
Personal Named Entity Linking Based
on Simple Partial Tree Matching and

Context Free Grammar

Sirisuda Buatongkue
Department of Computer Science

Heriot-Watt University

This thesis is submitted for

Doctor of Philosophy

April 2017

I would like to dedicate this thesis to my loving parents ...

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other University. This
dissertation is the result of my own work and includes nothing which is the outcome of work
done in collaboration, except where specifically indicated in the text.

Sirisuda Buatongkue
April 2017

Acknowledgements

I would like to express my grateful to the following:
First and foremost I would like to thank Dr. Lilia Georgieva, my supervisor, for her

encouragement, patience, expert advice and personal support. Secondly, my two examiners
have also helped shape this thesis, so would like to express my deep gratitude to Valentina
Dagiene and Idris Skloul Ibrahim for their time, guidance, effort and care. Thirdly, Ministry
of Science and Technology and Thai Government Student’s Office for financial support
and encouraging throughout my PhD studies. Finally, special thanks go to my friends, my
teachers and family who have supported me throughout my research.

Abstract

Personal name disambiguation is the task of linking a personal name to a unique comparable
entry in the real world, also known as named entity linking (NEL). Algorithms for NEL
consist of three main components: extractor, searcher, and disambiguator.

Existing approaches for NEL use exact-matched look-up over the surface form to gen-
erate a set of candidate entities in each of the mentioned names. The exact-matched look-up
is wholly inadequate to generate a candidate entity due to the fact that the personal names
within a web page lack uniform representation. In addition, the performance of a disam-
biguator in ranking candidate entities is limited by context similarity. Context similarity is
an inflexible feature for personal disambiguation because natural language is highly vari-
able.

We propose a new approach that can be used to both identify and disambiguate personal
names mentioned on a web page. Our NEL algorithm uses: as an extractor: a control flow
graph; AlchemyAPI, as a searcher: Personal Name Transformation Modules (PNTM) based
on Context Free Grammar and the Jaro-Winkler text similarity metric and as a disambigua-
tor: the entity coherence method: the Occupation Architecture for Personal Name Disam-
biguation (OAPnDis), personal name concepts and Simple Partial Tree Matching (SPTM).
Experimental results, evaluated on real-world data sets, show that the accuracy of our NEL
is 92%, which is higher than the accuracy of previously used methods.

Table of contents

Table of contents xi

List of figures xv

List of tables xix

Nomenclature xx

1 Introduction 1
1.1 Thesis contributions . 5

1.1.1 Occupation Architecture for Personal Name Disambiguation (OAP-
nDis) and Personal Name Concepts 6

1.1.2 Personal Name Transformation Modules (PNTM) based on Context
Free Grammar (CFG) . 7

1.1.3 A New Algorithm for Personal Name Disambiguation with Simple
Partial Tree Matching (SPTM) . 8

1.2 Thesis Outline . 9
1.3 Draft Papers . 10

2 Theoretical Background 11
2.1 Ontology and Entity on Knowledge Base 12

2.1.1 Wikipedia . 12
2.1.2 YAGO . 14
2.1.3 Freebase . 18
2.1.4 DBpedia . 19

2.2 Named Entity Disambiguation . 21
2.2.1 Named Entity Disambiguation Framework 22

2.3 Tree Matching . 26
2.3.1 Simple Tree Matching(STM) . 27

xii Table of contents

2.3.2 Partial Tree Alignment(PTA) . 29
2.4 Conclusion . 32

3 Personal Name Surface Form and OAPnDis 35
3.1 Motivation . 35
3.2 Personal Name Surface Form Modules(PNSFM) 37

3.2.1 Data Pre-Processing . 39
3.2.2 Data Extracting . 41
3.2.3 Data Matching . 43

3.3 Occupation Architecture for Personal Name Disambiguation(OAPnDis) . . 46
3.3.1 OAPnDis Architecture . 47
3.3.2 Personal Name Concepts . 49

3.4 Personal Name Disambiguation Data Catalogue (PNDDC) 52
3.5 Experimental Results and Discussion . 54

3.5.1 Data Sets . 55
3.5.2 Result and Discussion . 55

3.6 Related Work . 58
3.7 Conclusions . 59

4 Personal Name Transformation With Context Free Grammar 61
4.1 Motivation . 61
4.2 Background . 64

4.2.1 English Personal Names . 64
4.2.2 Context Free Grammar (CFG) . 67
4.2.3 String Matching . 70

4.3 Personal Name Transformation Modules (PNTM) 73
4.3.1 Context Free Grammar Rules (CFG Rules) 75
4.3.2 Predicate . 79
4.3.3 Action . 83

4.4 Experimental Results and Discussion . 89
4.4.1 PNTM Assessment . 90
4.4.2 Text Similarity Metrics Comparison 91

4.5 Related Work . 93
4.6 Conclusion . 95

5 Personal Name Entity Linking 97
5.1 Motivation . 97

Table of contents xiii

5.2 Background . 99
5.2.1 AlchemyAPI . 100

5.3 Personal Name Entity Linking Framework (PNELF) 101
5.3.1 Personal Name Extractor . 102
5.3.2 Searcher . 103
5.3.3 Personal Name Disambiguator . 106

5.4 Predicting the NIL Value . 109
5.5 Simple Partial Tree Matching Algorithm 110

5.5.1 Building the Comparison Tree . 111
5.5.2 Simple Partial Tree Matching . 112

5.6 Experimental Results and Discussion . 113
5.6.1 Data Sets . 114
5.6.2 Evaluation Results . 115

5.7 Related Work . 119
5.8 Conclusion . 123

6 Software Specification 125
6.1 Introduction . 125

6.1.1 Goals and Objectives . 125
6.1.2 System Overview . 126
6.1.3 System Functions . 128

6.2 Data Design . 129
6.2.1 Internal Data Structures . 130
6.2.2 Database Description . 130

6.3 Work Flow of the Process . 131
6.4 User Interface Design . 136
6.5 Testing Issues . 139

6.5.1 Software summary . 139
6.5.2 System Testing . 141

7 Conclusion and Future Work 149
7.1 Conclusion . 149
7.2 Future Work . 151

References 153

Appendix A Abbreviation Words Glossary 159

xiv Table of contents

Appendix B Thesis Diagrams 161

Appendix C Reviews of Tools in Fact Extracting and Fact Answering 165
C.1 YAGO . 165
C.2 Facts answering from the Bing and Google search engines 169
C.3 Open Information Extraction: REVERB 174

C.3.1 Conclusion . 176

List of figures

2.1 YAGO Structure [42] . 15
2.2 Snapshot of Freebase Structure [30] . 19
2.3 Number of instances in English per class [44] 20
2.4 Snapshot of a part of the DBpedia ontology [44] 21
2.5 Examples of referential ambiguity and differing orthography [50]. 21
2.6 Simple Tree Matching (a) Tree A; (b) Tree B; (c) W matrix for the first-level

sub-trees; (d) M matrix for the first-level sub-trees [75]. 28
2.7 The Simple Tree Matching Algorithm [79]. 28
2.8 Expanding the seed tree: (a) and (b) unique expansion and (c) insertion

ambiguity [81]. 30
2.9 Partial Tree Alignment with multiple trees [81]. 31

3.1 PNSFM modules . 37
3.2 An example of the dirty data in YAGO knowledge base. 40
3.3 An excerpt of YAGO entertainer class taxonomy 45
3.4 OAPnDis architecture . 47
3.5 An excerpt of the occupation taxonomy 49
3.6 A Modified Preorder Tree Traversal(MPTT) algorithm 50
3.7 Examples of personal name concepts of Arnold Schwarzenegger: (a) Politi-

cian and (b) Entertainer and Artist . 52
3.8 PNDDC structure . 54
3.9 Percentage of lexical ambiguity compare with Han and Zhao [37]. 57

4.1 Regular grammar for English personal names. 65
4.2 Example of CFG (a) Production rules (P) and (b) Left-most derivations rep-

resented as a tree. 69
4.3 Personal Names Transformation Module. 74
4.4 Example of alternative names in a personal name dictionary. 80

xvi List of figures

4.5 Example of nicknames in a personal name dictionary. 82
4.6 Accuracy comparison of personal name matching among different methods 92

5.1 Example results from GATE information extractor 100
5.2 Personal Name Entity Linking Framework 101
5.3 An example of a personal name extractor module (a) input: a web document

and (b) output: alchemy API output values in XML format. 103
5.4 Example of comparison tree . 107
5.5 An example conceptual matching score 109
5.6 Example of browsing the NIL value with BingAPI 110
5.7 An example of a flattened tree (a) Original tree (b) Flatten tree 111
5.8 Building the comparison tree (a) initial trees and (b) comparison trees . . . 112
5.9 An example of a simple partial tree matching algorithm 113
5.10 Notation for evaluation searcher performance [34] 115
5.11 Searcher performance. 117
5.12 Disambiguator performance. 118

6.1 Personal name matching screenshot . 126
6.2 Personal name matching use case diagram 128
6.3 Personal name matching entity relationship diagram 130
6.4 Personal name matching flowchart . 133
6.5 Personal name matching flowchart . 134
6.6 Home page . 136
6.7 Personal name transformation page . 137
6.8 Generating a set of candidate entity pages 137
6.9 The results of Simple Partial Tree Matching algorithm 138
6.10 Final results in personal name matching page 138
6.11 Top ten links of possible people . 139
6.12 The URL input form . 141
6.13 A set of mentioned names within a web page 142
6.14 A set of mentioned names with prefix and/or suffix transformation under

PNTM . 143
6.15 A set of mentioned names without prefix and/or suffix transformation under

PNTM . 143
6.16 A set of candidate entities that are generated from the searcher component . 145
6.17 A comparison tree . 146
6.18 Personal name entity linking . 148

List of figures xvii

B.1 Chapter 3: PNSFM modules . 161
B.2 Chapter 4: Personal Names Transformation Modules 162
B.3 Chapter 5: Personal Name Entity Linking Framework 163

C.1 An example of entity search about Albert Einstein in YAGO. 166
C.2 An example question and triple patterns with SPARQL syntax. 167
C.3 An (a) SPOTL(X) interface. 167
C.4 SPOTL(X) query result within table form. 168
C.5 The query result from YAGO2 using SPOTLX. 169
C.6 The query results about: JK Rowling birthday from Google. 169
C.7 The query results about JK Rowling birthday from Bing. 170
C.8 The query results about Tom Cruise spouse from Google. 172
C.9 The query results about Brad Pitt spouse from Google. 172
C.10 The query results about Tom Cruise’s spouse from Bing. 173
C.11 The query results about Brad Pitt’s spouse from Bing. 173
C.12 The query results for "Where was Justin Bieber born?" from Google. 174
C.13 The query results for "Where was Justin Bieber born?" from Bing. 174
C.14 The user interface of the REVERB extraction system 175
C.15 REVERB user interface . 176

List of tables

2.1 YAGO’s classes distribution [22] . 16

2.2 YAGO’s instances distributio [22] . 17

3.1 The Wikipedia disambiguation page focuses on the personal name: George
Bush [71]. 36

3.2 Notations used in PNSFM modules . 39

3.3 Data set-up . 40

3.4 The unique personal name entities in our data catalogue 42

3.5 The data sets in the personal name disambiguation data catalogue 55

3.6 The personal name data catalogue and personal name concepts 56

4.1 Example of personal name variations. 62

4.2 Regular grammar for English personal names. 68

4.3 Example of cosine similarity measurement. 71

4.4 A generative grammar to capture personal name variations. 76

4.5 Personal Name Transformation Rules based on CFG. 77

4.6 An excerpt from given name and family name dictionary. 79

4.7 Example of traditional English nicknames 81

4.8 Example of prefix and suffix . 82

4.9 The personal name transformation description. 85

4.10 Expanded framework for processing the personal name George W. Bush, Jr. 87

4.11 Expanded framework for processing nickname Gates, Bill. 88

4.12 Expanded framework for processing alternative name: Bush. 89

4.13 Example of datasets. 90

5.1 Summary data sets. 115

6.1 Software Summary . 140

xx List of tables

C.1 The contrast between YAGO2, Fact look up in Google search engine, FACTO
and Reverb. 177

Chapter 1

Introduction

As a large amount of data on the internet is about people whether in news stories, books,
songs, films and sports. The identification of personal names is a key task for areas such as
search engines, information retrieval and machine translation. It is the case that of the top
five searches in the world in 2013, which are all from the Google search engine, three of
them are people’s names [31].

Named Entity Disambiguation (NED) is name given to the task of matching the entity
that is mentioned in a document to its comparable entry in a knowledge base [34, 45] (e.g.
Wikipedia). It is also known as Name Entity Linking (NEL) or record linkage [34].

Dredze et al. [24] describes three challenges in personal name matching: referential
ambiguity, lexical ambiguity and predicting the NIL value.

Firstly, referential ambiguity or name variation concerns different names referring to the
same person [7]. Typically, an English personal name consists of three parts: the given
name, the middle name and the family name, for example George Walker Bush. However,
there are varying styles used to represent a personal name, such as nicknames, pen names,
aliases, short names and abbreviations. For example, President Bush, Dubya Bush and Bush
refer to George W. Bush, 43rd President of the United States. Furthermore, some personal
alias will be completely different from the real name, such as The Governator in reference
to Arnold Schwarzenegger. Additionally, a single name can be represented in multiple pat-
terns. For example, the personal name Prof. Philippe De Wilde can be represented at least
five different forms.

1. Prof Philippe D. Wilde.

2. Prof P. D. Wilde.

3. Prof P. De Wilde.

2 Introduction

4. Wilde, Philippe De.

5. Philippe De Wilde.

Secondly, lexical ambiguity means that a single name may refer to multiple persons [7].
For example, Chris Martin is the name of at least four different people in the public eye:

1. Chris Martin (born 1977), the English front-man of Coldplay.

2. Chris Martin (artist) (born 1954), American painter.

3. Chris William Martin (born 1975), Canadian actor.

4. Chris Martin (footballer, born 1988), Scottish striker for Derby County.

Finally, predicting the NIL value is the technique that is used when the system cannot map
the mentioned name to a person in a knowledge base [24].

Hachey et al. [34] introduces a framework for NEL, which involves the use of the tasks
of extractor, searcher and disambiguator. Extracting is a task for detecting personal name
entities that are mentioned in a document. Searching is the task of generating a set of can-
didate knowledge base entities to each name mentioned in a document. Disambiguating is
the task of best matching an entity with a name when there is ambiguity in the personal
name. Certain studies [8, 19, 63] have only focused on precision in the disambiguator task,
but Hachey et al. [34] found that the searcher component is more important and has a much
larger effect than the disambiguator task on system achievement. Therefore, personal name
entity linking tasks not only disambiguate lexical ambiguity but also referential ambiguity.
Furthermore, most real-world data is noisy, incomplete or has imprecisely formatted infor-
mation [16]. Hence, matching the exact term over the surface form that is used in [8, 19]
may not be able to process a set of candidate entities for a mentioned personal name. Sur-
face form is a collection of terms that are used to refer to people. For example, matching the
exact term returns different results for these two terms: Barack Obama vs. Barak Obama
though both are the same personal name. This is because the letter c is missing in the second
term.

To solve this problem, we propose Personal Name Transformation Modules (PNTM)
based on Context Free Grammar (CFG) and the Jaro-Winkler text similarity metric. PNTM
is based on the technique introduced in [3], which transforms personal name variations to
a uniform representation. A CFG has advantages because of three reasons. Firstly, CFG is
flexible for personal name variations because it can capture multiple name formats. Sec-
ondly, CFG can solve the misleading problem in text similarity measurement (e.g. edit dis-
tance, cosine similarity or Jaro-Winkler) when the same person is represented using highly

3

different text (e.g. Bill Gates and William Gates) by transforming the nickname Bill to the
given name William. Thirdly, CFG is different from other transformation tools because it
allows us to understand the internal structure of personal names. For example, the text Bill
only transfers to William when dealing with given names.

The main disadvantage of CFG is that of an ambiguity parse tree, where a single personal
name may be produced into more than one parse tree. Arasu and Kaushik [3] solve this
problem by using a uniform weight scheme score to rank the candidate names, and then
selecting the candidate with the highest score. However, this method suffers when a context
involves both given name and last name, because the scores are equal. In our work, a regular
grammar in personal name structure is used for segmentation of the components in personal
names (specify the location of first name, middle name or last name) and these components
are directly matched to the personal name dictionary.

The Jaro-Winkler is designed to deal with typographical errors [25]. Various studies [6,
15, 54, 74] compare the Jaro-Winkler metric to the Levenshtein, Q-gram, Smith-Waterman
and TF-IDF metrics. The experimental results show that the Jaro-Winkler metric performs
well in terms of personal name matching.

In disambiguator components, several methods [8, 19, 24, 63] have been proposed to
handle the lexical ambiguity problem. These methods can be divided into two broad types:
the context similarity method and the combining method. The context similarity method
or a bag of word has been used in [8, 24]. Context similarity uses the terms around the
entity mentioned and the Wikipedia page that related with entity to measure similarities
between two entities [45, 63]. However, the limitation of the context similarity method is
that it requires exact word overlap between the two compared texts, which may become an
over-strict constraint because of the flexible use of natural language [45].

Secondly, the combination method is designed for merging multiple techniques together.
For example, Cucerzan [19] combines two techniques (context similarity and topical coher-
ence) and Shen et al. [63] integrates three techniques (context similarity, entity popular-
ity and topical coherence) for personal name disambiguation. Topical coherence uses the
Wikipedia cross-page links for discovering unity between two entities [45]. This method is
based on the assumption that a mentioned entity should be interdependent with other entities
in the same document [59]. The entity popularity is a statistical feature that used probability
of the mentioned name refer to each entity [45]. However, the effectiveness of topical coher-
ence is limited by the incorrect category in the knowledge base. This is because researchers
used knowledge based categories to determine if the entities are coherent. Cucerzan [19] is
based on Wikipedia categories to find an interdependence score between ambiguity entity
and identification entities. However, Shen et al. [63] argues that the categories in Wikipedia

4 Introduction

are dirty and therefore not well-formed. Wikipedia, Freebase and web directories use the
thematic domain to classify articles or entities. However, the thematic domain is limited by
claiming to represent the correct concepts in each entity [40]. For example, Stephen King is
assigned to the categories:

Stephen King → Writers of books about writing fiction → Fiction

but Stephen King is not a work of fiction. Shen et al. [63] resolves the problem by changing
the knowledge base to YAGO. YAGO has a clean taxonomy of concepts that derived from
WordNet and Wikipedia [63]. However, Demidova et al. [22] found that YAGO ontology is
noisy, some of the WordNet classes in YAGO are not associated with Wikipedia categories.
For example, Presidents of Clemson University is under the WordNet class:

head of state president → representative → negotiator → communicator → person

but Presidents of Clemson University is not the head of state president.

To handle the dirty data in Wikipedia and YAGO, we introduce Occupation Architecture
for Personal Name Disambiguation (OAPnDis). OAPnDis is a new occupation taxonomy
architecture based on web directories and YAGO ontology. OAPnDis consists of four layers:
Person, web directory classes, YAGO-WordNet classes and YAGO-Wikipedia classes. The
two steps: the editing of proper names and consideration of whole names are added to ensure
that our occupation taxonomy is clean, well-formed and semantically. Firstly, the thematic
domain problem is handled by changing the context in web directories before mapping to
our occupation taxonomy (e.g. Arts to Artists). Secondly, the whole name in the Wikipedia
category is evaluated before mapping it into the WordNet class. YAGO considers only the
head word of category in Wikipedia for linking a Wikipedia category to a WordNet class.
This is the source of unrelated links in YAGO taxonomy. For example, Presidents is a head
word of the category Presidents of Clemson University in Wikipedia, so it is mapped to head
of state president in WordNet class.

To deal with the context similarity problem, we propose a new approach: an entity
coherence using Simple Partial Tree Matching (SPTM). We assume that personal names
appearing within a single web-page have the same concept or that they are related (e.g.
spouse, child). SPTM is based on two algorithms: Simple Tree Matching (STM) and Partial
Tree Alignment (PTA). STM is a two-tree matching algorithm that is introduced in [75] to
compare the similarity between two computer programmes. PTA was introduced in [81]
to align data items from the identified records for the task of web data extraction. STM is
advantageous for two reasons. Firstly, it is a top-down algorithm; the two root nodes are

1.1 Thesis contributions 5

matched first, and if the root nodes are dissimilar this means that two trees are different.
Secondly, the algorithm does not allow node replacement or level crossing for computing
the maximum number of similarity nodes between two trees. However, giving an equal
weight to every nodes may reduce the performance in similarity matching because the levels
in occupation taxonomy have different priorities. Additionally, it is insufficient and time
consuming to compare the personal name concepts of candidate entities to every personal
name concepts in a list. As the result, progressively extending a seed tree technique that is
used in PTA algorithm gives us the idea of creating a comparison tree to reduce the matching
frequency. SPTM performs a lexical ambiguity and selects the best personal name entity for
each ambiguity mentioned using three steps:

1. An individual concept in each personal name entity is generated based on our occu-
pation taxonomy architecture.

2. The identification personal name which has the same root node is merged to create
the comparison tree. The comparison tree which has the maximum number of nodes
will be considered first.

3. A set of candidate entities is ranked by comparing the similarity between each candi-
date entity concept and comparison tree. The similarity score is calculated from the
number of matching nodes and their weights. The nodes of the different hierarchi-
cal levels have different weights. The candidate entity which has the highest score is
selected.

Our proposed method is different from the existing approaches because only mentioned
personal names are used to disambiguate personal name ambiguity.

Finally, the approach returns the NIL value when a set of candidate entities in each
mentioned name is empty or the conceptualisation of identifications of person differs from
other identification person in a web page. Furthermore, the possible persons in each NIL
value are predicted by attaching the NIL value entity and the popular occupation from a list
of personal name concepts in each web page through the BingAPI.

1.1 Thesis contributions

The objective of this thesis is to establish and assess the new techniques to identify and
disambiguate personal names that are mentioned in a web document by linking them to
the comparable entry in a knowledge base. We propose a Personal Name Entity Linking

6 Introduction

Framework (PNELF) that focuses on two problems in personal name entity linking: the
searcher component and the disambiguator component.

Firstly, PNTM and Jaro-Winkler text similarity metric are integrating to improve the
searcher performance. PNTM is used to transform name variations to a uniform format.
Furthermore, Jaro-Winkler, the string similarity matching is used to instead the exact-match
look-up over personal name surface form for generating a set of candidate entities. PNTM
and Jaro-Winkler can solve three main problems in referential ambiguity: multiple spellings
or typographical errors (e.g. Beckham vs. Beckam), rearrangement of words (e.g. Beckham,
David vs. David Beckham) and using different words to refer to the same person (e.g. DB7
vs. David Beckham)

Secondly, the disambiguator performance is boosted by solving two problems in NED,
including context similarity that requires exact words to overlap between the two compared
documents, and the dirty data in Wikipedia categories and YAGO ontology. OAPnDis and
occupation taxonomy are used to generate personal name concepts in each person. Fur-
thermore, a new algorithm SPTM requires only personal name concepts to handle lexical
ambiguity problems and link a mentioned personal name to a real-world entity.

The effectiveness of PNELF is empirically validated through experimental assessments
with real-world data sets. The precision in personal name entity linking is 91.82%. The
contributions of this thesis are described below.

1.1.1 Occupation Architecture for Personal Name Disambiguation (OAP-
nDis) and Personal Name Concepts

Occupation is an advantageous feature that is used to distinguish ambiguity of person [48].
However, the evidence from the literature reviews shows that none of the existing knowl-
edge base ontology is suitable to establish personal name concepts [22, 63]. Wikipedia and
Freebase categories are noisy, not well-formed and use the thematic domain structure. The
taxonomy in YAGO knowledge is derived from WordNet as a backbone and is connected
with Wikipedia categories. However, Demidova et al. [22] argues that some of the WordNet
classes are not related to Wikipedia categories. For example, Wikipedia categories President
of FIFA is under the WordNet class head of state president. Finally, DBpedia ontology is
well organised, but the hierarchy level is not deep enough to create personal name concepts.
To fill the gap in knowledge base taxonomy problems, this thesis introduces OAPnDis; a
new architecture for occupation taxonomy. The architecture includes four layers and bases
on YAGO ontology and web directories. Layer 0 is a root node to define that an entity as-
signed under this layer is a person. Layer 1 is derived from web directories that are used

1.1 Thesis contributions 7

to distinguish personal names in a big picture. Layer 2 is derived from WordNet in YAGO,
and layer 3 is derived from Wikipedia categories in YAGO. The conceptualisation in each
personal name entity is created from this architecture.

Experimental results on the task of personal name catalogue and personal name con-
cepts show that the maximum number of concepts for each person is two. Only 0.06% had
two concepts, which means that people usually work in one career. Additionally, the exper-
imental results showed that 603 (4.84 %) people share both name and occupation (less than
5%), which is similar to the study in [37]. The experimental results suggest that occupation
taxonomy is a useful feature to distinguish persons when there is lexical ambiguity in the
name.

1.1.2 Personal Name Transformation Modules (PNTM) based on Con-
text Free Grammar (CFG)

Data on the Internet lacks uniform representation because of the heterogeneous data de-
sign; as the data comes from multiple sources, it cannot be handled as if it were a single
database [11]. Dirty data arises for various reasons, such as lack of design, data entry mis-
takes and misunderstandings [56]. We can find the context for a name such as Barak Obama
for Barack Obama or Beckham for David Beckham may be appeared within a web docu-
ment. However, the previous studies [8, 19, 24, 63] do not focus on cleaning data that are
extracted from a web page before it is matched with a personal name surface form.

The study [34] suggests that the searcher component in an NED framework has a larger
impact on the system effectiveness than the disambiguator component. This is because
personal names that appear on the Internet are variations (referential ambiguity). Therefore,
the exact-match lookup over personal surface forms that are used in some studies [8, 19] are
insufficient to detect candidate entity. For example, the exact-match lookup cannot detect
that Barak Obama and Barack Obama are the same personal name.

To deal with referential ambiguity problem, we introduce PNTM to transform multiple
formats of personal name to a uniform representation. PNTM is based on the study in [3]
and consists of three components: grammar rules, predicate and action. The sixteen CFG
rules have been created to handle referential ambiguity problems (e.g. different order, nick
name, alternative name) to a uniform format. Predicate is a personal name dictionary, which
includes the first name, last name, nickname and alternative name. An action is a compo-
nent to process a result. A single personal name input may return multiple results. For
example, the input name Bill Gates produces two output names: William Gates and Willis
Gates. A personal name transformation with CFG rules is advantageous because it boosts

8 Introduction

the precision and recall in generating a set of candidate entities in each mentioned name.

The experimental results show that PNTM can solve the problem of referential ambi-
guity by transforming names variations to a uniform format. Furthermore, PNTM and the
Jaro-Winkler metric can boost the performance in text similarity measurements.

1.1.3 A New Algorithm for Personal Name Disambiguation with Sim-
ple Partial Tree Matching (SPTM)

PNELF consists of three main components: extractor, searcher and disambiguator. "alchemy
API" is an extractor that be used to extract names mentioned within a web page. In searcher
component, the CFG framework is used to transform the personal name to a uniform rep-
resentation and Jaro-Winkler is used for detecting a set of candidate entities in the personal
surface form. To deal with the context similarity problem, the new algorithm SPTM and
personal name concepts have been used to disambiguate ambiguous names. A context sim-
ilarity compares the similarity between a pair of entities (an entity that is mentioned in a
web document and an entity in a Knowledge base) by detecting similar terms that occurred
around entities in a web document and knowledge base. A limitation in context similarity
is flexibility in natural language; we cannot used different words to refer to the same mean-
ing. For example, the given name William or Willis can be replaced by nickname Bill. Our
method is different from some studies including [8, 19, 24, 63] in that this thesis uses only
mentioned names within a web document are used to disambiguate personal names.

We assume that personal names that have appeared within a single web page have the
same conceptualisation or they are related (spouse or child). Layer 1 (e.g. Entertainers and
Artists, Sportsmen and Politicians) is a root node for grouping people together. People who
have the same concepts mean they have the same root node, but the child nodes may be
different.

SPTM means that the two trees matching when computing the similarity score between
a candidate conceptual tree and a comparison tree. The depth of node in a tree is used to
assign a weighting score to a node (deeper depth equalling higher weight). The comparison
tree is created by joining the nodes of identifying people who have the same root node.
The comparison tree which has the maximum number of nodes will be selected first. The
similarity score is calculated from the total matching node multiplied by the total weighting
score. The candidate who has the highest score is selected.

The experimental results demonstrate that our proposed approach performs well when
using real-world data sets.

1.2 Thesis Outline 9

1.2 Thesis Outline

The thesis is laid out as follows.

Chapter 2. Theoretical Background: this chapter reviews the theoretical background
and techniques that are related to our work are reviewed. This chapter consists of three parts.
The first part discusses knowledge based, ontology and entities from four main sources:
Wikipedia, YAGO, DBpdia and Freebase. The second part describes the NED framework
and the techniques that are used in NED are described. The final part reviews two algo-
rithms: Simple Tree Matching (STM) and Partial Tree Alignment (PTA), which gave us the
idea of introducing the new algorithm Simple Partial Tree Matching (SPTM).
Chapter 3. Personal Surface Form and OAPnDis: this chapter consits of two parts. The
first part describes Personal Name Surface Form Modules (PNSFM) that are used to gener-
ate personal surface form, occupation categories,the occupation of each personal name and
personal name entity relations. The second part introduces OAPnDis, our new occupation
taxonomy and discuss how to create personal name concepts based on OAPnDis.
Chapter 4. Personal Name Transformation with Context Free Grammar: this chapter
presents Personal Name Transformation Modules (PNTM) based on the CFG and Jaro-
Winkler text similarity metric. PNTM and Jaro-Winkler are used to solve three main prob-
lems of referential ambiguity or name variations: multiple spelling or typographical errors,
rearrangement of words, and the use of different words such as an alias, a nickname or an
alternative name to refer to a person.
Chapter 5. Personal Name Entity Linking: this chapter introduces Personal Name Entity
Linking Framework (PNELF), including the personal name extractor, the searcher and the
personal name disambiguator. In searcher component section describes how to improve the
searcher performance using PNTM, Jaro-Winkler and personal name surface form. The fi-
nal part presents the techniques which are used to link a mentioned name to a real-world
entity and discuss how to predict the NIL value. Furthermore, this chapter introduces SPTM
and personal name concepts that are generate based on OAPnDis to handle the lexical am-
biguity problem.
Chapter 6. Software Specification: this chapter discusses our software specification in-
cluding system function, data design, database description, the work flow of the process, the
user interface design and software testing.
Chapter 7. Conclusion and Future Work: this chapter discusses our conclusion and future
work in personal name entity linking.

10 Introduction

1.3 Draft Papers

1. An Occupation Ontology Architecture for Crating Personal Name Conceptualisation.
To be submitted to AAAI 17.

2. New Framework for Personal Name Disambiguation. A poster presentation (short
paper) COLING-2016.

3. Personal Name Matching (Presented at Heriot-Watt Conference December 2014).

Chapter 2

Theoretical Background

In this chapter, we discuss the theoretical background of the name entity disambiguation
(NED) framework, and the techniques used in the NED area (i.e.context similarity [8, 19,
63] and topical coherence [19, 62, 63]). Extracting personal name from a web page and
mapping them on to a real-world entity can add value to data and give great support to
another services like search engines, e-commerces, or travel agencies. However, Dredze
et.al. [24] claimed that there are three fundamental problems with NED: lexical ambigu-
ity, referential ambiguity and named entity absence from a knowledge base. Accordingly,
matching an entity which is extracted from a web document to a real-world entity requires
more effort and greater complexity than with an entity which has come from a database.
This is because the web page usually provides partial or incomplete information about each
entity [76].

There are two main problems in NED. Firstly, referential ambiguity means that a single
person can be referred to in lots of different ways [7]. Secondly, lexical ambiguity means a
single name may be referred to multiple persons [7]. Therefore, text similarity measurement
is insufficient in NED tasks. The information in knowledge bases such as Wikipedia or
YAGO provide useful information in NED tasks and are widely use in NED researches [8,
19, 63]. Therefore, this thesis discusses two features in knowledge bases that are widely
used in the area of NED: entity names and knowledge base taxonomy.

This chapter organises the contents into three parts: Section 2.1 discusses knowledge
based ontology and entities from four main sources: Wikipedia, YAGO [42, 64], DBpe-
dia [44] and Freebase [30]. Section 2.2 introduces the NED framework and the techniques
are used to disambiguate named entities. Finally, Simple Tree Matching [75] and Partial
Tree Alignment [79–81] the techniques on which personal name disambiguation are based
are reviewed.

12 Theoretical Background

2.1 Ontology and Entity on Knowledge Base

Gruber [32] uses the term "ontology" to refer to the "explicit specification of a conceptual-
isation". The sense in which he uses the word "conceptualisation" [33] is an "an abstract,
simplified view of the world that we wish to represent for some purpose". In a knowledge
base, the classes and entities are the key components in presenting entity conceptualisation.
Class is the hierarchy of the elements that are used for grouping similar entities together.
Therefore, the main structure of the knowledge base includes both classes and entities.

2.1.1 Wikipedia

Wikipedia is a free multilingual web-based encyclopedia operated by volunteers via wiki
software. An article in Wikipedia is normally represented in an individual topic. Each article
has been manually allocated to at least one category in Wikipedia. Categories in Wikipedia
are a group of articles that have similar topics. Within a particular page on Wikipedia there
is a box containing a list of categories to which an article belongs, which is found at the
end of the of page. For example, the Elton John’s article is assigned to categories: Elton
John, 1947 births, 20th-century composers, 20th-century English male actors, 20th-century
English singers as well as a further 59 categories.

The Portal:Contents/Portals is the Wikipedia root category, and is divided into twelve
portals as follows:

• General reference

• Culture and the arts

• Geography and places

• Health and fitness

• History and events

• Mathematics and logic

• Natural and physical sciences

• People and self

• Philosophy and thinking

• Religion and belief systems

2.1 Ontology and Entity on Knowledge Base 13

• Society and social sciences

• Technology and applied sciences

Wikipedia also divides people into the following broad categories:

1. Association e.g. People by educational institution, People by company.

2. Ethnicity, gender, religion, sexuality, disability, medical or psychological conditions.

3. Personal name.

4. Nationality and occupation

5. Place, the place of birth or notable residence. e.g. Category:People from New York

6. Year, people are categorised by year of birth and year of death.

Wikipedia categories are organised in the form of hierarchical structures (parent and
child categories). However, the hierarchical structure is not well-formed; an article and
category do not strictly order (there are many-to-many relationship between articles and
categories).

The Wikipedia categories are less organised, longer information, have irrelevant parts
and may be inaccurate [66]. Moreover, the category’s hierarchy reflects merely the thematic
structure so it is of limited use in terms of the ontological purpose [64] because it can not
represent a particular instance correctly. For example, Zinedine Zidane is assigned under
the categories:
French_ f ootballers → Association_ f ootball_players_by_nationality →
Association_ f ootball_by_country → Association_ f ootball → Team_sports.
However, Zinedine Zidane is a person and a football player, he is not a football association
or a football team.

Wikipedia deals with personal name ambiguity by using various features to make a
personal name unique. Wikipedia uses a single feature or combing features to distinguish
people who have the same name such as occupation, date of birth, nationality or place of
residence. However, occupation is the first priority feature that is used in Wikipedia to
handle the problem of lexical ambiguity. The features that are used in Wikipedia for making
a unique personal name are as follows:

• Occupation e.g. Chris Brown (composer), Chris Brown (ice hockey) and Chris Brown
(dancer).

14 Theoretical Background

• Date of birth e.g. Chris A. Brown (born 1964) and Christopher J. Brown (born 1971).

• Nationality and occupation e.g. Chris Brown (Canadian musician) and Chris Brown
(Australian musician).

• Place of residence and occupation e.g. Chris Brown (California politician) and Chris
Brown (Mississippi politician).

• Occupation and date of birth e.g. Chris Brown (footballer, born 1992), Chris Brown
(footballer, born 1971) and Chris Brown (footballer, born 1984).

Wikipedia is the fundamental source in a knowledge base and a large number of entities
and their types stored in the knowledge base are derived from Wikipedia. Therefore, per-
sonal name entities and their categories in Wikipedia are the major elements used to create
our data catalogue and personal name concepts.

2.1.2 YAGO

YAGO [42, 64] is an ontology and part of the YAGO-NAGA project developed at the Max
Planck Institute for Informatics. YAGO stores information in the form of RDF triples:
subject(S), property(P) and object(O). This SPO is called a fact. For example,

Nicolas Sarkozy (S) PresidentOf(P) France(O)

is a fact has been stored in YAGO. YAGO collects individual entities and their categories
from Wikipedia ’infoboxes’ and links them to the clean taxonomy of WordNet. YAGO
contains 365,372 classes, 2,648,387 entities and 104 relations [40]. The taxonomy of YAGO
is well-formed and meaningful. For example, in the instance shown in Figure 2.1 Zenedine
Zidane is a soccer player and he is a person.

Zenedine Zidane → instanceO f → Soccer Player

Soccer Player → subclassO f → Person

2.1 Ontology and Entity on Knowledge Base 15

Fig. 2.1 YAGO Structure [42]

The YAGO structure includes of three major components: classes (concepts, entity
types), a set of individual entities and literals (names, phrases). Figure 2.1 shows an ex-
cerpt of the YAGO knowledge base. These components are described as follows:

1. Classes: a class is a group of entities that shared particular characteristics (e.g. Per-
son, Location, Country and City). YAGO’s class is derived from two the main sources
of: WordNet and Wikipedia. YAGO allows each class to be a subclass of one or mul-
tiple classes (YAGO taxonomy). The Entity is a root class in YAGO taxonomy. The
superclass and subclass are connected via property subclassOf. An example of the
’subclassOf’ connection is as follows:

NationalLeader → subclassO f → Politician.

WordNet [69] is a lexical database of English developed by Princeton University.
WordNet uses the actual sense of the words for grouping the words. Synset is a set of
words that share one sense. Words that have multiple meanings (ambiguous words)
can be assigned to several synsets. YAGO considers only nouns and the relationship
among synsets (super-subordinate or hyperonymy, hyponymy) to organise taxonomic
classes. YAGO establishes class from these synsets and links them to Wikipedia cat-
egories.

16 Theoretical Background

Table 2.1 YAGO’s classes distribution [22]

The lower classes in the Wikipedia categories are mapped to the higher classes in
Wordnet by determining the most frequent sense of the head word in WordNet. YAGO
allows only the conceptual categories in Wikipedia to be a class in YAGO [64]. The
conceptual category is a category that has the head of word in a plural form. YAGO
analyses the head of category name through shallow noun phrase parsing. For ex-
ample, the ′wikicategory_A f ghan_politicians′ has to be assigned to a subclass of the
WordNet class ’politician’ because ’Afghan politicians’ is a head compound word
and the word ’politicians’ is plural form of ’politician’. The upper and lower class for
these connections are as follows:
wikicategory_A f ghan_politicians→ subclassO f →wordnet_politician_110451263
wordnet_politician_110451263 → subclassO f → wordnet_leader_109623038
Table 2.1 shows the total number of classes from WordNet and Wikipedia in each level
of YAGO taxonomy. YAGO taxonomy contains 19 depths and most of the classes in
YAGO are derived from Wikipedia. 90% of YAGO classes are in depth 4-10.

2. Entities: a set of individual entities consist of instances such as people, building, class
or country. YAGO [40] divides entities into six categories: people, groups(e.g. mu-
sic bands, football clubs, universities or companies), artifacts (e.g. buildings, paint-
ings, books, music songs or albums), events (e.g. wars, sports competitions like the
Olympics or world championship tournaments), locations and other. Each individ-
ual entity could be an instance at least one class and is connected to its class via the

2.1 Ontology and Entity on Knowledge Base 17

property type. The connection between instance and its class is as follows:

Zinedine_Zidane type Soccer_Player

Table 2.2 YAGO’s instances distributio [22]

A previous study [22] showed that 96.34% of individual entities in YAGO come from
Wikipedia. Furthermore, most of the individual entities are located in the leaf classes
and 90% of individual entities are located in depth 4-9 of the YAGO taxonomy. The
details about instances of distribution are illustrated in Table 2.2.

3. Literals: YAGO deals with ambiguity and synonymy by mapping alternative names
via relation means. The quotes are used to distinguish literals from the entities. The
alternative names are derived from Wikipedia redirect pages. An example of literals
is as follows:

"Zizou" means Zinedine_Zidane

YAGO has been used by many researchers. Melo et al. [21] integrates entities from YAGO
into the Suggested Upper Model Ontology (SUMO). SUMO is a large scale formal ontology
with a specific domain, such as countries, cities, companies or actors; the result is formal
ontology on a rich scale. A further study [57] applied YAGO to automatically generate

18 Theoretical Background

group of queries and to match the search results into an appropriate category. Limaye et
al. [46] used entities, types and their relationships in YAGO to identify entities that are
extracted from web tables. Furthermore, Hu et al. [41] used YAGO and the Internet Movie
Database (IMDB) to recommend movies and actors for users.

YAGO is an interesting knowledge base to crate our data catalogue, and it is a primary
source for us to create a conceptualisation of personal name entity. This is because YAGO
contains a large number of personal name entities that are automatically extracted facts
from Wikipedia and WordNet. Furthermore, YAGO taxonomy merges Wikipedia categories
with the concepts of WordNet. Therefore, YAGO taxonomy is well-formed, semantically
accurate and provides multiple levels of a hierarchical taxonomy.

2.1.3 Freebase

Freebase [30] is a knowledge base which uses graph technology to store data. It is operated
by community members. Freebase contains more than 800,000 personal name entities and
more than 2,000 occupations [37]. The Freebase structure includes domain, type, property
and topic. Freebase contains more than 39 million topics about real-world entities such as
people, places and organisations. For example, ’Bob Dylan’, ’Hotel California (song)’ and
’love’ are topics found within Freebase. ’Type’ is a group of similar topics, and topics can
be mapped into one or more types. A structured set of properties are used to define type.
For example, the ’Football player’ is a type that consists of a set of various properties, such
as ’Number of Career Goals’, ’Matches played’ or ’Position(s)’. ’Domain’ is a group of
related types that is the highest layer in freebase structure (e.g. the domain Soccer). The
topic, type, property and domain can be mapped as follows:

David Graham : /soccer/ f ootball_player/position_s : Forward

Where David Graham is a topic, /soccer/football_player/position_s is a predicate (soc-
cer is a domain, football_player is a type and position_s is a property) and Forward is an
object or value. Figure 2.2 shows an excerpt of the Freebase knowledge base, where David
Beckham is a topic or an instance and he is a football player (type or class). A football
player type is a member of the domain soccer.

2.1 Ontology and Entity on Knowledge Base 19

Fig. 2.2 Snapshot of Freebase Structure [30]

Taxonomy in Freebase has multiple depths. However, it is a thematic category. For
example, Milla Jovovich type Film/actor means thatMilla Jovovich is an actor, and the actor
class is assigned to the domain Film, but Film is not a person. Therefore, Freebase taxonomy
describes incorrect information about Milla Jovovich.

2.1.4 DBpedia

DBpedia [20] is a multilingual knowledge base which integrates structured data from Wikipedia.
It is maintained by the DBpedia user community. DBpedia has its own ontology. The DB-
pedia ontology contains 320 classes and 1,650 properties with a maximal depth of five [44].
Figure 2.3 illustrates a total number of instances in some DBpedia classes (e.g. Person
contains 763,643 instances).

20 Theoretical Background

Fig. 2.3 Number of instances in English per class [44]

Figure 2.4 shows an excerpt of the DBpedia ontology including class and property.
Thing is an ancestor class and a property subClassOf is used for mapping between super-
class and lower-class. For example, Place, Agent, Organization, Species and Work are as-
signed to the super-class Thing. The connections between lower class and upper class are
as follows:

Athlete → Person → Agent → T hing

The class Person, consists of two properties: birthDate, and deathDate.
The taxonomy in DBpedia is clean and it is sensibly adjusted. However, it provides

less depth of hierarchical structure for building personal name entity concepts. DBpedia
classifies a person by occupation, and this mostly contains only one depth. However, it is
too general to define people using only one depth occupation.

2.2 Named Entity Disambiguation 21

Fig. 2.4 Snapshot of a part of the DBpedia ontology [44]

2.2 Named Entity Disambiguation

Named Entity Disambiguation (NED) is the task of matching an entity that is mentioned
in a document to its comparable entry in a knowledge base [34, 45]. NED is also known
as entity linking or record linkage [24]. Dredze et al.[24] define three basic challenges in
entity disambiguation: name variations, entity ambiguity and absence.

1. Name variations may be defined as a referential ambiguity, where a single person has
multiple names. When this is the case we can use difference names to refer to an
individual entity, such as full name, alias, nick name or professional position. For
example, the personal names are highlighted in Figure 2.5 are used to refer to George
W. Bush, 43rd President of the United States.

Fig. 2.5 Examples of referential ambiguity and differing orthography [50].

22 Theoretical Background

2. Entity ambiguity is a lexical ambiguity (single name: multiple persons) where a single
name refer to multiple entities. For example, Chris Martin refer to more than ten
persons, such as the English front-man of Coldplay or a Scottish footballer.

3. Absence means that some entities may not exist in a knowledge base (NIL) as a knowl-
edge base does not have information about every person in the world.

2.2.1 Named Entity Disambiguation Framework

Hachey et al.,[34] defines three main components in the named entity disambiguation frame-
work: extractor, searcher and disambiguator.

1. Extractor is the task of detection and preparation of named entities; they are repre-
sented in the document and may be used to extract the context

2. Searcher is the process for generating a set of possible entities (candidate entities)
that are mentioned in the document. The effective researcher should provide the cor-
rect entity in a small set of candidates. Bunescu and Pasca [8] used three sources in
Wikipedia: Title pages, Redirect pages, Wikipedia Disambiguation pages for creating
a named entity dictionary. The exact-match lookup function and the named entity
dictionary are used to generate a set of candidate entities.

(a) Wikipedia article titles (a title in each Wikipedia article) are used for extracting
the entity name. The title in the Wikipedia article is unique and used a par-
enthetical expression to separate lexical ambiguity. For example, in the article
about Chris Martin, Wikipedia uses professional categories to identify a specific
person such as Chris Martin (artist) or Chris Martin (cricketer). Furthermore, if
an occupation is duplicated, the date of birth is used to separate lexical ambigu-
ity, e.g. Chris Martin (footballer, born 1988) and Chris Martin (footballer, born
1990).

(b) Wikipedia Redirect pages are used to extract alternative names or referential
ambiguity in each entity.

(c) Wikipedia Disambiguation pages are used to extract referential ambiguity enti-
ties.

Cucerzan [19] developed a data catalogue using four sources from Wikipedia article
titles, redirect pages, disambiguation pages and references to entity pages in other
Wikipedia articles. The catalogue consists of two components, the entity surface form

2.2 Named Entity Disambiguation 23

and entity information. The surface form is a list of referent words that are used to
mention each entity in a document. The entity surface form includes of a set of terms
and a set of entities that used this referent term. The exact-match lookup function and
the entity surface form are used to generate a set of candidate entities. However, the
researchers [34] argued that the link anchor texts decrease the system performance.

Shen et al. [63] extend the entity surface form in [19] by adding count information to
define popular entities in each surface form for generating a set of candidate entities.
The record of count information is used to calculate the link probability score and this
score is used to remove the candidate entities that have a very low link probability
(the rarest entities that used this referent term). Link probability LP(e|m) or popu-
larity score for entity e can be calculated with equation 2.1. Given countm(e) is the
frequency of links that entity e represented under surface form m (using term m). An
Em is a number of entities that uses the surface form m.

LP(e|m) =
countm(e)

∑ei∈Em countm(ei)
(2.1)

The count information is useful to reduce the number of candidate entities because
the system can remove the entity which has the smallest number of total count (an
entity that rarely used the surface form m for reference; they are not well known).
However, the unpopular candidate that is removed from a set of candidate entities
may still actually be the correct entity.

Dredze et al. [24] aim to design an open knowledge base data catalogue. The re-
searchers address this by aming to solve a major problem in discusses in [19] and the
study [8] that the data catalogue is dependent on Wikipedia. Name variations are to be
considered for candidate entity generating. The researchers select not only the exact
match, but also select the entities for which all or part of the contents are mentioned:
if the first letters match, if they match an alias or if they have a strong string similarity
score.

Cucerzan [19] and Bunescu and Pasca [8] are deep dependence on Wikipedia to gen-
erate a set of candidate entities. Dredze et al. [24] introduce a new idea about the
independent knowledge base. In addition, the name variations have been considered
by combining multiple methods with text similarity metrics to produce a set of can-
didate entities (to minimise the candidate sets and maximise recall). In generating
candidate entities, the exact-match lookup over the named entity dictionary is an in-
sufficient technique to handle name variations and dirty data (such as miss spellings)
in each occurrence.

24 Theoretical Background

3. Disambiguator is the process for selecting the best entity among ambiguous entities.
NED may be classified on the basis of features they used to discriminate ambiguous
entities into the two fundamental methods of context similarity and topical coherence.

(a) Context similarity is the bag of words model that is used for comparing the
similarity between the mentioned texts around the entity and the document re-
lated with the entity in Wikipedia [45, 63]. The study [8, 24] use the context
similarity model for ranking a set of candidate entities.

Bunescu and Pasca [8] present two techniques: a context-article similarity and
taxonomy kernel for entity disambiguation. The first feature is based on the co-
sine similarity between query texts and the candidate Wikipedia article. The sec-
ond feature is the candidate taxonomy kernel which is derived from Wikipedia
categories and the 55-word contexts of the query text with a support vector ma-
chine(SVM) ranking model. Bunescu and Pasca also returned the NIL values
to refer that each mention not covered in Wikipedia by setting eout entity in the
named entity dictionary. In the named entity dictionary, the article is given to
eout .T = θ and a set of categories is eout .C = θ . The SVM ranking model re-
turns the entity in Wikipedia that has the highest score (the highest score should
be more than a fixed threshold τ) , otherwise it returns eout .

Dredze et al. [24] used multiple features consisting of entity categories, popular-
ity (from Google’s ranking), document similarity, name similarity and coverage
of the co-referential noun in the knowledge base node text. The SVM ranker
is used to calculate the similarity score and return the candidate which has the
highest score, otherwise it returns NIL.

The main drawback of context similarity is that it is not flexible for natural lan-
guage because it requires precise word overlap to measure similarity, and the
performance depends on a particular term co-occurring between a couple of
comparisons [45, 63]. Furthermore, this approach does not consider the interde-
pendence that exist between the entity [36, 63] that is an important feature for
solving lexical ambiguity. Finally, these works directly derived the taxonomy
of the categories from Wikipedia, which is dirty and not well formed [59, 63].
Therefore, it is insufficient to organise the hierarchy and semantic purpose of a
class.

(b) Topical coherence is used in the Wikipedia cross-page links for finding unity
between two entities [45]. This method is based on the assumption that an entity
mentioned in the same document as another should be interdependent with the

2.2 Named Entity Disambiguation 25

other entities [59].

Cucerzan [19] is the first researcher who combined the topic coherence feature
with NED. Cucerzan uses two features that are derived from Wikipedia, includ-
ing context clues(extracted from the first paragraph in each entity page and other
articles that refer exactly to this entity) and category information. The vector
space model is employed in the disambiguation process to calculate the simi-
larity between the topic coherence derived from each entity that is mentioned
in a single document and the context clues in each candidate entity that appears
in the document, as well as the agreement among categories which overlapped
with the candidate entities. Shen et al. [63] argue that the assumption about ev-
ery entities are strored in the knowledge base is wrong because some entities are
absent e.g. unpopular entity.

As the categories in Wikipedia are dirty and not well-formed, the next method [62]
solves this problem by deriving the taxonomy from YAGO.

Shen et al. [62] proposed LIEGE (Link the entIties in wEb lists with the knowl-
edGe basE) to map each entity mentioned in the web lists with a real-world
entity. The researcher assumes that the entities which appear on the web list
in the single document have the same conceptual type. LIEGE uses five fea-
tures, including a set of entities mentioned in a web list, taxonomy classes from
YAGO [42, 64], the entity popularity from Wikipedia and the context in the ex-
ternal document corpus (Wikipedia articles) where the entities appear. The list
item within the web lists can refer to multiple candidate entities. Therefore,
Shen et al. [62] introduces prior probability to measure the popularity in each
candidate entity. Given a collection of web lists L with |L| items. Let li be a
set of web lists L where li ∈ L. The prior probability equation in each candidate
entity for the list term li is shown below.

Ppr(ri, j) =
count(ri, j)

∑
|Ri|
u=1 count(ri,u)

(2.2)

• Prior probability Ppr(ri, j) is a mention-entity popularity for each candidate
entity. The set of candidate entities for the list item li is denoted by Ri.
Given |Ri| is size of Ri, and use 1 6 j 6 |Ri| to index the candidate entity
in Ri. The candidate entity with index j in Ri is denoted by ri, j. Where
count(ri, j) is the number of links which point to the candidate entity ri, j

under the mentioned term li and ∑
|Ri|
u=1 count(ri,u) is the total of links which

point to the set of candidate entities Ri under the mention term li.

26 Theoretical Background

• Coherence means that all entities in the web lists should have similar type.
Therefore, the candidate entity which has the same conceptual type as the
other linking type should be considered. The coherence is calculated from
two features: the type hierarchy based on similarity and the distributional
context similarity.

The study [62] assumes that all the list items can be linked to the existing knowledge
base, but in fact some entities are absence from the knowledge base. Additionally,
some of the YAGO hierarchy classes are dirty so the linking quality may not gain an
advantage over the type hierarchy based similarity.

2.3 Tree Matching

In this section, we introduce the two tree matching techniques: Simple Tree Matching(STM) [75]
and Partial Tree Alignment(PTA) [79–81]. STM and PTA algorithms provide a useful idea
for us to represent a new algorithm called Simple Partial Tree matching(SPTM) in personal
named entity disambiguation. Tree matching is the algorithm for calculating the maximum
similarity between tree A and B [43], and can be defined as the minimum set of operation
cost for converting tree A into tree B [47]. The set of the operation cost consists of node
removal, node insertion and node replacement where a node is a set of letters in the personal
name. Tree matching is useful for mapping two documents which are organised according
to a hierarchical structure, or a nested of elements, e.g. XML, HTML or meta-data.

’T’ is a tree and ’T[i]’ is the i-th node in tree ’T’. The nodes are ordered from top to
bottom and left to right. The letter ’M’ is the set of all similarity nodes between two trees,
where tree A has n1 nodes and tree B has n2 nodes. For any

1. i1 = i2 iff j1 = j2;

2. A[i1] is on the left of A[i2] iff B[j1] is on the left B[j2] ;

3. A[i1] is an ancestor of A[i2] iff B[j1] is on the left B[j2] ;

Intuitively, every nodes in a tree occurs only once and "the order among siblings and
the hierarchical relation among nodes are preserved" [47]. One major drawbacks of tree
edit distance is high computation cost [28] needed in transforming one tree into another.
Yang [75] solves the tree edit distance problem by introducing Simple Tree Matching(STM).

STM was proposed in [75] for similarity measurement between two computer programs.
STM is a restricted matching algorithm, as it does not allow node replacement or level cross-
ing for calculating the maximum number of similarity nodes between a pair of trees [47].

2.3 Tree Matching 27

STM is a top-down algorithm with the complexity of O(n1,n2) where n1 and n2 are the size
of the trees. The key problem in STM is that every nodes in the tree are equal. Kim et
al. [43] enhanced the STM algorithm for web information extraction by assigning different
weights to different HTML nodes in the tree and calling it the HTML Tree Matching(HTM)
algorithm.

Zhai and Liu [79–81] introduce PTA based on tree matching for aligning data records
which are extracted from web pages. This algorithm is called partial tree alignment because
only certain matched data fields in a pair of records can be aligned. One limitation in PTA
is the equal weight is given to each HTML tag.

Kim et al. [43] develop a Layered and Weighted Tree Matching (LWTM) algorithm
for measuring similarity between web data records. They provided different weights for
different types of HTML elements, from the assumption that different nodes in similar data
records usually have different importance when computing the similarity of these nodes.

In the next sub-section, we give an overview two algorithms. STM and PTA which are
used in the personal name disambiguation in this study.

2.3.1 Simple Tree Matching(STM)

STM is a dynamic programming scheme used to identify the syntactic difference between
two programs. Figures. 2.6 and 2.7 illustrate the STM algorithm for comparing tree A
and tree B. The two root nodes: N1 and N15 are mapping first (in line 1) and if two root
nodes have distinct letters, then two trees are completely different. If the two root node
are similar, the algorithm then recursively finds the maximum amount of matching nodes
between the first level of tree A and tree B and saves it in a W matrix (in line 8). The result
values of the W matrix are shown in 2.6 (c). The value of matching N2 and N16 is 3 for
the three pairs: (N2, N16), (N6, N18), (N7, N19). The value resulting from matching node
N2 and node N17 is 0 because these two nodes contain distinct letters. The value resulting
from matching node N3 and node N17 is 2 for the two pairs (N3, N17), (N8, N21). The
value resulting from matching node N4 and node N16 is 2. Note that (N9, N10) and (N18,
N19) contain identical letters but there do not match because the two pairs of nodes are
represented in a different order. The value of matching N5 and N17 is 3 for the three pairs:
(N5, N17), (N11, N20), (N12, N22). After that, the M matrix is computed. The final value
that results is returned in line 12, M[4,2] is 6 and the maximum number of matching pairs
is 7. The seven matching pairs are (N1, N15),(N2, N16), (N6, N18), (N7, N19), (N5, N17),
(N11, N20), (N12, N22).

28 Theoretical Background

Fig. 2.6 Simple Tree Matching (a) Tree A; (b) Tree B; (c) W matrix for the first-level sub-
trees; (d) M matrix for the first-level sub-trees [75].

Fig. 2.7 The Simple Tree Matching Algorithm [79].

2.3 Tree Matching 29

2.3.2 Partial Tree Alignment(PTA)

PTA [79–81] algorithm is part of DEPTA (Data Extraction based on Partial Tree Alignment).
The alignment is partial because the node in Ti can be inserted into Ts only if the location for
the insertion can be uniquely determined in Ts. Otherwise, they will not be inserted and will
be left unaligned. This technique is commonly used for alignment of a data item in each
data region due to the fact that, in some web pages, the object details or data records are
not represented in a connecting segment of the HTML code. Data region is the boundary
location in the web page that contains similar data records. In this case, data items from all
data records will be rearranged before they are integrating into the database.

PTA aligns multiple trees by progressively growing a seed tree. The seed tree, denoted
by Ts, is considered to be from the tree which has the maximum number of data fields.
The reason for choosing this seed tree is clear, as it is more likely that the tree has a good
alignment with it than with data fields in other data records. After that, for each Ti(i ̸= s),
the algorithm tries to find a matching node in Ts for each node in Ti. When a match is found
for node Ti[j], a link is created from T[j] to Ts[k] to indicate its match in the seed tree. If the
match cannot be found for node Ti[j], then the algorithm attempts to expand the seed tree
by inserting Ti[j] into Ts. The expanded seed tree Ts is then used in subsequent matching.

To clarify PTA algorithm, we will first describe two tree alignment, and after this we
will introduce multiple tree alignment.

Partial Alignment of Two Trees

To clarify, PTA algorithm works on, how nodes in Ti can be aligned with nodes in Ts. Firstly,
we will demonstrate partial alignment of two trees. After Ts and Ti are matched, some nodes
in Ti can be aligned with their corresponding nodes of Ts because they match one another.
The nodes in Ti that are not matched should then be, inserted into Ts as they may contain
optional data items. There are two possible situations when inserting a new node Ti[j] into
the seed tree Ts, depending on the whether a location in ts can be uniquely determined to
insert Ti[j]. Otherwise, they will not be inserted and will be left unaligned. The location for
insertion Ti[j] can be uniquely decided in the following cases:

30 Theoretical Background

Fig. 2.8 Expanding the seed tree: (a) and (b) unique expansion and (c) insertion ambigu-
ity [81].

1. If Ti[j] ...Ti[m] have two neighbouring siblings in Ti, one on the right and the other on
the left, that are matched with two consecutive siblings in Ts. Figure 2.8a shows such
a situation, which gives one part of Ts and one part of Ti.

2. If Ti[j] ...Ti[m] has only one left neighbouring sibling x in Ti and x matches the right
most node x in Ts. The Ti[j] ...Ti[m] can be inserted after node x in Ts. Figure 2.8b
illustrates this case.

3. If, on the other hand, there can not decide a unique location for unmatched nodes in
Ti to be inserted into ts, this is shown in Figure 2.8c. The unmatched node x in Ti may
be inserted into Ts, either between nodes a and b, or between nodes b and e. In this
situation, we do not insert this node into Ts.

Partial Alignment of Multiple Trees

The alignment algorithm is based on tree matching and uses only HTML tags for compari-
son between pair of nodes. Figure 2.9 illustrates the multiple tree alignment algorithm.

2.3 Tree Matching 31

Fig. 2.9 Partial Tree Alignment with multiple trees [81].

The algorithm starts with three trees. Ts, T2 and T3 which are to be aligned. The tree
which has the maximum number of data items will be a seed tree or Ts. The algorithm is
based on two trees matching.

Step 1 A DOM tree is established for each data record. The tree consists of two levels:
parent and child.

Step 2 A DOM tree that holds the maximum number of data items (nodes) is referred to as
a seed tree. Figure 2.9(a) is a seed tree (Ts).

Step 3 Let Ts be a seed tree and Ti contains a set of other trees in each data region (i ̸= s).
Ti is matched with Ts until end of Ti.

There are two possible situation:

(i) If the location for adding new node can be resolved, the node in Ti will be inserted
into Ts. Figure 2.9 (c), (d) and (f) show this situation. The seed tree Ts is expanded.

(ii) If the location for inserting new node cannot be uniquely determined (as shown
in Figure 2.9 (a), (b) and (d)), there is more than one possible place to insert the new

32 Theoretical Background

node, and node X and I can be added after node D, J or K. Therefore, Ts cannot be
aligned and T2 will be moved to R.

Step 4 When all Ti are processed completely, the trees in each data record will be pro-
cessed again. If the trees are unaligned in Ts this is the end of the process and, the
unmatchable data items will be moved to a single column.

The complexity of this algorithm based on Big O notation is O(k2), where k is the
number of trees. Big O notation, also called Landau’s Symbol, is a technique which is used
in Computer Science to define the performance or complexity of an algorithm. The letter O
is defined as the rate of growth of a function, so T(k) = O(n2) means that T(k) grows at the
order of n2.

Incorrect alignment of data items happens in the two following situations:

1. Data items of the same attribute are incorrectly aligned into different columns because
they are enclosed by tags with different tag names.

2. Data items of different attributes are incorrectly aligned into the same columns be-
cause they are enclosed by tags with the same tag name.

The two results of incorrect alignment reveal that tag name is a significant feature for preci-
sion in partial tree alignment.

2.4 Conclusion

The occupation taxonomy in existing knowledge bases including Wikipedia, Freebase, YAGO
and DBpedia are not suitable to establish personal name concepts. Firstly, Wikipedia and
Freebase categories are not well-formed arrangements and are based on thematic domains.
While the, YAGO knowledge base fixed the above problems by constructing a backbone
class from WordNet synsets before connecting them to Wikipedia categories to form a
semantic taxonomy. In this thesis found that some connections between WordNet and
Wikipedia are wrong. Some ofthe WordNet classes are not related to Wikipedia categories.
For example, the Wikipedia categories: President of FIFA is assigned to the WordNet class:
head of state president, but the president of FIFA is not a head of state president. Finally,
DBpedia ontology is well organised, but the hierarchy level is not deep enough to create
personal name concepts.

An occupation is an important feature when distinguishing one person from another [48].
This thesis aims to propose a new occupation taxonomy for generating a personal name con-

2.4 Conclusion 33

cept in each instance. To define a characteristic in each person, the basic element of occupa-
tion taxonomy should be semantic and organised in multiple orders. Therefore, we propose
a new occupation ontology architecture based on YAGO taxonomy and web directories to
create an occupation taxonomy for personal name concepts.

The NED framework consists of three components: extractor, searcher and disambigua-
tor. The extractor fulfils the task of extracting a list of proper names within a document. The
searcher generates a set of candidate entities from each proper name by matching a proper
name over the entity surface form. However, the exact-match lookup over the entity surface
form in the previous works is insufficient to generate a set of candidate entities because the
two names (the mentioned name and the entity surface form) are equivalent if all letters are
the same. However, one challenge in NED is name variations, as a proper name often has
multiple representations and typological errors occur. The disambiguator has the task of
solving lexical ambiguity by linking the best candidate to a mentioned name. Two funda-
mental techniques of contextual similarity and topical coherence are usually used in a NED
task. However, contextual similarity is not flexible for natural language. As a result, we in-
troduce a new approach based on tree matching and topical coherence in the disambiguator
task.

There are three main advantages to using STM to compare a similarity between two
personal name concepts. Firstly, the structure of a personal name concept is a tree. Sec-
ondly, the computation needed to make a decision that a pairs of personal name concepts
are similar or not is a short one. This is because STM is a top-down algorithm and the two
root nodes are compared first, so if the two root nodes are dissimilar this means that there
are significant differences in conceptualisation between the two personal names. Thirdly,
when considering the similarity between two trees, it is not necessary for every nodes in
the two tree to be similar, but enough for some nodes in the two tree to be similar. The
STM returns the maximum number of similarity nodes and the matching pairs. However,
the performance of STM is limited by assigning equal weight to every nodes in the tree. Ad-
ditionally, it is time consuming and it does not make sense to compare ambiguous personal
name concepts to every identified personal in a web document.

The seed tree growth technique in PTA provides a useful idea to our work for creating a
comparison tree. This is because it integrates identification of personal name conceptualisa-
tions which have the same root node and because the tree which has the maximum number
of nodes becomes the comparison tree. A comparison tree technique can reduce the number
of times similarity matching occur between two trees.

As a result, we can introduce the new algorithm Simple Partial Tree Matching(SPTM)
for personal name disambiguation by combining the two algorithms of STM and PTA.

Chapter 3

Personal Name Surface Form and
OAPnDis

This chapter introduces three main ideas used in personal name entity linking: Personal
Name Surface Form Modules(PNSFM), Occupation Architecture for Personal Name Dis-
ambiguation (OAPnDis) and the Personal Name Disambiguation Data Catalogue (PNDDC).
Firstly, Section 3.2 describes PNSFMs that are used to generate personal name surface form
and extracted occupation categories, personal name entity’s occupation and their relations.
Secondly, Section 3.3 presents and overview of OAPnDis, a new occupation architecture
that is used to generate personal name concepts. Finally, Section 3.4 presents a detailed
description of the Personal Name Disambiguation Data Catalogue (PNDDC), which is used
in personal name entity linking.

3.1 Motivation

Data catalogues are one of the important components of Personal Name Entity Linking
(PNEL) and plays a critical role in the precision of PNEL. The major problems of PNEL,
hoever, are lexical and referential ambiguity. Referential ambiguity means that the name
can be represented in multiple forms [7, 24] such as abbreviations (e.g. John F. Kennedy
vs. JFK), shortened form (e.g. Willard Carroll Smith vs. Will Smith), alternate spellings
e.g. Barack Obama vs. Barak Obama and aliases e.g. DB7 vs. David Beckham. Lexical
ambiguity means that a single name can refer to different persons [7, 24]. For example, the
name George Bush may refer to more than six well known people on Wikipedia as shown
in Table 3.1.

36 Personal Name Surface Form and OAPnDis

Table 3.1 The Wikipedia disambiguation page focuses on the personal name: George
Bush [71].

ID Personal Names Professional Category
1 George H. W. Bush 41st President of the United States
2 George W. Bush 43rd President of the United States
3 George Bush(biblical scholar) 19th-century biblical scholar and preacher
4 George Washington Bush First black settler in what is now the state of Washington
5 George Bush (NASCAR) Former NASCAR driver
6 George P. Bush (born 1976) Attorney and real estate developer

Traditionally, knowledge bases such as YAGO [42], Wikipedia and Freebase [30] pro-
vide information about referential ambiguity for each person. For example, Wikipedia uses
’the redirect pages’, YAGO uses the property ’means’ and Freebase uses the property ’Also
known as’ to solve the referential ambiguity of each person. The knowledge bases above
therefore provide available data of referential ambiguity of names that is useful for generat-
ing a personal name dictionary.

Knowledge bases uses multiple features such as occupation, nationality and birth of date
for solving problems of lexical ambiguity by inserting these feature at the end of personal
name. Occupation is widely used in Wikipedia or Google snippets to distinguish people
who have the same name. Furthermore, the experimental results in a study [48] shows
that occupation is the most important feature for solving the problem of lexical ambiguity.
Therefore, building personal name entities and a corresponding ’occupations catalogue’ is
an important task in PNEL.

Knowledge bases and web directories such as Wikipedia, Freebase and Dmoz [23] use
a thematic domain hierarchy for grouping contents and entities. The categories have a hi-
erarchical arrangement; however, they are not well-formed and barely effective for their
ontological purpose [63, 65]. For example, Stephen King is assigned to the super-category
Fiction, even though Stephen King is a writer and not fiction. Therefore, thematic domain
hierarchy provides sometimes meaningless to a person and may affect the performance of
personal name disambiguation.

YAGO and DBpedia [20] provide an ontology and semantic classes. However, the tax-
onomy in YAGO suffers from the error connections between WordNet and Wikipedia class
in that, some classes are not related [22]. The major problem in DBpedia is that it is offering
a smaller number of level in hierarchy structure so it does not do enough for generating the
personal name concept for each person. It is more valuable in personal name disambiguation
if the system can create a concept of each person based on their occupation taxonomy, or if

3.2 Personal Name Surface Form Modules(PNSFM) 37

people are classified according which their top view of occupation taxonomy. For example,
when describing the entity Chris Martin, the system provides the information not only that
he is a singer, but also details such as that he is a 20th-century English singers, a British
alternative rock musician and in the upper level, that he is an Entertainer and Artist.

The goal of this chapter is to describe OAPnDis, personal name concepts, personal name
surface form and investigate that occupation feature can be used to disambiguate lexical
ambiguity.

3.2 Personal Name Surface Form Modules(PNSFM)

Fig. 3.1 PNSFM modules

PNSFM is a set of component that are used to create a personal surface form and gener-
ate information for creating occupation taxonomy and personal name concepts. Figure 3.1
shows this in three stages: data pre-processing, data extracting and data matching. The in-
put is a fact from YAGO, while the outputs are personal name surface forms personal name
entities personal name occupations and personal name relations .

38 Personal Name Surface Form and OAPnDis

PNSFM differs from previous studies [8, 19, 63] because our modules include a data
pre-processing stage for removing duplicate and dirty data before integrating it into the
personal surface form. This is because dirty data may reduce the performance of personal
name matching that relies on character comparisons [25] and consume storage space. The
overview of the data catalogue system is outlined in Figure 3.1.

1. The data pre-processing stage focuses on removing unwanted data, detecting dupli-
cate data and transforming representation in Unicode characters into ASCII code char-
acters. While facts in YAGO are usually clean, some dirty data may be present; this
is a basic problem with extracted data from the Internet.

2. The data extracting stage works by extracting personal name entities, their alternative
names, their occupations, their relations and their occupation categories from YAGO
facts. These components are extracted from subjects and/or objects among three prop-
erties: actedIn, type, isMarriedTo, hasChild, means and subclassOf.

3. The data matching stage aims to map data and detect duplicate data before storing
it in a database. The terms in Figure 3.1 are personal name entities, their alternative
names, their occupations, their relations and their occupation categories.

The previous three stages are described in more details in the following sections. Due to the
time constraints, this thesis has focused on the following three major types of occupation
categories under a Person class in YAGO that are usually mentioned on the web pages. The
three groups of occupations considered are listed below.

1. Entertainers and artists are people who are working in the area of entertainment and
art, including actors, singers, models, writers, dancers and producers.

2. Sportspeople are people working within sport, such as players, team managers and
coaches.

3. Politicians are people who are working within politics, such as governors, presidents,
Chancellors and senators.

YAGO2 is a source for extracting personal name entities, their alternative names and
their occupation categories. Table 3.2 shows the variables and their meanings.

3.2 Personal Name Surface Form Modules(PNSFM) 39

Table 3.2 Notations used in PNSFM modules

Notation Meaning
P = {p} Set of personal name entities
A = {a} Alternative names
O = {c} Occupation categories
S = {s} Personal name surface forms
R = {r} Personal name relations
A(p) Set of alternative names in each person
O(p) Set of occupations in each person
P(s) A list of persons who share a surface form
{p,r,(p1,p2,p3,..,pn)} Set of person and their relations

3.2.1 Data Pre-Processing

When data from the web is stored, one needs to ensure that it is clean of dirty data in order to
optimise efficiency and the precision of data mining [10, 51]. Furthermore, the detection of
duplicate data is an important step when integrating data from multiple sources [55]. Data
pre-processing is an important stage in PNSFM because it significantly improve personal
named disambiguation that is based on similar text matching. Data pre-processing is a part
of the data cleaning technique which is used to detect duplicate data, remove unwanted data
and transform Unicode characters to ASCII characters in YAGO facts.

On the one hand, YAGO has a large amount of personal name entities, binary relation-
ships and a clean taxonomy of occupation categories which are derived from WordNet and
Wikipedia. However, the contents of YAGO could also be dirty or duplicated as shown in
Figure 3.2. As an illustration, Figure 3.2(a) shows noisy facts in YAGO that are totally un-
readable as they are represented in the form of Unicode characters that always occur in a
data set and should be converted to ASCII characters. Unicode is a particularly persistent
problem when a web page is generated in different languages such as Egyptian, Russian or
Thai. Figure 3.2(b) represents two duplicate data records. This is why data pre-processing
is an important stage before data from the YAGO knowledge base is matched.

40 Personal Name Surface Form and OAPnDis

Fig. 3.2 An example of the dirty data in YAGO knowledge base.

In this thesis, YAGO2 [40] is considered as a source to create a personal name surface
form, occupation taxonomy and personal name concepts for the following reasons:

1. YAGO2 provides a huge number of facts, entities and relations (without GeoNames it
contains 124 million facts, 2.6 million entities and 104 relations).

2. Facts stored in YAGO2 have a higher precision as 95% of the facts are true.

3. YAGO provides alternative names for each person via property means.

YAGO has a higher precision rate (up to 95%). On the other hand, errors such as the one
shown in Figure 3.2 persist, as duplicate facts and Unicode noise is common.

Table 3.3 Data set-up

Type Amount(record) Percentage(%)
Facts 400 100
Entities 25 -
Property 19 -
Dirty data 85 21.25
Duplicate 24 6

3.2 Personal Name Surface Form Modules(PNSFM) 41

We evaluated a random sample of YAGO facts (400 sample sets) with different personal
name entities and properties. The results shown in Table 3.3 are those of 400 facts, 25
personal name entities and 19 properties. Of them 85 records (21.25%) are dirty (contain
Unicode characters) and 24 records (6%) are duplications. 23 records occur twice and one
record occurs four times.

In the pre-processing stage, we need to remove unwanted data, transform data and detect
duplicate facts from YAGO. This stage includes the tasks of:

1. Unicode character transformation, transforms a Unicode expression into a readable
form. For example:

Hook \u002c_Line_\u0026_Sinker_ \u00281969_film \u0029

is transformed to Hook,_Line_&_Sinker.

2. Data replacing replaces unwanted symbols, such as multiple occurrences of white-
space characters to single white-space and underscore characters to single white-
space.

3. Data removing removes unwanted words, such as the first prefix in for example ’word-
net’ and ’wikicategory’ and the suffix, which is a set of arithmetical values that is
represented at the end of strings. For example, a text such as ’wordnet_performer
_110415638’, after removing the prefix and suffix, will be transformed to ’performer’.

4. Duplication data detecting. The system detects duplicate data before inserting the new
data into the data catalogue.

3.2.2 Data Extracting

After a fact has been pre-processed, the next stage is data extraction. It extracts the subject
and/or object from the facts that rely on its property. This stage focuses on extracting the
personal name entities, their occupations, their alternative names, their relations and their
occupation hierarchy. The five following major terms are extracted from YAGO2:

1. Personal name entity extraction. Personal name entities are extracted from sub-
jects and/or objects which have properties: actedIn, type, means, isMarriedTo and
hasChild. For example, Tom Hanks is a personal name entity that is extracted from
the subject in triple form of fact:

Tom_Hanks actedIn Forrest_Gump.

42 Personal Name Surface Form and OAPnDis

YAGO distinguishes lexical ambiguity using occupation, or occupation and year of
birth if occupation is repetition. As shown in Table 3.4, five occupations: ’merican
football, artist, comedian, cricketer and motorcycle racer are used to make a personal
name Chris Martin unique. Moreover, the birth year is combined if personal name
with occupation cannot distinguish person. As shown in Table 3.4, the year of birth is
used for personal name ID 5 and 6 to distinguish two people who have both the same
name and occupation. Therefore, the parentheses and its details after the personal
name are retained to make the personal name unique.

Table 3.4 The unique personal name entities in our data catalogue

ID Personal Names
1 Chris Martin(American football)
2 Chris Martin(artist)
3 Chris Martin(comedian)
4 Chris Martin(cricketer)
5 Chris Martin(footballer born 1988)
6 Chris Martin(footballer born 1990)
7 Chris Martin(motorcycle racer)

2. Occupation category extraction. Occupation categories are extracted from subjects
and objects which have property: subclassOf in YAGO. The property subclassOf is
used to generate from two properties in YAGO: Property subclassOf in YAGO is used
for organizing occupation hierarchy in YAGO. For example,

fact = musician subclassOf performer
parent = performer is an object
child = musician is a subject

3. Personal name occupation extraction. The property type is used for mapping the
correlation between individual personal name entity and its occupation. For example,

Tom Cruise type American actors

means Tom Cruise is an instance in the occupation category American actors or Tom
Cruise is an American actor, where Tom Cruise is a subject and American actors is an
object.

3.2 Personal Name Surface Form Modules(PNSFM) 43

4. Relations extraction. Personal name relations are extracted from two properties in
YAGO facts: isMarriedTo and hasChild for labelling a connection between the enti-
ties. For example,

Bill Clinton isMarriedTo Hillary Rodham Clinton.

Where Bill Clinton is a subject and Hillary Rodham Clinton is an object.

5. Alternative name extraction. An alternative name is extracted from fact that has the
properties means, where the subject is an alternative name and the object is a personal
name entity. For example,

Samantha Lewes means Tom Hanks.

This means that Samantha Lewes is an alternative name of personal name entity
Tom_Hanks.

3.2.3 Data Matching

1. Personal name surface form. Personal name surface form is a term that is used to
refer to a person in a document [19]. Each term that occurs in a document can be
shared with multiple persons, so that it is complex for a computer to make a decision
about identifying exactly who the person is. This problem is called personal name
ambiguity. We classify personal name surface forms into two types: an ambiguous
personal surface form and a single personal surface form. An ambiguous personal
surface form is a surface form that is assigned to multiple personal name entities. For
example, the surface form Alan Curtis is shared among different three people:

P(Alan Curtis) = {Alan Curtis (American actor), Alan Curtis (British actor),
Alan Curtis (footballer)}

The second surface form is a single personal surface form, i.e. a surface form which
has a single member. For example, the surface form David Beckham has only one
instance to share this term:

P(David Beckham) = {David Beckham}

Definition 3.1. Given S is a set of personal name surface forms in a data catalogue
D, where s ∈ S is an instance in S. We use the notation P(s) to denote personal name

44 Personal Name Surface Form and OAPnDis

entities who share each surface form s. We can draw a notation set of personal name
entities in each personal name surface form s as:

P(s) = {p1, p2, p3, ..., pn}

In this notation p1, p2, p3, ..., pn are instances of P(s). For example, a set of persons
who share the surface form Bush are:

P(Bush) = {Billy Green Bush, Laura Bush, George W. Bush}.

Sources of Personal Name Surface Form
We have two sources to create personal surface forms: the name of personal name
entities and alternative names.

• Personal name entity is used for creating personal name surface forms. We
move occupation data or birth date that is represented in parenthesis at the end
of personal name for separating ambiguous entity. For example, the entity name
Chris Martin(American football) will be transformed to Chris Martin.

• Alternative names are any other names that used to refer to a person within a
document, such as a nickname, pen name or occupation position. For example,
the personal name George W. Bush can be represented in multiple references
such as W. Bush, Bush Junior, Bush II, G. Dub, G.W.B., Dubya Bush, Bush 43,
43rd President of the United States.

2. Personal name entity is a set of personal name in a database and the unique identi-
fication of each name. YAGO uses occupation, birth year and/or nationality to distin-
guish lexical ambiguity e.g. Thomas Cruise (footballer) or Mike Jackson (Australian
entertainer).

Definition 3.2. The set of personal names is P , where each personal name p ∈ P.
A personal name entity p is a unique instance in a data catalogue D which contains
unique values. For example,

P = {Bill Clinton, Chris Martin, Chris Martin, Chris Martin(comedian),}

3. Occupation category. The property subclassOf in YAGO are used for forming oc-
cupation category hierarchy structures. Figure 3.3 shows an example result of the

3.2 Personal Name Surface Form Modules(PNSFM) 45

occupation categories hierarchy extracted from YAGO2. The highest class is per-
son and connected to subclass and the lowest are the leaf classes from the Wikipedia
categories.

Fig. 3.3 An excerpt of YAGO entertainer class taxonomy

4. Personal name occupation. We used the facts with property type to form the relations
between personal name entity and its occupations.

Definition 3.3. Given O is a set of occupations, where each occupation o ∈ O.

O = {person, entertainer, performer, actor, musician, dancer, American actors, ... }

Given P is set of personal name entities, where each personal name entity p ∈ P.
Instance p may have one or more occupations, written as O(p).

O(Tom Cruse) = {American actors, American film producers }

5. Personal name entity relations. Personal name entity relations are created from
two properties which extracted from YAGO: isMarriedTo and textithasChild. For
example, entity David Beckham isMarriedTo Victoria Beckham or David Beckham
hasChild Brooklyn Beckham.

46 Personal Name Surface Form and OAPnDis

Definition 3.4. Given the set of binary relations, name is R and r ∈ R is one rela-
tion name. The relationship between the personal name entities is written by {p, r,
(p1,p2,..,pn)}. We demonstrate the relations between the entities below:

R = {isMarriedTo, hasChild}
P = {David Beckham, Victoria Beckham, Brooklyn Beckham, Romeo James
Beckham, Harper Seven Beckham, Cruz David Beckham}
r1 = isMarriedTo
r2 = hasChild
{David Beckham, isMarriedTo, (Victoria Beckham)}
{David Beckham, hasChild, (Brooklyn Beckham, Romeo James Beckham, Harper
Seven Beckham, Cruz David Beckham)}.

3.3 Occupation Architecture for Personal Name Disambigua-
tion(OAPnDis)

The occupation taxonomy in YAGO is an important component and plays a key role in gen-
erating OAPnDis. However, we found some evidences to suggest the occupation hierarchy
in YAGO being wrong as the child class that is derived from Wikipedia categories is not
related to the super-class. For example, in a set of Wikipedia categories:

Presidents of the United States, Presidents of Germany, Presidents of FIFA,
Presidents of Marquette University and Presidents of Clemson University are under Word-
Net classes:

head of state president → representative → negotiator → communicator→ person

and in a set of Wikipedia categories:

Prime Ministers of the United Kingdom, Prime Ministers of France,
French Ministers of Justice and Rectors of the University of Glasgow are under WordNet
classes:

curate → clergyman → spiritual leader → leader → person

The occupations above are assigned to the wrong WordNet classes (e.g. a Presidents of
FIFA is not a head of state. This problem may decrease the efficiency and quality in personal

3.3 Occupation Architecture for Personal Name Disambiguation(OAPnDis) 47

name disambiguation. This is because the occupation taxonomy is an important variable in
entity disambiguation [8, 19, 62, 63].

Recently, there have been two major methods used for grouping an entity: an ontology
taxonomy and a thematic domain [64]. Firstly, an ontology taxonomy is used in YAGO and
DBpedia. DBpdia created its own ontology taxonomy and occupation taxonomy has been
used for grouping people. The occupation taxonomy in DBpedia is clean, but provides less
depth; in fact, most of occupation hierarchies in it are just one level deep.

YAGO derives taxonomy from WordNet and Wikipedia that provides occupation hierar-
chy in multiple levels. However, the taxonomy in YAGO is dirty [22]. Freebase, Wikipedia
and Dmoz use a thematic domain to classify entity. The main disadvantage of the thematic
domain is that it does not represent the correct concept in each entity. For example, Stephen
King is put in the categories: Author→ Books→ Arts and Entertainment but Stephen King
is not a book. As the result, we design our occupation taxonomy to construct the concept of
person as described in the next subsection.

3.3.1 OAPnDis Architecture

OAPradis is an occupation taxonomy which is designed for personal name disambiguation.
OAPnDis architecture is based on YAGO classes, but the layer 1 classes are derived from
web directories. The architecture of OAPnDis is shown in Figure 3.4. The architecture
consists of four layers, as described below.

Fig. 3.4 OAPnDis architecture

48 Personal Name Surface Form and OAPnDis

1. Layer 0. The person is the top class in OAPnDis architecture. An instance assigned
under this layer is a person.

2. Layer 1. Layer 1 classes are derived from the web directory. However, the context of
each category is edited before being merging into OAPnDis (e.g. arts to artists, sport
to sportsperson) to depart from the thematic directory problem. A key benefit of this
step is that the occupations can be brought from the general term (e.g. entertainer and
artist, sportsperson, educator, politician) to their narrow specific types (e.g. US pres-
ident, American actor, English female model). Furthermore, some unrelated classes
are moved. For example, the class model is moved from worker to entertainer and
artist and UK prime minister is moved from leader→spiritual leader to politician.
As result, the mapping of duplicate or unrelated classes is solved.

3. Layer 2. Layer 2 are the classes that YAGO derives from WordNet. Some classes in
layer 1 may appear in layer 2 (e.g. entertainer). A class in layer 2 is discarded when
the system detects that it is duplicate class.

4. Layer 3. Layer 3 are the classes that YAGO derives from Wikipedia. YAGO maps
Wikipedia categories to WordNet classes by considering the head-word of Wikipedia
categories. For example, poets is the head-word of the category Canadian poets in
Wikipedia so Canadian poets should be a sub-class of poets in WordNet taxonomy.
However, determining only head-words may cause linking error among WordNet tax-
onomy and Wikipedia categories. For example, the Presidents of FIFA category is
a subclass of head of state president in WordNet taxonomy like Presidents of the
United States because they have the same head-word of presidents. In our work, we
work through the context of Wikipedia categories before mapping them to layer 2.

As the result, our occupation hierarchy is established and shown in Figure 3.5. Person is a
root node, and has three children: Entertainer and Artist, Politicians and Sportsperson. The
node Politician is a parent of nodes: President, Governor and Prime Minister.

3.3 Occupation Architecture for Personal Name Disambiguation(OAPnDis) 49

Fig. 3.5 An excerpt of the occupation taxonomy

3.3.2 Personal Name Concepts

The personal name concept is an abstract occupation category that is used to represent the
character of person. In this thesis, the occupation taxonomy is used to demonstrate the
character of personal name entity. An occupation is the primary feature used to distinguish
lexical ambiguity [48]. This subsection is now ready to introduce how to construct the
conceptualisation of each personal name, which consists of two steps:

• Building occupation taxonomy based on the architecture of occupation taxonomy.

• Building individual entity concept trees that are derived from occupation taxonomy.

Occupation Taxonomy Tree

The occupation taxonomy is a typical tree which represents the relationship between the
super class and the lower class. A class in occupation taxonomy is a single occupation; it
becomes a node in the hierarchical structure of the tree.

The main components of occupation trees are nodes and edges. A starter node without
a parent refers to a root node; it is an ancestor of all nodes in the tree. The root node in
the occupation tree is Person. A node without children is a leaf node; most of these are

50 Personal Name Surface Form and OAPnDis

derived from Wikipedia categories. Siblings are child nodes that have the same parent. The
connections between nodes are called edges.

We use the Modified Preorder Tree Traversal algorithm (MPTT) [39, 68] to solve the
problem about how to collect hierarchical data in a database. The issue is that a database
uses a flat structure to store data. The MPTT approach is to uses "lft" and "rght" attributes
(as "left" and "right" are the reserved keywords in SQL) to store the relationships between
parent and child nodes. The MPTT algorithm is shown in Figure 3.6.

This thesis uses an example in Figure 3.6 to describe the MPTT algorithm. The algo-
rithm travels starting from Root node A, from left to right, one level at a time, going down
along the edges of tree and assigning a value on the left and right side to every nodes in the
tree. The final value is assigned to the right side of the root node.

Fig. 3.6 A Modified Preorder Tree Traversal(MPTT) algorithm

A great deal of MPTT algorithm with "lft" and "rght" values returns the path of node
within a single query. For example, if we want to display the path of node E, the SQL query
could be:

”SELECT class FROM tree WHERE l f t < 5 AND rgt > 6 ORDER BY l f t ASC; ”

The return values of this SQL query are A, B and E. We thus adopt the MPTT algorithm
to our work for constructing entity concepts in each individual instance.

We will now describe how to create the personal name concept. The concept is based on
OAPnDis, as described in section 3.3.1. The algorithm has two steps to create the personal
name concepts in each instance.

1. Building occupation tree in each instance. Given O(p) = {01,02, ...,0n} is a set of oc-
cupation categories in each entity. For example, in an instance Arnold Schwarzeneg-
ger has five occupations:

3.3 Occupation Architecture for Personal Name Disambiguation(OAPnDis) 51

O(Arnold Schwarzenegger) = {Politicians, actor, American film producers,
American film actors, American film directors}.

The algorithm uses the classes of layer 1 to be a root node of the personal name con-
cept because it can classify people in overview. The occupation categories in O(p) are
used to generate an occupation tree in each instance using the SQL query in Section
3.3.1. The occupation node oi is the leaf node, and it can inherit from their parent
including the root node. For example,Arnold Schwarzenegger is an actor, so he can
be a performer and an Entertainer and Artist. As the result, when the occupation trees
are generated, the number of trees is equal to the number of occupation categories in
O(p).

Let O(p) = {o1,o2, ...,on} is a set of occupation trees in each personal name entity.
Where ti is a set of occupation categories hierarchy in each ci. For example, T(Arnold
Schwarzenegger) will have five trees below:
o1 = {Politicians}
o2 = {Entertainer and Artist, performer, actor}
o3 = {Entertainer and Artist, creator, producer, film maker, American film producers}
o4 = {Entertainer and Artist, performer, actor, American film actors}
o5 = {Entertainer and Artist, creator, producer, film maker, film director,
American film producers, American film directors}

2. Building the personal name concepts. After all the occupation, trees in each personal
name entity have been created and the personal name concepts for each person have
been generated under these trees. The root nodes of each occupation tree are used to
identify whether or not these occupation trees have the same concept.
All nodes in the occupation tree that have the same root node merge, and the du-
plicate nodes are removed to make the node unique in each concept. Given O(p) =
{o1,o2, ...,on} is a set of occupation trees in each personal name entity. Note that any
oi in O(p) are similarity consistent if their root node is equal. Let C(p) = {c1,c2, ...,cn}
is a set of personal concepts for each personal name entity.

ci =
n⋃

i=1

oi

where root of all oi are equal.
We use an example of the personal name entity Arnold Schwarzenegger occupation
trees to explain how to generate personal name concepts. In general, a conceptual tree

52 Personal Name Surface Form and OAPnDis

is produced as follows:

• Matching the root node in O(p). After this step, a set of root nodes in O(p) is
generated. Hence, T(Arnold Schwarzenegger) has two root nodes: {Politicians,
Entertainer and Artist}.

• A tree oi which has the same root node merges to create personal name concepts.
A process loops until the final oi merges. For example, C(ArnoldSchwarzenegger)
= {c1,c2} , where c1 and c2 describe below:
c1 = {o1}
c2 = {o2 ∪o3 ∪o4 ∪o5}

As a result, the personal name entity Arnold Schwarzenegger has two personal name
concepts. In the first one he is a Politician, and in the second one he is an Entertainer
and Artist. The details of the concepts which are generated in these steps are shown
in Figure 3.7.

Fig. 3.7 Examples of personal name concepts of Arnold Schwarzenegger: (a) Politician and
(b) Entertainer and Artist

3.4 Personal Name Disambiguation Data Catalogue (PNDDC)

PNDDC is a back-end database that is used to store personal surface forms, personal name
entities, personal name concepts, occupation taxonomy and personal name entity relations.

3.4 Personal Name Disambiguation Data Catalogue (PNDDC) 53

PNDDC is a knowledge base which is used in Chapter 5 for personal name disambiguation.
This thesis has designed the structure of our data catalogue similarly to Cucerzan [19],
including in the personal name surface form and personal name entity details. A major
advantage of this structure is that it can distinguish between the component of generating
candidate entity and the component of entity disambiguation.

Cucerzan created surface form from four sources in Wikipedia:

• The titles of entity pages.

• The titles of redirect pages.

• The disambiguation pages.

• The references to entity pages in other Wikipedia articles.

In the second part, entity details contain three items:

• The entity name that is extracted from the entity title.

• Tags or categories that are assigned to each entity.

• Contexts are the contextual clues for each entity; these are extracted from the first
paragraph of an entity page and the corresponding pages refer back to the target entity.

In our work, we use the data sources and technique from Cucerzan, but we do not use
catalogue structure. Firstly, the data is ’pre-processing’ to remove dirty data before storage.
The data pre-processing task can boost the efficiency and the precision of data matching
[17]. Secondly, the sources of our data catalogue are derived from YAGO. Finally, the
second part of our data catalogue contains different information from Cucerzan because the
features and the methods in entity disambiguation are different.

54 Personal Name Surface Form and OAPnDis

Fig. 3.8 PNDDC structure

Figure 3.8, above, shows a PNDDC structure. The personal name surface form is for the
term Chris Martin, which is shared by eight different persons. The figure shows above how
to create the link for mapping between each term and personal name entity. For example,
the personal name Chris Martin in the surface form is mapped to eight persons, and the first
name Chris Martin maps to the personal name Chris Martin, a lead vocalist, pianist and
co-founder of the British rock band Coldplay. The entity’s name, concepts and relations are
represented in the personal name entity details section.

3.5 Experimental Results and Discussion

In this section, the data sets and results that are used to build PNDDC are described. PNDDC
consists of personal surface form, personal name entity, personal name concepts, occupation
taxonomy and personal name entity relations.

3.5 Experimental Results and Discussion 55

3.5.1 Data Sets

Table 3.5 shows the sources from YAGO which are used to construct PNDDC. We consider
six properties of YAGO fact:

actedIn, means, type, subclassOf, isMarriedTo, hasChild.

PNDDC stores information about people who have a job in three areas: entertainer,
sportsperson and politician. We model PNDDC independently from the data source; this
means that PNDDC can create from any knowledge bases which provides personal name,
occupation hierarchy, name variations and their relationships. The property actedIn is used
to extract personal name entities, because the subjects in these facts are actors. For example,
in the fact that Tom_Hanks actedIn Forrest_Gump, the property actedIn seems to imply that
the subject Tom_Hanks is an actor. The propertymeans is the collection of the alternative
names of each personal name entity that are useful for us in building our personal name
surface form. For example, DB7 means David_Beckham. This means that DB7 is an alter-
native name for David Beckham. The property type and subclassOf are used to construct
our personal name concepts and the property isMarriedTo and hasChild are the personal
name entity relations. Table 3.5 shows the amount of facts in YAGO that are used to create
PNDDC.

Table 3.5 The data sets in the personal name disambiguation data catalogue

Properties Facts
actedIn 126,636
means 6,741,479
type 8,414,398
subclassOf 367,040
isMarriedTo 27,708
hasChild 15,471

3.5.2 Result and Discussion

The results obtained from PNDDC are summarised in Table 3.6. As a results, PNDDC has
107,058 entities, 145,638 personal surface forms, 4,203 personal name entity relations, 321
occupations and 105,543 personal name concepts. We found that the terms: Chris, James,

56 Personal Name Surface Form and OAPnDis

Christopher, Gina and Philip are the highest sharing. There are shared with 18 people. In
addition, the personal name: John Anderson, John Brown, Robert Brown refer to 11 different
people. Most people have no more than two personal name concepts. Only 0.06% have two
concepts.

Table 3.6 The personal name data catalogue and personal name concepts

PNDDC Descriptions Total
Personal name entities 107,058
Personal name surface forms 145,638
Number of isMarriedTO personal name entity relations 3,872
Number of hasChild personal name entity relations 331
Number of occupations 321
Number of persons who have single personal name concepts 105,482
Number of persons who have multiple personal name concepts 61

The final results show that an occupation is a significant feature in the in disambiguating
lexical ambiguity, as can be seen by comparing our results with the previous study of Han
and Zhao [37].

3.5 Experimental Results and Discussion 57

Fig. 3.9 Percentage of lexical ambiguity compare with Han and Zhao [37].

Han and Zhao extracted occupation categories from Freebase, and mined the reference
entity tables using a web-querying method. However, Han and Zhao used only a single
occupation to define the personal name when a name has lexical ambiguity (e.g. Andrew
Powell(Psychiatrist) and Andrew Powell(Musical Artist)). Our work, instead, uses personal
concepts to solve the problem of lexical ambiguity. The details are described in Chapter
5. We conduct 107,058 personal name entities, while Han and Zhao who gather 183,284
personal name entities. Our verification metric for evaluation is the percentage of lexical
ambiguity entities that cannot distinguish by a single occupation against Han and Zhao.
The results are shown in Figure 3.9.

The results of our study are consistent with Han and Zhao, who suggest that occupation
is useful information to distinguish lexical ambiguity. Of all personal name entities, it has
11.63% lexical ambiguity entities compared with 21.86% for Han and Zhao. The most
interesting finding is that for just 0.56% of case from our work and 0.50% from previous
study [37] occupation cannot be used to distinguish lexical ambiguity because two people
have a similar name and career. Occupation nearly always works in sorting out lexical
ambiguity and so it is a significant feature in lexical ambiguity disambiguation.

58 Personal Name Surface Form and OAPnDis

3.6 Related Work

Creating personal name surface form and personal name concepts are significant tasks in
personal name entity linking because personal surface form and personal name concepts
provide useful information in generating a set of candidate entities and personal name dis-
ambiguation. There are several works which have been focused on to create a data catalogue
for named entity disambiguation.

We start with Bunescu and Pasca [8], who used Wikipedia as a source for creating an
entity names dictionary. There are three sources that Bunescu and Pasca use to construct
entity name dictionary: Entity pages, Redirect pages and Disambiguation pages. The entity
name dictionary includes two fields: the term, and the set of entities denoted by this term.
An entity is extracted from an article title under the heuristic rules, to verify that a title is a
proper name. A set of terms in an entity names dictionary is derived from entity names, redi-
rect names and disambiguation names in each entity. For example, the term John Williams
may refer to three different people: John Williams (composer), John Williams (wrestler),
John Williams (VC).

Cucerzan [19] extends the data sources from Bunescu and Pasca by adding the references
to entity pages in other Wikipedia articles for constructing the entity name dictionary and
applying the term ’surface form’ to refer to the entity name dictionary. However, Hachey
et al. [34] find that the link anchor texts not as good data in generating a set of candidate
entities. Drredze et al. [24] argue that both entity name dictionaries which are introduced
by Bunescu and Pasca [8] and Cucerzan [19] are limited because of Wikipedia specific
dependencies.

Limaye et al. [46] introduce a new data source YAGO for creating a data catalogue,
which is used for annotating web tables. The researchers annotate table cells by matching
them with entity IDs in a data catalogue, annotating pairs of columns with a binary relation
in the catalogue and associating one or more types with each column of the table. The
catalogue contains types, entities and relations. Types are related by subtype relation T1 ⊆ T2

and entity E may be instance of one or more types. Each type and entity may be described
by one or more string that is called ’lemmas’, written by L(T) and L(E) where T and E
are each instance in types and entities. The relationship between a pair of column header
relations is written by B(T1,T2). For example, a relation BornPlace(Person,Country) means
that the relation BornPlace consists of two member types: person and country. Therefore,
the value of a couple of cells or the data record is written as B(E1,E2). For example, Steven
Gerrard was born in United Kingdom can be written as BornPlace(Steven Gerrard,United
Kingdom).

Bunescu and Pasca [8] and Cucerzan [19] used Wikipedia categories for name entity

3.7 Conclusions 59

disambiguation. However, categories in Wikipedia are dirty, as is the thematic domain
representation, so it is not clean enough for purpose of ontology purpose [63]. Han and Zhao
[37] use a reference entity table for name disambiguation. The reference entity table is a
set of personal names and the corresponding occupation (e.g. Michael Jordan, Basketball
Player) which is extracted from Freebase. Han and Zhao use only a single occupation to
describe a person.

In our work, we propose a new occupation taxonomy architecture: OAPnDis, which is
derived from YAGO and the web directory. We employ a clean and well-formed occupation
taxonomy which provides a more details to represent a personal concept in each person.
Our approach differs from Han and Zhao because we introduce the personal name concept,
which is a list of occupations to describe a person.

3.7 Conclusions

This chapter introduces a new technique to create a personal surface form, a new occupation
taxonomy OAPnDis and a PNDDC structure.

Firstly, PNSFM is introduced to construct the personal surface form and the personal
name entity relations. Unlike the previous study, our technique is independent from the
data source and includes a data pre-processing component prior to integration in a database.
The independent source means that the personal surface form or the personal name entity
relations can be generated from any knowledge base. Data pre-processing is a data cleaning
technique that is used to remove dirty data before extracting and matching facts.

Secondly, we propose a new occupation taxonomy: OAPnDis. The architecture is based
on two well known knowledge bases: Dmoz and YAGO. The new occupation architecture
can create a well-formed and semantic occupation taxonomy. As the result, personal name
concepts are created based on OAPnDis.

Finally, we introduce the PNDDC structure. PNDDC can be separated into two parts:
personal name surface form and personal name entity details (personal name entity, per-
sonal name concepts and personal name entity relations). This structure is advantageous
because this thesis wants to distinguish information between the searcher component and
the disambiguator component in personal named entity linking, as described in Chapter 5.

We have found that occupation is the best feature to disambiguate lexical ambiguity and
that only 0.56% of lexical ambiguity cannot be distinguished using a single occupation.

Chapter 4

Personal Name Transformation With
Context Free Grammar

In this chapter we introduce Personal Name Transformation Modules (PNTM) that are based
on Context Free Grammar (CFG) rules and personal name dictionary. PNTM is used to
transform a variety of name formats (e.g. nickname, alias, different order) into a uniform
representation (e.g. DB7 vs. David Beckham or Beckham, David vs. David Beckham).

4.1 Motivation

A proper name is a key component in personal name entity linking due to a lack of primary
key representation. Textual similarity metrics (e.g. Jaro-Winkler and cosine similarity) or
the learning based approaches (e.g. SVMs, decision tree and naïve Bayes) are widely used in
data matching [2]. Jaro-Winkler is a character-based comparison metric that was designed
to solve typographical error problems [25]. Cosine similarity is a token-based similarity
metric that aims to handle the rearrangement of words. However, several studies [6, 15,
54, 74] have revealed that the Jaro-Winkler metric performs well with personal name data.
Furthermore, the study [18] found that the cosine similarity technique is faster than Jaro-
Winkler by 16.67 times. Moreover, the cosine similarity metric is used in [8, 19, 24] for
name entity disambiguation.

62 Personal Name Transformation With Context Free Grammar

Table 4.1 Example of personal name variations.

ID Personal names A unique personal name format
1 George W. Bush George W. Bush
2 Bush, George W. George W. Bush
3 Bush, G.W. G.W. Bush
4 43rd President of the United States George W. Bush
5 Bill Clinton William Clinton
6 William Clinton William Clinton
7 Timberlake Justin Timberlake
8 Justin Timberlake Justin Timberlake

A fundamental problem in personal name matching is referential ambiguity [3, 7]. Ac-
tually, a wide variety of contexts can be used to refer to an individual person (a person has
many names) such as the official position, nickname, short name or full name. As shown in
Table 4.1, we can see that:

1. ID 1-4, four different terms are used to refer to the same person: George W. Bush.

2. Personal names ID 1-2, the same personal name but appears in a different order.

3. The nickname Bill is used to refer to the given name William in ID 5.

4. The alternative name Timberlake is used to refer to the personal name Justin Timber-
lake.

Arasu and Kaushik [3] have suggested that text similarity measurement may provide a poor
effective similarity value when we use different words to mention the same person. The per-
sonal name IDs: 1 and 2 are equal but are represented using a different order and cannot be
detected by Jaro-Winkler. On the other hand, cosine similarity can detect the similarity be-
tween IDs: 1 and 2 because the order of words is insignificant for this algorithm. Moreover,
both Jaro-Winkler and cosine similarity cannot detect the similarity between two strings if
two strings are completely used a different letters (e.g. IDs: 1 and 4). Likewise, the similar-
ity scores between IDs: 2 vs. 3 and IDs: 7 vs. 8 based on Jaro-Winkler or cosine similarity
are less because only some parts of names are similar.

Christen et al. [16] introduced probabilistic Hidden Markov Models (HMM) for cleaning
and standardisation of personal names and addresses. The HMM is used to segment the
personal name component. The accuracy results show that a rules based approach is better
than HMM. The HMM failed to segment the personal name component when a person has

4.1 Motivation 63

either two given names or two last names. Furthermore, this technique is insufficient for our
problem because this method only solves the different order in a personal name.

Arasu [3] proposed a programmatic framework based on CFG and a personal name
dictionary to transform personal names and their affiliations which are represented in mul-
tiple forms into a uniform representation. A programmatic framework means how an input
record is transferred to output records and it is specified using a declarative programme [3].
The advantage of this module is not only dealing with the different sequences of personal
components but also transforming a nickname into a given name. The CFG method differs
from the black-box similarity function because it enables us to understand the internal struc-
ture of a personal name component. For example, the word Rose that occurs in a personal
name cannot transform into Roxana if it is not a given name. However, there are two certain
drawbacks with the use of this module:

Firstly, the objective of this framework is to transform personal names that are stored in
a database that are less variation than a mentioned name within a web page. In our work,
we expand the personal name dictionary by adding alternative names that we extracted from
the YAGO knowledge base. Therefore, the new personal name dictionary contains a list of
prefixes, suffixes, given names, last names, nicknames and alternative names.

Secondly, Arasu parsed a whole name over personal name dictionary and then the uni-
form weighting scheme is used to evaluate whether each word in a whole name could be
a prefix, suffix, given name or last name. Arasu gave a different non-negative real number
weight to a CFG rule and the output which has the lowest weight will be considered. How-
ever, the weight value has limitations when a word can be qualified as multiple answers and
the weighting scores in CFG rules are equal. For example, the words Ferguson or Black can
be used as both a given name and a last name. To handle this problem, we combine regular
grammar of English personal name patterns and a set of CFG rules to segment a sequence of
strings in a personal name . After that, the type of each word in a sequence is identified (e.g.
it is a prefix, a suffix, a given name, a last name, a nickname or an alternative name) and
exactly matched over the type of names in the dictionary. As a result, the uniform weighting
scheme is removed from Personal Name Transformation Modules (PNTM).

The purposes of this chapter as follows. Firstly, Section 4.2 describe the background to
the regular grammar for English personal name, Context Free Grammar and String match-
ing techniques. Section 4.3 describes the PNTM based on CFG and personal name dic-
tionary to transform multiple personal name patterns into uniform representation. Section
4.4 describes experimental results and discussion. This section aims to compare the perfor-
mance of two string matching techniques: Jaro-Winkler and cosine similarity within terms
of which technique will provide the best results in personal name matching when working

64 Personal Name Transformation With Context Free Grammar

with PNTM.

4.2 Background

The World Wide Web is a huge source of public documents that are published by various or-
ganisations and individual users such as government, official website and personal websites
[11]. The Internet provides various types of information such as news, financial, products
and personal information. On the other hand, unstructured data on the Internet also lacks
uniform representation because it has a heterogeneous data design; the data comes from
multiple sites of sources so that it is hard to handle like a single database [11].

Dirty data comes for various reasons such as lack of design, data entry mistakes and/or
misunderstanding. Hence, data cleaning is needed before integrating data records from
multiple sources into a database. Data cleaning is an important part of the ETL (extraction,
transformation, loading) in a data warehouse when heterogeneous data sources need to be
integrated [35]. The major objective of data cleaning should be supported discovery and
elimination of all significant errors and inconsistencies both in a single source and when
integrating various sources [55].

In this section, we give an overview of the techniques that have been integrated for
PNTM including English personal names, Context Free Grammar (CFG) and two string
matching techniques: Jaro-Winkler and cosine similarity.

4.2.1 English Personal Names

Personal names are a group or set of words which are highly constrained grammatically and
generally include proper nouns that form given names and family names [67], e.g. George
Bush. However, recently personal names can be formed using a mixture of proper nouns
and common nouns, e.g. 43rd President of the United States or Ginger Spice.

Anglo-Saxon countries are countries which use English language as the official lan-
guage or English-speaking countries. Particularity, Anglo-Saxon countries include Aus-
tralia, Canada, New Zealand, the United Kingdom, Ireland and the United States. In this
thesis, we deal with the personal names from Anglo-Saxon countries and the term English
personal name has come to be used to refer to these names.

English personal names have specific characteristics, forms and structures. The regular
grammar consists of five components: prefix, given name (GN), middle name (MN), family
name (FN) and suffix. A given name can be shortened or replaced by nickname (NN). For
example, we used the nickname Bill Clinton to refer to William Jefferson Clinton, the 42nd

4.2 Background 65

US President. Prefix, middle name and suffix are optional components. Meanwhile, these
components may not be used to represent a personal name in a document. Additionally,
person may use a different prefix or suffix for reference e.g. Mr. John Smith or Dr. John
Smith.

The structure of a personal name is close to that of an English sentence because it con-
sists of two main parts: given name(subject) and family name (predicate). A given name
may be extended by a prefix and/or a middle name (noun phrase) or replaced by a nickname
(pronoun). Figure 4.1 shows how a prefix, suffix, given name or family name are combined
to produce a single name. The shaded rectangles including prefix, GN, FN, AN and suffix
are the components we need to evaluate or match over the personal name dictionary. The
shaded circles including MN and SN are the components that we do not match over any
names in the personal name dictionary and we leave the output like the original values. The
components in the big white rectangle produce output under CFG rules and the components
outside the rectangle (prefix and suffix) produce an empty value.

Fig. 4.1 Regular grammar for English personal names.

Note: GN = Given Name, FN = Family Name, MN = Middle Name, NN = Nickname, IN =
Initial Name and AN = Alias Name

The list of abbreviated words in Figure 4.1 is explained below:

1. Prefix is a word that describes the person status, job or academic degree. Titles will
come before a name (prefix) or follow a name (suffix) depending on the type of title.
We classify titles into three groups: institutionalised titles, pseudo titles and academic
titles.

66 Personal Name Transformation With Context Free Grammar

• Institutionalised titles are used to indicate gender, status or job position. For
example, Mr. Barack Obama or Sir Alex Ferguson.

• Pseudo titles or job titles can come before or after personal names, however
before is preferable. For example, President Barack Obama or Barack Obama,
the 44th President of the United States. A period is used between a personal
name and a pseudo title when it comes after personal names.

• Academic degree titles come after personal names with a period to separate
name and degree. For example, John Smith, Ph.D., Biology or Professor Steve
Chapman, FRSE, FRSC, C.CHEM.

2. Suffix is a word we use when people in a family share the same name. General suffix
titles are Jr., Sr., III and so on. We do not use a period between a name and a general
suffix. For example, we write John Smith Jr. to refer to John Smith’s son or George
Bush Jr. to refer to George W. Bush.

3. GN: Given name is a name that was given when you were born or it is a person’s first
name and middle name (MN) which is used to refer to a person in a family.

4. FN: Normally, in Anglo-Saxon countries, a baby will have their father’s family name.

5. NN: Nickname is an alternate name that is usually used informally. Nickname is
normally based on first name, physical characteristics such as Ginger, Pinky, Shortie,
personality such as Motor mouth or from job titles or social standing such as Doc,
Moneybags.

6. IN: Initial name is an initial letter in a given name or where a middle name is used to
abbreviate proper name. In particular, the first letter in a first name or middle name
can be used to abbreviate a personal name, e.g. John Smith to J. Smith.

7. AN: Alternative name is another name that is used to refer to a person e.g. 10th
President of the United States which refers to John Tyler. In addition, in this thesis,
a personal name which has a single word or a group of words that have at least five
words are classified into a group of alternative names e.g. Bush or Da Silva Dal Belo
Felipe.

Moreover, a personal name can be written in multiple arrangements. It can be started
with family name comma and followed by given name and/or middle name. For example,
Smith, John or Smith, J. refers to John Smith.

4.2 Background 67

The regular grammar of English personal names is a major key point in Context Free
Grammar rules to transform the variation patterns of personal names into a unique pattern
and to produce the position of given name and family name. In the next section we describe
Context Free Grammar rules which are the highlighted technique we used for personal name
transformation.

4.2.2 Context Free Grammar (CFG)

A context-free grammar is a set of rules that defines how the patterns of strings can be
generated which can be shortened CFG [52].

Definition 4.1. A context-free grammar (G) is a quadruple G = (N, ∑, P, S) Where:
N is a set of characters known as a nonterminal alphabet.

∑ is a set of characters disjointed from a nonterminal alphabet N, i.e. (N∩∑ = /0), known as
a terminal symbol.
P is a set of productions, each of which must contain a nonterminal followed by an arrow
pointing right by any alphabet in a nonterminal and/or terminal (N ∪∑).
S is a start symbol.

1. A finite set of nonterminal symbols is denoted by N. Generally, the Roman capitals
A, B, C, ..., Z usually stand for nonterminal elements. Nonterminal symbols N can be
changed using the production rules.

2. A finite set of terminal symbols is denoted by ∑. The small Roman letters a,b,c, ..., z
are used to represent terminal symbols. ∑ disjoints from N or N∩∑ = /0 where /0 is an
empty set. The empty set string can be denoted by /0 or {}.

3. A finite set of productions is denoted by P. A production rule component includes a
head and a body. The head or the left hand side may be shortened to LHS, which
consists of a single nonterminal symbol. The right hand side may be shorted as RHS
or the body which can be a terminal, nonterminal or both. A production rule can be
represented in the form of head → body, which means a head or LHS is replaced or
written by a body or RHS.

Given a set of production (A,α) where A ∈ N or A is a member of the nonterminal
elements and α is a rule alternative of A and α ∈ (N

⋃
∑). The order set of (A,α) are

called productions and can be written in the form A → α .

If A has n production rules, a rule alternative of A can be written as
A → α1 | α2 | ... | αn where n ≥ 0 ; a RHS or αi could be an empty set or ε .

68 Personal Name Transformation With Context Free Grammar

The → is called a rewrite arrow. A →α is called context free grammar rules or rewrite
rules. The algorithm is called context free grammar for the reason that all rules only
contain one symbol on the LHS and it is rewritten by RHS.

4. A start symbol is denoted by S. A start symbol is a special symbol chosen from non-
terminal symbols. S is an element of N or S∈N.

Example 3.1 shows a starter symbol (S), a set of terminals (∑), a set of nonterminals (N)
and a set of production rules (P).
Example 3.1 Given S = "a boy sits in the car" N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN } and

∑ = {the, boy, a, car, sits, in}

ID Productions
1 S → NP VP
2 VP → Vi
3 VP → Vt NP
4 VP → VP PP
5 NP → DT NN
6 NP → NP PP
7 PP → IN NP
8 Vi → sits
9 NN → boy

10 NN → car
11 DT → the
12 DT → a
13 IN → in

Table 4.2 Regular grammar for English personal names.

Note: S = Sentence, NP = Noun Phrase, VP = Verb Phrase, PP = Preposition Phrase, DT =
Determiner, Vi = Intransitive Verb, Vt = Transitive Verb, NN = Noun and IN = Preposition

Left-Most Derivations

A left-most derivation or top-down parsing is a sequence of parsing production rules or a
sequence of generating string S1...Sn by a grammar or production rules where S1 = S ; S is
start symbol Sn ∈ ∑

∗ ; ∑
∗ is the free monoid finitely generate by ∑. For example, ∑ = { a,

b} then ∑
∗ = {ε , a, b, aa, ab, ba, bb, aaa, aab, ...}.

4.2 Background 69

Each Si where i = {2,3, ..., n} is derived from S(i−1) by selecting the left nonterminal in
S(i−1) and it is rewritten by α where S(i−1) → α is a rule in P. We developed an example 3.1
to describe the details about left-most derivations.

From the sentence S = "a boy sit in the car". We start with the start symbol S in the
production rules as S is written by two nonterminals: NP VP using Rule 1. The algorithm
goes to the first symbol in the RHS of Rule 1 (it is NP) and replacs NP with Rule 5 (NP →
DT NN) and keeps going like this. Finally, the complete derivation will be finished if every
nonterminal symbol is assigned to terminal symbols.

Fig. 4.2 Example of CFG (a) Production rules (P) and (b) Left-most derivations represented
as a tree.

CFG has been studied by many researchers in a variety of fields. The studies [38, 73]
applied CFG in a natural language processing (NLP) system. Hasan et al. [38] designed
context grammar rules for Bangla language and used these grammar rules to develop a
Bangla parser. The experimental result showed that a CFG not only support English lan-
guage but we can also apply a CFG to other NLP, e.g. Bangla language.

Xu et al. [73] introduce an approach for parsing medication sentences based on prob-
abilistic context free grammar. Due to the fact that most patient information is stored in
narrative text documents, it cannot be directly accessed through a computer information
system. The main drawback in parsing sentences using CFG is an ambiguity; one sentence
may provide multiple results in a parsing tree. To solve the ambiguity problem, the Proba-
bilistic Context Free Grammar (PCFG) is used for parsing medical sentences when multiple
possible parse tree are produced. The final result is considered by the overall probability of
a parse tree. The experimental results showed that the accuracy in PCFG is better than CFG.

Chanda et al. [13] design context free grammar rules to verify three diagrams including
the sequence diagram, class diagram and state chart diagram in the design phase of the
Object Oriented system. The CFG verification framework consists of syntactic precision

70 Personal Name Transformation With Context Free Grammar

and inter-diagram consistency. The static and dynamic behaviour of a design is formalised
and traceability and consistency are included among the diagrams.

Arasu and Kaushik [3] apply a context free grammar for data cleaning. The researchers
used the CFG rules and external knowledge base for paring multiple affiliation formats into
a uniform representation. The ambiguity parse tree (one affiliation may be generated for
more than one parse tree) can be solved using uniform weight scheme score. We extended
the study [3] for parsing personal name variations that are extracted from a web page to a
standard format. However, we used different techniques for solving the ambiguity parse tree
problem. In our work, we used a regular grammar in personal names to find the structure
in a personal name representation (the location of the first name, middle name or last name)
and is directly matched to the external knowledge base.

4.2.3 String Matching

String matching plays an important role in personal name matching. Various methods have
been introduced to deal with duplicate detection. For example, the character-based simi-
larity metrics (e.g. edit distance, Jaro, Smith-Waterman or Q-Grams), token-based simi-
larity metrics (e.g. cosine similarity or Monge and Elkan) and phonetic similarity metrics
(e.g. Soundex or New York State Identification and Intelligence System). The character-
based similarity metrics have a good performance in catching typographical errors but the
effectiveness is lower when the words are rearranged (e.g. George Bush versus Bush,
George) [25]. The token-based similarity metrics aim to fix this problem. The phonetic
similarity metrics pay attention to the string-based representation (the words may be rep-
resented using different characters but they have similar phonetics). However, the stud-
ies [6, 15, 54, 74] found that the best performance for personal name matching was with
Jaro-Winkler.

Yancey [74] evaluates Jaro-Winkler metrics and edit distance metrics using a U.S. Cen-
sus Bureau data set. The results show that Jaro-Winkler metrics perform well in personal
name matching. Bilenko et al. [6] compare the performance of the character-based metrics
and token-based metrics among various types of data sets. The output shows that the Jaro
metrics work well for census data sets. However, the study [6] suggested that we cannot
use the same metric for every data set (one metric that is effective in some data sets may
perform poorly in another). Peng et al. [54] show that both Jaro and Jaro-Winkler per-
form well and faster than three string similarity metrics, including Levenshtein, Q-gram and
Smith-Waterman in Electoral Roll data sets. Finally, the study [15] also found that Jaro and
Jaro-Winkler are effective in personal name matching.

Turning now to the experimental result in [18] shows that cosine similarity metrics

4.2 Background 71

spend the smallest amount of time compared with other techniques (e.g. Jaro-Winkler,
SoftTFIDF).

In the next section, we describe two string matching techniques, including cosine simi-
larity and Jaro-Winkler. In the two string similarity metrics we want to evaluate which one
works well with CFG in personal name similarity matching.

Cosine Similarity

Cosine similarity is normally used in information retrieval for matching between query
terms and the documents are stored in a database [49]. This technique is one of the token-
based similarity metrics or bags of words. Cosine similarity works well with a high volume
of data and the location of words is ignored to detect the similarity between a sequence of
words [25] (e.g. George Bush vs. Bush, George). On the other hand, this metric measure
fails to map a pair of words where there are typographical errors. For example, the two
words: "book" and "bok" are absolutely different under the cosine similarity function.

In example 4.1, we want to measure the similarity between a query term P in a document
E. Given

P(Michael Owen) = {Michael, Owen}

E(Michael James Owen) = {Michael, James, Owen}

The similarity between entities E and P is calculated using equation 4.1.

sim(P,E) =Cos(θ) =
V⃗ (P).⃗V (E)
|⃗V (P)||⃗V (E)|

=
∑

n
i=1 pi.ei√

∑
n
i=1 p2

i

√
∑

n
i=1 e2

i

(4.1)

Where n is the number of unique tokens in entity E and entity P. The value of each token pi

and ei is the frequency of each unique token occurring in entities E and P which are shown
in Table 4.3.

Table 4.3 Example of cosine similarity measurement.

michael james owen
pi 1 0 1
ei 1 1 1

72 Personal Name Transformation With Context Free Grammar

sim(P,E) =Cos(θ) =
V⃗ (P).⃗V (E)
|⃗V (P)||⃗V (E)|

=
1.1+0.1+1.1√

12 +02 +12
√

12 +12 +12
≃ 0.82 (4.2)

Jaro-Winkler

Jaro-Winkler is character-based string matching to measure the similarity between two
strings which is widely used in short string comparison (e.g. first name and last name) [25,
74]. The study [54] shows that the Jaro-Winkler provides a higher rate of accuracy in string
similarity matching than Levenshtein, Q-gram and Smith-Waterman and also performs well
in typography errors [25].

Given A and B are a set of strings A = (a1,a2, . . . ,am) and B = (b1,b2, . . . ,bn). The two
characters ai and b j are equal if they occurred in the same location or no further than the
maximum match distance. The maximum match distance equation is represented below:

Maximum match distance =
max(| A |, | B |)

2
−1 (4.3)

The transposition is determined by the number of matching characters that have a dif-
ferent sequence order divided by 2.

The Jaro similarity value for two strings is then given by

Jaro(A,B) =
1
3
(

c
| A |

+
c

| A |
+

c− t
c

) (4.4)

where c is the number of matching characters and t is the number of transpositions.

The Jaro-Winkler algorithm [60] is represented below:

Jaro−Winkler(A,B) = Jaro(A,B)+(
p(1− Jaro(A,B)

10
) (4.5)

Where Jaro(A,B) is the Jaro score and p is the length of the longest common prefix (the
maximum number is 4 characters).

For example, given a string s1 = Barack and s2 = Barak we compute the Jaro-Winkler as
follows:

1. | s1 | = 6 and | s2 | = 5.

2. The maximum match distance = max(6,5)/2 - 1 = 2.

3. The number of matching characters = c = 5.

4.3 Personal Name Transformation Modules (PNTM) 73

4. The sub-sequence of two matching strings is Barak and Barak. Therefore, there are
no transpositions (t = 0).

5. Jaro(s1,s2) = 1/3(5/6 + 5/5 + (5-0)/5) = 0.94.

6. Jaro-Winkler(s1,s2) = 0.94 + 0.1 * 4(1-0.94) = 0.964.

4.3 Personal Name Transformation Modules (PNTM)

In this section we discuss the personal name variation problems and how to handle them
using PNTM. One key aspect of personal names that appeared within a web document
is name variations or referential ambiguity. We define name variation problems in four
categories:

1. Multiple spelling or typographical errors e.g. Barak and Barack or Ian and Iain.

2. Alternative names such as a nickname, pen name or official name. For example, 43rd
President of the United States and Dubya Bush refer to George W. Bush or Lady Gaga
refers to Stefani Joanne Angelina Germanotta.

3. Variation forms such as abbreviations (e.g. JFK and John F. Kennedy), shortened
forms (e.g. Robyn Rihanna Fenty and Rihanna) and initials for given and middle
names (e.g. G.W. Bush, George W. Bush and George Walker Bush).

4. Multiple orders such as George W. Bush and Bush, George W..

Name variations reduce the efficiency in character-based similarity metrics such as edit
distance (e.g. Jaro-Winkler) and token-based similarity metrics (e.g. cosine similarity) for
detecting whether two names are similar or not [3]. For example, the similarity value is
smaller for Robyn Rihanna Fenty and Rihanna or completely different between 43rd Presi-
dent of the United States and George W. Bush.

Arasu et al. [1] propose a black-box similarity function for mapping whether Rob and
Robert are equal. However, the black-box similarity function cannot allow us to understand
the internal structure of the context [3]. Our method extends Arasu and Kaushik [3] by
including alternative names transformation and maps personal name patterns.

PNTM is the module we use to transform multiple forms of English personal names into
a standard format. Standard format means a personal name should be uniform representa-
tion. Uniform means that the personal name has a single representation for each individual
person. For example, multiple name representations of George W. Bush (e.g. Bush, Dubya

74 Personal Name Transformation With Context Free Grammar

Bush, George W. Bush, Jr.) should be transformed into a single representation George W.
Bush. TThe most important role for PNTM is to generate a personal name under the trans-
formation rules into a uniform representation. For example, PNTM transforms the name
Bush, to George W. Bush, Laura Bush and Billy Green Bush because these three people use
the same alternative name Bush. However, the modules do not identify that the name Bush
refers to George W. Bush, Laura Bush or Billy Green Bush.

In addition, our module allows us to understand the grammar in a sequence of personal
name tokens. Therefore, each word that appears within a token may be a given name, a
nickname or a last name depending on the structure of a personal name pattern. PNTM does
not transform every word that appears in the personal name dictionary, but it only transforms
the words that are related to the CFG rules. For example, the word Rose may be a given
name or a middle name but the word Rose only transform to Roxanna if Rose is a given
name.

Figure 4.3 describes the PNTM module. The module consists of three main compo-
nents: CFG rules, predicate and actions. The shaded circles are input and output. The
module takes a single personal name and may produce 0-n outputs. The blue shaded areas
including personal name patterns, personal name dictionary and prefix & suffix dictionary
are a predicate. Finally, the three rectangles inside a big rectangle are the three action steps
to transform a personal name into a uniform representation.

Fig. 4.3 Personal Names Transformation Module.

4.3 Personal Name Transformation Modules (PNTM) 75

Given a personal name as input, the PNTM uses three main components to produce a
uniform of personal name representation:

1. CFG rules. CFG rules or transformation rules are the set of rules that specify how
the personal name input can be generated.

2. Predicate. Predicate is an external database that consists of a prefix and suffix dictio-
nary, a personal name dictionary and a set of personal name patterns.

3. Action. Action is a set of functions we use to produce the output under CFG rules.
Action consists of three steps as follows:

• Removing prefix and suffix use to delete personal name titles (prefixes and suf-
fixes) from personal name input.

• Mapping and splitting use to map a sequence of personal name strings with a set
of standard patterns. Then a sequence of personal name strings splits into given
name, middle name, family name or alternative name depending on its location.

• Matching and transforming personal name. Each word in a sequence of personal
names maps directly over the personal name dictionary and then produces a
personal name that has a standard format.

4.3.1 Context Free Grammar Rules (CFG Rules)

The transformation rule is a quadruple of G = (N,∑,P,S) Where:

1. N is a set of nonterminal symbols that we use for referencing the collection of given
names, middle names or family names.

2. ∑ is a set of terminal symbols that refers to a set of names in the personal names
dictionary disjointed from nonterminal alphabet N (N∩∑ = ⊘).

3. P is a set of productions or CFG rules that we use to generate a single personal name
pattern.

4. S is a starter symbol or an input personal name.

Nonterminal symbol (N) is literal symbols which can be changed using the rules. We use
angular brackets to represent nonterminal symbols e.g. ⟨GN⟩. An example of nonterminal
symbols is shown in Table 4.4. The personal names can be captured in seven nonterminal
groups, as shown in the following:

76 Personal Name Transformation With Context Free Grammar

• ⟨Pre f ix⟩ is a symbol referring to a collection of prefixes.

• ⟨GN⟩ is a symbol referring to a collection of given names.

• ⟨FN⟩ is a symbol referring to a collection of family names.

• ⟨Letters⟩ is a symbol referring to a collection of initial names.

• ⟨AN⟩ is a symbol referring to a collection of alternative names.

• ⟨NN⟩ is a symbol referring to a collection of nicknames.

• ⟨Su f f ix⟩ is a symbol referring to a collection of suffixes.

• ⟨Symbols⟩ is a symbol referring to a collection of symbols that may be used in per-
sonal name collections (e.g. O’Conell or Hans-Porter).

Table 4.4 A generative grammar to capture personal name variations.

Nonterminal symbols Terminal symbols
⟨Pre f ix⟩ "Miss", "Ms", "Mr", "Mrs", "Prince"
⟨GN⟩ "Aaliyah", "Aamna"
⟨FN⟩ "Aaberg", "Aadland", "Aafjes"
⟨Letters⟩ "A", "B", "C"
⟨AN⟩ "10th President of the United States", "11th Lord Kinnaird"
⟨NN⟩ "Ab", "Abbie", "Abby"
⟨Su f f ix⟩ "Jr", "Sr", "III"
⟨Symbols⟩ " . ", " - ", " ’ "

A major criticism in PNTM is the CFG rules or production rules (P). The main purpose
of the CFG rules is to generate personal names so, they are not used to recognise personal
names.

A grammar rule (R) is a finite production rules. Each rule consists of a head or left
hand side (LHS) and a body or right hand side(RHS), similar to a standard CFG rule. The
head is a single nonterminal and a body contains a set of nonterminals or terminals and/or
variables. A CFG rule is used to define that a nonterminal symbol on the left hand side
(head) can be rewritten by other nonterminal or terminal symbols on the right hand side
(body). For example, A → α is a CFG rule that A can be rewritten by α .

4.3 Personal Name Transformation Modules (PNTM) 77

The uppercase letters are used to define variable symbols. The nonterminal symbols and
variable symbols we use are described below:

1. Nonterminal symbols include ⟨NAME⟩, ⟨PS⟩, ⟨PN⟩, ⟨GN⟩ , ⟨FN⟩, ⟨Letters⟩, ⟨AN⟩
and ⟨Letters⟩. The start symbol is ⟨NAME⟩.

2. Variable symbols include A,G, N, M, F, P, L and S where

• A is a set of alternative names terminals.

• G is a set of given name terminals.

• N is a set of nickname terminals.

• M is a middle name

• F is a set of family name terminals

• P is a set of prefix terminals

• L is a set of English alphabets

• S is a set of prefix terminals

Table 4.5 Personal Name Transformation Rules based on CFG.

ID CFG Rules
R1 ⟨NAME⟩ → ⟨PS⟩1 ⟨NAME⟩2

R2 ⟨NAME⟩ → ⟨GN⟩1 ⟨MN⟩2 ⟨FN⟩3

R3 ⟨NAME⟩ → ⟨GN⟩1 ⟨FN⟩2

R4 ⟨NAME⟩ → ⟨FN⟩1 ”,”⟨GN⟩2 ⟨MN⟩3

R5 ⟨NAME⟩ → ⟨FN⟩1 ”,”⟨GN⟩2

R6 ⟨NAME⟩ → ⟨AN⟩1

R7 ⟨GN⟩ → G
R8 ⟨GN⟩ → N
R9 ⟨MN⟩ → M
R10 ⟨GN⟩ → ⟨Letters⟩1

R11 ⟨MN⟩ → ⟨Letters⟩1

R12 ⟨FN⟩ → F
R13 ⟨AN⟩ → A
R14 ⟨PS⟩ → P
R15 ⟨PS⟩ → S
R16 ⟨Letters⟩ → L

78 Personal Name Transformation With Context Free Grammar

The CFG rules is based on Arasu and Kaushik [3]. The sixteen rules are introduced to
transform referential ambiguity names into a single format. These rules cover most possible
names that are usually used to refer to a person (e.g. full name, nickname, short name).
Table 4.5 shows our CFG rules.

1. R1 is used to separate a title from a personal name. For example, given an input
George W. Bush, Jr, R1 produces two outputs including ⟨PS⟩ = Jr and ⟨PN⟩ = George
W. Bush.

2. R2-R6 are used to define the location of ⟨GN⟩, ⟨MN⟩, ⟨FN⟩ and/or ⟨AN⟩ in the se-
quence of personal name tokens and use a space between a token for segmentation.
For example, given an input George W. Bush, R2 produces three outputs including
⟨GN⟩ = George, ⟨MN⟩ = W. and ⟨FN⟩ = Bush.

3. R7 is used to transform ⟨GN⟩ into the given name that may be matched with a given
name in the personal name dictionary. For example, given an input George, R7 pro-
duces an output GN = George.

4. R8 is used to transform ⟨GN⟩ where GN is a nickname to a given name that may be
matched with a nickname in the personal name dictionary. For example, given an
input Bill, R8 produces two given names including GN = William and Willis.

5. R9 is used to transform ⟨MN⟩ into the middle name. We do not match the variable M
over our personal name dictionary. The output in this rule is returned to the original
token.

6. R10-R11 are used to evaluate that ⟨GN⟩ or ⟨MN⟩ is an initial letter.

7. R12 is used to transform ⟨FN⟩ into the family name that may be matched with a
family name in the personal name dictionary. For example, given an input Bush, R12
produces an output ⟨FN⟩ = Bush.

8. R13 is used to transform ⟨AN⟩ where ⟨AN⟩ is an alternative name into the personal
name that may be matched with an alternative name in the personal name dictionary.
For example, given an input 43rd President of the United States, R13 produces an
output ⟨AN⟩ = George W. Bush.

9. R14 is used to remove a prefix that will be matched over the prefixes in our personal
name dictionary.

4.3 Personal Name Transformation Modules (PNTM) 79

10. R15 is used to remove a suffix that will be matched over the suffixes in our personal
name dictionary.

11. R16 is used to transform ⟨Letters⟩ into an initial letter. We do not match this token to
our personal name dictionary so the original token is returned.

4.3.2 Predicate

A predicate (P) is a main component in a CFG rule. The variable in an augmented rule
⟨R,P,A⟩ is constrained to occur at least once in a personal name dictionary P [3]. However,
a token of a personal name can be absent from the dictionary. Hence, in our modules, it may
be returned NIL if a token does not match any names in the dictionary.

We now introduce part of predicate (P) or our personal name dictionary. Our personal
name dictionary is a collection of titles, nicknames, alternative names, given names and
family names. The sources and methods we used to construct the dictionary are described
in the subsection below.

Given Names and Family Names

Given names and family names are derived from two sources: The US census [9] and The
YAGO knowledge base [40]. The US census website provides lists of given names and
family names ("Census1990" and "Census2000"). The data from the US census is very
clean and the given names and family names are distinguished. The second source we use
to generate given names and family names is the YAGO knowledge base. YAGO provides
full personal names; it does not separate between a given name and a family name. We use
rules R1-R5, R7 and R14-R15 given in Table 4.5 to extract given names and family names.
As a result, we extract 19,295 given names and 182,661 family names. Table 4.6 shows a
part of given names and family names from the dictionary listed in alphabetical order.

Table 4.6 An excerpt from given name and family name dictionary.

Dictionary List of names
Given name Aaliyah, Aaron, Aaryn, Aasif, Abaham, ...
Family name Aabergh, Aaby, Aadland, Aafedt, Aagaard, ...

80 Personal Name Transformation With Context Free Grammar

Alternative Names

Alternative names are derived from the YAGO knowledge base. The alternative name is a
name, combined with letters and numbers , a name that consists of only one word (excludiry
prefix and suffix) or a name that contains more than four sequences of words (excludiry a
prefix and suffix). We provide a link between an alternative name and its real name. We
use rules R1, R8 and R14-R15 given in Table 4.5 to extract alternative names. Therefore,
we extracted 10,122 alternative names from YAGO. Figure 4.4 shows an example of an
alternative name dictionary listed in alphabetical order.

Fig. 4.4 Example of alternative names in a personal name dictionary.

Nicknames

A nickname is an informal name that is used to refer to a person. We always find personal
nicknames in a web document. For example, Bill Clinton or Bill Gates are used for the
personal names: William Jefferson Clinton and William Henry Gates.

Table 4.7 represents common nicknames for people in Anglo-Saxon countries; the coun-
tries which use English language as the official language.

4.3 Personal Name Transformation Modules (PNTM) 81

Table 4.7 Example of traditional English nicknames

Male Names Female Names
Names Nicknames Names Nicknames

Aaron Erin, Iron, Ron, Ronnie Amanda Manda, Mandy
Benjamin Ben, Bennie, Benjy, Jamie Barbara Bab, Babs, Barby, Bobbie
David Dave, Davey, Day Dorothy Dolly, Dot, Dortha, Dotty
Edward Ed, Ned, Ted, Teddy, Eddie Emily Emmy, Millie, Emma, Em

This thesis collected the standard nicknames from the three websites below:

1. http://www.tngenweb.org/franklin/frannick.htm [29] has a lot of nicknames from tra-
ditional English names.

2. http://www.censusdiggins.com/nicknames.htm [12] provides a list of the most com-
mon nicknames from A-Z.

3. https://github.com/carltonnorthern/nickname-and-diminutive-names-lookup [58] pro-
vides a nicknames look-up system. The system was created by Old Dominion Uni-
versity - Web Science and Digital Libraries Research Group. They provide a CSV file
that contains US given names and their associated nicknames.

Given a set of nicknames NN then n ∈ NN is one nickname. Let GN be a set of given
names. Given name g ∈ GN may be an instance of one or more nicknames n, written as
GN(n). For example, GN(Abbie) = {Abigail, Abner, Absalom}. Accordingly, we extract
1,454 surface forms of nickname. A nickname surface form is a nickname dictionary that
contains two components: a nickname and a set of its reference given names. Figure 4.5
shows an example of a nickname dictionary listed in alphabetical order.

82 Personal Name Transformation With Context Free Grammar

Fig. 4.5 Example of nicknames in a personal name dictionary.

Prefix and Suffix

The personal name titles (prefix and suffix) are derived from Grace Y.W. Tse [67] who stud-
ied "The grammatical behaviour of personal names in present-day English". Table 4.8
shows an example of our prefixes and suffixes in our dictionary listed in alphabetical order.

Table 4.8 Example of prefix and suffix

Prefix Suffix
Baroness, Capt, Cdr, Chief, Col, Count,
C.P.D., Dame, Det Chief lnsp, Det Insp,
Dr, Earl, Emperor

A.B, B.A., B.S., II, III, Jr., Sr.

Personal Name Pattern

We use function preg_match in PHP to map a personal name structure over a personal name
standard pattern. For example, assign the following PHP function "CheckPattern($name)"
to a personal name which has three sequences of words arranged from a given name, a mid-
dle name and a family name (e.g. George Walker Bush). Each word has at least two letters
and may include symbols (" . ", " - " and " ’ ") or numbers in the word (e.g. O’Neill).

4.3 Personal Name Transformation Modules (PNTM) 83

function CheckPattern($name){

$pattern = "/^[a-z0-9\'-]{2,}+([a-z0-9\'-]{2,}+)(

[a-z0-9\'-]{2,}+S)/";

preg_match($pattern, $name, $match);

return($match);

}

4.3.3 Action

Action is the three step function we use to transform a personal name as an input into
personal name standard form as an output. The three steps include removing the prefix
and suffix, mapping and splitting a sequence of words and matching and transforming into
a uniform representation. The action module takes CFG rules, predicates (prefix & suffix
dictionary, personal name dictionary and personal name patterns) to transform an input (per-
sonal name) into a uniform format. The action takes a single name as an input and produces
0-n value outputs depending on the rules and predicate that are used in derivation. Table 4.9
describes how we process an input using the CFG rule and predicates.

Given a personal name p, action parses the sequence of words p using the CFG rules that
described in Table 4.9. After that the action functions analyse along the sequence of words
p to process the standard name. An action has multiple ways to process the output values.
Therefore, we developed Example 4.1. to summarise the correlation among action, CFG
rules and predicate.

1. CFG rules: R1, R14 and R15 illustrate how the prefix and suffix have been removed.

2. CFG rules: R2-R6 are used to map a variety of personal name patterns over the per-
sonal name standard patterns and to identify the position of a given name, a middle
name, a family name and/or an alternative name in the sequence of words.

3. R7, R8 and R10 describe how a given name can be generated. R7 is used to map a
given name over a given name dictionary and generates a matching given name. R8 is

84 Personal Name Transformation With Context Free Grammar

similar to R7 but it handles the case when a given name is a nickname. R10 handles
the case when a given name is an initial.

4. CFG rules: R9 describes how a middle name can be generated.

5. CFG rules: R10, R11 and R16 describe how a given name and a middle name can be
generated when they are an initial letter.

6. CFG rules: R12 describes how a family name can be generated over a family name
dictionary.

7. CFG rules: R13 describes how an alternative name can be generated over an alterna-
tive name dictionary.

4.3 Personal Name Transformation Modules (PNTM) 85
Ta

bl
e

4.
9

T
he

pe
rs

on
al

na
m

e
tr

an
sf

or
m

at
io

n
de

sc
ri

pt
io

n.

ID
R

ul
es

Pr
ed

ic
at

e
A

ct
io

n
R

1
⟨ N

A
M

E
⟩ →

⟨ P
S⟩

1
⟨ N

A
M

E
⟩ 2

Pr
efi

x
an

d
Su

ffi
x

di
ct

io
na

ry
PS

=
1.

va
lu

e;
N

am
e

=
2.

va
lu

e
R

2
⟨ N

A
M

E
⟩ →

⟨ G
N
⟩ 1
⟨ M

N
⟩ 2
⟨ F

N
⟩ 3

Pe
rs

on
al

N
am

e
Pa

tte
rn

G
N

=
1.

va
lu

e;
M

N
=

2.
va

lu
e;

FN
=

3.
va

lu
e

R
3

⟨ N
A

M
E
⟩ →

⟨ G
N
⟩ 1
⟨ F

N
⟩ 2

Pe
rs

on
al

N
am

e
Pa

tte
rn

G
N

=
1.

va
lu

e;
FN

=
2.

va
lu

e
R

4
⟨ N

A
M

E
⟩ →

⟨ F
N
⟩ 1

”,
”⟨

G
N
⟩ 2
⟨ M

N
⟩ 3

Pe
rs

on
al

N
am

e
Pa

tte
rn

G
N

=
2.

va
lu

e;
M

N
=

3.
va

lu
e;

FN
=

1.
va

lu
e

R
5

⟨ N
A

M
E
⟩ →

⟨ F
N
⟩ 1

”,
”⟨

G
N
⟩ 2

Pe
rs

on
al

N
am

e
Pa

tte
rn

G
N

=
2.

va
lu

e;
FN

=
1.

va
lu

e
R

6
⟨ N

A
M

E
⟩ →

⟨ A
N
⟩ 1

Pe
rs

on
al

N
am

e
Pa

tte
rn

A
N

=
1.

va
lu

e
R

7
⟨ G

N
⟩ →

G
G

iv
en

N
am

es
(I

,G
)

va
lu

e
=

G
R

8
⟨ G

N
⟩ →

N
N

ic
kN

am
es

(I
,N

,G
)

va
lu

e
=

G
R

9
⟨ M

N
⟩ →

M
va

lu
e

=
M

R
10

⟨ G
N
⟩ →

⟨ L
et

te
rs
⟩ 1

L
et

te
rs

=
1.

va
lu

e
R

11
⟨ M

N
⟩ →

⟨ L
et

te
rs
⟩ 1

L
et

te
rs

=
1.

va
lu

e
R

12
⟨ F

N
⟩ →

F
Fa

m
ily

N
am

es
(I

,F
)

va
lu

e
=

F
R

13
⟨ A

N
⟩ →

A
A

lte
rn

at
iv

eN
am

es
(I

,A
)

va
lu

e
=

Pe
rs

on
al

na
m

e
R

14
⟨ P

S⟩
→

P
Pr

efi
x

(I
,P

)
R

15
⟨ P

S⟩
→

S
Su

ffi
x

(I
,S

)
R

16
⟨ L

et
te

rs
⟩ →

L
va

lu
e

=
L

a
A

=
A

lte
rn

at
iv

e
na

m
e,

F
=

Fa
m

ily
na

m
e,

G
=

G
iv

en
na

m
e,

I=
id

en
tifi

ca
tio

n
nu

m
be

r,
L

=
L

et
te

r,
M

=
M

id
dl

e
na

m
e,

N
=

N
ic

kn
am

e,
P

=
Pr

efi
x

an
d

S
=

Su
ffi

x.

86 Personal Name Transformation With Context Free Grammar

The action functions of PNTM are as follows:

1. Removing prefix and suffix. Firstly, we remove the prefix and suffix from a personal
name. A set of rules including R1, R14 and/or R15 are used over the prefix and suffix
dictionary to detect prefix and suffix words. Next, we developed an Example 4.1
to explain how we removed the prefix and suffix from a sequence of personal name
strings.

Example 4.1. We introduce CFG rules to generate a personal name that contains
a prefix and/or suffix. The CFG rules and the steps of transformation are shown in
Table 4.10. The transformation is started from starter symbol ⟨NAME⟩ and rewritten
with the nonterminals or terminals on the LHS until every symbol is transformed into
terminals. The sequence of CFG rules: R1, R15, R2, R7, R11, R16 and R12 are
used to transform George W. Bush, Jr into George W. Bush, using the derivation steps
described below:

(a) R1: Segmented name into personal name and title. The nonterminal ⟨NAME⟩ is
written by nonterminal ⟨PS⟩ and ⟨PN⟩

(b) R15: Given the value Jr to nonterminal ⟨PS⟩ and string Jr is removed.

(c) R2: Segmented personal name into three tokens: ⟨GN⟩, ⟨MN⟩ and ⟨FN⟩.

(d) R7: Generated the value George to nonterminal ⟨GN⟩ by matching over a list of
given names in the personal name dictionary.

(e) R11: Written nonterminal ⟨MN⟩ by nonterminal ⟨Letters⟩.

(f) R16: Given the value W. to nonterminal ⟨Letters⟩.

(g) R12: Given the value Bush to nonterminal ⟨FN⟩ by matching over a list of
family names in the personal names dictionary.

(h) End of left-most derivation and an action produces one output: George W. Bush.

4.3 Personal Name Transformation Modules (PNTM) 87

Table 4.10 Expanded framework for processing the personal name George W. Bush, Jr.

ID Derivation Rules Used
1 ⟨NAME⟩ R1: ⟨NAME⟩ → ⟨PS⟩1 ⟨PN⟩2

2 ⟨PS⟩⟨PN⟩ R15: ⟨PS⟩ → Jr
3 ⟨PN⟩ R2: ⟨PN⟩ → ⟨GN⟩1 ⟨MN⟩2 ⟨FN⟩3

4 ⟨GN⟩⟨MN⟩⟨FN⟩ R7: ⟨GN⟩ → George
5 George ⟨MN⟩⟨FN⟩ R11: ⟨MN⟩ → ⟨Letters⟩
6 George⟨Letters⟩ ⟨FN⟩ R16: ⟨Letters⟩ → W.
7 George W. ⟨FN⟩ R11: ⟨FN⟩ → Bush
8 George W. Bush Completely left-most derivation

In this case, R1 and R15 are used to remove a suffix from a sequence of words: George
W. Bush, Jr. R1 is used to distinguish between a personal name and their prefix and/or
suffix. A sequence of personal name strings without a prefix and suffix goes to the
second step of mapping and splitting.

2. Mapping and splitting. We use personal name patterns and CFG rules: R2 - R6 to
detect a sequence of personal strings over personal name standard patterns. The se-
quence of personal name strings split are based on the CFG rules. In [3], the output
records have been produced by taking a personal name e.g. Smith, Andy J. and then
a set of strings is indexed using Aho-Corasick automaton for string matching. The
uniform weighting scheme is used to evaluate the output records by calculating the
total weighting score in every CFG rule that is used to produce each output record.
The lower weights output record indicates higher confidence. To define weight, they
assign a non-negative real number weight to each CFG rule. Furthermore, they con-
struct the output records using a bottom-up fashion to evaluate actions along the nodes
of a parse tree. Our action process is different from [3] because we detect a sequence
of personal name strings over standard patterns in our collections to find a specific
pattern in each input personal name. After that, each string splits and identifies what
they are: given name, middle name, family name or alternative name. Each string
matched directly over the personal name dictionary (e.g. given name maps to a given
name dictionary). In example 4.1, CFG R2 is used to segment the personal name
George W. Bush. We specify that George is a given name, W. is a middle name and
Bush is a family name.

88 Personal Name Transformation With Context Free Grammar

3. Matching and transforming a personal name. We use CFG rules: R7 - R13 and R16 to
transform a sequence of personal strings when the strings are identified. As shown in
example 4.1, we use R7 and a given name dictionary to transform the string George
into given George. The Aho-Corasick similarity metric continues to be used in our
work to determine the similarity between the input string and the personal dictionary
(given name, family name, nickname and alternative name).

Finally, we develop two examples to explain how different named patterns are trans-
formed into a uniform representation through the sequence of CFG rules.

Example 4.2 We introduce a sequence of CFG rules to generate a personal name when a
person uses a nickname instead of a given name and the sequence of personal name tokens
begins with a family name with a comma and ends with a given name. The CFG rules
we use and left-most derivation are shown in Table 4.11. The transformation is started from
starter symbol ⟨PN⟩ and rewritten with the nonterminals or terminals on the LHS until every
symbol is transformed into terminals. The sequence of CFG rules: R5, R8 and R12 is used
to transform personal name ’Gates, Bill’ into William Gates and Willis Gates, which is a
derivation as described below:

1. R5: Re-arranging the sequence of personal tokens by giving the first value to ⟨FN⟩
and the second value to ⟨GN⟩.

2. R8: Generating the value William and Willis to nonterminal ⟨GN⟩ by matching over a
list of nicknames in the personal name dictionary.

3. R12: Generating the value Gates to nonterminal ⟨FN⟩ by matching over a list of
family names in the personal dictionary.

4. End of left-most derivation and an action produces two outputs: William Gates and
Willis Gates.

Table 4.11 Expanded framework for processing nickname Gates, Bill.

ID Derivation Rules Used
1 ⟨PN⟩ R5: ⟨PN⟩ → ⟨FN⟩1 ”,”⟨GN⟩2

2 ⟨GN⟩⟨FN⟩ R8: ⟨GN⟩ → Bill
3 William and Willis ⟨FN⟩ R12: ⟨FN⟩ → Gates
4 William Gates and Willis Gates Completely left-most derivation

4.4 Experimental Results and Discussion 89

Example 4.3 We introduce a sequence of CFG rules to generate a personal name when
person use an alternative name instead a real name. The CFG rules we use and left-most
derivation are shown in Table 4.12. The transformation is started from starter symbol
⟨NAME⟩ and rewritten with the nonterminals or terminals on the LHS until every symbol
is transformed into terminals. The sequence of CFG rules: R6 and R13 is used to transform
alternative name Bush into a set of real names Billy Green Bush, George W. Bush and Laura
Bush, which is a derivation as described below:

1. R6: Written nonterminal ⟨NAME⟩ by nonterminal ⟨AN⟩

2. R13: Generated the value Bush into nonterminal ⟨AN⟩ by matching over a list of
alternative names in the personal name dictionary.

3. End of left-most derivation and an action produces three outputs: Billy Green Bush,George
W. Bush and Laura Bush.

Table 4.12 Expanded framework for processing alternative name: Bush.

ID Derivation Rules Used
1 ⟨NAME⟩ R6: ⟨NAME⟩ → ⟨AN⟩1

2 ⟨AN⟩ R13: ⟨AN⟩ → Bush
3 Billy Green Bush, George W. Bush and Laura Bush Completely left-most derivation

So far, PNTM which is presented in Figure 4.3, has the ability to transform a personal
name which has a referential ambiguity problem into a standard uniform form in three rea-
sons: Firstly, PNTM can produce multiple outputs when a given name is a nickname as
represented in example 4.2. Secondly, the framework provides a sequence of CFG rules
to transform a personal name that starts with a family name as represented in example 4.2.
Finally, it can produce the real name when a document uses an alternative name to mention
a person as described in example 4.3.

4.4 Experimental Results and Discussion

In this section, we present the effectiveness of PNTM (personal name transformation mod-
ules) for the real world personal name data sets. We evaluate PNTM in Ubuntu 15.04 64-bit
operating System (Intel® Core™ i5-2450M CPU @ 2.50GHz × 4 and 8.0 GB RAM). Our

90 Personal Name Transformation With Context Free Grammar

prototype is built in PHP Version 5.6.4-4 ubuntu 6.4, Apache 2.4.10 (Ubuntu) and MySQL
5.6.27. The assessment includes two parts:

1. Evaluating PNTM is real world data sets. Precision is used to measure the perfor-
mance of PNTM in generating a set of uniform personal name patterns.

2. Comparing the performance of two text similarity matching metrics: Jaro-Winkler
and Cosine similarity. Either Jaro-Winkler or Cosine similarity is suitable for PNTM.

4.4.1 PNTM Assessment

We collect personal name data from two knowledge bases: Freebase [30] and Factforge [26].
The two knowledge bases provide multiple mention forms of personal names to evaluate
the transformation precision in PNTM. The total number of personal names used in our
experiment is 5,243. The 5,243 personal names were collected by us randomly. We wanted
to cover a variety of personal name patterns. These personal names will assist in evaluating
the accuracy of PNTM. Table 4.13 shows excerpt of the data sets.

Table 4.13 Example of datasets.

ID Names
1 Aaliyah
2 Alan Brodrick, 2nd Viscount Midleton
3 Thomas R. Marshall
4 Alma De Bretteville Spreckels
5 Pat Benatar
6 The Big Bopper
7 Willis Stephens Jr.
8 Angela Smith, Baroness Smith Of Basildon
9 Allison, Herbert M., Jr.

10 Beecroft, Robert S.

Experimental Results and Discussion

PNTM generated 13,832 output personal names from 5,243 input personal names. The
18 input personal names or 0.13% cannot be generated (NIL values). The overall quality

4.4 Experimental Results and Discussion 91

of PNTM is extremely high and the modules return a NIL value of less than 1%. The
18 NIL values are alternative names. This means that our personal name dictionary does
not cover alternative names. We selected 100 sample output names and evaluated them
manually. We found that three input personal names are incomplete transformations. One
personal name is imperfect in a given name and two personal names are incomplete in a
family name. However, when we considered this in detail, we found that these given names
and two family names are not English personal names (given name: Mahatma and family
names: Kuraishi, Kirilenko). The first part of the letters in each token are matched with
our personal name dictionary and the incomplete name is returned. For example, we have
the given name Ma in our dictionary but Mahatma is absent when parsing the given name
Mahatma, so the system will return Ma as an output.

The results are similar to Arasu and Kaushik [3] that has an accuracy of around 97%. We
can prove that PNTM has an intuitive capability of transforming personal name variations
into a uniform representation.

4.4.2 Text Similarity Metrics Comparison

In this section, we aim to evaluate whether either Jaro-Winkler or Cosine similarity provides
a good performance in personal name matching under PNTM. Given P is a sequence of per-
sonal names (real name e.g. David Beckham) and a set of {a1,a2, ...,an} as his aliases (e.g.
{Becks, DB7, David Becham, ..., David Joseph Beckham}). The two personal names P and
the alias a1 are duplicated if their Sim(P,a1) is larger than or equal to 0.8. We downloaded
168 aliases of 25 people from Freebase. Freebase uses the property Also known as to map a
person to their aliases. For example, the aliases for David Beckham are

{Becks, DB7, ..., David Joseph Beckham}

92 Personal Name Transformation With Context Free Grammar

Fig. 4.6 Accuracy comparison of personal name matching among different methods

Figure 4.6 shows percentage of personal name matching performance when using four
different similarity metrics (Cosine similarity, Jaro-Winkler, PNTM and Cosine similarity,
PNTM and Jaro-Winkler). For an accurate comparison, we calculate the personal name
data records that are correctly detected by each metric in comparison. From 168 aliases of
25 people, it can be seen that Cosine similarity returns the lowest accuracy (19.64%) when
detecting duplication between a personal name and its alias. The PNTM with Jaro-Winkler
provides the highest accuracy (96.43%) but a smaller number of improvements in PNTM
with Cosine similarity (46.43%).

Cosine similarity returns the lowest performance because it is a token-based similarity
metric [25]. Cosine similarity separates each personal name into words and a pair of words is
equal if two words have the same characters in every arrangement (e.g. Beckham = Beckham
and Beckham ̸= Beckam). The Cosine similarity metric only deals with the problem of the
rearrangement of words (e.g. David Beckham versus Beckham, David are equal). However,
it cannot solve the problem of multiple spelling or typographical errors that are usually
found in personal name representation.

Jaro-Winkler is a character-based similarity metric [25] that is designed to fill the gap
in typographical errors or multiple spelling (e.g. David Beckham versus David Beckam

4.5 Related Work 93

are equal). This is why Jaro-Winkler returns a higher correctly detected personal name
duplication than Cosine similarity. However, Jaro-Winkler cannot handle the two main
problems in personal name matching, including the rearrangement of words (e.g. David
Beckham versus Beckham, David are equal) and using different words (e.g. nickname, pen
name or alias: Becks or DB7 for David Beckham).

PNTM with Cosine similarity returns a smaller number of improvement in personal
name matching because PNTM handles two main problems: rearrangement of words and
using different words to refer to the same person (e.g. DB7 versus David Beckham). As a
result, PNTM with Cosine similarity can only provide one enhancement in personal name
matching using different words to refer to the same person because the rearrangement of
words can be solved with the Cosine similarity metric.

PNTM with Jaro-Winkler returns the highest rate of accuracy in personal name matching
because it can solve three main problems: the rearrangement of words, using different words
to refer to the same person (PNTM) and typographical errors or multiple spellings (Jaro-
Winkler).

4.5 Related Work

One of the greatest challenges in personal name matching is name variations or referential
ambiguity. The data standardisation approach transforms multiple forms of names that are
used to refer to the same person into a consistent and a uniform representation. The data
standardisation makes data matching easier [55].

Raman and Hellerstein [56] introduce the Potter’s Wheel, an interactive data cleaning
system that allows the user to interact with a system step by step through GUI. The Potter’s
Wheel provides a good performance in transforming multiple personal name formats into
a uniform representation. However, the system does not support personal name variations,
e.g. nicknames, aliases and alternative names. Furthermore, Christen et al. [16] argued
that the Potter’s Wheel is based on domain-specific rules which require a user to configure
step-by-step before transformation [16].

Christen et al. [16] proposed the probabilistic hidden Markov modes (HMMs) for per-
sonal name and address cleaning and standardisation. The model contains three steps
including data cleaning, data tagging and data segmenting. Firstly, the input strings are
cleaned by converting to the lower case, removing unwanted strings or replacing then using
the corresponding replacement strings. Secondly, the cleaning inputs are split and tagged
using look-up tables. Finally, HMMs is used to segment these tagged to produce the ap-
propriate output fields. The accuracy measurement of names using HMMs decreases when

94 Personal Name Transformation With Context Free Grammar

the case of middle names arises. Additionally, this method only solve the different order in
personal name arrangement. There is only one problem in name variations.

Arasu et al. [1] propose a context-free transformation framework based on transforma-
tion rules. The framework transforms string variations such as synonyms or abbreviations
and treats them through a black-box similarity function (e.g. Bob → Robert). However,
Arasu and Kaushik [3] concludes two limitations of the black-box similarity function:

1. It does not allow us to understand the internal structure of the context. Therefore,
we may miss the rich contextual information necessary to determine if an alias or
synonym is meaningful. For example, it is meaningful to transform a nickname
into a given name (e.g. Bob Black → Robert Black) but not within a middle name
(e.g.William Bob Black →William Robert Black).

2. The similarity of two strings can only increase by adding transformations. This ap-
proach is therefore not useful in handling the referential ambiguity (e.g. The Gove-
mator and Arnold Schwarzenegger when two strings are quite different.

Arasu [3] introduced a grammar-based entity representation in pre-processing data using
standard Context Free Grammar rules. This research used a sequence of grammar rules for
parsing personal names and their affiliations which are represented in different forms in a
unique pattern. The researcher claims two points about textual similarity function problems:

1. Two representations of the same entity could be highly dissimilar textually (e.g. George
Bush and Dubya Bush).

2. Two representations that are textually very similar could correspond to different enti-
ties (e.g. Chris Martin (singer-songwriter) and Chris Martin (football player)).

The framework is based on CFG rules and external domain knowledge for parsing affilia-
tions and data normalisation.

However, a personal name which is mentioned in the web document has various repre-
sentation than a personal name in a database. The collection of the external knowledge base
about a personal first name, last name and nickname that is used to generate personal name
normalisation does not cover personal name variations when they occur within a web doc-
ument. In addition, a limitation uniform weight scheme is used to evaluate the ambiguity
of the parse tree (each name component may be mapped to more types of personal name).
However, the weight value is useless when a token can qualify both a first name and a last
name. For example, the token Ferguson can be used as both a first name and a last name.

4.6 Conclusion 95

Chen et al. [14] introduce a probabilistic regular grammar of personal names to represent
the personal name structure. This method enhances the precision for extracting Chinese
personal names from a web document. Furthermore, the approach reduces the error rate in
personal name recognition. Shen et al. [61] combine personal name grammar to solve the
problem of personal name classification in web queries. This method provides a simple way
to trade-off the precision and recall. The two previous studies gave us the idea to combine
regular grammar in personal names with our CFG rules to fix the problem of ambiguity
parsing. Therefore, we can remove the uniform weight scheme from our framework because
we know which token is used (given name, middle name or family name) and directly maps
to a specific name type.

4.6 Conclusion

This chapter introduces Personal Name Transformation Modules (PNTM) which is used
to solve the problem of personal name variations. Referential ambiguity or personal name
variations is a result of:

1. Multiple spelling or typographical errors(e.g. Beckham versus Beckam).

2. Rearrangement of words (e.g. David Beckham versus Beckham, David).

3. Using different words such as an alias, nickname, an alternative name (e.g. DB7
versus David Beckham) to refer to the same person.

PNTM consists of three components: CFG rules, predicate and action that are used to
transform personal name variations into a uniform format. CFG rules are a set of produc-
tions we use to identify how to generate output from different forms of personal name input.
Predicate is an external database that includes a given name dictionary, a family name dic-
tionary, an alternative name dictionary and a prefix and suffix dictionary. Action is a set of
functions we use to process the output under CFG rules and predicate.

The experimental results show that PNTM with Jaro-Winkler can handle the results of
the three main problems in referential ambiguity: multiple spelling or typographical errors,
rearrangement of words and using different words to refer to the same person.

Chapter 5

Personal Name Entity Linking

This chapter introduces the Personal Name Entity Linking Framework (PNELF) that we
used to identify mentioned names within a web page to a real world person. Firstly, Sec-
tion 5.3 describes three main components of PNELF, including personal name extractor,
searcher and personal name disambiguator. Secondly, Section 5.4 describes how to pre-
dict the NIL value. Finally, Section 5.5 introduces a new algorithm, Simple Partial Tree
Matching (SPTM), that we used to handle the lexical ambiguity problem.

5.1 Motivation

Named entity disambiguation (NED) plays an important role in many applications such as
entity linking or search engines. NED is the task of linking mentioned names within a
web document to the correct real-world entity in the existing knowledge base [45]. NED is
also known as entity linking. NED differs from entity resolution (ER) because ER aims to
cluster multiple entities or web pages into meaningful sub-groups (a single group represents
a unique entity) [45]. Personal Named Entity Linking (PNEL) is the task of mapping the
personal named entities that are mentioned within a web page to their corresponding person
in a knowledge base.

Dredze et al. [24] described three fundamental challenges in NED: referential ambigu-
ity, lexical ambiguity and the NIL value prediction. Firstly, referential ambiguity or name
variation means the different names may refer to the same person. For example, mentioned
names: Becks and Db7 refer to David Beckham, an English former professional footballer.
Secondly, lexical ambiguity means a single name may refer to multiple persons. For exam-
ple, the mentioned name: Andrew Scott may refer to two different people: Andrew Scott,
an actor and Andy Scott, an English footballer. Thirdly, the absent entity means a personal
name entity may not appear in a knowledge base.

98 Personal Name Entity Linking

Man and Yarowsky [48] proposed a new approach using an agglomerative clustering
technique based on the vector cosine similarity and biography information to handle lexi-
cal ambiguity. The experimental results showed that proper nouns, relevant words within a
document and feature sets: birth year and occupation are useful for disambiguation lexical
ambiguity. This is the first study to investigate which features in personal information pro-
vide a good performance in personal name disambiguation. However, this study deals with
an entity resolution problem and is based on specific web documents (providing biography
information). However, web pages usually have imperfect or partial information about the
person [76].

Bunescu and Pasca [8] solve the referential ambiguity problem using a proper name
dictionary derived from Wikipedia title pages, redirect pages and disambiguation pages to
generate a set of candidate entities. The context similarity technique and support vector
machine (SV Mlight) are used to deal with the lexical ambiguity problem. The candidate
entities are ranked based on the matching score over the query context, the Wikipedia article
text and SVM based on a taxonomy kernel of their Wikipedia categories. The candidate
entity that has the highest score is considered and linked.

Cucerzan [19] introduced a new technique to recognise the global document-level top-
ical coherence of the entities. His work can both identify and disambiguate names. In the
unambiguous process, a vector space model is used to compare the similarity between the
contexts in a web document and the contexts in a Wikipedia entity page. Furthermore,
the topical coherence score is computed from the referent entity candidate and other en-
tities within the same context based on their overlaps in categories and incoming links in
Wikipedia. However, both Bunescu and Pasca [8] and Cucerzan [19] directly derived entity
categories from Wikipedia, and as we know, some of the Wikipedia categories are dirty and
not well formed [63].

To handle the problems with the Wikipedia categories, the YAGO ontology taxonomy
class is used in [62] by combining "topic coherence" and "context similarity" based on two
knowledge bases: Wikipedia and YAGO in the NED task. However, the main process of
the three studies above used the context similarity for comparing the pairs entity. The major
limitation in the context similarity metric is that it requires very explicit words between the
two comparators, which is difficult in natural language because of the flexible use of natural
language [45].

Shen et al. [63] propose a new method call LIEGE ("Link the entIties in wEb lists with
the knowledGe basE") to link the entities in a web list to the real-world entity. Two features
include priority probability (popularity probability in each entity) and entity coherence to
metric the similarity conceptual type that is derived from the YAGO taxonomy class and

5.2 Background 99

is used for entity disambiguation. However, the context similarity metric is still used in
this work to determine the semantic similarity between a mentioned entity and an entity
in a knowledge base. Moreover, the study [22] suggests that the YAGO taxonomy class is
not clean and some parts of the taxonomy classes that are derived from Wikipedia do not
associate with WorldNet classes.

The previous studies in NED address the precision in named entity disambiguation or
the disambiguator process. However, the candidate generating process is one of the most
important steps in the NED task. Furthermore, real-world data is often dirty, faulty or in-
valid formatted information [16]. Therefore, matching the exact term over the proper name
dictionary that is used in [8, 19, 62] may not be sufficient for generating a set of candi-
date entities.To solve the above problems, we proposed the personal name entity linking
framework (PNELF) to improve the performance in personal name disambiguation. PNELF
differs from the previous approaches above for two reasons:

1. This thesis boosts the performance in the candidate generating process by inserting
PNTM to generate a set of uniform personal name representations and uses the Jaro-
Winkler function to detect a candidate entity over a personal name surface form.
PNTM with Jaro-Winkler is better than an exact-match look up because it can han-
dle three main problems in referential ambiguity: rearrangement of words, multiple
spelling or typographical errors and name variations.

2. In the disambiguator process, we introduce the SPTM algorithm to solve the lexical
ambiguity problem under our assumption that people who appear within a document
have the similar concept. The SPTM only uses a set of mentioned names within a
web page and personal name concepts as input for ranking a set of candidate entities
so the context similarity metric is unnecessary in our approach.

3. This thesis provides a solution to predict the NIL value when a mentioned name does
not appear in a knowledge base. Moreover, this study introduces a method to predict
a possible person for an absent entity through BingAPI.

5.2 Background

In this section we present the background to personal name disambiguation. This thesis
introduces AlchemyAPI [70], the text mining tool that we use for extracting personal names
from web documents.

100 Personal Name Entity Linking

5.2.1 AlchemyAPI

AlchemyAPI is a text mining tool. It combines natural language processing technology
and machine learning algorithms for analysing unstructured data (e.g. web content, emails,
blogs, etc.) and to extract semantic meta-data from content, such as named entities (people,
locations, companies, etc.), facts and relations, topic keywords, text sentiment, news and
blog article authors, taxonomy classifications and scraping structured data.

AlchemyAPI supports three types of content: Internet-accessible web pages, posted
HTML or text content for performing content analysis. AlchemyAPI uses web service tech-
nology that is useful for a developer to connect via API endpoint with multiple computer
languages, e.g. Java, C or C++, C#, Perl, PHP, Python, Ruby, Javascript and Android OS
or to access directly through HTTP REST interface.

AlchemyAPI contains twelve APIs including Entity Extraction, Sentiment Analysis,
Keyword Extraction, Concept Tagging, Relation Extraction, Taxonomy, Author Extraction,
Language Detection, Feed Detection, Text Extraction, Microformats Parsing and Content
Scraping. In our work, Entity Extraction API is used for extracting proper nouns such as
people, organisation and location. The API provides the returning extracted meta-data in
multiple formats such as XML, JSON, RDF and Microformats.

Fig. 5.1 Example results from GATE information extractor

For extracting personal names from a web document, another information extractor is
GATE [53], an open source information extractor. However, this tool is limited in two
ways. Firstly, it returns the personal names outside the scope of a document. For exam-
ple, when we input the web document (http://www.today.com/id/16444023) shown in Fig-
ure 5.1, GATE returns personal names such as Phil McCarten, Hillary Clinton or Bryan
Morseman. These names appear as the external links outside the web page. Secondly, Gate
cannot recognise a personal name. Even though the names are repeated, it returns every
name that occurs in the document. For the above reasons, AlchemyAPI is more effective

5.3 Personal Name Entity Linking Framework (PNELF) 101

than GATE as a personal name extractor.

5.3 Personal Name Entity Linking Framework (PNELF)

Linking a personal name which is extracted from a web document to a real-world entity is a
complex task for three reasons: referential ambiguity, lexical ambiguity and absent entity (a
personal name may not be represented in a knowledge base). We proposed PNELF as shown
in Figure 5.2 to solve these problems. The input is a single web document and the outputs
are an identifiable person or the NIL value if an input personal name does not appear in our
data catalogue. The rectangles that have the thick line are the processes or the components
in PNELF. The personal name extractor is the first component in PNELF. After that a set
of mentioned names that are extracted from a web document will go through the searcher
component via the thick arrow. The searcher component produces a set of candidate enti-
ties. Finally, a set of candidate entities in each mentioned name go to the personal name
disambiguator component and return the results: identifiable personal. The dashed rectan-
gles are the data input in each process using the dashed arrow. PNELF consists of three
main components: personal name extractor, searcher and personal name disambiguator.

Fig. 5.2 Personal Name Entity Linking Framework

1. The personal name extractor is the component for extracting and constructing personal
names that are mentioned in a web document. The Alchemy entity extraction API is

102 Personal Name Entity Linking

used in this step and the output is a list of mentioned names in a web document.

2. The searcher component aims to generate a set of candidate entities in each mentioned
name. This component is separated into two steps: PNTM and candidate generator.

• PNTM is a step of transforming a variety of different personal names mentioned
to a uniform representation. A set of personal names in the first step are the
inputs in this step. A non-standard name (e.g. alternative name, nickname or
a name that starts with a last name) will be transformed into a uniform format
under PNTM modules as described in Chapter 4. We call the personal names
that are generated in this step a set of probable personal names.

• Candidate generator is a step of producing a set of personal name candidates for
a mentioned name by matching over a personal name surface form. The input in
this step is a set of probable personal names. A set of probable personal names
will be matched over our personal name surface form based on Jaro-Winkler,
the text similarity metric. The results are a set of candidate entities in each
mentioned name.

3. Personal name disambiguator is a component of selecting the best person from am-
biguous personal names and returning the NIL value for an unlinkable mentioned
name. The disambiguator will be processed if each mentioned name has more than
one answer. The component evaluates through a set of candidate entities by calculat-
ing a similar score among the candidate entities. We use two features: Simple Partial
Tree Matching (SPTM) algorithm and personal name relationships to calculate the
similar score. The candidate entity that has the highest score will be selected.

We consider one web document at a time and each document should have more than one
mentioned name because we do not have an identifiable personal name concept to create a
comparison tree when a mentioned name refers to more than one possible person.

5.3.1 Personal Name Extractor

The "alchemy API" is used to detect and construct the personal names that appear in a web
document. Given a single web page, the AlchemyAPI returns a set of mentioned names
in XML format. Figure 5.3(a) is an input web page and Figure 5.3(b) is an output XML
document.

5.3 Personal Name Entity Linking Framework (PNELF) 103

Fig. 5.3 An example of a personal name extractor module (a) input: a web document and
(b) output: alchemy API output values in XML format.

The extractor travels under tag <entity> and consider the element in tag <type> first.
If the element in tag <type> is Person then an element that appears in tag <text> will be
detected e.g. <text>Timberlake</text>.

Definition 5.1. Given X = {x1,x2, · · · ,xn} is a set of mentioned names within a web page
w. A web document w will be considered if X has at least two members.

For example, given the web document as shown in Figure 5.3(a) the extractor will return
the six mentioned names:

X = {Timberlake, Veronica Finn, Diaz, Britney Spears, Lou Pearlman, Star}

5.3.2 Searcher

The exact-match look up over the proper name dictionary that is used in [8, 19, 62] may
provide incorrect result in personal name matching. This is because personal names have
multiple representations. This study improves the searcher performance by adding two
steps: PNTM and candidate generator before generating a set of candidate entities.

PNTM

Personal name variations or referential ambiguity is a fundamental problem in personal
name matching. Furthermore, this problem reduces the performance in text similarity met-
rics (e.g. cosine similarity, edit distance) [3]. To solve this problem, we introduced PNTM,

104 Personal Name Entity Linking

which was explained in Chapter 4 to transform personal name variations into a uniform
representation before matching using a text similarity metric.

The PNTM step aims to prepare a set of mentioned names to be ready for generating
a set of candidate entities by reducing numerous personal name formats to a uniform rep-
resentation. The scope of our module is to transform an alternative name, a nickname or a
name that starts with a last name into a uniform format.

For example, a set of personal names mentioned in a web document are shown below:

X = {Timberlake, Veronica Finn, Diaz, Britney Spears, Lou Pearlman, Star}

will be transformed into:

X =

x1 = Timberlake = {Craig Timberlake, Justin Timberlake}

x2 = Veronica Finn = {Veronica Finn}

x3 = Diaz = {Cameron Diaz}

x4 = Britney Spears = {Britney Spears}

x5 = Lou Pearlman = {Lou Pearlman, Lucille Pearlman, Lucinda Pearlman,

Louis Pearlman, Louise Pearlman}

x6 = Star = {Jeffree Star, Sunshine Dizon}

The output values in personal name transformation describe that the module can gen-
erate a list of personal names from one input. For example, two personal names: Craig
Timberlake and Justin Timberlake are generated from the short name Timberlake or a list of
given names: {Lucille, Lucinda, Louis, Louise} are generated from the nickname: Lou.

Definition 5.2. Given Gx = {g1,g2, · · · ,gm} is a set of standard names that are generated
from a mentioned name x. For example, the standard names for a mentioned name Timber-
lake are
GTimberlake = {Craig Timberlake, Justin Timberlake}.

The personal name transformation can boost the performance in a text similarity function
because it provides a uniform pattern of mentioned names.

Candidate Generator

The candidate generator step is based on a text similarity measurement between the standard
name and personal name surface forms that we described in Chapter 3. The Jaro-Winkler

5.3 Personal Name Entity Linking Framework (PNELF) 105

function is used to calculate the similarity score and the person who has a matching score
of higher than 97% will be considered to be a candidate entity. The similarity score 97% is
an acceptable number from our implementation. This is because the candidate generator is
designed to redress the balance between precision and recall in generating a set of candidate
entities. We allow a single typography error to be a candidate entity.

Jaro-Winkler is suitable for first name and last name matching [25, 74] and is faster than
other basic edit distance algorithms [60]. Furthermore, the experimental results in Chapter
4 showed that personal name transformation and Jaro-Winkler provide the highest accuracy
value in text similarity matching. As a result, we used Jaro-Winkler in our module to search
for a set of candidate entities in each mentioned name.

Definition 5.3. Given P(x) = {p1, p2, · · · , pm} is a set of candidate entities for a mentioned
name x and p ∈ P is a set of personal names in our data catalogue. For example, a set of
candidate entities for a mentioned name Timberlake is:
P(Timberlake) = {Craig Timberlake, Justin Timberlake}.

Finally, the NIL value prediction is generated by returning a matching value 1 or 0 to x.
It returns 1 if a mentioned name x can be linked to a personal name in our catalogue or it
returns 0 if a mentioned name x cannot be linked to any personal name in our catalogue.

x =

0 if Px = /0

1 otherwise

Finally, from the standard names for a personal name mentioned in the document w, the
candidate generator module returns:

X =

P(x1) = P(Timberlake) = {Craig Timberlake, Justin Timberlake}

P(x2) = P(Veronica Finn) = {0}

P(x3) = P(Diaz) = {Cameron Diaz}

P(x4) = P(Britney Spears) = {Britney Spears}

P(x5) = P(Lou Pearlman) = {0}

P(x6) = P(Star) = {Jeffree Star, Sunshine Dizon}

As a result, the number of candidate entities in each set is reduced (it returns a set of
specific candidate entities). In the next section we propose a new technique to handle the
lexical ambiguity problem. In this step, the two mentioned names x3 = Diaz and x4 = Britney
Spears are identified as P(x3) = Cameron Diaz and P(x4) = Britney Spears. Furthermore,

106 Personal Name Entity Linking

the two mentioned names x1 = Timberlake and x6 = Star are lexical ambiguity because it
returns more than one personal name and the two mentioned names x2 = Veronica Finn and
x5 = Lou Pearlman are absent.

To reduce the workload and boost the disambiguator performance by adding a function
for proving a set of candidate entities before going to the disambiguator process. This
function removes closely similar entities if we find that one of them exactly matches the
mentioned name.

For example, the two mentioned names: Christian Bale and Tony Scott, in the personal
name transformation process, the first names Christian and Tony can be transformed into
Christopher and Anthony because both names can be a nickname. This process returns a set
of results as follows:
x1 = Christian Bale = {Christian Bale, Christopher Bale}
x2 = Tony Scott = {Tony Scott, Anthony Scott}
The outputs above become inputs in the candidate detecting process. In this process we use
the Jaro-Winkler similarity function and minor spelling mistakes can be passed. The two
sets of candidate entities for Christian Bale and Tony Scott are shown below:
P(Christian Bale) = {Christian Bale, Christopher Hale, Christian Abel, Christopher
Blake, Christopher Gable}
P(Tony Scott) = {Tony Scott, Tony Scotti, Tony Scott (footballer)}
Then these sets of candidate entities will go to the candidate proving function. After this
process a set of candidate entities should be:
P(Christian Bale) = {Christian Bale}
P(Tony Scott) = {Tony Scott, Tony Scott (footballer)}

5.3.3 Personal Name Disambiguator

We now present Simple Partial Tree Matching for ranking candidate entities where a set of
P(x) contains more than one element. To disambiguate a personal name entity, we assume
that the personal names that appear within a single web page have the same concept and/or
have some relations.

To disambiguate a personal name, we use personal name concepts and the personal
name entity relations. Both are introduced in Chapter 3 and a simple partial tree matching
algorithm is used to calculate the similarity scores. The candidate in each mentioned name
x which has the maximum score is selected. The personal name disambiguator will be
separated into two steps: building a comparison tree and calculating the similarity score.

5.3 Personal Name Entity Linking Framework (PNELF) 107

1. Building a comparison tree. The mentioned names which have a single candidate en-
tity are considered. This candidate entity is called "precise-entity".The comparison
tree is generated from these precise-entity’s concepts. For example, in the candidate
generator, we can identify two mentioned names x: Diaz and Britney Spears are re-
ferred to as Cameron Diaz and Britney Spears. The concepts from these two people
are used to construct the comparison tree.

The concepts which have the same root node are merged and the child nodes are
sorted in ascending order. The number of comparison trees depends on the number of
different root nodes in a set of clear-entities.

For example, we have one comparison tree for these two clear-entities because Cameron
Diaz and Britney Spears have the same concepts (Entertainers and Artists). Fig-
ure 5.4, the conceptual tree of the entity Cameron Diaz starts from the root node En-
tertainers and Artists and ends with the American voice actors node. Britney Spears’s
conceptual tree starts from Entertainers and Artists like Cameron Diaz but ends with
the American music video directors node. The two concepts are merged and arranged
in ascending order as shown in Figure 5.4.

Fig. 5.4 Example of comparison tree

2. Calculating similarity score: The similarity score in each candidate person is com-
puted from two components: the relations values and the matched concept values.

Given I(p) is a set of clear-entities in a web page w. For example, a list of clear-entities
in this document is

108 Personal Name Entity Linking

I(p) = {Cameron Diaz,Britney Spears}

The SPTM as described in Section 5.5 is used to compute the matched concept value.
The matched concept value is the similarity score between a candidate tree and a
comparison tree.

The comparison tree which has the maximum number of identifying entities is con-
sidered first. If the number of clear-entities is equal, a number of nodes in each com-
parison tree will be considered. We use function 5.3 to compute the matched concept
score between a comparison tree and a candidate tree. Importantly, a candidate tree
that has a different root node from the comparison tree will be discarded.

In Figure 5.2, a mentioned name Star is a lexical ambiguity because it refers to two
different people Jeffree Star and Sunshine Dizon. Therefore, these two people are the
candidate entity for the mentioned name Star. For example, to compute the similarity
score for the candidate Sunshine Dizon:

(a) The matched concept = n = {Entertainers and Artists, Performer, actor} = 3.

(b) The weighting score = ∑
n
i=1 wi = 1+2+3 = 6, where wi is the level of each

matched node.

(c) The similarity score (Tc,TSunshineDizon) = 3*6 = 18.

5.4 Predicting the NIL Value 109

Fig. 5.5 An example conceptual matching score

As a result, the mentioned name Star is referred to as Jeffree Star because the similarity
score is higher than that for Sunshine Dizon.

5.4 Predicting the NIL Value

A knowledge base contains a large amount of personal name entities. However, in reality
many entities do not occur in the knowledge base. Therefore, predicting the NIL value for
a mentioned name x is one of the most significant in personal name disambiguation.

The mentioned name x is predicted as NIL when:

1. PNTM cannot generate a standard name for a mentioned name (xi = /0).

2. We cannot generate a set of candidate entities for a mentioned name x (P(x) = /0. Due
to the mentioned name x does not match any of our personal surface forms (Jaro-
Winkler similarity score less than 97%).

3. We can map the mentioned name x to an entity in our data catalogue but it has a differ-
ent root node from the existing identifying person and it does not have any relations
with the existing identifying person. Therefore, we return the NIL value to this men-
tioned name x. Due to this answer, we reject our assumption that personal names that
appear within a single web page have the same concept and/or they are related.

110 Personal Name Entity Linking

Finally, we propose a technique to query the NIL value of mentioned name x from the
search engine. We pass two values to BingAPI including mentioned name x and occupa-
tion. An occupation is selected from the most popular occupation in a comparison tree. In
addition, the selecting node should have a depth value of more than 1 for Sportsman and
Politician and 2 for Entertainer and Artist. For example, given the NIL mentioned name:
Veronica Finn with the attached occupation text: actor that is extracted from the compari-
son tree. BingAPI returns ten related links for a mentioned name Veronica Finn. Figure 5.6
shows the top ten links returned for Veronica Finn with the query Veronica Finn actor. Now,
we know that Veronica Finn is Justin Timberlake’s first girlfriend.

Fig. 5.6 Example of browsing the NIL value with BingAPI

5.5 Simple Partial Tree Matching Algorithm

The simple partial tree matching (SPTM) technique is based on two algorithms: STM and
PTA. Firstly, Simple Tree Matching (STM) gives us the idea of calculating the similarity
score between the comparison tree and the candidate tree. We improve the algorithm per-
formance by adding the weighting score at each level of the node tree. Secondly, building
a personal conceptual tree and selecting a comparison tree are based on the Partial Tree
Alignment (PTA) [81]. SPTM contains two main components: a comparison tree and tree
matching, as described below.

Importantly, we proposed two conditions before using SPTM. Firstly, a node in the
tree is unique and it can occur once in each tree. Secondly, the multiple levels in the tree
hierarchy will be flattened into two levels; the first level is a root node and the second level
is a set of child nodes. These child nodes under the root node are arranged flowing down,
and start from left to right, one level at a time. Each node contains two important pieces of
information: its content and its depth.

Figure 5.7 shows how to remove the level and sort the child nodes. The original tree

5.5 Simple Partial Tree Matching Algorithm 111

(a) has four levels after being flattened, all child nodes are compacted into one level using
top-down sorting, from left to right, one level at a time. The resulting flattened tree is shown
in Figure 5.7(b).

Fig. 5.7 An example of a flattened tree (a) Original tree (b) Flatten tree

5.5.1 Building the Comparison Tree

The personal name concept of identifying mentioned names in each web page is used to
construct the comparison tree. Let t ∈ T is a set of identifying personal name concepts. All
nodes in T will be merged into comparison Tc if their root nodes are equal. The duplicate
nodes will be removed and the unique node will be arranged in ascending order.

Tc =
n⋃

i=1

ti. (5.1)

Where tr1 = tr2 = · · ·= trn.
We develop an example in Figure 5.8 to describe how to create a comparison tree. There

are 3 initial trees, and all of them only have two levels. The root node in each tree will be
matched first, and the trees can be merged only if their root nodes are equal. Therefore, tree
T1 and T2 are merged because they have the same root node A and they created the new tree
called comparison tree (Tc). All nodes in the two trees are merged and sorted in ascending
order. The two comparison trees are shown in Figure 5.8(b).

112 Personal Name Entity Linking

Fig. 5.8 Building the comparison tree (a) initial trees and (b) comparison trees

5.5.2 Simple Partial Tree Matching

The SPTM algorithm consists of three steps: comparison tree selecting, two tree matching
and similarity score calculating as described in the following:

1. Comparison tree selecting. The comparison tree is considered from two conditions:
1) The number of members that are joined in the comparison tree.
2) The number of nodes in the comparison tree.
This algorithm considers the comparison tree that has the maximum number of mem-
bers first. If the number of members is equal, the comparison tree that has the high-
estnumber of nodes is selected.

2. Two tree matching. SPTM is a two tree matching between the comparison tree and
the candidate tree. The matching tree consists of two steps:
1) Matching the root node. If two root nodes are similar go to the next step, otherwise
return unmatched (two trees are different).
2) Matching the child nodes. The child nodes from two trees are matched. A max-
imum number of matching nodes is the size of the candidate tree and a minimum
number of matching nodes is 1.

Tm = Tc ∩Ti (5.2)

5.6 Experimental Results and Discussion 113

3. Similarity score calculating. The similarity score between the comparison tree and
the candidate tree is calculated from the total number of matching nodes and the sum
of their depth values. The weighting is assigned to each node and its value is sorted in
descending order (1-n) from the root level to the n level. The nodes which are on the
same level have equal weight . The leaf node has the greater weighting than its parent
node because if the leaf nodes are matched, it implied that the two trees are closely
related.

similarity(Tc,Ti) = n∗
n

∑
i=1

wi (5.3)

Let n is the number of matching nodes between Tc and Ti and wi is the weighting score in
each matched node. The weighting score is the depth of each node in a tree. All nodes in
a tree have a permanent depth value; it never changes because the depth value comes from
our occupation taxonomy, as described in Chapter 3.

Figure 5.9 gives an example of the SPTM algorithm. The two trees Tc and T1 have the
same root node A, which mean the two trees have the same concept and can be matched.
The matching nodes are {A, A1,A11}.

Fig. 5.9 An example of a simple partial tree matching algorithm

5.6 Experimental Results and Discussion

In this section, we evaluate the performance of our personal name disambiguation frame-
work. In order to evaluate the effectiveness of the framework for linking a mentioned name
to a real-world entity, the performance of the framework is evaluated using two criteria:

114 Personal Name Entity Linking

1. The searcher performance in generating a set of candidate entities.

2. The disambiguator performance in personal name entity linking.

5.6.1 Data Sets

The two criteria above were evaluated in two data sets that provided personal names, their
alternative names and their professional categories. The first dataset is YAGO [42] version
2.3.0core as of January 9, 2012. This data sets are used to create our data catalogue and the
entity concepts. Our data catalogue is described in Chapter 3. Since there is no familiar
publicly available data set for personal name linking tasks and the data sets in [19] are no
longer available, we do not have a benchmark for us to compare.

To measure the performance of our framework, we collected 100 web documents from
three websites:

1. http://www.today.com

2. https://uk.yahoo.com

3. http://www.msn.com/en-gb/

We collected the content from these websites in two main directories, including football and
entertainment to evaluate our framework.

The details of the data sets are shown in Table 5.1. The first five rows are about the data
in our data catalogue. The catalogue contains 107,058 people, 332 occupation categories
including Person (a root categories), 105,604 personal name concepts, 145,638 personal
name surface forms and 4,203 personal name entity relations.

In evaluating data sets, we have 992 mentioned names, 119 referential ambiguity names
and 114 lexical ambiguity names.

5.6 Experimental Results and Discussion 115

Table 5.1 Summary data sets.

Entity Total
People 107,058
Occupation categories 322
Personal name concepts 105,604
Personal name surface forms 145,638
Personal name entity relations 4,203
Mentioned names 992
Referential ambiguity names 119
Lexical ambiguity names 114

5.6.2 Evaluation Results

To verify our framework using two criteria: searcher and disambiguator effectiveness as we
describe in the following subsection.

Searcher Performance

The searcher component consists of two components: PNTM and candidate generator. We
use the function introduced in [34] to evaluate the performance of our searcher component.
Figure 5.10 describes the notations we used. We evaluate the effectiveness of the searcher
by analysing the precision, recall and NIL value of the candidate entities returning.

Fig. 5.10 Notation for evaluation searcher performance [34]

candidate count (⟨C⟩) is the number of elements in a set of candidate entities. A small
number of candidates signifies a lower disambiguation workload.

⟨C⟩= ∑i |Ci|
N

(5.4)

116 Personal Name Entity Linking

candidate precision (Pc) is the percentage of non-empty candidate sets containing the
correct entity.

Pc =
|{Ci|Ci ̸= /0∧gi ∈Ci}|

|{Ci|Ci ̸= /0}
(5.5)

candidate recall (Rc) is the percentage of non-NIL queries where the candidate set
contains the correct candidate.

Rc =
|{Ci|gi ̸= NIL∧gi ∈Ci}|

|{gi|gi ̸= NIL}
(5.6)

NIL precision (P/0) is the percentage of entity candidate sets that are correct.

P/0 =
|{Ci|Ci ̸= /0∧gi = NIL}|

|{Ci|Ci ̸= /0}
(5.7)

NIL recall (R /0) is the percentage of NIL queries for which the candidate set is empty.
A greater R /0 rate is useful because it reduces the workload of the disambiguator to decide
whether queries are NIL-linked when candidates are returned.

R /0 =
|{Ci|gi = NIL∧Ci = /0}|

|{gi|gi = NIL}
(5.8)

We now evaluate the effectiveness of the searcher component by calculating the accu-
racy in generating a set of candidate entities. The searcher component consists of PNTM,
Jaro-Winkler and the personal name surface forms. PNTM is used to transform multiple
personal name formats into a uniform representation, and after that, Jaro-Winkler is used
for calculating the similarity score over personal surface forms. Finally, a set of matching
candidate entities in each are generated.

Figure 5.11 shows the analysis results of the searcher performance. The candidate count
is 1.6, which means one mentioned name has an average of 1.6 candidate entities. There is a
smaller number of competitors and it reduces the workload in disambiguator component be-
cause it contains a smaller number of candidate entities to consider. The precision and recall
in generating a set of candidate entities are both over 80%. This result means the searcher
has a high performance in generating candidate entities. The performance in predicting the
NIL value is nearly 100%.

Disambiguator Performance

Now, we analyse the disambiguator performance by evaluating the precision in personal
name entity linking and lexical ambiguity disambiguation. The precision in personal name

5.6 Experimental Results and Discussion 117

Fig. 5.11 Searcher performance.

linking or lexical ambiguity handling means that the component returns the right person that
is mentioned within a document. For example, in Figure 5.3(a), the personal name linking
is accurate if it links to Cameron Diaz for the mentioned name Diaz. In the case of lexical
ambiguity, the mentioned name such as Timberlake should be linked to Justin Timberlake
not Craig Timberlake.

118 Personal Name Entity Linking

Fig. 5.12 Disambiguator performance.

Figure 5.12 shows the precision of an entity linking comparison using three techniques:
PNELF, Cucerzan [19] and Bunescu and Pasca [8]. As can be seen from the graph, PNELF
returns the greatest rise in personal name entity linking (91.82%). Extending PNTM in a
searcher component and the new algorithm SPTM in a disambiguator component would
have improved overall performance, higher than in Cucerzan (40%) and Bunescu and Pasca
(7.02%).

The effectiveness in handling lexical ambiguity is 72.07%. The percentage of accuracy
in lexical ambiguity disambiguation is not high (less than 80%). However, when we con-
sider the incorrect answers in detail most of them are short names (one word name e.g.
Timberlake, Ronaldo and Fernando). The short name usually returns the wrong answer be-
cause the searcher generates a large number of candidate entities. Therefore, occupation
taxonomy does not sufficient feature to remove an ambiguity in a short name. From our
experimental results, we found that the percentage of accuracy moves up to 85.95% if the
lexical ambiguity is a full name. Furthermore, we found that personal name entity relations
is an unimportant feature; it is rarely used in personal name disambiguation. Finally, we can

5.7 Related Work 119

remove personal name entity relations from our similarity function.

5.7 Related Work

In recent years, researchers have proposed many methods to deal with three challenges in
entity linking, including (i) name variations or referential ambiguity, (ii) entity ambiguity
or lexical ambiguity and (iii) NIL value predicting in entity linking [24]. Here we analyse
recent solutions which led to our study.

We start with Man and Yarowsky [48], who used the biographical information and
applied the agglomerative clustering technique based on vector cosine similarity to distin-
guish personal name ambiguity. This is primary research which uses biographical data for
the disambiguation of personal names and can be applied to our research. The researchers
collected biographical information such as birth date, occupation, birth place, nationality
and specific types of association such as familial relationships (e.g. son, wife), and employ-
ment relationships (e.g. manager of) by generating extraction patterns to extract data from
the web. The bottom-up centroid agglomerative clustering is used to cluster the web pages
which contain an ambiguous personal name. The researchers used four models: (i) base-
line, (ii) most relevant word, (iii) basic biographical features and (iv) extended biographical
features to evaluate the clustering methods.

1. Baseline models. They use term vectors composed of either all words (without "stop"
words) or only proper nouns and standard cosine similarity to calculate the similarity
between vectors. The result shows that using only proper nouns provides a higher
accuracy score in clustering more than all words (without feature extracting).

2. Relevant word models. Two methods are used including standard TF-IDF weight and
weighting based on the mutual information. The outputs without extracted features
show that using proper nouns and weighting based on the mutual information gives
the highest accuracy score.

3. Extracted biographical features. Biographical information such as birth year and oc-
cupation are used to cluster the web pages.

4. Extended biographical features model. The words which have been seen as filling a
pattern are assigned to a higher weight. To evaluate the result, the features are sep-
arated into two groups: (i) small futures (occupation, birthday (birth year), spouse,
birth location and school) and (ii) large features (small futures and entity relation-
ships e.g. parent/child). The experiment showed that proper nouns, relevant words

120 Personal Name Entity Linking

and feature sets are given the highest accuracy score. Additionally, adding extended
features is invaluable in this experiment.

However, the study in [48] aims to cluster the entities which are mentioned within the web
pages which are imperfect for named entity disambiguation [63]. Furthermore, the ap-
proach is a more specific condition because a web page usually does not have information
about biological information except a personal profile web page. One interesting finding is
the relationship between a proper noun and its biographical features which can distinguish
ambiguous personal names. For example, personal names which occur within web pages
usually have some connection with each other (e.g. colleague, son, wife or husband). Bi-
ographical information such as occupation, familial relationships (e.g. spouse, sibling) is
useful in our research for personal name disambiguation.

To solve referential ambiguity, the researchers in [8, 19, 62] used the redirect pages in
Wikipedia to construct a personal name dictionary. A redirect page provides an alternative
name that is used to make a reference to an entity in Wikipedia. The study [63] combined
Wikipedia redirect pages and link probability (popularity score) to evaluate a candidate en-
tity. The popularity score is used to discard little known candidate entities. However, the
Wikipedia redirect pages may not cover all possible alternative names in each entity. More-
over, these researchers [8, 19, 62] used exact-match look up to generate a set of candidate
entities that cannot handle the word reordering or minor spelling.

Dredze et al. [24] use the string similarity function to measure the similarity between
the mentioned text and the entity title to generate candidate entities. To deal with the name
variation problem, the researcher not only allows an exact match between the mentioned
text and the entity title to be a candidate entity but also:
1) The entity title that is wholly contained in or contains the mentioned text.
2) The initial letters of the mentioned text match the entity title.
3) The entity title matches an alias over an alias dictionary.
4) The number of the acceptance similarity scores between the entity title mentioned and the
mentioned text is varying depending on text similarity function, including: character Dice
scoreDice > 0.9, skip bigram Dice > 0.6 and Hamming distance ≤ 0.2.
Dredze was the first person to focus on names variation. However, the features are largely
based on the text similarity function which may reduce the performance when comparing
entity names and their alias names.

Our method differs from the method used by these researchers [8, 19, 24, 62]. Firstly,
we construct alternative names from YAGO facts that have the properties means. Secondly,
we add personal name transformation using a set of context free grammar rules to convert
a non-standard name (e.g. nickname, word reordering or alternative names) into a uniform

5.7 Related Work 121

representation. Finally, we use the Jaro-Winkler function to generate a set of candidate
entity processes that can handling minor spelling errors.

To deal with lexical ambiguity, Bunescu and Pasca [8] use a bag of word and support
vector machine (SV Mlight) to deal with lexical ambiguity problem. The cosine similarity
function is used to measure a similarity between the mentioned name and the related article
in Wikipedia. To reduce the error in the bag of words model (Wikipedia article may be too
short or incomplete or there may be a synonymous words or phrase problem) this means
the correlation is too low between the mentioned name and the Wikipedia article because
they do not have relevant words. The SVM kernel which models the magnitude of each
word-category correlation based on Wikipedia taxonomy is used for disambiguation. The
gap in context similarity is that it requires an exact word overlap between the two compared
texts, which may become an over strict constraint due to natural language’s usage flexibility
[45].

Cucerzan [19] extends [8] and introduces a new technique to meet both identification
and disambiguation. This work is the first to recognise the global document-level topical
coherence of the entities. In an unambiguous process, a vector space model is used to
compare similarity between the mentioned name and the related article in Wikipedia, and the
topical coherence between the referent entity candidate and other entities within the same
context is calculated based on their overlaps in categories and incoming links in Wikipedia.
However, Dredze [24] and Shen [63] argue that the assumption that all entity mentions
have the corresponding entities in the knowledge base is wrong because in all reality, some
entities may not be stored in knowledge bases. Additionally, Shen [63] claims that the
entity disambiguation techniques which are used in Bunescu and Pasca [8] and Cucerzan
[19] are dependent on Wikipedia categories while the categories in Wikipedia are not clean
and well-formed enough for ontological purposes although they are indeed arranged in a
hierarchy.

Shen et al. [63] propose LINDEN for linking entity mentions in the document to the
existing knowledge. Two techniques: "topic coherence" and "context similarity" are based
on two knowledge bases: Wikipedia and YAGO are used for named entity disambiguation.
The topical coherence is used under the assumption that "a document largely refers to co-
herent entities or concepts from one or a few related topics". Wikipedia-Miner is used to
detect a Wikipedia concept in a document. The researcher proposed four steps for named
entity disambiguation: (i) Constructing a semantic network among entities in a document
by leveraging Wikipedia concepts and the taxonomy of concepts in YAGO. (ii) Measuring
the strength of the semantic relation using semantic associativity and semantic similarity.
(iii) Calculating global coherence from the average semantic associativity of each candidate

122 Personal Name Entity Linking

entity to the other mapping entities related to the mentions. (iv) Ranking candidate entities
using a future vector and a weight vector. The experiment showed that four features in-
cluding link probability, semantic association, semantic similarity and global coherence are
useful in named entity disambiguation. However, context similarity measurement is used to
measure the similarity between a mentioned context and the related context in a knowledge
base [62].

Shen et al. [62] proposed a new technique called LIEGE ("Link the entIties in wEb
lists with the knowledGe basE") under the assumption that the entities appearing in a web
list have the same concept. The two features: priority probability (popularity probability
in each entity) and entity coherence are used to detect the concept similarity. The entity
coherence is computed from type hierarchy based similarity that is derived from YAGO and
distributional context similarity that evaluates the semantic similarity between entities based
on the contexts where they occur in the Wikipedia article. They believe that the entities
in each web list have the same type. However, this method still used context similarity
measurement but from the external document. Furthermore, both LINDEN [63] and LIEGE
[62] are derived type hierarchy from YAGO to measure similarity but Demidova et al. [22]
argue that the YAGO ontology is dirty and some of the WordNet classes in YAGO are not
associated with Wikipedia categories.

To fix the flaw in the Wikipedia categories and YAGO ontology, we designed a new
architecture for creating occupation taxonomy that is based on web directories and YAGO
ontology. The new occupation hierarchy architecture is used to generate a personal name
concept. Then we used the personal name concept and our algorithm simple partial tree
matching to evaluate the ambiguity entity. Our model uses only mentioned names from a
web document as the input to measure a set of candidate entities in each mentioned name.
As a result, we do not need to compare the relevant contexts between a web document and
the related Wikipedia entity page.

Our system predicts the NIL value under two conditions: (i) The searcher cannot gen-
erate a candidate entity for a mentioned name. (ii) a linking entity has a different ancestor
node and/or is distantly related to the existing identifying entities in a web document. Our
method differs from studies [8, 24, 63]. Shen et al. [63] returned the NIL value to the men-
tion text if the size of the candidate entity is equal to zero or below the threshold. Bunescu
and Pasca [8] detected the NIL value by creating one entity calling ’out’ to predict the NIL
value when the similarity score was lower than a fixed threshold. Dredze et al. [24] used a
SVM ranker to predict the NIL value. The NIL value is returned if a set of candidate entities
is empty.

5.8 Conclusion 123

5.8 Conclusion

We introduce the PNELF framework for personal name entity linking. PNELF consists of
three main components: personal name extractor, searcher and personal name disambigua-
tor. The personal name extractor aims to extract a set of mentioned names within a web
document. We use AlchemyAP, a text mining tools to extract a set of personal names from
a web document.

The searcher component focuses on generating a set of candidate entities in each men-
tioned name. Personal names that appear on the web are often dirty and lack uniform and
multiple representations (e.g. nickname, short name or alias name). So, using only the
exact-match look up over the proper name dictionary that is used in [8, 19, 62] is inade-
quate for generating a set of candidate entities (e.g. David Beckham vs. David Beckam). We
improve a searcher’s performance by including two steps: PNTM and candidate generator.
PNTM is used to transform personal name variations such as nicknames is to real names
(e.g. Bill to William), an alternative name to real name (e.g. DB7 to David Beckham) or to
reorder a personal name pattern (e.g. Beckham, David to David Beckham). In the candi-
date generator steps we use Jaro-Winkler; a text similarity metric to match a set of personal
names that are generated from PNTM over the personal name surface form. Jaro-Winkler is
a character based similarity metric so it can solve the problem of typographic errors David
Beckham vs. David Beckam).

The personal disambiguator aims to select the best person from a set of candidate entities
and link to the real-world entity or return the NIL value. In the lexical ambiguity problem,
we introduce a new algorithm SPTM for ranking the candidate entity. SPTM is a two tree
matching between the comparison tree and the candidate tree. The two trees are considered
if the root nodes are equal. We use SPTM to deal with the context similarity problem.
Due to SPTM, we do not need any context clues that are extracted from a web page to rank
candidate entities. SPTM uses personal name concepts to create a tree under the assumption
that people who are mentioned within a single web page have the same concept (the root
node is equal e.g. they are an entertainer).

Predicting the NIL value, the NIL value is generated under three conditions:

1. PNTM cannot generate a standard name for a mentioned name (xi = /0).

2. Candidate generator cannot generate a set of candidate entities for a mentioned name
(P(x) = /0).

3. Disambiguator can link a mentioned name to a real-world entity but the answer person
has a different concept from the existing people within a web page.

124 Personal Name Entity Linking

We evaluate the performance of PNELF using the real-world data sets which show that
the accuracy in personal name entity linking is 91.82%, which is better than Cucerzan [19]
and Bunescu and Pasca [8].

Chapter 6

Software Specification

6.1 Introduction

The purpose of the chapter is to describe in detail our personal name entity linking software.
This chapter gives the following information for personal name entity linking: software
overview, data flow and data design, user interface design and software testing.

6.1.1 Goals and Objectives

The main objective of our personal name matching is to identify and disambiguate personal
names that are mentioned in a single web document to the real-world entity. Accordingly,
the final product must be efficient in terms of precision for personal name linking and easy
to use. The system could solve three problems in personal name disambiguation: name
variations, personal name ambiguity and predicting the NIL value. Beyond these general
design fundamentals, the following concrete functionalities are to be included in the system:

• Simple Partial Tree Matching (SPTM) algorithm for solving the personal name ambi-
guity.

• The Context Free Grammar (CFG) rules for handling the personal name variations
in a mentioned document. The rules are processed over a personal name dictionary
(a set of given names, family names, nicknames and alternative names) to generate a
unique personal name format.

• Jaro-Winkler text similarity metric for generating a set of candidate entities in each
mentioned name. The text similarity function is used over a personal surface form to
generate a set of possible personal names for a mentioned.

126 Software Specification

• Predicting the NIL value function when a mentioned entity is absent from a knowl-
edge base.

6.1.2 System Overview

The personal name matching system is a client-server architecture where a client-side appli-
cation takes an input from a user and represents the results from the server. The sever-side
application produces the output via multiple functions in the system. A system takes a single
web page as an input. The system produces the identifiable person for each mentioned name
in a web page or returns the NIL value if the mentioned name does not match any personal
name in a knowledge base. For a NIL value, the system passes a mentioned name and the
occupation that has a maximum number of co-occurrences from the identifiable personal
names via BingAPI to produce the top ten links of possible people.

Fig. 6.1 Personal name matching screenshot

The system screenshot is shown in Figure 6.1. The system is developed using Apache2.4.12
(Ubuntu), PHP Version 5.6.11-1 Ubuntu 3.1 and mySQL 5.6.28-0 Ubuntu 0.15.10.1. The

6.1 Introduction 127

personal name matching has one active actor and two cooperating system APIs. The user
accesses the system through the Internet. There are two functions process through the two
APIs: AlchemyAPI and BingAPI, as described in Chapter 5. The system components can be
split up into three components: extractor, searcher and disambiguator, which we introduced
in Chapter 5.

1. Extractor. This component is used to extract a set of mentioned names within a single
web page. The extractor takes a single web page as an input and produces a set of
mentioned names. The component consists of three main tasks:

• User submits URL via our input form.

• The input URL passes through the AlchemyAPI.

• AlchemyAPI produces the output and sends it back to the system in the form of
an XML document.

2. Searcher. This component is used to produce a set of candidate entities in each per-
sonal mentioned name. The component consists of three main tasks:

• Transforming a set of mentioned names into a uniform representation using a
sequence of context free grammar rules and a personal name dictionary.

• Generating a set of candidate entities in each mentioned name by computing the
similarity score between a set of standard names in each mentioned name and
the personal name surface form using the Jaro-Winkler similarity function. A
personal name which has a similarity score of equal or more than 0.97 can be
a candidate entity. This score comes from our experimental results because we
want to limit the number of candidate entities in terms of precision and recall. A
pair of personal names that has one different letter is equal (e.g. Tony Scott and
Tony Scotti are similar).

• Generating the NIL value for a mentioned name that does not have the candidate
entity.

3. Disambiguator. This component is used when a mentioned personal name is ambigu-
ous (a mentioned name can refer to more than one candidate entity). The component
consists of six main tasks:

• Linking the mentioned name that has one candidate to the real-world entity.

• Simple partial tree matching is used to calculate the similarity score in each
ambiguous mentioned name.

128 Software Specification

• The candidate entity that has the highest similarity score is selected.

• Verifying the NIL value predicted in each identifiable mentioned name because
our assumption is that the identifiable mentioned name should have the same
ancestor. Therefore, the identifiable mentioned names that have a different root
node will be wrongly identified and the NIL value is generated for this men-
tioned name.

• The system produces the top ten links for the possible people for a NIL value
through BingAPI, as described in Chapter 5.

6.1.3 System Functions

A personal name matching system is a web application where a user will be able to submit a
URL via the Internet. The outputs will be processed via three main components. The results
in each web page will be linked if they match the real-world entity or returned NIL if they
do not map to any person in the knowledge base. The system can predict the top ten links
of possible people for a NIL value. The system function is explained using the use case
diagram shown in Figure 6.2.

Fig. 6.2 Personal name matching use case diagram

We consider the following use cases:

6.2 Data Design 129

1. Submit URL use case: the user submits a URL of the web page via the input form.
After that, this URL will be processed through the system function.

2. Extract mention use case: The extractor will pass the URL to the AlchemyAPI. The
API returns personal name extraction via an XML document. The extractor query a
set of personal names from the XML document.

3. Transform personal name use case: The transformation evaluates and transforms set
of personal names into a uniform representation using context free grammar rules and
a personal name dictionary.

4. Search candidate use case: The personal names which have uniform representation in
each mentioned name will be matched with the personal surface form using the Jaro-
Winkler similarity function. A candidate entity will be generated if it has a similarity
score more than 0.97. A set of candidate entities in each mention will be passed to the
linking function.

5. Link personal name use case: The mention will be linked to the real-world person or
return the NIL value if a mentioned name cannot map to anyone in the knowledge
base.

6. Disambiguate name use case: this function will be process if each mentioned name
has more than one candidate entities. A mentioned name refers to multiple people
(lexical ambiguity). The SPTM is used for ranking a set of candidate entities. The
candidate who has the highest similarity score will be selected.

7. Generate NIL use case: This function will be processed when the searcher cannot
assign the candidate to each mention or the linked person has a root node that is
different to the collection.

8. Show possible person use case: This function produces the top ten links of possible
people for the NIL mentions using the BingAPI.

6.2 Data Design

We describe our data design including the data structures that are used to pass the data
through the system and our database design.

130 Software Specification

6.2.1 Internal Data Structures

We use four types of internal data structure to communicate between components in our
system, including HttpPost, XML and JSON format. Firstly, HttpPost is used to commu-
nicate between the client and the server. HttpPost protocol is always used to communicate
between the client and the server (e.g. HTML input form). Secondly, the XML format is the
communication between the extractor component and the AlchemyAPI. Thirdly, the NIL
value predictor component and the BingAPI exchange data using JSON. JavaScript Object
Notation (JSON) is a lightweight data-interchange format. Finally, the internal data struc-
ture is the MySQL database format which is used when we query the information from a
data catalogue or personal name dictionary. The performance of the server will be decreased
for a large amount of data. Therefore, the indexing and selecting only the data that has the
same initial letter are used to reduce the workload in the database.

6.2.2 Database Description

In this section, we introduce our conceptual design using an Entity Relationship (ER) Dia-
gram and our logical design (e.g. tables and keys (constraints)).

Fig. 6.3 Personal name matching entity relationship diagram

The ER diagram is illustrated in Figure 6.3. The ER diagram contains four entities: Per-
son, Personal Name Concepts, Occupation and Personal Name Surface Form as described
in the following.

1. Person: A person may not have personal name concept because he is not working.
Each person has one or more personal surface forms. The entity Person has two
recursive relationships including hasChild and IsMarried.

2. Personal Name Concepts: Each personal name concept can belong to one person.
Each personal name concept must have zero or multiple occupations.

6.3 Work Flow of the Process 131

3. Personal Name Occupation: Each occupation can belong to one or more personal
name concepts.

4. Personal Name Surface Form: Each personal surface form can belong to one or more
person.

The database contains five tables: Entity_Data, EntityTree, Category, Entity_SurfaceForm
and Entity_Relations as described below.

1. Entity_Data(ENid, ENname) is a collection of personal names that are extracted from
a knowledge base.

2. EntityTree(ENid, root, Tree) is a collection of personal name concept. A tree is a
set of category IDs(Cids). For example, personal name concepts = (1,0,{0,4,41,44})
which means a personal name id 1 has a root node concept 0 and a set of categories
0,4,41,44.

3. Category(Cid,Cname, Cparent, lft, rgt) is a collection of occupations. Cid is a primary
key, Cname is an occupation’s name, Cparent is a parent category of this node and lft
and rgt are calculated using the MPTT algorithm.

4. Entity_SurfaceForm(Pname,ENids) is a collection of terms that are used to refer to
personal names. Pname is a term and ENids is a set of people who used this reference.
For example, personal surface form = (Aaron Brown, {21, 22, 81754, 90459}) where
Aaron Brown is Pname and {21, 22, 81754, 90459} is a set of ENids.

5. Relations(ENid,relation, objID) is a collection of personal name relationships includ-
ing hasChild and IsMarried. objID is a set of ENids.

The database is used to identify and disambiguate personal names mentioned within
a web document. Table Entity_SurfaceForm and Entity_Data are used to generate a set
of candidate entities in each mentioned name in the searcher component. The four tables:
Entity_Data, EntityTree, Category and Relations are used to disambiguate lexical ambiguity
in the disambiguator component. The data that are used in the searcher component and the
disambiguator component are separated.

6.3 Work Flow of the Process

The flowcharts show in Figure 6.4 and Figure 6.5 explain the sequence of steps and logic
to handle our problems. The system starts by taking a URL as an input and then passing

132 Software Specification

multiple processes and the final result is personal name linking to the real-world entity or
the NIL value. After that, the NIL value is processed for browsing possible people using the
BingAPI. The system work flow is described below.

6.3 Work Flow of the Process 133

Fig. 6.4 Personal name matching flowchart

134 Software Specification

Fig. 6.5 Personal name matching flowchart

6.3 Work Flow of the Process 135

1. The process starts when a user submits a URL.

2. The extractor passes the URL to AlchemyAPI through the Internet. AlchemyAPI
returns the personal name in XML format. The extractor queries the mentioned names
in the XML document. If the extractor returns more than two people, the system goes
to the personal name transformation process, but otherwise the process is finished.

3. A set of personal names will be transformed into a uniform format under CFG rules
and a personal name dictionary. A set of transformed names are passed to generate
a set of candidate entities. The unrecognised mentioned names go through the NIL
value predicting process.

4. The searcher matches mentioned names over the personal name surface form under
the Jaro-Winkler text similarity function. The process makes two decisions: 1) if a
mentioned name matches a personal name surface form go to check the total number
of candidate entities process 2) if it does not match personal surface form go to match
standard name with a personal name surface form process.

5. The searcher matches a standard name over a personal name surface form by calcu-
lating the similarity score between a transformed name and a set of term collections
in personal surface form using the Jaro-Winkler function. The candidate that has a
similarity score of more than 0.97 is generated for each standard name. The similarity
score of 0.97 is from our experimental results because our aim of generating a set of
candidate entities is to balance between precision and recall. Therefore, the similarity
score 0.97 is the effective point to allow a single letter error in a personal name to be
a candidate entity.

6. After the candidate entities are assigned to the mentioned name, the generate candi-
date process makes two decisions: 1) if a mentioned name does not have a candidate
entity going to generate the NIL value 2) if a mentioned name has a set of candidate
entities go to check the total number of candidate entities process.

7. In counting the number of candidate entities in each mentioned name, the process
makes two decisions: 1) if a candidate entity = 1, go to the entity linking process 2) if
the candidate > 1 go to the compute SPTM process.

8. The SPTM process calculates the similarity score using the SPTM algorithm. The
candidate who has the highest score is selected and goes to the entity linking process.

136 Software Specification

9. A set of linking entities are evaluated by considering the root node in each real-world
entity. The system returns the NIL value to a mentioned name whose root node is
different from the collection people. The system displays the final results.

10. The NIL mentions are processed to prediction possible people using BingAPI and
displays the top ten links that are related to possible people.

6.4 User Interface Design

The User Interface (UI) contains the input form for a user to submit a URL and view the
results through the Internet. The lists of UIs are described below.

1. Home page. The first time a user accesses the website, the submit form will appear
and request the user to input the URL of the web page for personal name linking.

Fig. 6.6 Home page

2. The personal name transformation page will appear when a user submits the form.
Figure 6.7 shows the mentions that are extracted from the URL:

htt p : //www.today.com/id/16444023.

The values in the first column are personal names which are extracted from a web
page and the values in the second column are the uniform format that are transformed
using CFG rules and the personal name dictionary. For example, the mentioned name
Diaz is transformed into Cameron Diaz.

6.4 User Interface Design 137

Fig. 6.7 Personal name transformation page

3. Candidate people will appear when user click GenerateCandidateEntities. A set of
candidate entities in each mention are generated using the Jaro-Winkler text similarity
function and the personal surface form. Figure 6.16 demonstrates a set of candidate
people in each mention. For example, the mentioned name Timberlake has two can-
didate entities: Justin Timberlake and Craig Timberlake.

Fig. 6.8 Generating a set of candidate entity pages

4. The personal name disambiguation page will appear when a user clicks Simple Par-
tial Tree Matching. This page shows the results after solving the lexical ambiguity
problem using SPTM algorithm and they are represented in Figure 6.9. For example,
the system returns Justin Timberlake for the lexical ambiguity Timberlake.

138 Software Specification

Fig. 6.9 The results of Simple Partial Tree Matching algorithm

5. The final result page will appear when a user clicks Evaluate NIL. This page shows the
final results of personal name linking by evaluating all of the collection entities that
they have the same root node. The system assigns the NIL value to the linking entity
if this entity has a different root node from the collection. Figure 6.10 illustrates the
final results. The values in the first column are a set of personal name mentions. The
values in the second column are identification names for each mention and we have
two mentions including Lou Perlman and Veronica Finn which are unlinked to any
entity in our collection.

Fig. 6.10 Final results in personal name matching page

6. The prediction NIL value page will appear when a user clicks the unlinking entity.
This page will send the mentioned name and an occupation which has the maximum

6.5 Testing Issues 139

number of co-occurrences in the identification of personal name concepts through
BingAPI. The top ten links of possible people are shown in Figure 6.11 for the men-
tioned name Veronica Finn and as we know, Veronica Finn was Justin Timberlake’s
first girlfriend.

Fig. 6.11 Top ten links of possible people

6.5 Testing Issues

The purpose of testing is to ensure that each component in the personal name matching
system is produced using the precision outputs. Then, once the components are joined, the
whole system is tested to ensure that all components work together correctly.

6.5.1 Software summary

Personal name matching is a client-server architecture that includes three main components:
extractor, searcher and disambiguator. PHP and MySQL database are used to develop our
software component. The system components are described in Table 6.1.

140 Software Specification
Ta

bl
e

6.
1

So
ft

w
ar

e
Su

m
m

ar
y

C
om

po
ne

nt
s

U
se

ca
se

s(
♯)

C
om

po
ne

nt
s

Sy
st

em
D

at
ab

as
e

E
xt

ra
ct

or

•
E

xt
ra

ct
m

en
tio

n
•

in
de

x.
ph

p

•
en

tit
y_

ex
tr

ac
to

r.p
hp

da
ta

.x
m

l

Se
ar

ch
er

•
Tr

an
sf

or
m

pe
rs

on
al

na
m

e

•
Se

ar
ch

ca
nd

id
at

e

•
C

FG
m

at
ch

ed
.p

hp

•
A

ho
C

FG
m

at
ch

ed
.p

hp

•
PN

Pa
tte

rn
.p

hp

•
JW

.p
hp

•
E

nt
ity

_D
at

a

•
E

nt
ity

_S
ur

fa
ce

Fo
rm

D
is

am
bi

gu
at

or

•
L

in
k

Pe
rs

on
al

na
m

e

•
D

is
am

bi
gu

at
e

na
m

e

•
G

en
er

at
e

N
IL

va
lu

e

•
Sh

ow
po

ss
ib

le
pe

rs
on

•
Tr

ee
M

at
ch

in
g.

ph
p

•
Fi

nd
E

N
re

la
tio

n.
ph

p

•
E

nd
E

va
lu

at
io

n.
ph

p

•
B

in
g.

ph
p

•
E

nt
ity

_D
at

a

•
E

nt
ity

Tr
ee

•
C

at
eg

or
y

•
R

el
at

io
ns

6.5 Testing Issues 141

6.5.2 System Testing

The system testing starts with three components: an extractor, searcher and disambiguator
are integrated to ensure that the system still works properly. We focus on the precision
output values in the extractor, searcher and disambiguator. The system could return either
personal name linking or the NIL value in each mentioned name. The system is finished if
it returns the correct values in every component.

Item to be tested

• The extractor generates correct mentioned names and compares with the XML docu-
ment that is returned from AlchemyAPI.

• PNTM transforms a mentioned name into a proper representation format.

• The searcher generates a set of candidate entities in each mentioned name correctly.

• The disambiguator calculates and ranks a set of candidate entities in each mentioned
name correctly bases on SPTM algorithm.

1. Extractor component: This process connects to AlchemyAPI, an external system for
name entity extraction. The extractor processed a URL input and provides a list of
personal names to the searcher component.
Test Case ID: UC1.
Test name: Extract mentioned name.
Description: To guarantee that the system lists the correct names that are returned
from AlchemyAPI.
Prerequisites: NO.
Tests inputs: URL.
Tests outputs: A list of personal names shown in a web browser.

Fig. 6.12 The URL input form

142 Software Specification

Fig. 6.13 A set of mentioned names within a web page

Figure 6.12 shows a URL input form and Figure 6.13 shows a set of mentioned names
that are extracted from a web page.

Test procedures:

Step number Description Expected Results
1 Open application in a browser Homepage and input form

shown correctly. This can be
seen in Figure 6.12

2 Input URL The personal names that ap-
peared in data.xml are shown
in a web browser. This can be
seen in Figure 6.13

2. The searcher component is separated into two tasks: PNTM and candidate generator.
PNTM is used to generate a uniform personal name representation and a candidate
generator provides a set of candidate entities in each mentioned name.

Test Case ID: UC2.
Test name: Personal name transforming.
Description: To guarantee that PNTM returns a set of correct uniform representa-
tions in each mentioned personal name.
Prerequisites: A set of personal names that are extracted from a web. page

6.5 Testing Issues 143

Tests inputs: A set of personal names
Tests outputs: A list of uniform representation formats and groups by mentioned
name are shown in a web browser.

Fig. 6.14 A set of mentioned names with prefix and/or suffix transformation under PNTM

Fig. 6.15 A set of mentioned names without prefix and/or suffix transformation under PNTM

Figure 6.14 shows a list mentioned with a prefix and/or suffix and Figure 6.15 shows a
list mentioned without a prefix and/or suffix. The test case aims to evaluate the perfor-
mance of PNTM tasks in transforming name variations (e.g. rearrangement of name:
David Beckham vs. Beckham, David, nickname: Dave vs. David or alias name: DB7
vs. David). The PNTM provides a good performance if it returns a correct output.

144 Software Specification

Test procedures:

Step number Description Expected Results
1 Input a list of personal names with

titles. For example, {Mr. David
Robert Joseph Beckham, OBE, Mr.
David Beckham, Mr. Beckham,
David, Mr. Beckham, D., Mr. DB7,
Mr. Dave Beckham}

The list of personal names is shown
correctly in a web browser and their
titles are removed. The output
values are: {David Robert Joseph
Beckham, OBE = David Robert
Joseph Beckham, Mr. David Beck-
ham = David Beckham, Mr. Beck-
ham, David = David Beckham, Mr.
Beckham, D. = D. Beckham, Mr.
DB7 = David Beckham, Mr. Dave
Beckham = Dave Beckham and
David Beckham}. The results are
shown in Figure 6.14.

2 Repeat this step but change the in-
put values: personal name without
a title. For example, {David Robert
Joseph Beckham, David Beckham,
Beckham, David, Beckham, D.,
DB7, Dave Beckham}

The list of personal name are shown
correctly in a web browser. The
output values are: {David Robert
Joseph Beckham = David Robert
Joseph Beckham, David Beck-
ham = David Beckham, Beckham,
David = David Beckham, Beck-
ham, D. = D. Beckham, DB7 =
David Beckham, Dave Beckham =
Dave Beckham and David Beck-
ham}. The results are shown in Fig-
ure 6.15.

Test Case ID: UC3.
Test name: Search candidate entity.
Description: To guarantee that the system returns a set of correct candidate entities
in each mentioned personal name.

6.5 Testing Issues 145

Prerequisites: A set of standard personal names that are transformed from the per-
sonal name transformation component.
Tests inputs: A set of standard personal names.
Tests outputs: A list of candidate entities and groups by mentioned name are shown
in a web browser.

Fig. 6.16 A set of candidate entities that are generated from the searcher component

Figure 6.16 shows a set of candidate entities. It can be seen that the Jaro-Winkler text
similarity metric can solve the problem of misspelling (e.g. Brad Pit vs. Brad Pitt).
Test procedures:

Step number Description Expected Results
1 Input a list of standard personal

names. For example, {Timber-
lake = Craig Timberlake and Justin
Timberlake, Diaz = Cameron Diaz,
Veronica Finn = Veronica Finn,
Britney Spears = Britney Spears,
Brad Pit = Brad Pit and Bradford
Pit, Tom Cruise = Tom Cruise and
Thomas Cruise}

The list of candidate entities are
shown correctly in a web browser.
A set of candidate entities is: {Tim-
berlake = Craig Timberlake and
Justin Timberlake, Diaz = Cameron
Diaz, Veronica Finn = /0, Brit-
ney Spears = Britney Spears, Brad
Pit = Brad Pitt, Tom Cruise =
Thomas Cruise (footballer) and
Tom Cruise}. A set of candidate en-
tities is shown in Figure 6.16.

146 Software Specification

3. Disabiguator component. There are three tasks: link a mentioned name to a real-
world entity, disambiguate ambiguity name and predict NIL value for a mentioned
name that is not represented in the knowledge base.

Test Case ID: UC4.
Test name: Comparison tree.
Description: To guarantee that the system generate the correct comparison tree. The
comparison tree is generated from the personal name concepts where a mentioned
name has a single candidate entity and the root node is equal. The comparison tree
with the maximum number of nodes is considered first.
Prerequisites: A set of candidate entities that are generated from the searcher com-
ponent.
Tests inputs: A set of candidate entities.
Tests outputs: Comparison tree.

Fig. 6.17 A comparison tree

Figure 6.17 shows a comparison tree that is created from three personal name con-
cepts where a mentioned name has a single candidate including Cameron Diaz, Brit-
ney Spears and Brad Pitt.

6.5 Testing Issues 147

Test procedures:

Step number Description Expected Results
1 Input a list of candidate entities in

each mentioned name. For exam-
ple, {Timberlake = Craig Timber-
lake and Justin Timberlake, Diaz
= Cameron Diaz, Veronica Finn =
/0, Britney Spears = Britney Spears,
Brad Pit = Brad Pitt, Tom Cruise
= Thomas Cruise (footballer) and
Tom Cruise}

A set of single candidate entities
and comarison trees are shown
correctly in a web browser. The
output values are: {Cameron
Diaz, Britney Spears, Brad Pitt
and comparison tree: Entertain-
ers and Artists− > Creator− >

Per f ormer− > Model− > ...− >

Americanmusicvideodirectors}.
The comparison tree is shown in
Figure 6.17.

Test Case ID: UC5.
Test name: Link Personal Name.
Description: To guarantee that the system returns a correct answer in each mentioned
personal name. The system returns either a linking mentioned name to a real-world
entity or represents the NIL value.
Prerequisites: A set of candidate entities that are generated from the searcher com-
ponent.
Tests inputs: A set of candidate entities.
Tests outputs: Entity linking or NIL value in each mentioned name.

148 Software Specification

Fig. 6.18 Personal name entity linking

Figure 6.18 shows the output in personal name entity linking. The system can return
either the linking or the NIL value in each mentioned name. Furthermore, the disam-
biguator ranks a set of candidate entities in each mentioned name correctly and the
highest similarity score is selected.

Test procedures:

Step number Description Expected Results
1 Input a list of candidate entities

in each mentioned name. For ex-
ample, {Timberlake = Craig Tim-
berlake, Justin Timberlake, Diaz =
Cameron Diaz, Tom Cruise = Tom
Cruise, Thomas Cruise, Veronica
Finn: /0}

The list of candidate entities is
shown correctly in a web browser.
The output values are {Timber-
lake = Justin Timberlake, Diaz =
Cameron Diaz, Tom Cruise = Tom
Cruise, Veronica Finn = /0. The re-
sults of personal name entity link-
ing are shown in Figure 6.18.}

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Personal Named Entity Linking is the task of linking the personal named entity that is men-
tioned within a web page to the corresponding person in a knowledge base. Personal Named
Entity Linking can be used as input in many areas, such as search engines, information re-
trieval, information extraction, named-entity recognition and machine translation. The aim
of this thesis is to design a framework and a new algorithm that focuses on two challenges
in personal name entity linking:

1. Improving searcher performance. The previous searcher component [8, 19] is based
on matching the exact term over personal and surface forms. This method may pro-
vide an incorrect result in personal name matching. This is because personal names
have various representations (e.g. nickname: Dave vs. David; shortened name: Beck-
ham vs. David Beckham; alternative name: DB7 vs. David Beckham; order rear-
rangement Beckham, David vs. David Beckham; multiple spellings: Catherine vs.
Katherine; and typographical errors: Beckham vs. Beckam).

2. Improving disambiguator performance. This thesis focuses on two main problems in
the disambiguator component which are usually used for ranking a set of candidate
entities when there is lexical ambiguity.

• Context similarity that requires exactly word overlap between the two compared
texts to evaluate whether or not the two people are the same. Context similarity
may become an over-strict constraint because natural language is flexible.

• Topical coherence based on Wikipedia cross-page links or YAGO taxonomy for
finding the unity between two persons. However, the category in Wikipedia is

150 Conclusion and Future Work

a thematic domain; it is less semantic and not well-formed enough to represent
the correct concepts for each person. The taxonomy in YAGO that derives from
WordNet and Wikipedia is well-formed and semantically accurate. However, we
found that some classes in the YAGO taxonomy use an incorrect correspondence
between a class in WordNet and a category in Wikipedia. Therefore, it may
reduce the accuracy in candidate ranking.

To solve the problems above, we introduce PNELF, a new framework for personal name en-
tity linking. PNELF consists of three main components: Personal name extractor, Searcher
and Personal name disambiguator.

We use Alchemy API for extracting a set of names mentioned within a web document.
The searcher component works to generate a set of candidate entities for a mentioned name.
To improve the performance in searcher, the thesis has introduced PNTM and Jaro-Winkler
text similarity metric to handle the name variation problem. PNTM aims to transform multi-
ple name patterns to a uniform representation. PNTM consists of three modules: CFG rule,
predicate and action.

• CFG rule or transformations rule is similar to a standard CFG rule, including head
and body. The rules define how an input can be transformed to an output.

• Predicate is an external database consisting of prefix and suffix dictionary, personal
name dictionary and a set of personal name patterns.

• Action is a set of functions we use to produce the output under CFG rules and predi-
cate.

PNTM with Jaro-Winkler returns the highest proportion of correct results in personal name
matching because it can solve the personal name variation problems as follows:

1. PNTM can handle two problems in personal name matching: the rearrangement of
words (e.g. Beckham, David vs. David Beckham) and the use of different words such
as alternative name or nickname to refer to the same person (e.g. DB7 vs. David
Beckham or Dave vs. David).

2. Jaro-Winkler uses character-based text similarity matching, so it can solve the prob-
lem of multiple spellings (e.g. Catherine vs. Katherine) and typographical errors (e.g.
Beckham vs. Beckam).

Experimental results using a large number of web documents show that the new searcher is
effective at detecting candidate entities, both in terms of precision and recall.

7.2 Future Work 151

In the personal name disambiguator component, we propose a new occupation taxon-
omy: OAPnDis, and new algorithm in personal name disambiguator: SPTM. The design
of OAPnDis architecture is based on YAGO taxonomy and the web directory includes four
layers:

1. Layer 0: An identifying layer to define that the instance under this layer is human.

2. Layer 1: An overview classifying layer that is derived from web directories.

3. Layer 2: A YAGO-WordNet layer that is derived from YAGO taxonomy.

4. Layer 4: An YAGO-Wikipedia layer that is derived from YAGO taxonomy.

Based on OAPnDis, we can construct a new occupation taxonomy that is clean, well-
formed and semantically accurate for generating personal name concepts in each person.

SPTM is a two-tree matching algorithm that compares a comparison tree and a candidate
tree to rank a set of candidate entities when lexical ambiguity occurs. The comparison tree
is created from a set of personal name concepts in each mentioned name which has a single
candidate entity and their root nodes are similar. Candidate tree is the name given to the
personal name concepts for each person who share the same personal name surface form.
SPTM matches each candidate tree with the comparison tree and the candidate entity who
has the highest similarity score is considered and linked to the real-world entity. We assume
that persons who are represented within a web document are coherent and that their concepts
are similar (i.e. layer 1 or root node is equal). Therefore, context similarity is discarded from
PNELF. Experimental results over the real word data show that PNELF provides a higher
rate of accuracy in personal name linking than previous work. SPTM and personal name
concepts can disambiguate lexical ambiguity.

7.2 Future Work

The empirical results demonstrate that PNELF is effective in personal name linking. How-
ever, the effectiveness of short names linking is down. This result indicates that only per-
sonal name concept feature is insufficient to identify a short name when a lexical ambiguity
problem occurs. Therefore, in the future work we would like to improve the performance
of short name ambiguity. We plan to find out a useful evidence across the web documents
to calculate the correlation between two people. This information is useful to identify an
absent entity or a short name ambiguity.

References

[1] Arasu, A., Chaudhuri, S., and Kaushik, R. (2008). Transformation-based framework
for record matching. In 2008 IEEE 24th International Conference on Data Engineering,
pages 40–49.

[2] Arasu, A., Götz, M., and Kaushik, R. (2010). On active learning of record match-
ing packages. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, pages 783–794.

[3] Arasu, A. and Kaushik, R. (2009). A grammar-based entity representation framework
for data cleaning. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data, pages 233–244.

[4] Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni, O. (2007).
Open information extraction from the web. In Proceedings of the 20th International
Joint Conference on Artifical Intelligence, pages 2670–2676.

[5] Banko, M. and Etzioni, O. (2008). The tradeoffs between open and traditional relation
extraction. In Proceedings of ACL-08: HLT, pages 28–36.

[6] Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., and Fienberg, S. (2003). Adaptive
name matching in information integration. Intelligent Systems, IEEE, 18(5):16–23.

[7] Bollegala, D., Matsuo, Y., and Ishizuka, M. (2011). Automatic discovery of personal
name aliases from the web. Knowledge and Data Engineering, IEEE Transactions on,
23(6):831–844.

[8] Bunescu, R. and Pasca, M. (2006). Using encyclopedic knowledge for named entity
disambiguation. In Proceedings of the 11th Conference of the European Chapter of the
Association for Computational Linguistics (EACL-06), Trento, Italy, pages 9–16.

[9] Bureau, U. C. (2014). Genealogy. http://www.census.gov/topics/population/genealogy/
data/1990_census/1990_census_namefiles.html/. [Online; accessed 10-Sep-2014].

[10] Cafarella, M. J., Halevy, A., and Khoussainova, N. (2009). Data integration for the
relational web. Proc. VLDB Endow., 2(1):1090–1101.

[11] Cafarella, M. J., Halevy, A., and Madhavan, J. (2011). Structured data on the web.
Commun. ACM, 54(2):72–79.

[12] CensusDiggins (2010). Gen tips. http://www.censusdiggins.com/nicknames.htm. [On-
line; accessed 10-Aug-2012].

http://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html/
http://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html/
http://www.censusdiggins.com/nicknames.htm

154 References

[13] Chanda, J., Sengupta, S., Kanjilal, A., and Bhattacharya, S. (2010). Formalization of
the design phase of software lifecycle: A grammar based approach. In Proceedings of
the International Workshop on Formalization of Modeling Languages, pages 4:1–4:5.

[14] Chen, Z., Wenyin, L., and Zhang, F. (2002). A new statistical approach to personal
name extraction. In Proceedings of the Nineteenth International Conference on Machine
Learning, pages 67–74.

[15] Christen, P. (2006). A comparison of personal name matching: Techniques and
practical issues. In Sixth IEEE International Conference on Data Mining - Workshops
(ICDMW’06), pages 290–294.

[16] Christen, P., Churches, T., and Zhu, J. X. (2002). Probabilistic name and address
cleaning and standardisation. In Australasian Data Mining Workshop.

[17] Churches, T., Christen, P., Lim, K., and Zhu, J. X. (2002). Preparation of name and
address data for record linkage using hidden markov models. BMC Medical Informatics
and Decision Making, 2(1):1–16.

[18] Cohen, W. W., Ravikumar, P., and Fienberg, S. E. (2003). A comparison of string dis-
tance metrics for name-matching tasks. In Proceedings of International Joint Conference
on Artifical Intelligence-03 Workshop on Information Integration, pages 73–78.

[19] Cucerzan, S. (2007). Large-scale named entity disambiguation based on Wikipedia
data. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning (EMNLP-CoNLL),
pages 708–716.

[20] DBpedia (2015). Dbpedia. http://wiki.dbpedia.org/. [Online; accessed 02-Oct-2015].

[21] De Melo, G., Suchanek, F., and Pease, A. (2008). Integrating yago into the suggested
upper merged ontology. In Tools with Artificial Intelligence, 2008. ICTAI ’08. 20th IEEE
International Conference on, volume 1, pages 190–193.

[22] Demidova, E., Oelze, I., and Nejdl, W. (2013). Aligning freebase with the yago on-
tology. In Proceedings of the 22Nd ACM International Conference on Information &
Knowledge Management, pages 579–588.

[23] DMOZ (2016). Dmoz. https://www.dmoz.org/. [Online; accessed 02-Jan-2013].

[24] Dredze, M., McNamee, P., Rao, D., Gerber, A., and Finin, T. (2010). Entity dis-
ambiguation for knowledge base population. In Proceedings of the 23rd International
Conference on Computational Linguistics, pages 277–285.

[25] Elmagarmid, A., Ipeirotis, P., and Verykios, V. (2007). Duplicate record detection: A
survey. Knowledge and Data Engineering, IEEE Transactions on, 19(1):1–16.

[26] Factforge (2015). Factforge fast track to the center of the data web. http://factforge.
net/. [Online; accessed 02-Oct-2015].

[27] Fader, A., Soderland, S., and Etzioni, O. (2011). Identifying relations for open infor-
mation extraction. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 1535–1545.

http://wiki.dbpedia.org/
https://www.dmoz.org/
http://factforge.net/
http://factforge.net/

References 155

[28] Ferrara, E., Meo, P. D., Fiumara, G., and Baumgartner, R. (2014). Web data extraction,
applications and techniques: A survey. Knowledge-Based Systems, 70(0):301 – 323.

[29] Franklin (2009). Nicknames and naming traditions. http://www.tngenweb.org/
franklin/frannick.htm. [Online; accessed 10-Aug-2012].

[30] Freebase (2015). A community-curated database of well-known people, places, and
things. https://www.freebase.com/. [Online; accessed 02-Oct-2015].

[31] Google (2013). What did the world search for 2013? https://www.google.com/trends/
topcharts#geo&date=2013. [Online; accessed 14-August-2014].

[32] Gruber, T. R. (1993). A translation approach to portable ontology specifications.
Knowl. Acquis., 5(2):199–220.

[33] Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowl-
edge sharing. Int. J. Hum.-Comput. Stud., 43(5-6):907–928.

[34] Hachey, B., Radford, W., Nothman, J., Honnibal, M., and Curran, J. R. (2013). Eval-
uating entity linking with wikipedia. Artificial Intelligence, 194(0):130 – 150.

[35] Han and Kamber (2006). Data mining : concepts and techniques / by Jiawei Han and
Micheline Kamber. Morgan Kaufmann.

[36] Han, X., Sun, L., and Zhao, J. (2011). Collective entity linking in web text: A graph-
based method. In Proceedings of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 765–774.

[37] Han, X. and Zhao, J. (2009). Web personal name disambiguation based on reference
entity tables mined from the web. In Proceedings of the Eleventh International Workshop
on Web Information and Data Management, pages 75–82.

[38] Hasan, K. M. A., Mondal, A., and Saha, A. (2010). A context free grammar and its pre-
dictive parser for bangla grammar recognition. In Computer and Information Technology
(ICCIT), 2010 13th International Conference on, pages 87–91.

[39] Hillyer, M. (2012). Managing hierarchical data in mysql. http://mikehillyer.com/
articles/managing-hierarchical-data-in-mysql/. [Online; accessed 02-Jan-2013].

[40] Hoffart, J., Suchanek, F. M., Berberich, K., and Weikum, G. (2013). Yago2: A spa-
tially and temporally enhanced knowledge base from wikipedia. Artificial Intelligence,
194(0):28 – 61.

[41] Hu, Y., Wang, Z., Wu, W., Guo, J., and Zhang, M. (2010). Recommendation for movies
and stars using yago and imdb. In Web Conference (APWEB), 2010 12th International
Asia-Pacific, pages 123–129.

[42] Kasneci, G., Ramanath, M., Suchanek, F., and Weikum, G. (2009). The yago-naga
approach to knowledge discovery. SIGMOD Rec., 37(4):41–47.

[43] Kim, Y., Park, J., Kim, T., and Choi, J. (2007). Web information extraction by html
tree edit distance matching. In Convergence Information Technology, 2007. International
Conference on, pages 2455–2460.

http://www.tngenweb.org/franklin/frannick.htm
http://www.tngenweb.org/franklin/frannick.htm
https://www.freebase.com/
https://www.google.com/trends/topcharts#geo&date=2013
https://www.google.com/trends/topcharts#geo&date=2013
http://mikehillyer.com/articles/managing-hierarchical-data-in-mysql/
http://mikehillyer.com/articles/managing-hierarchical-data-in-mysql/

156 References

[44] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hell-
mann, S., Morsey, M., van Kleef, P., Auer, S., et al. (2015). Dbpedia–a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web, 6(2):167–195.

[45] Li, Y., Wang, C., Han, F., Han, J., Roth, D., and Yan, X. (2013). Mining evidences for
named entity disambiguation. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1070–1078.

[46] Limaye, G., Sarawagi, S., and Chakrabarti, S. (2010). Annotating and searching web
tables using entities, types and relationships. Proc. VLDB Endow., 3(1-2):1338–1347.

[47] Liu, B. (2011). Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data
/ by Bing Liu. [eBook]. Data-Centric Systems and Applications. Springer Berlin Heidel-
berg.

[48] Mann, G. S. and Yarowsky, D. (2003). Unsupervised personal name disambiguation.
In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL
2003 - Volume 4, pages 33–40.

[49] Manning, Raghavan, and Schutze (2008). Introduction to information retrieval / by
Christopher D. Manning, Prabhakar Raghavan and Hinrich Schutze. CUP.

[50] Murphy, C. and Purdum, T. S. (2009). Farewell to all that: An oral history of the
bush white house. http://www.vanityfair.com/news/2009/02/bush-oral-history200902/.
[Online; accessed 14-Sep-2015].

[51] Nickel, M., Tresp, V., and Kriegel, H.-P. (2012). Factorizing yago: scalable machine
learning for linked data. In Proceedings of the 21st international conference on World
Wide Web, pages 271–280.

[52] Nijholt (1980). Context free grammar: covers, normal forms and parsing / by A.
Nijholt. Lecture notes in computer science: 93. Springer.

[53] of Sheffield, T. U. (1995). Gate: a full-lifecycle open source solution for text process-
ing. https://gate.ac.uk/overview.html. [Online; accessed 10-Jul-2012].

[54] Peng, T., Li, L., and Kennedy, J. (2014). A comparison of techniques for name match-
ing. GSTF Journal on Computing (JoC), 2(1).

[55] Rahm, E. and Do, H.-H. (2000). Data cleaning: Problems and current approaches.
IEEE Bulletin of the Technical Committee on Data Engineering, 23(4):3–13.

[56] Raman, V. and Hellerstein, J. M. (2001). Potter’s wheel: An interactive data cleaning
system. In Proceedings of the 27th International Conference on Very Large Data Bases,
pages 381–390.

[57] Ren, A., Du, X., and Wang, P. (2009). Ontology-based categorization of web search
results using yago. In Computational Sciences and Optimization, 2009. CSO 2009. In-
ternational Joint Conference on, volume 1, pages 800–804.

[58] Science, O. D. U. W. and Group, D. L. R. (2014). nickname-and-diminutive-names-
lookup. github.com/carltonnorthern/nickname-and-diminutive-names-lookup. [Online;
accessed 10-Aug-2014].

http://www.vanityfair.com/news/2009/02/bush-oral-history200902/
https://gate.ac.uk/overview.html
github.com/carltonnorthern/nickname-and-diminutive-names-lookup

References 157

[59] Sen, P. (2012). Collective context-aware topic models for entity disambiguation. In
Proceedings of the 21st International Conference on World Wide Web, pages 729–738.

[60] Shaikh, M., Memon, N., and Wiil, U. (2011). Extended approximate string matching
algorithms to detect name aliases. In Intelligence and Security Informatics (ISI), 2011
IEEE International Conference on, pages 216–219.

[61] Shen, D., Walkery, T., Zhengy, Z., Yangz, Q., and Li, Y. (2008). Personal name
classification in web queries. In Proceedings of the 2008 International Conference on
Web Search and Data Mining, pages 149–158.

[62] Shen, W., Wang, J., Luo, P., and Wang, M. (2012a). Liege:: Link entities in web lists
with knowledge base. In Proceedings of the 18th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 1424–1432.

[63] Shen, W., Wang, J., Luo, P., and Wang, M. (2012b). Linden: Linking named entities
with knowledge base via semantic knowledge. In Proceedings of the 21st International
Conference on World Wide Web, pages 449–458.

[64] Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). Yago: A core of semantic
knowledge. In Proceedings of the 16th International Conference on World Wide Web,
pages 697–706.

[65] Suchanek, F. M., Kasneci, G., and Weikum, G. (2008). Yago: A large ontology from
wikipedia and wordnet. Web Semantics: Science, Services and Agents on the World Wide
Web, 6(3):203 – 217.

[66] Sultana, A., Hasan, Q. M., Biswas, A. K., Das, S., Rahman, H., Ding, C., and Li, C.
(2012). Infobox suggestion for wikipedia entities. In Proceedings of the 21st ACM In-
ternational Conference on Information and Knowledge Management, pages 2307–2310.

[67] Tse, G. (2004). A grammatical study of personal names in present-day english: With
special reference to the usage of the definite article. English Studies, 85(3):241–259.

[68] Tulder, G. V. (2003). Storing hierarchical data in a database. https://www.sitepoint.
com/hierarchical-data-database/. [Online; accessed 02-Jan-2013].

[69] University, P. (2015). Wordnet, a lexical database of english. https://wordnet.princeton.
edu/. [Online; accessed 02-Oct-2015].

[70] Watson, I. (2012). Alchemyapi. http://www.alchemyapi.com/. [Online; accessed 10-
Jul-2012].

[71] Wikipedia (2015). George bush. https://en.wikipedia.org/wiki/George_Bush/. [On-
line; accessed 14-Sep-2015].

[72] Wu, F. and Weld, D. S. (2010). Open information extraction using wikipedia. In Pro-
ceedings of the 48th Annual Meeting of the Association for Computational Linguistics,
pages 118–127.

https://www.sitepoint.com/hierarchical-data-database/
https://www.sitepoint.com/hierarchical-data-database/
https://wordnet.princeton.edu/
https://wordnet.princeton.edu/
http://www.alchemyapi.com/
https://en.wikipedia.org/wiki/George_Bush/

158 References

[73] Xu, H., AbdelRahman, S., Lu, Y., Denny, J. C., and Doan, S. (2011). Applying
semantic-based probabilistic context-free grammar to medical language processing - a
preliminary study on parsing medication sentences. Journal of Biomedical Informatics,
44(6):1068 – 1075.

[74] Yancey, W. E. (2005). Evaluating String Comparator Performance for Record Linkage.
Technical report, Statistical Research Division, U.S. Census Bureau.

[75] Yang, W. (1991). Identifying syntactic differences between two programs. Softw.
Pract. Exper., 21(7):739–755.

[76] Yerva, S. R., Miklás, Z., and Aberer, K. (2012). Quality-aware similarity assessment
for entity matching in web data. Information Systems, 37(4):336 – 351.

[77] Yin, X., Tan, W., Li, X., and Tu, Y.-C. (2010). Automatic extraction of clickable
structured web contents for name entity queries. In Proceedings of the 19th International
Conference on World Wide Web, pages 991–1000.

[78] Yin, X., Tan, W., and Liu, C. (2011). Facto: A fact lookup engine based on web tables.
In Proceedings of the 20th International Conference on World Wide Web, pages 507–516.

[79] Zhai, Y. and Liu, B. (2005). Web data extraction based on partial tree alignment. In
Proceedings of the 14th International Conference on World Wide Web, pages 76–85.

[80] Zhai, Y. and Liu, B. (2006). Automatic wrapper generation using tree matching
and partial tree alignment. In proceedings of the 21st national conference on Artificial
intelligence-Volume 2, pages 1687–1690.

[81] Zhai, Y. and Liu, B. (Dec.). Structured data extraction from the web based on partial
tree alignment. Knowledge and Data Engineering, IEEE Transactions on, 18(12):1614–
1628.

Appendix A

Abbreviation Words Glossary

CFG Context Free Grammar
DEPTA Data Extraction based on Partial Tree Alignment
ER Entity Resolution
LIEGE Link the entIties in wEb lists with the knowledGe basE
LP Link probability
LWTM Layered and Weighted Tree Matching
LHS LEFT Hand Side
NED Named Entity Disambiguation
MPTT Modified Preorder Tree Traversal
OAPnDis Occupation Architecture for Personal Name Disambigua-

tion
PNDDC Personal Name Disambiguation Data Catalogue
PNEL Personal Name Entity Linking
PNELF Personal Name Entity Linking Framework
PNSFM Personal Name Surface Form Modules
PNTM Personal Name Transformation Modules
PTA Partial Tree Alignment
RHS Right Hand Side
SPO Simple Property Object
SPTM Simple Partial Tree Matching
STM Simple Tree Matching

Appendix B

Thesis Diagrams

Fig. B.1 Chapter 3: PNSFM modules

162 Thesis Diagrams

Fig. B.2 Chapter 4: Personal Names Transformation Modules

163

Fig. B.3 Chapter 5: Personal Name Entity Linking Framework

Appendix C

Reviews of Tools in Fact Extracting and
Fact Answering

In this section, we introduce the fact extractor and fact answering tools including YAGO,
Reverb, Bing and Google.

C.1 YAGO

YAGO [40] is an ontology, which is part of YAGO-NAGA project developed at the Max
Planck Institute for Informatics. YAGO2 not only contains entities, facts and events, but
also includes times and place. This allows the temporal property of events to be recorded,
such as the Olympic Games or the Oscars Academy Awards; that held the facts more signif-
icantly. Therefore, YAGO does not only answer facts about what but also when and where.
For example, given a question about “Scientists who were born nearby Ulm and won a No-
bel Prize (in any discipline)”, the results provided are Albert Einstein, Hans Spemann and
Gerhard Ertl.

Facts in YAGO are automatically extracted from Wikipedia, GeoNames and WordNet.
The data structure in YAGO2 consists of two main parts: entities and classes. Entity is the
individual instance such as person, river or event which is extracted from Wikipedia articles.
The second part is the class or type that is used for specifying and grouping entities.

The YAGO taxonomy framework contains three layers. The highest layer classes are
from WordNet, the second layer classes are from Wikipedia categories and the lowest layer
is a list of instances. The property subclassof is used for mapping between the higher and
lower classes. An individual instance should be assigned at least one class, where instance
is an individual entity such as a building, person or song. For example, J. K. Rowling

166 Reviews of Tools in Fact Extracting and Fact Answering

is an instance in a class of English women writers or Female billionaires. These classes
are subclasses of the Writer and Person is a parent of Writer class. YAGO links class
and subclass with subclassof to create a hierarchy of classes. Furthermore, one instance
may represented in numerous ways. For example, J. K. Rowling can be represented as
J.k.rolwing, Jessica Rowling Arantes, or J.K. Rowling. YAGO uses a property means to
map between the instance and its reference.

YAGO architecture is divided into two main components. Firstly, facts are a core part
of significantly building the knowledge base. Facts are stored in the form of RDF data
model of SPO triples: subject (S), predicate (P) and object (O). Each fact has unique ID
key. The second component is a representation model. YAGO provides SPOTL (SPO +
Time + Location) for browsing and querying the knowledge base via the query language
SPARQL.

Fig. C.1 An example of entity search about Albert Einstein in YAGO.

YAGO comes in two versions to downloadable. The core version contains 2.6 million
entities and about 124 million facts, while the second full version contains nearly 10 million
entities and more than 447 million facts. In the core version, YAGO delivers four formats to
download: native (ID and triples of SPO: subject, predicate and object), Resource Descrip-
tion Framework (RDF), Notation3(N3) and the format of the Jena TDB store. Additionally,
then full version offers only native and RDF formats. YAGO allows browsing of individual
entities via the interface to see each entity details. For example, Figure C.1 shows the entity
of Albert Einstein and its relationships.

C.1 YAGO 167

Fig. C.2 An example question and triple patterns with SPARQL syntax.

Moreover, YAGO presents the SPOTL(X) with five joins: subject, predicate, object,
time, location and keyword and five triple patterns for searching the YAGO knowledge
base. Figure C.2 represents an example of SPARQL syntax query. As the first triple: ?x is
any subject (S) , isA is property (P) of the subject and scientist is the object(O).

Fig. C.3 An (a) SPOTL(X) interface.

The interface of SPOTL(X) is demonstrated in Figure C.3. The maximum joining in
each query among subject (S), property (P), object (O), time (T), location (L) and keyword
(X) is five. The result is revealed in Figure C.4 and Figure C.5. Figure C.4 shows an
example of a query result about “Scientists who were born nearby Ulm and won a Nobel
Prize (in any discipline)”. The information about each entity is detailed in table form with
seven columns: ID, subject, property, object, time, location and keyword. Figure C.5 shows
the details of each entity using the map format to specify each entity location and a life-line
to identify the time period.

168 Reviews of Tools in Fact Extracting and Fact Answering

Fig. C.4 SPOTL(X) query result within table form.

YAGO directly identifies a time point and time span for each entity and fact by classi-
fying entities into four major types: people, artifacts, groups and events and relations are
assigned to each group. Firstly, the property: wasBornOnDate and diedOnDate is used to
identify the year of life for the person. The next group is artifacts using property as the
wasCreatedOnDate and wasDestroyedOnDate relationships specify their age. Groups are
the third of the entity types, which specify their existence time with property through the
wasCreatedOnDate and wasDestroyedOnDate relations. The last entity type is events that
use these properties: startedOnDate and endedOnDate to define their era. Furthermore, the
happenedOnDate relation is used for a one day event.

YAGO captures facts that have temporal dimension using occursSince and occursUntil
to explain these facts. Moreover, the property occursOnDate is used to define one day or
one time facts such as awards. In order to give location base to each entity, the property
happenedIn is used for an event entity and the isLocateIn property is used for artifacts
entities. Furthermore, properties such as wasBornIn, diedIn, worksAt or participatedIn are
used to explain the location in YAGO’s facts.

C.2 Facts answering from the Bing and Google search engines 169

Fig. C.5 The query result from YAGO2 using SPOTLX.

C.2 Facts answering from the Bing and Google search en-
gines

The fact look up engine aims to return the specific answer for a user who inputs a factual
query into a search engine system. This section introduces the fact look up engines and
compare the ability between the two well-known search engines of: Google and Bing. Fig-
ure C.6 and Figure C.7 are the user interface and the result values from Google and Bing
using the same query phrase of jk rowling birthday.

Fig. C.6 The query results about: JK Rowling birthday from Google.

170 Reviews of Tools in Fact Extracting and Fact Answering

Fig. C.7 The query results about JK Rowling birthday from Bing.

FACTO [78], a fact look up engine, is one of fact look up engines providing by Bing,
which can be accessed at: http://lepton.research.microsoft.com/facto. FACTO extracts facts
from web tables. FACTO uses the triple form: entity-attribute-value (JK Rowling - date
of birth – 31 July 1965), JK Rowling is an entity, date of birth is an attribute and 31 July
1965 is a value to construct fact. Fact values are cleaned before being integrated and stored
in a database ready to answer user queries. The key components of FACTO are the data
extractor and the query answering engine.

1. The data extractor consists of four major components: table classifier, URL pattern
summariser, entity extractor and attribute-value mapping. The table classifier aims to
fill out non-data tables (e.g. an empty table or a calendar) from data tables (a table
which has an attribute and its value). A Support Vector Machine (SVM) with a linear
kernel is used to classify attribute-value tables and training sets are labelled manually.
The second component is the URL pattern summariser, which is used in [77] to treat
each URL pattern as a data source for learning patterns from some pages and used to
extract data from other pages. Yin et al. [77] found that we can categorise web pages
into many groups based on their URLs, and that most of web pages in the same group
have the same format. Thirdly, the aim of extracting entities is to find the key entity
of the web page. FACTO uses two steps for entity extraction: the wrapper builder
and the wrapper ranker. The wrapper builder is used for finding key entity in a web
page using a user query. It then tries to match this with the HTML tags in a web
page until a match is found, and at this point a wrapper is built. The next step is the
wrapper ranker using the calculation scores from precision and recall in each wrapper.
The highest wrapper score is used to extract data entities in each web page. The final
step in the data extractor is mapping the attribute-value to the key entity. To combine

http://lepton.research.microsoft.com/facto

C.2 Facts answering from the Bing and Google search engines 171

the attribute-value more correctly, the table classifier only consider the contents of
an individual table, computing the entropy of all values of this attribute and number
of pages containing this attributes from the data source. The attribute which has an
entropy of less than 0.5, or which appears in less than five pages, is ignored.

2. The second component is ’query answering’, which consists of five steps: query in-
terpretation, entity-attribute filtering, attribute equivalence, entity equivalence and fi-
nally data retrieval and result aggregation. Firstly, query interpretation uses five rules
to convert a user query into an entity (e)-attribute (a):

(a) “e a”

(b) “e’s a”

(c) “(the)?a of e”

(d)) “(what/who/when/where) (is/are/was/were) (the)? a of (the)? e”

(e) “(what/who/when/where) (is/are/was/were) e’s a”.

Additionally, FACTO has four specific rules that are used for directly querying:

(a) how long

(b) how old

(c) when was someone born

(d) where was someone born

Secondly, entity-attribute filtering is based on two observations:

(a) Entity-attribute pairs found in many data sources are more likely to be a valid
pair.

(b) Data sources which provide many entity-attribute pairs should have a high hub
score.

Thirdly, attribute equivalence is used because the user can input the attribute-value
differently from the data store and the web page can represent the same attribute in
a variety of forms. The entity-attribute pair value is used to measure the similarity
between two attributes. The next step is the entity equivalence, which maps between
the user query entity and the data store entity. Finally, FACTO generates the probable
entity-attribute pair and returns the best value sets and URLs to a user.

172 Reviews of Tools in Fact Extracting and Fact Answering

Fig. C.8 The query results about Tom Cruise spouse from Google.

Fig. C.9 The query results about Brad Pitt spouse from Google.

Comparing the fact look up engines between Google and FACTO, Google is more accurate,
has a better in user interface and has a higher query coverage (as represented in Figures C.8
to C.11). However, Google provides an inconsistent user interface, as the query in Fig-
ure C.8 is “Tom Cruise spouse” and the answer represents his spouses with the images on
the left hand side and his profile on the right hand side, but in Figure C.9, which is a very
similar query about “Brad Pitt spouse”, the system returns different interface design so the
interface does not represented the images in the left hand side and the right hand side is rep-
resented his partner profile (Angelina Jolie). Finally, the answer about “Brad Pitt spouse” is
not a complete answer because the former spouse Jenifer Aniston is not represented.

C.2 Facts answering from the Bing and Google search engines 173

Fig. C.10 The query results about Tom Cruise’s spouse from Bing.

Fig. C.11 The query results about Brad Pitt’s spouse from Bing.

On the other hand, we found some errors in FACTO for answering Wh questions. The
results of this are shown in Figure C.13. For example, for the where question the user
expects to see the specific name of place; however, for the query “Where was Justin Bieber
born”, FACTO return the date of birth but Google returns the result correctly as shown in
Figure C.12.

174 Reviews of Tools in Fact Extracting and Fact Answering

Fig. C.12 The query results for "Where was Justin Bieber born?" from Google.

Fig. C.13 The query results for "Where was Justin Bieber born?" from Bing.

C.3 Open Information Extraction: REVERB

Open Information Extraction (OIE) is an automatic extraction system which extracts En-
glish sentences from the web page and stores it in triple form (arg1-relation-arg2) without
pre-defined relations (relation-independent extractor) or human intervention [4, 5, 27, 72].
TexRunner [4] was the first Open Information Extraction system that used a self-supervised
learner which identified relation phrases in English sentences. TexRunner learns the positive
and negative part-of-speech tags and noun phrase chunks using the data set from Penn Tree-
bank for training the Naïve Bayes classifier. WOE [72] improves the precision and recall
of TextRunner using Wikipedia infobox as a data set for training the information extractor.

Reverb [27], the new edition of Open Information Extraction, expands the precission
and recall of TextRunner and WOE by fixing two common issues that always arise in the
output: incoherent extractions and uninformative extraction. Incoherent extractions extract
the worthless relation phrase from the sentence, while the uniformative extractions problem

C.3 Open Information Extraction: REVERB 175

discards the insignificant information.
Reverb presents two constraints that can be used to extract relation phrases in English

sentences more correctly: a syntactic constraint and a lexical constraint. The syntactic con-
straint uses the Part-of-Speech tag pattern: “V/VP/VW*P” where “V” is “verb particle?
adv?”, “W” is “noun/adj/adv/pro/det” and P is “prep/particle/inf.marker” to match the re-
lation phrases in each sentence first (against TextRunner, which finds the argument (entity)
first). A syntactic constraint reduces both incoherent extractions and uninformative extrac-
tion. After that, lexical constraint is assigned to permit the relation phrases using the logistic
regression classifier for matching relation phrases with relation phrases in the repository.

Fig. C.14 The user interface of the REVERB extraction system

Reverb provides a user interface for querying the facts that are extracted from 500 mil-
lion web pages that are represented in Figure C.14. Reverb can decrease the errors regarding
incoherent extractions and uninformative extractions. However, from our observations, we
found that the errors still occur, for example when the query is “Who is US president?”.
The results of this query are demonstrated in Figure C.15. Reverb returns 25 answers from
107 sentences and reveals some incorrect answers e.g. Hillary Rodham Clinton, Jeremiah
Wright and the top.

176 Reviews of Tools in Fact Extracting and Fact Answering

Fig. C.15 REVERB user interface

Reverb provides synonym words for any entities; however, it is insufficient because we
find many repetitive entities in the outputs. For example, Reverb cannot specify that Obama
and Barack Obama are the same entity.

C.3.1 Conclusion

The World Wide Web has a large volume of facts; however, it also has incorrect data and
ambiguous data. Moreover, web designers can represent the data in a variety of formats as
tables, text or graphs, and can use heterogeneous contexts to represent the same meaning
(referential ambiguity problem) or use the same words to have a different meaning (lexical
ambiguity problem). For example, New York City can be represented using different contexts
such as New York or Big Apple; or when we see the word Apple, it could be the fruit or the
name of the computer company Apple Inc.

C.3 Open Information Extraction: REVERB 177
Ta

bl
e

C
.1

T
he

co
nt

ra
st

be
tw

ee
n

YA
G

O
2,

Fa
ct

lo
ok

up
in

G
oo

gl
e

se
ar

ch
en

gi
ne

,F
A

C
TO

an
d

R
ev

er
b.

It
em

s
YA

G
O

2
G

oo
gl

e
FA

C
TO

R
E

V
E

R
B

D
at

a
so

ur
ce

s
W

ik
ip

ed
ia

,W
or

dN
et

an
d

G
eo

na
m

es
U

nk
no

w
n

w
eb

ta
bl

es
E

ng
lis

h
se

nt
en

ce
s

fr
om

W
W

W
Fa

ct
s

st
ru

ct
ur

ed
Tr

ip
le

SP
O

:S
ub

je
ct

,
Pr

ed
ic

at
e,

O
bj

ec
t

U
nk

no
w

n
Tr

ip
le

E
AV

:
E

nt
ity

,
A

ttr
ib

ut
e,

V
al

ue
Tr

ip
le

:
A

rg
1,

R
el

a-
tio

n,
A

rg
2

U
se

r
qu

er
y

in
te

r-
fa

ce
Tw

o
m

aj
or

in
te

r-
fa

ce
:

en
tit

y
qu

er
y

an
d

SP
O

T
L

(r
e-

qu
ir

ed
ex

pe
ri

en
ce

in
SP

A
R

Q
L

sy
nt

ax
)

Su
pp

or
te

d
en

tit
y-

at
tr

ib
ut

e
or

W
h

qu
es

tio
n

su
ch

as
W

ha
t,

W
he

re
,W

he
n

an
d

H
ow

Su
pp

or
te

d
en

tit
y-

at
tr

ib
ut

e
or

W
h

qu
es

tio
n

su
ch

as
W

ha
t,

W
he

re
,W

he
n

an
d

H
ow

Su
pp

or
te

d
W

ho
/W

ha
t

qu
es

tio
n

in
th

e
of

ar
gu

m
en

t1
,

re
la

tio
n,

ar
gu

m
en

t2

Sp
ee

d
M

od
ul

at
e

Fa
st

es
t

Fa
st

Sl
ow

D
at

a
vo

lu
m

e
44

7
m

ill
io

n
fa

ct
s

an
d

9.
8

m
ill

io
n

en
tit

ie
s(

in
cl

ud
ed

G
eo

N
am

es
)

U
nk

no
w

n
73

m
ill

io
n

en
tit

y-
at

tr
ib

ut
e

pa
ir

s
7.

8m
ill

io
n

fa
ct

s

A
cc

ur
ac

y
95

%
pr

ec
is

io
n

is
ap

-
pr

ov
ed

by
hu

m
an

H
ig

he
r

H
ig

h
M

od
er

at
e

Sy
no

ny
m

en
tit

y
su

pp
or

te
d

Y
es

Y
es

Y
es

N
o

178 Reviews of Tools in Fact Extracting and Fact Answering

Factual information is stored in triple form: (entity, relations and entity) which is based
on the RDF model. In our work we focus on the two major problems of: how to handle refer-
ential ambiguity and lexical ambiguity. We consider and compare facts which are extracted
from the internet, the information for which is shown in Table C.1. YAGO2 is strongest in
precision and identifying similarity in each entity using the relations means. The property
means in YAGO2 provides a lot of synonyms in each entity. For example, Steven George
Gerrard can be represented in other words as (Gerrard, Gerro, Stephen Gerrard, Steve g,
Steve Gerrard). Furthermore, YAGO2 supports facts with a temporal dimension as position,
or events like the US Open. However, YAGO2 has a weakness in representing the results as
it is hard for new users who are unfamiliar with SPARQL language to query facts. Google
is strongest in representing the results as it is clear and simple for users to submit queries.
On the other hand, the output interface is unstable and some facts are incorrect. FACTO
is powerful in precision and user interface; however it has errors in wh questions, lacks a
number of facts and lacks synonym entities. Reverb is powerful in automatic extraction and
unbound relation names. However, the accuracy is poor and redundancy of data is a major
concern. Reverb has made a mistake in dealing with the referential ambiguity problem. For
example, it cannot recognise that Obama, Barack Obama and Barak Obama are the same
person.

Finally, facts are the most useful things for search engines answering queries. Search
engine such as Google and Bing try to return the specific answer in each query. However,
the limitation in information extraction and fact answering is disambiguating the personal
named entity. That is to say, how to map the fact to the right person and how to map between
the querying entity and the knowledge base entity despite variations in the personal name.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Thesis contributions
	1.1.1 Occupation Architecture for Personal Name Disambiguation (OAPnDis) and Personal Name Concepts
	1.1.2 Personal Name Transformation Modules (PNTM) based on Context Free Grammar (CFG)
	1.1.3 A New Algorithm for Personal Name Disambiguation with Simple Partial Tree Matching (SPTM)

	1.2 Thesis Outline
	1.3 Draft Papers

	2 Theoretical Background
	2.1 Ontology and Entity on Knowledge Base
	2.1.1 Wikipedia
	2.1.2 YAGO
	2.1.3 Freebase
	2.1.4 DBpedia

	2.2 Named Entity Disambiguation
	2.2.1 Named Entity Disambiguation Framework

	2.3 Tree Matching
	2.3.1 Simple Tree Matching(STM)
	2.3.2 Partial Tree Alignment(PTA)

	2.4 Conclusion

	3 Personal Name Surface Form and OAPnDis
	3.1 Motivation
	3.2 Personal Name Surface Form Modules(PNSFM)
	3.2.1 Data Pre-Processing
	3.2.2 Data Extracting
	3.2.3 Data Matching

	3.3 Occupation Architecture for Personal Name Disambiguation(OAPnDis)
	3.3.1 OAPnDis Architecture
	3.3.2 Personal Name Concepts

	3.4 Personal Name Disambiguation Data Catalogue (PNDDC)
	3.5 Experimental Results and Discussion
	3.5.1 Data Sets
	3.5.2 Result and Discussion

	3.6 Related Work
	3.7 Conclusions

	4 Personal Name Transformation With Context Free Grammar
	4.1 Motivation
	4.2 Background
	4.2.1 English Personal Names
	4.2.2 Context Free Grammar (CFG)
	4.2.3 String Matching

	4.3 Personal Name Transformation Modules (PNTM)
	4.3.1 Context Free Grammar Rules (CFG Rules)
	4.3.2 Predicate
	4.3.3 Action

	4.4 Experimental Results and Discussion
	4.4.1 PNTM Assessment
	4.4.2 Text Similarity Metrics Comparison

	4.5 Related Work
	4.6 Conclusion

	5 Personal Name Entity Linking
	5.1 Motivation
	5.2 Background
	5.2.1 AlchemyAPI

	5.3 Personal Name Entity Linking Framework (PNELF)
	5.3.1 Personal Name Extractor
	5.3.2 Searcher
	5.3.3 Personal Name Disambiguator

	5.4 Predicting the NIL Value
	5.5 Simple Partial Tree Matching Algorithm
	5.5.1 Building the Comparison Tree
	5.5.2 Simple Partial Tree Matching

	5.6 Experimental Results and Discussion
	5.6.1 Data Sets
	5.6.2 Evaluation Results

	5.7 Related Work
	5.8 Conclusion

	6 Software Specification
	6.1 Introduction
	6.1.1 Goals and Objectives
	6.1.2 System Overview
	6.1.3 System Functions

	6.2 Data Design
	6.2.1 Internal Data Structures
	6.2.2 Database Description

	6.3 Work Flow of the Process
	6.4 User Interface Design
	6.5 Testing Issues
	6.5.1 Software summary
	6.5.2 System Testing

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	References
	Appendix A Abbreviation Words Glossary
	Appendix B Thesis Diagrams
	Appendix C Reviews of Tools in Fact Extracting and Fact Answering
	C.1 YAGO
	C.2 Facts answering from the Bing and Google search engines
	C.3 Open Information Extraction: REVERB
	C.3.1 Conclusion

