü, v̇)Ω×In + (∇̃u, ∇̃v̇)Ω×In − ({∇u} , [v̇])Γn×In − ([u] ,{∇v̇})Γn×In

−(σ0 [u] , [v̇])Γn×In + (αu̇, v̇)Ω×In = 0,

(4.4.1)

where

σ0(x, t) ∶= Cσ0h(x, t)
−1, (4.4.2)

and Cσ0 is a positive constant to be determined later. Note that if v = u in (4.4.1),

then we have the following:

1

2
∥u̇∥2

L2(Ω) +
1

2
∥∇u∥2

L2(Ω) − ({∇u} , [u])Γ +
1

2
∥σ

1/2
0 [u] ∥2

(Γ) + ∥α1/2u̇∥2
(Ω×In), (4.4.3)

which suggests the same discrete energy as in Chapter 3, (see, equation (3.3.3))

Eh(u, tn) =
1

2
∥u̇(tn)∥

2
L2(Ω) +

1

2
∥∇̃u(tn)∥

2
L2(Ω) − ({∇u} , [u])Γ +

1

2
∥σ

1/2
0 [u(tn)] ∥

2
(Γ).

(4.4.4)

Now choosing as test function v = u in (4.4.1), summing over n and employing the

algebraic identity (3.3.4) just as in Chapter 3 leads to the following space-time weak
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formulation:

N−1

∑
n=0

(ü, v̇)Ω×In + (⟦u̇(tn)⟧, v̇(t
+
n))Ω

+ (a∇̃u, ∇̃v̇)
Ω×In

+ (⟦a∇̃u(tn)⟧, ∇̃v(t
+
n))Ω

− ({a∇u} , [v̇])Γn×In − (⟦{a∇̃u(tn)}⟧, [v(t
+
n)])Γ̂n

− ([u] ,{a∇v̇})Γn×In − (⟦[u(tn)]⟧,{a∇v(t
+
n)})Γ̂n

+ (σ0 [u] , [v̇])Γn×In + (σ0⟦[u(tn)]⟧, [v(t
+
n)])Γ̂n

+ (σ1 [u] , [v])Γn×In + (σ2 [a∇u] , [a∇v])Γn×In + (αu̇, v̇)Ω×In = B
init(v),

(4.4.5)

where,

Binit(v) = (v0, v̇(t
+
0))Ω + (a∇̃u0, ∇̃v(t

+
0))Ω

− ({a∇u0} , [v(t
+
0)])Γ0

− ([u0] ,{a∇v(t
+
0)})Γ0

+ (σ0 [u0] , [v(t
+
0)])Γ0

.

(4.4.6)

Thus, we have arrived at a space-time discrete method for the damped wave equa-

tion, which we present in two viewpoints: as a method for obtaining a discrete

solution on a fixed space-time domain Ω× [0, T ] or as a time-stepping method. Just

as in Chapter 3, the former viewpoint will be used for the convergence analysis while

the latter will be used for the implementation of the method. In order to present

the two viewpoints compactly, we define three bilinear forms:

An(u, v) ∶= (ü, v̇)Ω×In + (u̇(t+n), v̇(t
+
n))Ω

+ (a∇̃u, ∇̃v̇)
Ω×In

+ (a∇̃u(t+n), ∇̃v(t
+
n))Ω

− ({a∇u} , [v̇])Γn×In − ({a∇u(t+n)} , [v(t
+
n)])Γn

− ([u] ,{a∇v̇})Γn×In − ([u(t+n)] ,{a∇v(t
+
n)})Γn

+ (σ0 [u] , [v̇])Γn×In + (σ0 [u(t
+
n)] , [v(t

+
n)])Γn

+ (σ1 [u] , [v])Γn×In + (σ2 [a∇u] , [a∇v])Γn×In + (αu̇, v̇)Ω×In ,

(4.4.7)

Bn(u, v) ∶= (u̇(t−n), v̇(t
+
n))Ω + (a∇̃u(t−n), ∇̃v(t

+
n))Ω

− ({a∇u(t−n)} , [v(t
+
n)])Γn

− ([u(t−n)] ,{a∇v(t
+
n)})Γn−1

+ (σ0 [u(t
−
n)] , [v(t

+
n)])Γ̂n

,

(4.4.8)
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and

A(u, v) ∶=
N−1

∑
n=0

An(u, v) −
N−1

∑
n=1

Bn(u, v). (4.4.9)

Definition 4.4.1. Given subspace Xn ⊆ Sh,pn or Xn ⊆ Sh,pn,Trefftz, the time stepping

method for the damped wave equation is described by: find un ∈Xn, n = 1,2, . . . ,N−1,

such that

An(u
n, v) = Bn(u

n−1, v), for all v ∈Xn (4.4.10)

and

A0(u
n, v) = Binit(v), for all v ∈X0. (4.4.11)

Equivalently, given a subspace X ⊆ V h,p or X ⊆ V h,p
Trefftz, the full space-time discrete

system is presented as: find u ∈X such that

A(u, v) = Binit(v), for all v ∈X. (4.4.12)

Before we proceed to the a priori analysis, we need to establish the following

lemma.

Lemma 4.4.2. It holds that for u ∈ X + V h,p
Trefftz,

An(u,u) = Eh(t
−
n+1, u) +Eh(t

+
n, u) + ∥

√
σ1 [u] ∥

2
Γn×In + ∥σ2 [a∇u] ∥

2
Γn×In + ∥α1/2u̇∥Ω×In ,

(4.4.13)

for n = 0,1, . . . ,N − 1, and

A(u,u) = Eh(t
−
N , u) +Eh(t

+
0 , u) +

N−1

∑
n=1

(
1

2
∥⟦u̇(tn)⟧∥

2
Ω +

1

2
∥
√
a⟦∇̃u(tn)⟧∥

2
Ω

− ( (⟦{a∇̃u(tn)}⟧, ⟦[u(tn)]⟧)Γn
+

1

2
∥⟦

√
σ0 [u(tn)]⟧∥

2
Γn)

+
N−1

∑
n=0

(∥
√
σ1 [u]∥

2
Γn×In + ∥

√
σ2 [a∇u]∥

2
Γn×In) +

N−1

∑
n=0

∥
√
αu̇∥2

Ω×In .

(4.4.14)
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Proof. let v = u and using the time stepping bilinear (4.4.7) , we have

An(u,u) =
1

2

d

dt
∥u̇(t)∥2

Ω×In + ∥u̇(t+n)∥
2
Ω +

1

2

d

dt
∥a∇u∥2

Ω×In

+ ∥a∇u(t+n)∥
2
Ω −

d

dt
([u] ,{a∇u})Γ×In − 2({a∇u(t+n)} , [v(t

+
n)])Γn

+
1

2

d

dt
∥
√
σ0 [u(t

+
n)] ∥

2
Γn + ∥

√
σ1 [u] ∥

2
Γn×In + ∥

√
σ2⟦a∇u⟧∥

2
Γn×In + ∥

√
αu̇∥Ω×In .

(4.4.15)

Further analysis gives

An(u,u) =
1

2
∥u̇(t−n+1)∥

2
Ω +

1

2
∥u̇(t+n)∥

2
Ω +

1

2
∥a∇u(t−n+1)∥

2
Ω +

1

2
∥a∇u(t+n)∥

2
Ω

−([u(t−n+1)] ,{a∇u(t
−
n+1)})Γn − ([u(t+n)] ,{a∇u(t

+
n)}) +

1

2
∥
√
σ0 [u(t

−
n+1)] ∥

2
Γn

+
1

2
∥
√
σ0 [u(t

+
n)] ∥

2
Γn + ∥

√
σ1 [u] ∥

2
Γn×In + ∥

√
σ2 [a∇u] ∥

2
Γn×In + ∥

√
αu̇∥2

Ω×In .

(4.4.16)

Hence from the definition of the energy (4.4.4) we have the result.

In similar way as above, let v = u in the discrete bilinear form. Cancelling out

the time integrals with the time derivative and re-arranging with the definition of

the energy Eh(t, u) we have

A(u,u) = Eh(t
−
N , u) +Eh(t

+
0 , u) −

N−1

∑
n=1

1

2
⟦∥u̇(tn)∥

2
Ω⟧ −

N−1

∑
n=1

1

2
⟦∥

√
a∇u∥2

Ω⟧

+
N−1

∑
n=1

(⟦u̇(tn)⟧, u̇(t
+
n))Ω +

N−1

∑
n=1

(⟦a∇u(tn)⟧,∇u(t
+
n))Ω +

N−1

∑
n=1

⟦({a∇u(tn)} , [u(t
+
n)])Γn⟧

−
N−1

∑
n=1

(⟦{a∇u(tn)}⟧, [v(t
+
n)])Γn −

N−1

∑
n=1

(⟦[u(tn)]⟧,{a∇u(t
+
n)})Γn −

N−1

∑
n=1

1

2
⟦∥

√
σ0 [u(tn)] ∥

2
Γn⟧

+
N−1

∑
n=0

∥
√
σ1 [u] ∥

2
Γn×In +

N−1

∑
n=1

(σ0⟦[u(tn)]⟧, [u(t
+
n)])Γn

+
N−1

∑
n=0

∥
√
σ2 [a∇u] ∥

2
Γn×In +

N−1

∑
n=0

∥
√
αu̇∥2

Ω×In .

(4.4.17)

Finally, using the the algebraic upwinding (3.3.4) completes the proof.
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4.5 A priori analysis for the damped wave prob-

lem

In this section we proceed to give relevant a priori analysis which include consistency

and stability of the derived method, quasi-optimality and rate of convergence for

one dimensional case. Note that the Trefftz functions for the damped wave problem

are not in the space of polynomials, hence the analysis procedure in this chapter is

slightly different from what we studied in Chapter 3. We shall employ the following

lemma from [20].

Lemma 4.5.1. Let ρh ≤ diamK ≤ h where 0 ≤ h ≤ 1, and let S be a finite dimen-

sional subspace of Sobolev space H l(K)∩Hm(K) where 0 ≤m ≤ l. Then there exists

C ∶= C(S,K, l, ρ) such that for all v ∈ S, we have

∥v∥Hl(K) ≤ Ch
m−l∥v∥Hm(K). (4.5.1)

Theorem 4.5.2. Let the spaces Sh,pn,Trefftz for n = 0, . . . ,N − 1 be given. Then the

following statements hold:

1. Let u be the (weak) solution of (4.1.1) with u0 ∈H1
0(Ω) and v0 ∈ L2(Ω). Then

u satisfies (4.4.12).

2. For Cσ0 chosen big enough, (see (4.4.2)) and for any v ∈ Sh,pn,Trefftz and t ∈ In,

the energy Eh(t, v) is bounded below as

Eh(t, v) ≥
1

2
∥v̇(t)∥2

Ω +
1

4
∥
√
a∇̃v(t)∥2

Ω. (4.5.2)

where Cσ0 is independent of h(x, t) but may depend on the polynomial degree p.

Further, let un ∈ Sh,pn,Trefftz, n = 0, . . . ,N − 1, satisfy (4.4.5). Then, Eh(t−N , u
n) ≤

Eh(t−1 , u
0).

Proof. The first statement follows from the derivation of the scheme and the regu-

larity of the unique solution u. To continue with the rest of the statement, we need

to show that if σ0 is chosen big enough, then the energy (4.4.4) is a non-negative
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quantity. Since the functions in the local Trefftz space Sh,pn,Trefftz are not polynomials,

the discrete inverse inequality does not apply directly. However, the standard trace

inequality of the form (see Theorem A.11 in [113])

∥γ0u∥∂K ≤ C(K)∥u∥H1(K) (4.5.3)

can be used to derive a suitable inequality. Now, we make use of Lemma 4.5.1 and

we choose l = 1, m = 0 and S = Sh,pn,Trefftz is a finite dimensional subspace of H1(K).

Then we have

∥v∥H1(K) ≤ Ch
−1∥v∥L2(K) ∀ v ∈ S. (4.5.4)

Now the trace inequality (4.5.3) above can be used and hence we have

∥γ0u∥L2(∂K) ≤ Ch
−1∥u∥L2(K) for u ∈ H1(K). (4.5.5)

Therefore we can write

∥u∥L2(∂K) ≤ Ch
−1∥u∥L2(K) for u ∈ H1(K). (4.5.6)

To show the positivity of the energy (4.4.4), it suffices to bound the last term in

the expression. Using the Cauchy-Schwarz and Young’s inequality we have

∣({a∇v(t)} , [v(t)])Γn ∣ ≤ ∣(
σ0

2
)
−1/2

{a∇v(t)} , (
σ0

2
)

1/2
[v(t)])∣

≤ ∫
Γn
σ−1

0 ∣ {a1/2∇v(t)} ∣2ds +
σ0

4 ∫Γn
∣ [v(t)] ∣2ds.

(4.5.7)

Using the trace inequality (4.5.6) we bound the first term in the above to have

∫
Γn
σ−1

0 ∣ {a1/2∇v(t)} ∣2ds ≤ ∑
K∈Tn
∫
∂K
σ−1

0 ∣n ⋅ a1/2∇v(t)∣2ds

≤ ∑
K∈Tn

Cσ−1
0

1

h
(∥a1/2∇v(t)∥2

K).

(4.5.8)

Now choosing Cσ0 ≥ 2C is enough to write

∣({a∇v(t)} , [v(t)])Γn ∣ ≤
1

2
∥a1/2∇v∥2

Ω +
1

4
∥σ

1/2
0 [v(t)] ∥Γn , (4.5.9)
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which makes the energy bounded below by

Eh(t, v) ≥
1

2
∥v̇(t)∥2

Ω +
1

4
∥σ

1/2
0 [v(t)] ∥2

Γn . (4.5.10)

To complete the rest of the proof, note that from (4.4.13) we have

A0(u,u) = Eh(t
−
1 , u)+Eh(t

+
0 , u)+∥

√
σ1 [u] ∥

2
Γ0×I0+∥

√
σ2 [a∇u] ∥

2
Γ0×I0+∥

√
αu̇∥2

Ω×I0 = B
init(u).

(4.5.11)

Therefore we can write

Eh(t
−
N , u) = Eh(t

−1
1 , u) −

N−1

∑
n=1

(
1

2
∥⟦u(tn)⟧∥

2
Ω +

1

2
∥⟦

√
a∇u(tn)⟧∥

2
Ω − (⟦{a∇u(tn)}⟧, ⟦[u(tn)]⟧)Γn

+
1

2
∥
√
σ0⟦u(tn)⟧∥

2
Γn + ∥

√
σ1 [u] ∥

2
Γn×In + ∥

√
σ2 [a∇u] ∥

2
Γn×In) −

N−1

∑
n=0

∥
√
αu̇∥2

Ω×In .

(4.5.12)

4.5.1 Existence and uniqueness of solution

In this subsection we prove the existence and uniqueness of the solution in the Trefftz

space. We investigate the DG bilinear forms (4.4.7) and (4.4.9) and we show that

they give rise to norms on respective Trefftz spaces Sh,pn,Trefftz and V h,p
Trefftz.

Proposition 4.5.3. With σ0 chosen large enough and σ1, σ2 > 0, bilinear forms

an(⋅, ⋅) and a(⋅, ⋅) give rise to two norms

∣∣∣v∣∣∣n ∶= (An(v, v))
1/2
, v ∈ Sh,pn,Trefftz

and

∣∣∣v∣∣∣ ∶= (A(v, v))
1/2
, v ∈ V h,p

Trefftz.

Proof. Note that if ∣∣∣v∣∣∣n = 0 for v ∈ Sh,pn,Trefftz, then v solves the homogeneous damped

wave equation with zero initial and boundary conditions. Uniqueness implies v ≡ 0

and hence that ∣∣∣⋅∣∣∣n is a norm on this Trefftz space. The proof for ∣∣∣⋅∣∣∣ follows the

same way by recalling (4.4.14) and proceeding as in the first case, shows that it is
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in fact a norm on the Trefftz space V h,p
Trefftz.

Corollary 4.5.4. Under the conditions of the above proposition and with initial

data u0 ∈ H1
0(Ω), v0 ∈ L2(Ω), the discrete system (4.4.12) with X = V h,p

Trefftz has a

unique solution.

We present the convergence analysis of the Trefftz based method in the next

subsection.

4.5.2 Convergence analysis

We now establish the quasi-optimality of the proposed method for the damped wave

problem. We begin with the following vital proposition.

Proposition 4.5.5. Let w ∈ X + V h,p
Trefftz and v ∈ V h,p

Trefftz, then

A(w, v) ≤ C⋆∣∣∣w∣∣∣⋆∣∣∣v∣∣∣, (4.5.13)

for some constant C⋆ > 0 and

∣∣∣w∣∣∣2⋆ =
1

2

N

∑
n=1

(∥ẇ(t−n)∥
2
Ω + ∥

√
a∇w(t−n)∥

2
Ω + ∥

√
σ0 [w(t−n)] ∥

2
Γn + ∥σ

−1/2
0 {a∇w(t−n)} ∥2

Γn)

+
N−1

∑
n=0

(∥
√
σ1 [w]∥2

Γn×In + ∥
√
σ2 [a∇w]∥2

Γn×In + ∥σ
−1/2
2 {ẇ}∥2

Γint
n ×In

+ ∥σ
−1/2
1 {a∇ẇ}∥2

Γn×In + ∥σ0σ
−1/2
1 [ẇ]∥2

Γn×In) +
N−1

∑
n=0

∥21/2ẇ∥2
Ω×In .
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Proof. Analogously to the proof of Proposition 3.4.6, we have that

A(w, v) =
N−1

∑
n=0

An(w, v) −
N−1

∑
n=1

Bn(w, v)

=
N−1

∑
n=0

( ({a∇ẇ} , [v])Γn×In − (σ0 [ẇ] , [v])Γn×In − ({ẇ} , [a∇v])Γint
n ×In

+ (σ1 [w] , [v])Γn×In + (σ2 [a∇w] , [a∇v])Γn×In )

−
N

∑
n=1

( (ẇ(t−n), ⟦v̇(tn)⟧)Ω + (a∇w(t−n), ⟦∇v(tn)⟧)Ω

− ({a∇w(t−n)} , ⟦[v(tn)]⟧)Γn
− ([w(t−n)] , ⟦{a∇v(tn)}⟧)Γn

+ (σ0 [w(t−n)] , ⟦[v(tn)]⟧)Γn
) +

N−1

∑
n=0

(2αẇ, v̇)Ω×In .

(4.5.14)

The rest of the proof as before can be completed using the Cauchy-Schwarz inequal-

ity.

Theorem 4.5.6. Let U ∈ V h,p
Trefftz be the discrete solution of the Trefftz space-time

discontinuous Galerkin method and let u ∈ X be the exact solution. Then

∣∣∣U − u∣∣∣ ≤ inf
V ∈V h,p

Trefftz

(C⋆∣∣∣u − V ∣∣∣⋆ + ∣∣∣u − V ∣∣∣) (4.5.15)

Proof. The proof follows the same analogy as in Theorem 3.4.8 using Proposi-

tion 4.5.5, the fact that discrete bilinear form a(⋅, ⋅) is a norm on the Trefftz space,

and the Galerkin orthogonality.

4.6 A priori error bounds in one spatial dimen-

sion

The Trefftz basis employed for the case of damped wave problem is sufficient to

deliver the expected rates of convergence for the proposed method.

Lemma 4.6.1. Let the setting of Theorem 4.5.6 hold, let uh ∈ V
h,p

Trefftz be an arbitrary
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function in the discrete space, and let η = u − uh. Then

∣∣∣U − u∣∣∣2 ≤ C
N−1

∑
n=0

∑
K∈T n

Ca(
1

τn
(∥∇η∥2

K×In +min{1,
τ 2
n

h2
K

}∥η̇∥2
K×In)

+ τn(∥∇η̇∥
2
K×In +min{1,

h2
K

τ 2
n

}∥D2η∥2
K×In)

+ h2
Kτn∥D

2η̇∥2
K×In +

1

h2
Kτn

∥η∥2
K×In + τn∥∆η − αη̇∥

2
K×In)

(4.6.1)

where U ∈ V h,p
Trefftz is the discrete solution.

Proof. The proof follows the same analogy as in Section 3.5 by employing the result

of Theorem 4.5.6 and repeated use of the trace estimate ∥v∥2
∂ω ≤ C(diam(ω)−1∥v∥2

ω +

diam(ω)∥∇v∥2
ω), for v ∈H1(ω), where ω ⊂ Rd or Rd+1. Note that the associated con-

stants with the stability parameters have been taken to be Ca which is independent

of h but may depend on the polynomial degree p.

To complete the error analysis we need to investigate the existence of an appro-

priate approximation uh ∈ V h,p
Trefftz of the exact solution. We shall prove existence

with a proposition and a lemma. The convergence analysis will later be finalised

with a theorem. Let us begin with the following definition.

Definition 4.6.2. Let u be a smooth enough solution of ü − ∇ ⋅ (a∇u) + αu̇ = 0 in

Ω×I, with initial data u0 = γu∣t=0 and v0 = γu̇∣t=0, h = 1/M , I = (0, h) and let xj = jh,

j = 0 . . .M . The projections πpu0 and πp−1v0 are defined for x ∈ (xj, xj+1) as follows:

πpu0 = u0(xj) + u
′
0(xj)(x − xj) + ⋅ ⋅ ⋅ +

u
(p)
0 (xj)

p!
(x − xj)

p,

πp−1v0 = v0(xj) + v
′
0(xj)(x − xj) + ⋅ ⋅ ⋅ +

v
(p−1)
0 (xj)

(p − 1)!
(x − xj)

p−1.

(4.6.2)

Proposition 4.6.3. Let Ω = (0,1), h = 1/M > 0, and I = (0, h) and let xj = jh,

j = 0 . . .M , K = (xj, xj+1). Let u be given such that ü − ∆u + αu̇ = 0 in Ω × I and

u(0, t) = u(1, t) = 0, t ∈ I. Let u0 = u(⋅,0), v0 = u̇(⋅,0) and define u0(x) = −u(−x) for

x ∈ (−1,0) and u0(x) = −u0(−x) for x ∈ (1,2) and correspondingly for v0. For x < −1
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and x > 2 define both u0 and v0 to be identically equal to 0. Let U be the solution of

Ü −∆U + αU̇ = 0, on R × I

U(⋅,0) = U0 = π
pu0, U̇(⋅,0) = V0 = π

p−1v0 on R.

Then

∥u −U∥2
L2(K×I) ≤ Ch

2p+3 (∥u
(p+1)
0 ∥2

∞,(xj−1,xj+2) + ∥v
(p)
0 ∥2

∞,(xj−1,xj+2)

+ max
l ∈{j−1, j, j+1}

∣v
(p)
0 (xl)∣

2 + ∥v
(p+1)
0 ∥2

∞,(xj−1,xj+2)) ,
(4.6.3)

where ∥ ⋅ ∥∞ denotes the classical maximum norm.

Proof. Note that u0 = U0 + Rp+1(x) and v0 = V0 + Rp(x) where the remainders are

defined as

Rp+1(x) = (x − xj)
p+1u

(p+1)
0 (ξx)

(p + 1)!
,

Rp(x) = (x − xj)
pv

(p)
0 (ξx)

(p)!
, ξx ∈ (xj, x), x ∈ (xj, xj+1).

Note that the solution of

¨̃u −∆ũ + α ˙̃u = 0, on R × I,

ũ(⋅,0) = u0, ˙̃u(⋅,0) = v0, on R,

given by the solution formula

ũ(x, t) =
1

2
[u0(x − t) + u0(x + t)]e

−αt/2

+
1

4
αe−αt/2∫

x+t

x−t
ũ0(s)(I0 (ρ(s)

t

2
α) +

1

ρ(s)
I1 (ρ(s)

t

2
α))ds

+
1

2
e−αt/2∫

x+t

x−t
ṽ0(s)I0(ρ(s)

t

2
α)ds,

(4.6.4)

(where ρ(s) =
√

1 − (x − s)2/t2, and Iv is the modified Bessel function of the first

kind of order ν ) satisfies ũ ≡ u on Ω × I since they both have the same initial data

and solve the same equation. The odd extension of the initial data ensures that ũ

satisfies the boundary conditions, i.e., ũ(0, t) = ũ(1, t) = 0 (Note that the integral of
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an odd function over a symmetric interval is zero).

The advantage of the above consideration is that both u and uh can be repres-

ented by the solution formula on R when restricted to Ω × I. Therefore the error

e = u−U is given by the same formula after a change of variable for the integrals as:

e(x, t) =
1

2
(e0(x − t) + e0(x + t)) e

−αt/2

+
1

4
αte−αt/2∫

1

−1
e0(tq + x)

⎛

⎝
I0 (

√
1 − q2

tα

2
) +

1
√

1 − q2
I1 (

√
1 − q2

tα

2
)
⎞

⎠
dq

+
1

2
te−tα/2∫

1

−1
e1(tq + x)I0 (

√
1 − q2

tα

2
)dq,

(4.6.5)

where

e0 = u0 −U0, e1 = v0 − V0.

We require the bound on the L2 norm of the error, i.e.,

∥e∥2
L2(K×I) = ∫

h

0
∫

xj+1

xj
∣e(x, t)∣2dxdt. (4.6.6)

Let us begin with the first term, thus

∫

h

0
e−αt∫

xj+1

xj
∣e0(x − t) + e0(x + t)∣

2
dxdt

≤ 2∫
h

0
e−αt (∫

xj+1

xj
∣e0(x − t)∣

2
dx + ∫

xj+1

xj
∣e0(x + t)∣

2
dx)dt

≤ 2∫
h

0
e−αt (∥e0∥

2
L2(xj−1,xj+2) + ∥e0∥

2
L2(xj ,xj+2))dt

≤ 4∥e0∥
2
L2(xj−1,xj+2)∫

h

0
e−αtdt

=
4

α
(1 − e−αh)∥e0∥

2
L2(xj−1,xj+2).

(4.6.7)

Before we continue, we note that there exists C0 > 0 such that

I0(x) ≤ C0, x ∈ (0, hα/2)
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and

1
√

1 − q2
I1(

√
1 − q2x) ≤ C0, x ∈ (0, hα/2), q ∈ (−1,1).

The above estimate can be seen by inspection of the formula

In(z) = (
1

2
z)

n ∞
∑
k=0

(1
4z

2)
k

k!(n + k)!
, n ∈ {0,1}. (4.6.8)

Note also that I0(x) ≥ 0, I1(x) ≥ 0 for x ≥ 0.

We now proceed with the bound on the second term in (4.6.5):

∫

h

0
t2e−αt∫

xj+1

xj

RRRRRRRRRRR
∫

1

−1
e0(tq + x)

⎛

⎝
I0 (

√
1 − q2

tα

2
) +

1
√

1 − q2
I1 (

√
1 − q2

tα

2
)
⎞

⎠
dq

RRRRRRRRRRR

2

dxdt

≤ 4C2
0 ∫

h

0
t2e−αt∫

xj+1

xj
(∫

1

−1
∣e0(tq + x)∣dq)

2

dxdt

≤ 16C2
0 ∫

h

0
t2e−αt∫

xj+1

xj
∫

1

−1
∣e0(tq + x)∣

2dqdxdt

≤ 16C2
0 ∫

h

0
t2e−αtdt∥e0∥

2
L2(xj−1,xj+2) ≤

32

α3
(1 − e−αh (

h2α2

2
+ hα + 1))C2

0∥e0∥
2
L2(xj−1,xj+2).

For the final term, we note that there exists a constant C1 and a h0 > 0 such that

∣I0(x) − 1∣ ≤ C1h
2, 0 ≤ h ≤ h0.

Then we have

∫

h

0
t2e−αt∫

xj+1

xj
∣∫

1

−1
e1(tq + x)I0 (

√
1 − q2

tα

2
)dq∣

2

dxdt

≤ 2∫
h

0
t2e−αt∫

xj+1

xj
(∣∫

1

−1
e1(tq + x)dq∣

2

+ ∣∫

1

−1
e1(tq + x)(I0 (

√
1 − q2

tα

2
) − 1)dq∣

2

)dxdt

≤ 2∫
h

0
t2e−αt∫

xj+1

xj
∣∫

1

−1
e1(tq + x)dq∣

2

dxdt

+C2
1h

4 16

α3
(1 − e−αh (

h2α2

2
+ hα + 1)) ∥e1∥

2
L2(xj−1,xj+2)

≤
2

α
(1 − e−αh) max

t∈(0,h)∫

xj+1

xj
∣∫

x+t

x−t
e1(q)dq∣

2

dx

+C2
1h

4 16

α3
(1 − e−αh (

h2α2

2
+ hα + 1)) ∥e1∥

2
L2(xj−1,xj+2).
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We shall now make use of the definition of our projector (4.6.2) for the term

∫

xj+1

xj
∣∫

x+t

x−t
e1(q)dq∣

2

dx

in our analysis.

We note that

∣∫

x+t

x−t
e1(q)dq∣ ≤ ∣∫ e1(q)dq∣

(x−t,x+t)∩(xj−1,xj)

+ ∣∫ e1(q)dq∣

(x−t,x+t)∩(xj ,xj+1)

+ ∣∫ e1(q)dq∣

(x−t,x+t)∩(xj+1,xj+2)

.

Let (a, b) = (x − t, x + t) ∩ (xl, xl+1) where l ∈ {j − 1, j, j + 1}. Making use of the

remainder now we have

∣∫

b

a
e1(q)dq∣ = ∣∫

b

a
Rp(q)dq∣ = ∣∫

b

a

(q − xl)p

p!
v
(p)
0 (ξq)dq∣ ≤ ∣v

(p)
0 (xl)∣ ∣∫

b

a

(q − xl)p

p!
dq∣

+ ∣∫

b

a

(q − xl)

p!
(v

(p)
0 (ξq) − v

(p)
0 (xk))dq∣ ≤ Ch

p+1∣v
(p)
0 (xl)∣ +C max

y∈(xl,xl+1)
∣v

(p)
0 (y) − v

(p)
0 (xl)∣h

p

≤ Chp+1 max
l ∈{j−1, j, j+1}

∣v
(p)
0 (xl)∣

2 +Chp+1∥v
(p+1)
0 ∥∞,(xl,xl+1).

To complete the proof, we note that ∥e0∥L2(xj−1,xj+2) and ∥e1∥L2(xj−1,xj+2) can be es-

timated by bounding the remainders in classical maximum norm, i.e.,

∥e0∥
2
L2(xj−1,xj+2) = ∥Rp+1∥

2
L2(xj−1,xj+2) ≤ Ch

2p+2∥u
(p+1)
0 ∥2

∞,(xj−1,xj+2)

∥e1∥
2
L2(xj−1,xj+2) = ∥Rp∥

2
L2(xj−1,xj+2) ≤ Ch

2p∥v
(p)
0 ∥2

∞,(xj−1,xj+2).

(4.6.9)

We note that the coefficient (1 − e−αh) is of size h and we can verify that (1 −

e−αh(h2α2/2 + hα + 1)) is of size h3 by noticing that 1 + hα + h2α2/2 + O(h3) is a

Taylor expansion of eαx, x ∈ (0, h). Combining the analysis now, we write

∥e∥2
L2(K×I) ≤ Ch

2p+3 [(
4

α
+

32

α3
C2

0h
2) ∥u

(p+1)
0 ∥2

∞,(xj−1,xj+2) + (C1h
4 16

α3
) ∥v

(p)
0 ∥2

∞,(xj−1,xj+2)

+ (
2

α
) ∥v

(p+1)
0 ∥2

∞,(xj−1,xj+2) + max
l ∈{j−1, j, j+1}

∣v
(p)
0 (xl)∣

2] .

(4.6.10)

Note that the right hand side of the estimate above presents the error in terms

of the initial data with norms over spatial domain (xj−1, xj+2).
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Based on the above proposition, we now state and proof the theorem that gen-

eralises the local error estimate when the (weak) derivative Dα, ∣α∣ ≤ p, is involved.

Theorem 4.6.4. Let the setting of Proposition 4.6.3 hold and in addition, let u ∈

Cp+1(K × I) with uh defined as in Proposition 4.6.3. Then

∥Dβ(u − uh)∥2
L2(K×I) ≤ Ch

2p+3−2∣β∣ (∥u
(p+1)
0 ∥2

∞,(xj−1,xj+2) + ∥v
(p)
0 ∥2

∞,(xj−1,xj+2)

+ max
l ∈{j−1, j, j+1}

∣v
(p)
0 (xl)∣

2 + ∥v
(p+1)
0 ∥2

∞,(xj−1,xj+2)) ,
(4.6.11)

where β represents space-time multi-index, ∣β∣ ≤ p.

Proof. Note that uh is derived by propagating πu0 and πp−1v0 in time by the solution

formula (4.3.2). Hence, it suffices to investigate the bound on the derivatives of the

error formula

e(x, t) =
1

2
(e0(x − t) + e0(x + t)) e

−αt/2

+
1

4
αte−αt/2∫

1

−1
e0(tq + x)

⎛

⎝
I0 (

√
1 − q2

tα

2
) +

1
√

1 − q2
I1 (

√
1 − q2

tα

2
)
⎞

⎠
dq

+
1

2
te−tα/2∫

1

−1
e1(tq + x)I0 (

√
1 − q2

tα

2
)dq

(4.6.12)

as in Proposition 4.6.3. Also the functions Iν(x), ν ∈ {0,1} and their derivatives in

the error formula remain bounded and add no new information to the analysis.

For the spatial derivative, we discover that the number of terms remain un-

changed in the error formula when continuously differentiated and similar analysis

as in Proposition 4.6.3 can be employed. Suppose e(x, t) is differentiated l times in

space, then the following terms will occur in the error bound of the spatial derivat-

ives:

∥e
(l)
0 ∥2

L2(xj−1,xj+2), max
l∈{j−1,j,j+1}

∣v
(p−l)
0 ∣2, and ∥v

(p+1−l)
0 ∥2

∞,(xj−1,xj+2). (4.6.13)

Now, note that

e0(x) = u0(x) − u
h
0(x) = Rp+1(x) =

(x − xj)p+1

(p + 1)!
u
(p+1)
0 (ξ), ξ ∈ (x,xj). (4.6.14)
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Therefore, we have the following estimates on the remainders:

∥e
(l)
0 ∥2

L2(xj−1,xj+2) ≤ Ch
2p+2−2l∥u

(p+1)
0 ∥2

∞,(xj−1,xj+2),

∥e
(l)
1 ∥2

L2(xj−1,xj+2) ≤ Ch
2p−2l∥v

(p)
0 ∥2

∞,(xj−1,xj+2).

(4.6.15)

Following the same approach as in Proposition 4.6.3 with the new estimates above

shows that the same loss of order h can be derived, remembering that (1−e−αh) and

(1 − e−αh (1 + hα + h2α2

2 )) are of size h and h3 respectively.

For the time derivatives, we notice that the number of terms increases as we

compute the derivatives of e(x, t) in time. However, by inspection, many of the

terms can be analysed in similar way to Proposition 4.6.3.

Let us consider the time derivative of the third term in the error formula (4.6.5)

which is the most interesting part of the analysis, i.e.,

∂

∂t
(

1

2
te−tα/2∫

1

−1
e1(tq + x)I0 (

√
1 − q2

tα

2
))

= [
1

2
e−αt/2 −

tα

4
e−αt/2]∫

1

−1
e1(tq + x)I0 (

√
1 − q2

tα

2
)dq

+
1

2
te−αt/2∫

1

−1
(e′1(tq + x)I0 (

√
1 − q2

tα

2
) + e1(tq + x)

√
1 − q2

α

2
I1 (

√
1 − q2

tα

2
))dq.

(4.6.16)

We now need to carefully analyse the L2 bound of the above expression. If we split

the first term on the right into two, we discover that the first part can be analysed

as follows

∫

h

0
e−αt∫

xj+1

xj
∣e1(tq + x)I0 (

√
1 − q2t

α

2
)dq∣

2

dxdt ≤ C2
0 ∫

h

0
e−αt∫

xj+1

xj
(∫

1

−1
∣e1(tq + x)∣dq)

2

dxdt

≤
4

α
C2

0(1 − e
−αh)∥e1∥

2
L2(xj−1,xj+2) ,

(4.6.17)

where we have used Cauchy-Schwarz in the second step. The analysis of the second
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part has been carefully done under Proposition 4.6.3, thus:

∫

h

0
t2e−αt∫

xj+1

xj
∣∫

1

−1
e1(tq + x)I0 (

√
1 − q2tα/2)dq∣

2

dxdt ≤

C2
1h

4 16

α3
(1 − e−αh (

h2α2

2
+ hα + 1)) ∥e1∥

2
L2(xj−1,xj+2)

+
2

α
(1 − e−hα) max

t∈(0,h)∫

xj+1

xj
∣∫

1

−1
e1(tq + x)dq∣

2

dx.

(4.6.18)

In a similar way, the second term on the right of (4.6.16) can be split into two

and analysed separately. Following the same approach as in Proposition 4.6.3, we

have

∫

h

0
t2e−αt∫

xj+1

xj
∣∫

1

−1
e′1(tq + x)qI0 (

√
1 − q2t

α

2
)dq∣

2

dxdt

≤
2

α
(1 − e−αh) max

t∈(0,h)∫

xj+1

xj
∣∫

1

−1
e′1(tq + x)dq∣

2

dx

+C2
1h

4 16

α3
(1 − e−αh (

h2α2

2
+ hα + 1)) ∥e′1∥

2
L2(xj−1,xj+2).

(4.6.19)

The second part has been analysed already in the proof of the proposition.

We can now complete the proof by using the definition of our projection (4.6.2)

together with standard estimates. The case of higher temporal derivatives as well

as mixed derivatives can be analysed in the same fashion.

Theorem 4.6.5. Let the exact solution u ∈ X be such that for each space time

element K × In, u∣K×I ∈ Cs+1(K × I) for some 0 ≤ s ≤ p. With the settings of

Proposition 4.6.3 and the validity of Theorem 4.6.4 we have

∣∣∣U − u∣∣∣ ≤ C(u)hs−1/2, (4.6.20)

where h = maxK,n h
(n)
K and

C(u) =
⎛
⎜
⎝

max
x ∈Ω

t ∈ [0,T ]

∣
ds+1

dxs+1
u∣2 + max

x ∈Ω
t ∈ [0,T ]

∣
ds

dxs
u̇∣2 + max

x ∈Ω,
t ∈ [0,T ]

∣
ds+1

dxs+1
u̇∣2

⎞
⎟
⎠

1/2

. (4.6.21)

Proof. Applying the result of Lemma 4.6.1 and taking note that Theorem 4.6.4
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gives us the estimate on a space-time slab with t ∈ [0, h]. Figure 4.3 illustrates the

propagation on subsequent space-time slabs. Hence we have

∣∣∣U − u∣∣∣2 ≤ C(h
(n)
K )2s

⎛
⎜
⎝

N−1

∑
n=0

max
x∈Ω

∣u(s+1)(x, tn)∣
2 +max

x∈Ω
∣u̇(s)(x, tn)∣

2 + max
x∈Ω

t ∈ [0,T ]

∣u̇(s+1)(x, tn)∣
2
⎞
⎟
⎠
,

(4.6.22)

Figure 4.3: Graphical illustration of propagation from each space-time slab

where tn = nh. Continuing with the bound we have

∣∣∣U − u∣∣∣2 ≤ Nh2s
⎛
⎜
⎝

max
t ∈ [0,T ]
x∈Ω

∣u(s+1)(x, tn)∣
2 + max

t ∈ [0,T ]
x∈Ω

∣u̇(s)(x, tn)∣
2 + max

x ∈Ω,
t ∈ [0,T ]

∣u̇(s+1)(x, tn)∣
2
⎞
⎟
⎠
,

(4.6.23)

where with N = T /h completes the proof.
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Chapter 5

Numerical experiments

In this chapter we perform numerical experiments to assess the performance of the

new space-time interior penalty scheme. We consider two types of wave problems

for the case of one spatial dimension; the first is in the form of a standing wave while

the second is Gaussian in nature due to exponential initial data. We assume that the

speed c = 1 and that Ω = (0,1). The first problem is considered to assess attributes

such as convergence and dissipation while the second problem is considered to check

the capability of the method in approximating systems with high frequency content.

In two dimensions, we consider a deformation or deflection of membrane problem.

We make use of another special Trefftz functions which are capable of accommodat-

ing the directions of propagation of the wave problem. We also show in this chapter

that equivalent order of convergence can be obtained with the Trefftz spaces with

fewer number of degrees of freedom compared to standard polynomial spaces. We

conclude the chapter with numerical experiments for the damped wave problem

In general, the cost of implementation, especially the computation of volume

integrals increases with the number of degrees of freedom as the order of approx-

imation is increased. However, the terms in the new space-time method that we

develop, can be reduced to integrals over space and skeleton see, Remark 3.4.7.

This can be counted as a considerable reduction in computational complexity as we

shall see in the higher dimensional implementation of the Trefftz based method.

In each experiment, the spatial meshes are kept fixed T = Tn and a uniform time-

step is used. In the one-dimensional (d = 1) examples the spatial mesh is a uniform
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set of intervals, whereas for d = 2, the spatial mesh is a quasi-uniform triangulation.

The resulting linear systems at each time-step are solved by standard sparse direct

solvers.

5.1 Numerical experiments in one spatial dimen-

sion

Let us represent the undamped wave operator by ◻ = ∂2
t − ∂

2
x where we have fixed

the diffusion coefficient a ≡ 1. Let us define û(x, t) = u(
x − xj
h

,
t − tn
h

) on a reference

Trefftz element (0, h) × (0, h). This allows us to define each basis function on the

reference Trefftz element as v̂ = v(
x − xj
h

,
t − tn
h

) so that ◻v̂ = 1
h2 ◻ v = 0 on each

element.

5.1.1 Approximation of standing wave problem

Example 5.1.1. We consider the following wave equation defined on the spatial

domain Ω = (0,1) with initial data

u(x,0) = sin(5πx) + 2 sin(7πx), u̇(x,0) = 0. (5.1.1)

The problem is solved analytically by the method of separation of variables:

u(x, t) = sin(5πx) cos(5πt) + 2 sin(7πx) cos(7πt),

and the numerically obtained convergence orders are computed using the formula

Convergence order = log2 (
errorh

errorh/2
). (5.1.2)

The wave-like basis functions in our Trefftz spaces are (x ± t)i, i = 0, . . . p where p

is the highest order of interest. The approximation of the problem with final time

T = 1 using the Trefftz space of order p = 2 and polynomial space of the same order

is shown in Figure 5.1. We also investigate the convergence in the full DG norm ∣∣∣⋅∣∣∣
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and we discover that the numerical experiment verifies the result of the convergence

analysis as we lose half an order of convergence; see Table 5.1. The convergence plots

with respect to number of degrees of freedoms and with respect to the mesh-size are

presented in Figure 5.3 and 5.2. Finally, the plot of the error with CPU time (see,

Figure 5.4) together with Table 5.2 shows that computation can be made faster

with Trefftz spaces compared to polynomial spaces of total degrees.

N p = 2 p = 3 p = 4
20 1.07 2.50 3.50
40 1.39 2.53 3.53
80 1.48 2.52 3.55
160 1.47 2.51 3.52
320 1.49 2.50 3.54

N p = 2 p = 3 p = 4
20 0.93 2.06 3.40
40 1.28 2.19 3.44
80 1.44 2.31 3.48
160 1.45 2.39 3.49
320 1.49 2.45 3.50

Table 5.1: Numerically obtained convergence orders in the DG norm ∥∣ ⋅ ∥∣ for Trefftz
spaces on the left and for polynomial space on the right for the standing wave problem.

We also investigate the convergence of the error in the wave energy norm at the

final time-step:

error = (
1

2
∥u̇(⋅, T ) − u̇h(⋅, T

−)∥2
Ω +

1

2
∥∇u(⋅, T ) −∇uh(⋅, T

−)∥2
Ω)

1/2
. (5.1.3)

This experiment shows optimal convergence as we do not lose half an order of con-

vergence. This is because unlike the DG norm, this measure does not accumulate

the error over all time-steps. The result is shown in Table 5.3

5.1.2 Wave with high energy content

Example 5.1.2. We consider another wave problem with initial data

u(x,0) = e−(
x−5/8
δ

)
2

, u̇(x,0) = 0, (5.1.4)

N p = 2 p = 3 p = 4
20 2.02 2.45 3.57
40 3.98 5.90 7.14
80 13.44 19.79 23.55
160 45.74 61.95 79.38
320 178.80 226.74 263.40

N p = 2 p = 3 p = 4
20 6.80 17.90 40.10
40 17.5 46.60 113.50
80 57.60 138.60 278.40
160 203.70 449.40 811.30
320 670.50 1470.70 2783.90

Table 5.2: Time elapsed in seconds for the computation of errors in energy DG norm ∣∣∣⋅∣∣∣

for Trefftz spaces (left) and for polynomial spaces (right).
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Figure 5.1: Trefftz space approximation(upper) and polynomial space (lower).
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Figure 5.2: Convergence of the error in the DG norm ∥∣ ⋅ ∥∣ with mesh size for Trefftz
space(upper) and for polynomial space (lower) for the standing wave problem.
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Figure 5.3: Convergence of the error in the DG norm ∥∣ ⋅ ∥∣ with degrees of freedom for
Trefftz space(upper) and for polynomial space (lower) for the standing wave problem.

87



Chapter 5: Numerical experiments

10 -1 10 0 10 1 10 2 10 3

Time

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2
E
rr

or

p = 1
p = 2
p = 3
p = 4

10 0 10 1 10 2 10 3 10 4

Time

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

E
rr

or

p = 1
p = 2
p = 3
p = 4

Figure 5.4: Semilog plot of the error with CPU time in seconds for Trefftz spaces (upper)
and polynomial spaces (lower).
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N p = 2 p = 3 p = 4
10 0.37 3.29 4.16
20 2.26 3.14 3.97
40 2.95 3.07 4.01
80 2.75 3.07 4.00
160 2.17 3.03 4.00

N p = 2 p = 3 p = 4
10 0.47 2.90 4.29
20 1.66 2.73 4.01
40 2.49 2.86 4.03
80 2.88 3.27 4.02
160 2.76 3.40 4.00

Table 5.3: Numerically obtained convergence orders in the wave norm for Trefftz spaces
on the left and for polynomial space on the right for the standing wave problem.

where δ ≤ δ0 = 7.5 × 10−2. Note that the initial data are not exactly zero at the

boundary, but are less than 10−11 in the range of parameter δ that we consider.

This slight discrepancy with the boundary condition does not influence in any visible

way our numerical results. Since the energy of the exact solution stays constant it

is given for all times by

exact energy = 1
2∥ux(x,0)∥

2
Ω ≈ 2δ−1

∫

∞

−∞
y2e−2y2dy = δ−1

√
π

2
√

2
,

where the approximation in the second step is of the order of 10−11 for reasons given

above and the final equality is obtained by using integration by parts to reduce it

to the Gaussian integral [58]. The error is computed in the discrete energy norm

error = ∣∣∣u − uh∣∣∣.

Since the exact solution is smooth, note that we have

∣∣∣u∣∣∣2 = A(u,u) = 2 × exact energy,

see (3.3.16).

We investigate the convergence order of the numerical method with Trefftz space

and we compare with polynomial space of total degree. We choose δ0 = 7.5 × 10−2

and T = 1/4. Note that we choose such a small time interval in order to reach the

asymptotic regime earlier, this is especially important for lower orders. In Figure 5.5

and Tables 5.4 and 5.5, the convergence curves and numerically computed conver-

gence orders are presented. These confirm the theoretical results that we prove in
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N p = 2 p = 3 p = 4 p = 5
5 0.98 1.85 3.64 5.07
10 1.37 2.10 3.57 5.06
20 1.38 2.28 3.52 4.77
40 1.46 2.42 3.51 4.76
80 1.49 2.51 3.51 4.63

N p = 2 p = 3 p = 4 p = 5
5 0.90 1.85 3.74 5.56
10 1.17 2.11 3.39 5.05
20 1.34 2.26 3.41 4.31
40 1.44 2.38 3.41 4.91
80 1.45 2.54 3.46 4.79

Table 5.4: Numerically obtained orders of convergence of the error in the DG norm ∣∣∣⋅∣∣∣

for Trefftz spaces on the left and for polynomial space on the right

Chapter 3. Note that the errors obtained for the full polynomial space and for the

Trefftz spaces are very similar for the same order, but the Trefftz spaces require

fewer degrees of freedom and cheaper implementation; see Remark 3.4.7 and Fig-

ure 5.6. We also discover that the higher order approximations converge without

the two extra stabilization terms, i.e., with σ1 = σ2 = 0, but with the piecewise linear

functions it stagnates. Recall that the dimensions of the Trefftz space and the poly-

nomial space are equal when p = 1 (see, Subsection 3.4.1). Table 5.5 shows that both

spaces have equivalent convergence orders. Another important discovery is the loss

of stability at p = 4 for the polynomial space during the experiment which does not

occur in the case of Trefftz space. The instability for the polynomial space is easily

rectified by increasing the stability parameter σ0. We also present the exponential

convergence of the scheme as investigated in Chapter 3.

No of Elements 80 160 320 640 1280 2560 5120
Trefftz/Polynomial (p=1) 0.08 0.11 0.19 0.29 0.38 0.44 0.47

Table 5.5: Numerically obtained convergence orders for linear elements.

K p = 1 p = 2 p = 3 p = 4 p = 5
10 30 50 70 90 110
20 60 100 140 180 220
40 120 200 280 360 440
80 240 400 560 720 880
160 480 800 1120 1440 1760

K p = 1 p = 2 p = 3 p = 4 p = 5
10 30 60 100 150 210
20 60 120 200 300 420
40 120 240 400 600 480
80 240 480 800 1200 1680
160 480 960 1600 2400 3360

Table 5.6: Number of degrees of freedom for chosen number of elements for Trefftz spaces
on the left and for polynomial spaces on the right.
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Figure 5.5: Convergence of the error in the DG norm ∥∣ ⋅ ∥∣ for Trefftz (upper), and
polynomial (lower), space-time DG method of order p. The error is plotted against the
uniform mesh width in time and space h = T /N .
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Figure 5.6: Convergence of the error in the DG norm ∥∣ ⋅∥∣ for Trefftz spaces (upper), and
polynomial spaces (lower). The error is plotted against number of degrees of freedom.
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Figure 5.7: Convergence of the Trefftz method with fixed mesh width h = 1/40 and
increasing polynomial order p.

N p = 2 p = 3 p = 4
5 2.28 × 100 6.67 × 10−1 1.30 × 10−1

10 1.11 × 100 1.34 × 10−1 1.10 × 10−2

20 4.41 × 10−1 2.37 × 10−2 1.14 × 10−3

40 1.60 × 10−1 4.16 × 10−3 1.07 × 10−4

80 5.67 × 10−2 7.29 × 10−4 9.49 × 10−6

N p = 2 p = 3 p = 4
5 2.34 × 100 6.98 × 10−1 2.23 × 10−1

10 1.26 × 100 1.44 × 10−1 2.88 × 10−2

20 5.47 × 10−1 2.53 × 10−2 1.85 × 10−3

40 2.08 × 10−1 4.22 × 10−3 1.27 × 10−4

80 7.51 × 10−2 7.14 × 10−4 1.08 × 10−5

Table 5.7: Errors for Trefftz spaces on the left and polynomial spaces on the right.
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5.1.3 Long-time energy behaviour

The space-time DG method that we developed is dissipative, so we expect the energy

E(t) =
1

2
∥u̇h∥

2 +
1

2
∥∇uh∥

2 (5.1.5)

and the discrete energy Eh defined in (3.3.3) to decay over time. However, if the

accuracy of the approximation is high we expect this decay to be very slow. This

is indeed what the numerical experiments show in Figure 5.8, where we compute

up to time T = 5 with δ0/4. We go further to show that the order p = 4 for both

Trefftz space and polynomial space actually decay by plotting the semilog plot of

the energy at long time T = 200 (see Figure 5.9). The non-monotone nature of the

case p = 2 in Figure 5.9 can be controlled by increasing the penalty parameter σ0

and σ1.

5.1.4 Waves with energy at high-frequences

Note that if we decrease the parameter δ > 0 in the definition of the initial data

(5.1.4), the Gaussian becomes narrower and energy at higher frequences is excited.

In the following set of experiments we investigate the error while decreasing both

δ > 0 and the mesh-width h > 0. In an ideal case, h∝ δ would be sufficient to obtain

a constant relative error which we define as

errorδ = (
δ

2
∥u̇(⋅, T ) − u̇h(⋅, T

−)∥2
Ω +

δ

2
∥∇u(⋅, T ) −∇uh(⋅, T

−)∥2
Ω)

1/2
. (5.1.6)

As the Tables 5.8, 5.9, and 5.10 indicate, the lower order methods are far from this

ideal, whereas order 4 Trefftz method for the set of experiments we performed comes

very close to it. The same phenomenon is shown with Figure 5.10.
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Figure 5.8: Energy E(t) =
1

2
∥u̇h∥

2
+

1

2
∥∇uh(t)∥

2 computed with different polynomial orders

for the Trefftz spaces (up) and polynomial spaces (down). Note that the line corresponding
to p = 4 is not visible as it is covered by the line for the exact energy. Plotting Eh instead
of E essentially produce the same results.
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Figure 5.9: Semilog plot of Energy E(t) = 1
2∥u̇h(t)∥

2
+

1
2∥∇uh(t)∥

2 with time (Final time
T = 200) computed with different polynomial orders for the Trefftz spaces (up) and poly-
nomial spaces (down). Plotting Eh instead of E essentially produce the same results.
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Figure 5.10: The plot of Scaled error see (5.1.6), against h/δ, for Trefftz space.The final
time is chosen to be T = 1 and Kmax = round(1/(2 × 10−2

× δ))

h/δ p = 3 p = 4
0.3333 2.85 × 10−2 1.32 × 10−3

0.1666 1.54 × 10−3 9.72 × 10−5

0.0833 1.32 × 10−4 6.84 × 10−6

0.0416 1.59 × 10−5 4.45 × 10−7

0.0208 1.98 × 10−6 2.81 × 10−8

h/δ p = 3 p = 4
0.3333 4.24 × 10−2 1.53 × 10−3

0.1666 3.22 × 10−3 8.79 × 10−5

0.0833 2.96 × 10−4 5.38 × 10−6

0.0416 2.87 × 10−5 3.33 × 10−7

0.0208 2.76 × 10−6 2.09 × 10−8

Table 5.8: Scaled error with h/δ fixed, see (5.1.6), for Trefftz on the left and polynomial
spaces on the right with δ = δ0.

h/δ p = 3 p = 4
0.6666 3.12 × 10−1 3.70 × 10−2

0.3333 5.08 × 10−2 1.50 × 10−3

0.1666 2.63 × 10−3 9.82 × 10−5

0.0833 1.49 × 10−4 6.85 × 10−6

0.0416 1.60 × 10−5 4.45 × 10−7

h/δ p = 3 p = 4
0.6666 3.49 × 10−1 5.37 × 10−2

0.3333 7.46 × 10−2 1.86 × 10−3

0.1666 5.47 × 10−3 8.93 × 10−5

0.0833 3.43 × 10−4 5.39 × 10−6

0.0416 2.90 × 10−5 3.33 × 10−7

Table 5.9: Scaled error with h/δ fixed, see (5.1.6), for Trefftz on the left and polynomial
spaces on the right with δ = δ0/2.
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h/δ p = 3 p = 4
1.3333 6.64 × 10−1 2.71 × 10−1

0.6666 3.92 × 10−1 5.79 × 10−2

0.3333 8.55 × 10−2 2.07 × 10−3

0.1666 5.04 × 10−3 1.00 × 10−4

0.0833 2.08 × 10−4 6.86 × 10−6

h/δ p = 3 p = 4
1.3333 6.81 × 10−1 3.39 × 10−1

0.6666 4.39 × 10−1 8.26 × 10−2

0.3333 1.24 × 10−1 2.70 × 10−3

0.1666 1.03 × 10−2 9.32 × 10−5

0.0833 5.11 × 10−4 5.41 × 10−6

Table 5.10: Scaled error with h/δ fixed, see (5.1.6), for Trefftz on the left and polynomial
spaces on the right with δ = δ0/4.

5.2 Numerical experiments with transparent con-

ditions

In this section we carry out numerical simulation for a wave problem in one space

dimension with reflecting (Dirichlet) boundary condition at the left, and a transpar-

ent condition at the right. See for example [76]. Initial data are chosen so that the

solution splits into a left and right travelling wave. The right travelling wave passes

through the transparent boundary, while the left travelling wave is reflected by the

left hand boundary before passing through the right hand boundary. The solution

is zero from then onwards. The numerical results below illustrate the performance

of the new space-time DG method, and they accurately reproduce the behaviour of

the exact solution.
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Figure 5.11: Simulation at T = 1/32 (upper) and at T = 1/8(lower).
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Figure 5.12: Simulation at T = 1/4 (upper) and at T = 1 (lower).

100



Chapter 5: Numerical experiments

5.3 Higher dimensional implementation

In this section we present the implementation results of the Trefftz space-time DG

scheme in higher spatial dimension. We focus particularly on two spatial dimensions,

however implementation in three spatial dimensions is possible.

We generate two types of Trefftz basis functions; directional type and the set

generated by Taylor’s expansion. The directional basis is of the form (t−α ⋅x)i, i =

0 . . . p, where α is a direction vector and p is the maximum order of the polynomial.

We investigate the convergence order of the Trefftz based method numerically and

we compare with polynomial spaces of total degree.

5.3.1 Derivation of Trefftz basis functions from truncation

of Taylor polynomial

In this section we briefly discuss the first type of Trefftz basis functions used in the

implementation of our Trefftz based method. We study in particular the technique

developed by Artur Macia̧g and Jörg Wauer in [92]. We assume that u ∈ CN+1 in

the neighborhood of (x0, y0, t0) and we expand the solution u in Taylor’s series. The

coefficients of the terms in the expansion up to the interested order p give us the

required Trefftz basis functions after the elimination of ∂2u
∂t2 in the expansion. We

illustrate the technique with examples when N = 2,3 and 4.

Let N = 2 and expand the solution u(x, y, t) in Taylor’s series to have

u(x, y, t) = u(x0, y0, t0) +
∂u

∂x
x̂ +

∂u

∂y
ŷ +

∂u

∂t
t̂ +

∂2u

∂x2

x̂2

2

+
∂2u

∂y2

ŷ2

2
+
∂2u

∂t2
t̂2

2!
+
∂2u

∂x∂y
x̂ŷ +

∂2u

∂x∂t
x̂t̂ +

∂2u

∂y∂t
t̂ŷ +R3,

(5.3.1)

where x̂ = x − x0, ŷ = y − y0, t̂ = t − t0 and R3 represent the remainder. We eliminate

∂2u
∂t2 in the above equation by substituting ∂2u

∂2t =
∂2u
∂2x +

∂2u
∂y2 to get

u(x, y, t) = u(x0, y0, t0, ) +
∂u

∂x
x̂ +

∂u

∂y
ŷ +

∂u

∂t
t̂ +

∂2u

∂x2
(
x̂2

2
+
t̂2

2
)

+
∂2u

∂y2
(
ŷ2

2
+
t̂2

2
) +

∂u

∂x∂y
x̂ŷ +

∂2u

∂x∂t
x̂t̂ +

∂2u

∂y∂t
ŷt̂ +R3.

(5.3.2)
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The basis functions required are the coefficients of the equation above. We arrange

the Trefftz polynomial basis functions up to order p = 2 as follow:

{1, x̂, ŷ, t̂,
x̂2

2
+
t̂2

2
,
ŷ2

2
+
t̂2

2
, x̂ŷ, x̂t̂, ŷt̂} . (5.3.3)

To derive the Trefftz basis functions when N = 3, we focus only on the higher order

Taylor expansion of function u and we have

∂3u

∂x3

x̂3

3!
+

∂3u

∂x2∂y

x̂2

2!
ŷ +

∂3u

∂x2∂t

x̂2

2!
t̂ +

∂3u

∂x∂y∂t
x̂ŷt̂

+
∂3u

∂y2∂x

ŷ2

2
x̂ +

∂u

∂2y∂t

ŷ2

2!
t̂ +

∂u

∂t2∂x

t̂2

2!
x̂ +

∂3u

∂t2∂y

t̂2

2!
ŷ +

∂3u

∂y3

ŷ3

3!
+
∂3

∂t3
t̂3

3!
+

∂3u

∂x∂y∂t
x̂ŷt̂.

(5.3.4)

Eliminating ∂u

∂t2 by substituting ∂2u
∂x2 +

∂2u
∂y2 we have

∂3u

∂x∂y∂t
x̂ŷt̂ +

∂3u

∂x3
(
x̂3

3!
+
t̂2

2!
x̂) +

∂3u

∂x2∂y
(
x̂2

2!
ŷ +

t̂2

2!
ŷ)

+
∂u

∂x2∂t
(
x̂2

2!
t̂ +

t̂3

3!
) +

∂3u

∂y2∂x
(
ŷ2

2!
x̂ +

t̂2

2!
x̂) +

∂3u

∂y2∂t
(
ŷ2

2
t̂ +

t̂3

3!
) +

∂3

∂y3
(
t̂2

2!
ŷ +

ŷ3

3!
).

(5.3.5)

As before, the coefficients in the above expansion collated with the Trefftz basis

for p = 2 give us the required Trefftz basis functions up to order p = 3. We arrange

the basis functions as follow:

{1, x̂, ŷ, t̂,
x̂2

2
+
t̂2

2
,
ŷ2

2
+
t̂2

2
, x̂ŷ, x̂t̂, ŷt̂, x̂ŷt̂,

x̂3

3!
+
t̂2

2
x̂,
x̂2

2!
ŷ +

t̂2

2!
ŷ,

x̂2

2!
t̂ +

t̂3

3!
,
ŷ2

2!
x̂ +

t̂2

2!
x̂,
ŷ2

2
t̂ +

t̂3

3!
,
t̂2

2!
ŷ +

ŷ3

3!
} ,

(5.3.6)

and further arrangement gives

{1, x̂, ŷ, t̂, x̂ŷ, x̂t̂, ŷt̂, x̂ŷt̂, ŷ2 + t̂2 + x̂2 + t̂2, x̂3 + 3t̂2x̂,

x̂2ŷ + t̂2ŷ,3x̂2t̂ + t̂3, ŷ2x̂ + t̂2x̂,3ŷ2t̂ + t̂3,3t̂2ŷ + ŷ3} .

(5.3.7)
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In the same way, we generate the basis functions when N = 4.

∂4u

∂x4

x̂4

4!
+

∂4u

∂x3∂y

x̂3

3!
ŷ +

∂4u

∂x3∂t

x̂3

3!
t̂ +

∂4u

∂x2∂y2

x̂2

2!

ŷ2

2!
+

∂4u

∂x2∂t2
x̂2

2!

t̂2

2!
+

∂4u

∂x2∂y∂t

x̂2

2!
ŷt̂

+
∂4u

∂y3∂x

ŷ3

3!
x̂ +

∂4u

∂x2∂y4

ŷ4

4!
+

∂4u

∂y3∂t

ŷ3

3!
t̂ +

∂4u

∂y2∂t2
ŷ2

2!

t̂2

2!
+

∂4u

∂y2∂x∂t

ŷ2

2!
x̂t̂

+
∂4u

∂t4
t̂4

4!
+

∂4u

∂t3∂x

t̂3

3!
x̂ +

∂4u

∂t3∂y

t̂3

3!
ŷ +

∂4u

∂t2∂x∂y

t̂2

2!
x̂ŷ.

(5.3.8)

Eliminating ∂2u
∂t2 and factorising we have

∂4u

∂x4
(
x̂2

4!
+
x̂2t̂2

4
+
t̂4

4!
) +

∂4u

∂y3∂y
(
x̂3ŷ

3!
+
t̂2x̂ŷ

2!
) +

∂4u

∂x3∂t
(
x̂3t̂

3!
+
t̂3x̂

3!
)

+
∂4u

∂x2∂y2
(
x̂2ŷ2

4
+
ŷ2x̂2

4
+
x̂2t̂2

4
+
t̂4

12
) +

∂4

∂x2∂y∂t
(
x̂2ŷt̂

2!
+
t̂3ŷ

3!
) +

∂4u

∂y3∂x
(
ŷ3x̂

3!
+
t̂2x̂ŷ

2!
)

+
∂4u

∂y4
(
ŷ4

4!
+
t̂4

4!
) +

∂4u

∂y3∂t
(
ŷ3t̂

3!
+
t̂3ŷ

3!
) +

∂4u

∂y2∂x∂t
(
ŷ2x̂t̂

2!
+
t̂3x̂

3!
).

(5.3.9)

Just as above, we finally have the following Trefftz basis functions up to order p = 4

{1, x̂, ŷ, t̂, x̂ŷ, x̂t̂, ŷt̂, x̂2 + t̂2, ŷ2 + t̂2, x̂ŷt̂, x̂3 + 3t̂2x̂,

x̂2ŷ + t̂2ŷ, 3x̂2t̂ + t̂3, ŷ2x̂ + t̂2x̂,3ŷt̂ + t̂3, 3t̂2ŷ + ŷ3, x̂4 + 6x̂2t̂2 + t̂4,

x̂3ŷ + 3t̂2x̂ŷ, x̂3t̂ + t̂3x̂, 6x̂2ŷ2 + 6ŷ2t̂2 + 6x̂2t̂2 + 2t̂4, 3x̂2ŷt̂ + t̂3ŷ, ŷ3x̂ + 3t̂2x̂ŷ, ŷ4 + t̂4 + 6ŷ2t̂2,

ŷ3t̂ + t̂3ŷ, 3ŷ2x̂t̂ + t̂3x̂} .

(5.3.10)

5.3.2 Directional Trefftz space

Alternatively, We can generate local solutions by considering the wave-like functions

of the form (t + α ⋅ x)j j = 0, . . . , p, where α is a vector of directions and p is the

highest order of polynomials in the space. We have already shown in Chapter 3 that

for any order j, there are at most 2j + 1 linearly independent wave functions; hence

the total degrees of freedom per element can be computed by the formula

P =

p

∑
j=0

(2j + 1) = p(p + 2) + 1. (5.3.11)
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If the dominant direction of propagation is not known, then the idea of equi-

distributed directions in a unit circle as suggested in the paper [22] can be used

to fill up the whole Trefftz space,i.e

αi =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos (2π(i−1)
m

)

sin (
2π(i−1)
m

)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

i = 1, . . . ,m, (5.3.12)

where m = 2j + 1. The maximum number of direction vectors α is connected with

the number of linearly independent local solutions 2j + 1 and this suggests that if

the dominant directions of propagation are known locally on each element then the

number of degrees of freedom can be reduced. However, if the dominant directions

of the wave are known a priori, then only the basis functions in the wave direction

are enough to approximate the problem, see Example 5.3.2. Table 5.11 shows the

maximum directions with respect to chosen order j of the Trefftz space.

Order Maximum directions
j = 1 3
j = 2 5
j = 3 7
j = 4 9

Table 5.11: Maximum number of directions with respect to order of local solutions.

5.3.3 Implementation and algorithm

Before we present the computer implementation of the Trefftz based method, we

exploit a vital advantage of the Trefftz basis functions by rewriting the formulation

without the space-time volume integral. This is done in order to reduce the cost of

computation and also to make the implementation faster.

We analyse the third term of the discrete bilinear form (3.3.7) as follows:

(a∇u,∇v̇)Ω×In = ([a∇u v̇])Γn×In − (∇ ⋅ a∇u, v̇)Ω×In

= ([a∇u] ,{v̇})Γn×In + ({a∇u} , [v̇])Γn×In − (∇ ⋅ a∇u, v̇)Ω×In .

(5.3.13)

104



Chapter 5: Numerical experiments

Substituting into (3.3.7) we have the reduced form

An(u, v) ∶= (u̇(t+n), v̇(t
+
n))Ω + (a∇u(t+n),∇v(t

+
n))Ω

− ([a∇u] ,{v̇})Γn×In − ({a∇u(t+n)} , [v(t
+
n)])Γn

− ([u] ,{a∇v̇})Γn×In − ([u(t+n)] ,{a∇v(t
+
n)})Γn

+ (σ0 [u] , [v̇])Γn×In + (σ0 [u(t
+
n)] , [v(t

+
n)])Γn

+ (σ1 [u] , [v])Γn×In + (σ2 [a∇u] , [a∇v])Γn×In .

(5.3.14)

We emphasise here that discrete bilinear form (5.3.14) can only be used when the

basis functions in the implementation are Trefftz basis functions.

Now for the implementation of the scheme, we define the basis function on a

physical element to be

uj(x, t) = fj (
(x − xG)

∆t
,
t − tn
∆t

) , (5.3.15)

where xG is the barycentric coordinate of the physical element and ∆t denotes

the time step τn. We shall assume ∆t = h in our implementation and the physical

coordinate x is computed via the transformation map Fk ∶ K̂ Ð→K explicitly defined

as

Fk(ξ) =

⎛
⎜
⎜
⎝

x2 − x1 x3 − x1

y2 − y1 y3 − y1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

r

s

⎞
⎟
⎟
⎠

+

⎛
⎜
⎜
⎝

x1

y1

⎞
⎟
⎟
⎠

, (5.3.16)

where the Jacobian of the transformation is readily obtained to be

J =

⎛
⎜
⎜
⎝

x2 − x1 x3 − x1

y2 − y1 y3 − y1

⎞
⎟
⎟
⎠

. (5.3.17)

Now the space integrals in the formulation can be computed using quadrature. For

example let us consider the first term in (5.3.14) which resembles the usual mass
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matrix integral. We compute the integral as follows:

∫
K
u̇j(x, t)u̇i(x, t)dx = ∫

K

1

(∆t)2
∂tfj (

x − xG
∆t

,0)∂tfi (
x − xG

∆t
,0)dx

= ∣detJk∣∫
K̂

1

(∆t)2
∂tfj (

Fkz − xG
∆t

,0)∂tfi (
Fkz − xG

∆t
,0)dz.

For the terms that involve integration over space-time skeleton, we employ tensor-

product Gauss quadrature where one of the integrals is a line integral. We present

the algorithm for computing the space integrals in our scheme as follows:

Algorithm 1 Algorithm for element stiffness matrix

1: Let nt denote the number of elements in a mesh T
with point matrix P and connectivity matrix T.

2: Let nf = (k + 1)2 be the number of basis functions per element
with k being the highest order specified.

3: Initialise the global stiffness matrix A of size nfnt × nfnt
4: Initialise the quadrature points Q1,Q2 and weights Wq

5: for K = 1 to nt do
6: Compute the barycentric coordinates xG of K
7: Compute the global variables x and the determinant of the Jacobian detJ
8: Initialise local matrix AK
9: Compute the gradients ∇φi and the time derivatives φ̇i i = 1, . . . nf

10: Compute

AK =
1

(∆t)2
×Wq×detJ

⎛
⎜
⎝
×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∇φ1∇φ1 . . . ∇φnf∇φ1

⋮ . . . ⋮

∇φ1∇φnf . . . ∇φnf∇φnf

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

φ̇1φ̇1 . . . φ̇nf φ̇1

⋮ . . . ⋮

φ̇1φ̇nf . . . φ̇nf φ̇nf

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠

(5.3.18)
11: Set the degrees of freedom map: dofs = (1 ∶ nf) + nf × (K − 1)
12: Set A(dofs, dofs) = A(dofs, dofs) +AK
13: end for

For the computation and arrangement of the skeleton terms in the scheme, we

consider two elements K+ and K− sharing an edge e. Locally, each element contains

P degrees of freedom. We take advantage of this and we form a 2P ×1 vector of basis

functions below. Recall also that the space jump is defined to be [v] = n+φ+ + n−φ−

where n− = −n+. Hence we have the jump of the basis functions below

We now define the matrices SE and PE which are 2P ×2P in size to be the local

edge stiffness and jump matrices respectively. At the boundary, the jump matrix

reduces to 2P ×1 and the 1
2 vanishes since there is no average at the boundary. This

makes the size of the matrices PE and SE at the boundary to be P × P . For the
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φ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ+1
φ+2
⋮

φ+P
φ−1
φ−2
⋮

φ−P

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

[φ] = n+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ+1
φ+2
⋮

φ+P
−φ−1
−φ−2
⋮

−φ−P

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

terms which correspond to the edge flux matrices, the outer product [φ̇] {∇φ} or

[φ] {∇φ} is the integrand, while the outer product [φ][φ̇] or [φ][φ] is the integrand

for the penalty terms. For the actual integration, we employ Gaussian quadrature

mapped from [0,1] onto each edge e to approximate both the line integrals and the

temporal integral. We present the algorithm as follow:

5.3.4 Numerical simulations and experiments

Example 5.3.1. We consider the wave problem defined on two dimensional domain

Ω = (0,1) × (0,1) with initial data :

u(x,0) = sin(πx) sin(πy), u̇(x,0) = 0. (5.3.19)

The analytical solution is obtained by separation of variables method

u(x, y, t) = cos(
√

(2)πt) sin(πx) sin(πy). (5.3.20)

Figure 5.13 below shows the result of the simulation with time T = 1, and time step

N = 10. We assume the same mesh-width ∆t = T /N for all triangles in the mesh.
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Algorithm 2 Algorithm for edge flux and edge stiffness matrices

1: Let nt denote the number of elements in a mesh T
with point matrix P and connectivity matrix T.

2: Let nf = (k + 1)2 be the number of basis functions per element
with k being the highest order specified.

3: Initialise the global edge flux PFand stiffness matrices SF of size nfnt × nfnt
4: Initialise the quadrature points xq and weights wq
5: Loop over elements :
6: for K = 1 to nt do
7: Find each neighbour K− of the current element K+

8: Compute the barycentric coordinates of K+ and K−

9: Compute the global variables t, x and y on K− and K+

10: Initialise local matrices PE, SE of sizes P × P
11: Compute the values of time derivatives and gradient of the basis functions
12: Compute the local matrices PE and SE
13: Set degrees of freedom dofs = [(1 ∶ nf)+nf ×(K−1) (1 ∶ nf)+nf ×(K−−1)]
14: Set PE = PE(1 ∶ P ) and SE = SE(1 ∶ P ) at the boundary
15: Set PF (dofs, dofs) = PF (dofs, dofs) + PE
16: And set SF (dofs, dofs) = SF (dofs, dofs) + SE
17: end for
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Figure 5.13: Trefftz space approximation with p = 2 (left) and exact solution (right).
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5.3.5 Convergence results

We investigate the convergence of the error in the full DG norm ∣∣∣⋅∣∣∣ as well as in

the wave energy norm at the final time-step

error = (
1

2
∥u̇(⋅, T ) − u̇h(⋅, T

−)∥2
Ω +

1

2
∥∇u(⋅, T ) −∇uh(⋅, T

−)∥2
Ω)

1/2
. (5.3.21)

We discover that higher order convergence is obtainable both with the Trefftz space

and the polynomial space. We also discover that with respect to (5.3.21), we do

not lose half an order of convergence as when computing the error in the discrete

norm ∣∣∣⋅∣∣∣. It is not however surprising as, unlike the DG norm, this error measure

does not accumulate the errors over all time-steps. In Figure 5.14 and Tables 5.13

and 5.14, We present the convergence plots, the numerically computed convergence

orders and the errors with respect to (5.3.21) .

N p = 1 p = 2 p = 3 p = 4
10 0.046 2.039 2.219 3.935
20 0.115 1.990 2.539 3.977
40 0.160 1.979 2.819 3.996

N p = 1 p = 2 p = 3 p = 4
10 0.046 1.897 2.133 3.956
20 0.115 1.896 2.248 3.967
40 0.160 1.935 2.612 3.982

Table 5.12: Numerically obtained convergence orders of the error (5.3.21) for Trefftz
spaces on the left and for polynomial space on the right.

N p = 2 p = 3 p = 4
10 1.49 2.05 3.52
20 1.55 2.24 3.48
40 1.53 2.36 3.50

N p = 2 p = 3 p = 4
10 1.47 1.98 3.52
20 1.52 2.19 3.50
40 1.52 2.33 3.50

Table 5.13: Numerically obtained convergence orders in the norm ∣∣∣⋅∣∣∣ for Trefftz spaces
on the left and for polynomial space on the right.

N p = 2 p = 3 p = 4
10 8.68 × 10−2 6.16 × 10−3 2.47 × 10−4

20 2.11 × 10−2 1.32 × 10−3 1.61 × 10−5

40 5.31 × 10−3 2.27 × 10−4 1.02 × 10−6

80 1.35 × 10−3 3.22 × 10−5 6.41 × 10−8

N p = 2 p = 3 p = 4
10 9.49 × 10−2 5.92 × 10−3 2.86 × 10−4

20 2.55 × 10−2 1.35 × 10−3 1.84 × 10−5

40 6.84 × 10−3 2.84 × 10−4 1.17 × 10−6

80 1.79 × 10−3 4.65 × 10−5 7.46 × 10−8

Table 5.14: Errors for Trefftz on the left and polynomial spaces on the right computed
with (5.3.21).

For the directional Trefftz case, we consider the wave problem problem defined

on Ω = (0,1) × (0,1) with initial and boundary data defined below:
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Figure 5.14: Convergence of the Trefftz (upper) and Polynomial space (lower).
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Example 5.3.2.

u(x,0) = sin(2πx), u̇(x,0) = 0.

u(x,0) = 0 on ΓD, ∂nu = 0 on ΓN .

(5.3.22)

We make use of the Trefftz basis functions in the wave directions to approximate

the above problem since the direction of propagation is known a priori. Figure 5.15

shows the result of the simulation using the directional Trefftz space of order p = 2,

with directions m = 2, at final time T = 1, and time steps N = 10. In this case, a

2−dimensional problem is approximated using 1− dimensional Trefftz basis functions

with total degrees of freedom P = 2p + 1. If the idea of equi-distributed directions

is employed, then the full Trefftz space will be involved in the approximation which

will not be different from what we carried out in Example 5.3.1.
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Figure 5.15: Approximation with directional Trefftz space with mixed boundary conditions.

5.4 Numerical experiment for the telegraph prob-

lem

Recall in Section 5.1 that we represent the undamped wave operator by ◻ = ∂2
t −

∂2
x where the diffusion coefficient a ≡ 1. We discover that we cannot define v̂ =

v(
x − xj
h

,
t − tn
h

) for the damped wave equation on a reference element (0, h)×(0, h)

since

◻v̂ + αˆ̇v =
1

h2
◻ v +

α

h
v̇ ≠ 0. (5.4.1)
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Therefore we define û(x, t) = u(x − xj, t − tn) so that each basis now satisfies

◻v̂ + αˆ̇v = ◻v + αv̇ = 0 (5.4.2)

on each element.

Example 5.4.1. We consider the telegraph equation defined on spatial domain Ω =

(0,1) and time interval [0, T ] with the following initial and boundary data

u(x,0) = sin(πx), u̇(x,0) = 0,

u = 0 on ∂Ω.

(5.4.3)

The analytical solution is given by

u(x, t) = e(−αt/2) sin(πx)

⎡
⎢
⎢
⎢
⎢
⎣

cos

√

π2 −
α2

4
t +

α

2
√
π2 − α2/4

sin

√

π2 −
α2

4
t

⎤
⎥
⎥
⎥
⎥
⎦

. (5.4.4)

The approximation with Trefftz space of order p = 2 is presented graphically in 5.16.
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Figure 5.16: Solution at final time with p = 2, α = 2, K = 10, and T = 1.
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K p = 1 p = 2 p = 3 p = 4
10 0.25 1.87 3.18 4.01
20 0.42 1.93 3.12 4.01
40 0.59 1.96 3.06 4.00

K p = 1 p = 2 p = 3 p = 4
10 0.25 2.48 3.06 4.17
20 0.42 2.30 3.27 4.05
40 0.59 2.13 3.21 4.02

Table 5.15: Numerically obtained convergence order in the wave energy norm (see (5.4.5))
for the Trefftz spaces (left) and polynomial spaces (right).

K p = 2 p = 3 p = 4
10 1.59 2.48 3.64
20 1.53 2.49 3.58
40 1.52 2.50 3.54

K p = 2 p = 3 p = 4
10 1.49 2.47 3.54
20 1.50 2.49 3.51
40 1.50 2.50 3.51

Table 5.16: Numerically obtained convergence order in the DG energy norm ∣∣∣⋅∣∣∣ (see
(4.4.14)) for the Trefftz spaces (left) and polynomial spaces (right).

5.4.1 Convergence results

We investigate the convergence of the error in the full DG norm ∣∣∣⋅∣∣∣ (see, (4.4.14))

as well as in the following energy norm

E(u(t)) =

√
1

2
∥u̇(x,T )∥2

Ω +
1

2
∥∇u(x,T )∥2

Ω. (5.4.5)

We discover numerically that the convergence orders are optimal with respect to the

above energy norm, see Figure 5.17 and Table 5.15 but we lose approximately half an

order in the rate of convergence for the case of the full DG norm (see Figure 5.19) and

Table 5.16. We also discover that equivalent orders of convergence are obtainable

with Trefftz spaces when compared with polynomial spaces of total degrees which

has more degrees of freedom, see 5.18. Finally, we present the table of errors in

Tables 5.18 and 5.19 for both Trefftz space and polynomial space for the purpose of

comparison.

K p = 1 p = 2 p = 3 p = 4
10 30 50 70 90
20 60 100 140 180
40 120 200 280 360
80 240 400 560 720
160 480 800 1120 1440

K p = 1 p = 2 p = 3 p = 4
10 30 60 100 150
20 60 120 200 300
40 120 240 400 600
80 240 480 800 1200
160 480 960 1600 2400

Table 5.17: Number of degrees of freedom for the Trefftz spaces (left) and polynomial
spaces(right) used in the experiments.
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Figure 5.17: Plot of convergence of the errors in the energy norm (see, (5.4.5)) for Trefftz
space (upper) and polynomial space (lower).
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Figure 5.18: Plot of convergence of the error in the energy norm (see,(5.4.5)) against the
degrees of freedom for the Trefftz spaces (upper) and polynomial spaces (lower).
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Figure 5.19: Plot of convergence of the errors in the DG energy norm ∣∣∣⋅∣∣∣ (see, (4.4.14))
for Trefftz spaces (upper) and polynomial spaces (lower).
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Figure 5.20: Plot of convergence of the error in the DG energy norm (see,(4.4.14)) against
the degrees of freedom for the Trefftz space (upper) and polynomial space(lower).
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N p = 2 p = 3 p = 4
10 1.47 × 10−2 6.52 × 10−4 2.56 × 10−5

20 4.03 × 10−3 7.22 × 10−5 1.59 × 10−6

40 1.05 × 10−3 8.30 × 10−6 9.88 × 10−8

80 2.71 × 10−4 9.95 × 10−7 6.15 × 10−9

N p = 2 p = 3 p = 4
10 2.29 × 10−2 1.50 × 10−3 2.93 × 10−5

20 4.10 × 10−3 1.79 × 10−4 1.61 × 10−6

40 8.32 × 10−4 1.85 × 10−5 9.70 × 10−8

80 1.90 × 10−4 1.99 × 10−6 5.98 × 10−9

Table 5.18: Errors for Trefftz on the left and polynomial spaces on the right computed
with (5.4.5).

N p = 2 p = 3 p = 4
10 1.31 × 10−1 6.58 × 10−3 1.74 × 10−4

20 4.41 × 10−2 1.17 × 10−3 1.39 × 10−5

40 1.52 × 10−2 2.08 × 10−4 1.16 × 10−6

80 5.31 × 10−3 3.68 × 10−5 9.95 × 10−8

N p = 2 p = 3 p = 4
10 1.55 × 10−1 7.28 × 10−3 1.89 × 10−4

20 5.56 × 10−2 1.32 × 10−3 1.63 × 10−5

40 1.96 × 10−2 2.34 × 10−4 1.43 × 10−6

80 6.94 × 10−3 4.13 × 10−5 1.25 × 10−7

Table 5.19: Errors for Trefftz on the left and polynomial spaces on the right computed
with ∣∣∣⋅∣∣∣.
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Chapter 6

Conclusion and Future Work

In this thesis we have developed, analysed and implemented a special space-time

method for the second order wave equation without splitting the system into sys-

tems of first order. The formulation of the method follows the interior penalty

discontinuous Galerkin approach together with the classical work of Hulbert and

Hughes [73, 72] and the core of the new method is the special Trefftz spaces intro-

duced in the method. The new DG method falls into the framework of space-time

DG methods for which a priori analysis such as consistency, stability as well as en-

ergy dissipation can be proven without specifying the approximation space in detail.

The method is constructed to accommodate any polynomial basis functions provided

that they have good approximating properties. However, the use of Trefftz space

fulfils our primary goal of approximating wave problems efficiently with a reduced

number of degrees of freedom per element, even at high frequencies.

For the undamped wave equation, we construct the Trefftz space from the space

of polynomials. We prove the existence of solutions as well as the best approximation

property in the Trefftz space. Rates of convergence in the full DG norm are proven

in any dimension and numerically verified in spatial dimensions d = 1 and d = 2.

In Chapter 4, we extend the new time-space DG technique to approximating

the telegraph or damped wave equation. The construction of the Trefftz space with

good approximating properties for this problem is not trivial. After many trials, we

use non-polynomial analytical solution of the problem with polynomial initial data

to construct the Trefftz space.
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In Chapter 5, we present numerical experiments that highlight the effectiveness

of the Trefftz spaces compared to polynomial spaces with more degrees of freedom.

We discover that equivalent optimal rate of convergence in the wave energy norm is

achievable with the Trefftz and polynomial spaces. Apart from reduction in number

of degrees of freedom per element, the Trefftz space also offers a considerable savings

advantage over the polynomial space (especially in higher dimension) as evaluation of

space-time volume integrals can be avoided in its implementation. With the Trefftz

space, analytical features of the problem can be embedded in the approximation

space. This advantage is exploited under directional implementation as well as in

the construction of Trefftz space for the telegraph problem.

Although the Trefftz space-time DG method studied in this thesis is implicit,

further work can be done to make the scheme locally explicit which can allow a

reasonable comparison with existing explicit methods. In comparison with higher-

order spectral methods, introduction of higher order approximations (as well as

implementations) is easier and straightforward in the context of the Trefftz space-

time DG method.

The space-time method developed in this thesis looks very promising and has

opened doors for more research works. We propose to embark on the following work

in future:

(i) Development of non-dissipative or conservative time-space method: We have

an idea that if the algebraic upwind identity introduced in the formulation is

adjusted, this could lead to a conservative scheme.

(ii) Space-time a posteriori error estimation and adaptivity for greater efficiency.

(iii) Directional adaptivity: It was convenient to introduce direction of propagation

with the directional plane wave basis functions by considering equi-distributed

directions in plane. The next step is to allow the method to detect dominant

directions automatically. We believe this can be done by considering local

directions of propagation on each space-time element.

(iv) Higher dimensional implementation of the method for the damped wave prob-
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lem.

(v) Implementation of the method on unstructured meshes and converting the

method to a semi-explicit form using the ideas in [123, 96].
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