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Abstract 

Silver is the most frequently represented nanomaterial in available products, ranging across 

a variety of commercial and medical goods. Their main justification for inclusion in these products 

relates to their unique properties compared to both their bulk (larger particulate) and ionic 

equivalents. It is established that silver is highly toxic to a range of aquatic organisms, and despite its 

existence in low concentrations in the environment, concerns have been raised over products 

containing silver nanomaterials as a potential emerging pollutant. Within the EU the environmental 

risk assessment of chemicals is regulated by the Registration, Evaluation and Authorization of 

Chemicals (REACH) regulation, and toxicity testing deployed according to a series of tiered 

production/import thresholds. At the lowest regulatory production/import threshold of one tonne, 

the Organisation for Economic Co-operation and Development (OECD) 201: Freshwater Alga and 

Cyanobacteria, Growth Inhibition Test can be deployed to evaluate the toxicity to the aquatic 

environment via assessment of the impact of chemicals on algal species, over a 72 hour test 

duration. Due to the unique physico-chemico properties of nanomaterials, there is considerable 

uncertainty over the suitability of such test protocols for these materials. Thus, there may be a 

requirement for alternative test systems. In addition, the proliferation of the nanotechnology 

industry has created a diverse range of materials whose safety needs to be assessed. There is 

therefore an immediate need for rapid environmental risk assessment in order to keep pace with 

commercial activities. This thesis addresses such considerations in four stages. First, the OECD 201 

test was applied to evaluate the toxicity of a representative silver nanoparticle (20-150 µg/l Ag as 

NM300K, at 24-72 hours) and AgNO3 (0.2-30 µg/l Ag, at 24-72 hours), following dispersion in two 

different growth media, and the influence of different medium conditions such as humic acid 

(through the use of environmentally relevant concentrations of Suwannee River humic acid, [5 and 

50 mg/l) and pH (6 and 8) on silver nanoparticle toxicity was investigated. In addition, a miniaturised 

version of the OECD 201 test was developed and compared to the standard test method, as a means 

to increase the rate and efficiency at which laboratories can generate toxicity data. Finally an 

alternative, short term sublethal photosynthetic endpoint was investigated in order to identify an 

alternative measure of toxicity to algae and inform the toxic mechanism of action of silver to algae, 

and correlations with the standard growth inhibition endpoint presented. It was found that the 

OECD 201 test was suitable to evaluate toxicity in NM300K and enabled identification of a 72 hour 

growth inhibition effective concentration (EC50) of 54-130 µg/l Ag. Of interest was that silver 

nanoparticle toxicity decreased with exposure duration and were affected by test medium 

composition. AgNO3 toxicity was higher than NM300K (72 hour EC50 = 5-7 µg/l Ag)., but subject to 

the same time and media effects Humic acid decreased the toxicity of both forms of silver in a 



concentration dependent manner, and pH 8 test medium increased toxicity relative to pH 6. The 

proposed miniaturised test was found to be as sensitive as the standard method (for NM300K) 

across a similar range of test conditions. Finally, the short-term photosynthetic sublethal endpoint 

indicated that silver may act in a similar way to known phototoxic substances, and by measuring this 

endpoint a high correlation was found with later 72 hour growth inhibition. Obtained data therefore 

demonstrate that the OECD 201 test can be used with R. subcapitata as a tool to assess nanoparticle 

toxicity, and that there are opportunities to increase the efficiency of testing via miniaturisation of 

the test system and the use of additional toxicity endpoints. 
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hours (black circles) 48 hours (grey squares and 72 hours (white triangles). Data expressed as mean percentage 

growth inhibition (compared to toxicant free control) and standard error of the mean (n = 3).  



Figure 3.3: Impact of AgNO3 [0.2-20 µg/l] on R. subcapitata growth rate inhibition in OECD medium, at 24 

hours (black circles) 48 hours (grey squares and 72 hours (white triangles). Data expressed as mean percentage 

growth inhibition (compared to toxicant free control) and standard error of the mean (n = 1, one experiment 

with three replicates).  

Figure 3.4: Experimental growth rate of R. subcapitata in control cultures of OECD medium (black, humic acid 

free), and medium containing 5 mg/l (grey) and 50 mg/l (white) Suwanee River humic acid. Data expressed as 

mean toxicant free control growth and standard error of the mean (ncontrol = 24; nSRHA = 12). Letters denote 

significant differences within each timepoint (One way ANOVA; p < 0.05); bars not sharing the same letter 

were significantly different.  

Figure 3.5: Impact of NM300K [190 µg/l Ag] and Suwannee River humic acid (5 and 50 mg/l) on R. subcapitata 

growth inhibition, in OECD medium. NM300K growth inhibition was calculated relative to equivalent 

concentrations of Suwannee River humic acid, in toxicant free controls; i.e. humic acid free (black), 5 mg/l 

(grey) and 50 mg/l (white) Suwannee River humic acid. Data expressed as mean percentage growth inhibition 

(compared to toxicant free controls) and standard error of the mean (n = 3). Letters denote significant 

differences within each timepoint (Kruskal-Wallis; p < 0.05); bars not sharing the same letter were significantly 

different. 

Figure 3.6: Impact of AgNO3 [6 µg/l Ag] and Suwannee River humic acid (5 and 50 mg/l) on R. subcapitata 

growth inhibition, in OECD medium. AgNO3 growth inhibition was calculated relative to equivalent 

concentrations of Suwannee River humic acid, in toxicant free controls; i.e. humic acid free (black), 5 mg/l 

(grey) and 50 mg/l (white) Suwannee River humic acid. Data expressed as mean percentage growth inhibition 

(compared to toxicant free controls) and standard error of the mean (n = 1, one experiment with three 

replicates). Letters denote significant differences within each timepoint (One way ANOVA; p < 0.05); bars not 

sharing the same letter were significantly different. A Kruskal-Wallis test at 24 hours found significant 

differences (p < 0.001) in growth inhibition between humic acid conditions, but a Mann-Whitney U test was 

unable to identify specific differences. 

Figure 3.7: Daily pH measurements of control cultures (toxicant free) of R. subcapitata in unbuffered OECD 

medium (black circles, solid line), and OECD medium buffered (using 3.5 mM 3-(N-morpholino)propanesulfonic 

acid) to pH 6 (grey squares, dotted line) and pH 8 (white squares, dashed line). Data expressed as mean 

toxicant free control pH and standard error of the mean (error bars smaller than markers; n = 3). 

Figure 3.8: Daily conductivity measurements of control cultures (toxicant free) of R. subcapitata in unbuffered 

OECD medium (black circles), and OECD medium buffered (using 3.5 mM 3-(N-morpholino)propanesulfonic 

acid) to pH 6 (grey squares) and pH 8 (white squares). Data expressed as mean toxicant free control pH and 

standard error of the mean (error bars smaller than markers; n = 3). 

 



Figure 3.9: Experimental growth rate of R. subcapitata in control cultures of OECD medium (black, 

unbuffered), and medium buffered (using 3.5 mM 3-(N-morpholino)propanesulfonic acid) to pH 6 (grey) and 

pH 8 (white). Data expressed as mean toxicant free control growth and standard error of the mean (ncontrol = 

21; nSRHA = 12). Letters denote significant differences within each timepoint (One way ANOVA; p < 0.05); bars 

not sharing the same letter were significantly different.  

Figure 3.10: Impact of pH (6 and 8; buffered using 3.5 mM 3-(N-morpholino)propanesulfonic acid) on NM300K 

[190 µg/l Ag] toxicity to R. subcapitata, in OECD medium. NM300K growth inhibition was calculated relative to 

equivalent pH buffering, in toxicant free controls; i.e. unbuffered (black), pH 6 (grey) and pH 8 (white). Data 

expressed as mean percentage growth inhibition (compared to toxicant free controls) and standard error of 

the mean (n = 3). Letters denote significant differences within each timepoint (One way ANOVA; p < 0.05); bars 

not sharing the same letter were significantly different. 

Figure 3.11: Impact of pH (6 and 8; buffered using 3.5 mM 3-(N-morpholino)propanesulfonic acid) on AgNO3 [6 

µg/l Ag] toxicity to R. subcapitata, in OECD medium. NM300K growth inhibition was calculated relative to 

equivalent pH buffering, in toxicant free controls; i.e. unbuffered (black), pH 6 (grey) and pH 8 (white). Data 

expressed as mean percentage growth inhibition (compared to toxicant free controls) and standard error of 

the mean (n = 1, one experiment with three replicates). Letters denote significant differences within each 

timepoint (One way ANOVA; p < 0.05); bars not sharing the same letter were significantly different. 

Figure 3.12: Impact of NM300K [20-60 µg/l Ag] on R. subcapitata growth rate inhibition in JM, at 24 hours 

(black circles) 48 hours (grey squares) and 72 hours (white triangles). Data expressed as mean percentage 

growth inhibition (compared to toxicant free control) and standard error of the mean (n = 3).  

Figure 3.13: Impact of AgNO3 [1-30 µg/l Ag] on R. subcapitata growth rate inhibition in JM, at 24 hours (black 

circles) 48 hours (grey squares) and 72 hours (white triangles). Data expressed as mean percentage growth 

inhibition (compared to toxicant free control) and standard error of the mean (n = 1, one experiment with 

three replicates).  

Figure 3.14: Experimental growth rate of R. subcapitata in control cultures of JM (black, humic acid free), and 

medium containing 5 mg/l (grey) and 50 mg/l (white) Suwanee River humic acid (SRHA). Data expressed as 

mean toxicant free control growth and standard error of the mean (ncontrol = 22; nSRHA = 12). Letters denote 

significant differences within each timepoint (One way ANOVA; p < 0.05); bars not sharing the same letter 

were significantly different.  

Figure 3.15: Impact of NM300K [80 µg/l Ag] and Suwannee River humic acid (5 and 50 mg/l) on R. subcapitata 

growth inhibition, in JM. NM300K growth inhibition was calculated relative to equivalent concentrations of 

Suwannee River humic acid, in toxicant free controls; i.e. humic acid free (black), 5 mg/l (grey) and 50 mg/l 

(white) Suwannee River humic acid. Data expressed as mean percentage growth inhibition (compared to 

toxicant free controls) and standard error of the mean (n = 3). Letters denote significant differences within 

each timepoint (One way ANOVA; p < 0.05); bars not sharing the same letter were significantly different. 



Figure 3.16: Impact of AgNO3 [6 µg/l Ag] and Suwannee River humic acid (5 and 50 mg/l) on R. subcapitata 

growth inhibition, in OECD medium. AgNO3 growth inhibition was calculated relative to equivalent 

concentrations of Suwannee River humic acid, in toxicant free controls; i.e. humic acid free (black), 5 mg/l 

(grey) and 50 mg/l (white) Suwannee River humic acid. Data expressed as mean percentage growth inhibition 

(compared to toxicant free controls) and standard error of the mean (n = 1, one experiment with three 

replicates). A Kruskal-Wallis test at each timepoint found significant differences (p < 0.001) in growth inhibition 

between humic acid conditions, but a Mann-Whitney U test was unable to identify specific differences. 

Figure 3.17: Daily pH measurements of control cultures (toxicant free) of R. subcapitata in unbuffered JM 

(black circles, solid line), and JM buffered (using with 3.5 mM 3-(N-morpholino)propanesulfonic acid) to pH 6 

(grey squares, dotted line) and pH 8 (white squares, dashed line). Data expressed as mean toxicant free control 

pH and standard error of the mean (error bars smaller than markers; n = 3). 

Figure 3.18: Daily conductivity measurements of control cultures (toxicant free) of R. subcapitata in 

unbuffered OECD medium (black circles), and OECD medium buffered (using 3.5 mM 3-(N-

morpholino)propanesulfonic acid) to pH 6 (grey squares) and pH 8 (white squares). Data expressed as mean 

toxicant free control pH and standard error of the mean (error bars smaller than markers; n = 3). 

Figure 3.19: Experimental growth rate of R. subcapitata in control cultures of JM (black, unbuffered), and 

medium buffered (using 3.5 mM 3-(N-morpholino)propanesulfonic acid) to pH 6 (grey) and pH 8 (white). Data 

expressed as mean toxicant free control growth and standard error of the mean (ncontrol = 21; nSRHA = 12). 

Letters denote significant differences within each timepoint (One way ANOVA; p < 0.05); bars not sharing the 

same letter were significantly different.  

Figure 3.20: Impact of NM300K [80 µg/l Ag] and pH (6 and 8; buffered using 3.5 mM 3-(N-

morpholino)propanesulfonic acid) on R. subcapitata growth inhibition, in JM. NM300K growth inhibition was 

calculated relative to equivalent pH buffering, in toxicant free controls; i.e. unbuffered (black), pH 6 (grey) and 

pH 8 (white). Data expressed as mean percentage growth inhibition (compared to toxicant free controls) and 

standard error of the mean (n = 3). Letters denote significant differences within each timepoint (One way 

ANOVA; p < 0.05); bars not sharing the same letter were significantly different. 

Figure 3.21: Impact of AgNO3 [11 µg/l Ag] and pH (6 and 8; buffered using 3.5 mM 3-(N-

morpholino)propanesulfonic acid) on R. subcapitata growth inhibition, in JM. NM300K growth inhibition was 

calculated relative to equivalent pH buffering, in toxicant free controls; i.e. unbuffered (black), pH 6 (grey) and 

pH 8 (white). Data expressed as mean percentage growth inhibition (compared to toxicant free controls) and 

standard error of the mean (n = 3). Letters denote significant differences within each timepoint (One way 

ANOVA; p < 0.05); bars not sharing the same letter were significantly different. 

Figure 4.1: Change R. subcapitata cell density (starting density 5 x 104 cells/ml) in cultures grown in OECD 

medium, as determined by a) manual cell counts, b) optical density at 685 nm, c) in vitro Chla, d) in vivo Chla 

(Ex/Em: 435/685 nm). Data expressed as mean, and standard error of the mean (n = 3) 



Figure 4.2: Maximum growth rate (d-1) of R. subcapitata in OECD medium, measured by cell count, optical 

density (absorbance at 685 nm), in vitro Chla (µg/l) and in vivo Chla (Ex/Em: 435/685 nm) in flasks. Data 

expressed as mean growth rate and standard error of the mean (n = 3). Letters denote significant differences 

between each method of estimating cell density (One way ANOVA; p < 0.05); bars not sharing the same letter 

were significantly different.  

Figure 4.3: Relationships between a series of cell density surrogate measures and cell counts: a) optical density 

vs cell counts; b) in vitro Chla vs cell counts; c) in vivo Chla vs cell counts (cells/ml); for R. subcapitata cultures 

grown in OECD medium. (n = 30) 

Figure 4.4: Experimental growth rate of R. subcapitata in control cultures of OECD medium over 72 hours, 

estimated using different test systems; at 24 well plate in vivo Chla (black bars), flasks in vitro Chla (grey bars) 

and Flasks in vivo Chla (white bars). Dashed line represents minimum required 72 hour growth rate, according 

to OECD test guideline (0.92 d-1). Data expressed as mean growth rate and standard error of the mean (n = 24). 

Letters denote significant differences between methods at each timepoint (One way ANOVA; p < 0.05); bars 

not sharing the same letter were significantly different. 

Figure 4.5: Comparison between R. subcapitata control growth rate (µ) in OECD medium between the 24 well 

plate test and the OECD standard method (conducted in flasks, in vivo Chla extraction) after 24 hours (black 

circles), 48 hours (grey squares) and 72 hours (white triangles). Data expressed as mean toxicant free control 

growth rate of a single experimental condition and standard error of the mean (six replicates); n = 39. Solid line 

represents equal growth rate boundary between tests, and dotted lines represent the factor of five boundaries 

for differences between the test results. Dashed lines represent minimum required 72 hour growth rate, 

according to OECD test guidelines (0.92 d-1).  

Figure 4.6: Comparison between R. subcapitata control growth rate (µ) in OECD medium between the 24 well 

plate test and the OECD standard method (conducted in flasks, in vitro Chla extraction) after 24 hours (black 

circles), 48 hours (grey squares) and 72 hours (white triangles). Data expressed as mean toxicant free control 

growth rate of a single experimental condition and standard error of the mean (six replicates); n = 39. Solid line 

represents equal growth rate boundary between tests, and dotted lines represent the factor of five boundaries 

for differences between the test results. Dashed lines represent minimum required 72 hour growth rate, 

according to OECD test guidelines (0.92 d-1).  

Figure 4.7: Comparison between R. subcapitata control growth rate (µ) in OECD medium between from two 

methods of measuring growth in the same OECD standard test system (flasks; in vivo and in vitro Chla) after 24 

hours (black circles), 48 hours (grey squares) and 72 hours (white triangles). Data expressed as mean toxicant 

free control growth rate of a single experimental condition and standard error of the mean (six replicates); n = 

42. Solid line represents equal growth rate boundary between tests, and dotted lines represent the factor of 

five boundaries for differences between the test results. Dashed lines represent minimum required 72 hour 

growth rate, according to OECD test guidelines (0.92 d-1).  



Figure 4.8: Impact of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) [0.2-100 µg/l] on R. subcapitata growth 

rate inhibition at 72 hours in OECD medium, in flasks/in vivo Chla (black circles), flasks/in vitro Chla (grey 

squares) and 24 well plates/in vivo Chla (white triangles). Data expressed as mean percentage growth 

inhibition (compared to toxicant free control) and standard error of the mean (n = 1, one experiment with 

three replicates).  

Figure 4.9: Impact of NM300K [30-150 µg/l] on R. subcapitata growth rate inhibition at 72 hours in OECD 

medium, in flasks/in vivo Chla (black circles), flasks/in vitro Chla (grey squares) and 24 well plates/in vivo Chla 

fluorescence (white triangles). Data expressed as mean percentage growth inhibition (compared to toxicant 

free control) and standard error of the mean (n = 2).  

Figure 4.10: Impact of AgNO3 [0.2-20 µg/l] on R. subcapitata growth rate inhibition at 72 hours in OECD 

medium, in flasks/in vivo Chla (black circles), flasks/in vitro Chla (grey squares) and 24 well plates/in vivo Chla 

fluorescence (white triangles). Data expressed as mean percentage growth inhibition (compared to toxicant 

free control) and standard error of the mean (n = 1, one experiment with three replicates).  

Figure 4.11 In vivo Chla data for three replicate experiments with R. subcapitata (NM300K dose response; both 

controls and toxicant levels included) assessed via 24 well plate. A positive correlation was observed between 

measurements made in black and clear 24 plates (r2 = 0.98; p < 0.05) (n = 189).  

Figure 4.12: Experimental growth rate of R. subcapitata in control cultures of OECD medium over 72 hours in 

the presence and absence of Suwannee River humic acid (5 and 50 mg/l). Growth rate was estimated using 

different density surrogate methods/test systems; 24 well plate in vivo Chla (black bars), flasks in vitro Chla 

(grey bars) and flasks in vivo Chla (white bars). Data expressed as mean growth rate and standard error of the 

mean (n = 3). Letters denote significant differences between methods within each humic acid condition (One 

way ANOVA/Kruskal-Wallis; p < 0.05); bars not sharing the same letter were significantly different. 

Figure 4.13: Impact of NM300K [190 µg/l Ag] on R. subcapitata 72 hour growth inhibition in the presence and 

absence of Suwannee River humic acid (SRHA; 5 and 50 mg/l). Growth inhibition was estimated using different 

density surrogate methods/test systems; 24 well plate in vivo Chla (black bars), flasks in vitro Chla (grey bars) 

and flasks in vivo Chla (white bars). Data expressed as mean percentage growth inhibition (compared to 

toxicant free controls) and standard error of the mean (n = 2). Letters denote significant differences within 

each humic acid condition (Kruskal-Wallis; p < 0.05); bars not sharing the same letter were significantly 

different. 

 

 

 



Figure 4.14: Impact of AgNO3 [6 µg/l Ag] on R. subcapitata 72 hour growth inhibition in the presence and 

absence of Suwannee River humic acid (5 and 50 mg/l). Growth was estimated using different density 

surrogate methods/test systems; 24 well plate in vivo Chla (black bars), flasks in vitro Chla (grey bars) and flasks 

in vivo Chla (white bars). Data expressed as mean percentage growth inhibition (compared to toxicant free 

controls) and standard error of the mean (n = 1, one experiment with three replicates). Letters denote 

significant differences within each humic acid condition (One way ANOVA; p < 0.05); bars not sharing the same 

letter were significantly different. 

Figure 4.15: Experimental growth rate of R. subcapitata in control cultures of OECD medium over 72 hours at a 

pH of 6 or 8. Growth rate was estimated using different density surrogate methods/test systems; 24 well plate 

in vivo Chla (black bars), flasks in vitro Chla (grey bars) and flasks in vivo Chla (white bars). Data expressed as 

mean growth rate and standard error of the mean (n = 3). Letters denote significant differences between 

methods within each pH condition (One way ANOVA/Kruskal-Wallis; p < 0.05); bars not sharing the same letter 

were significantly different. 

Figure 4.16: Impact of NM300K [190 µg/l Ag] on R. subcapitata 72 hour growth inhibition at a pH of 6 or 8. 

Growth was estimated using different density surrogate methods/test systems; 24 well plate in vivo Chla (black 

bars), flasks in vitro Chla (grey bars) and flasks in vivo Chla (white bars). Data expressed as mean percentage 

growth inhibition (compared to toxicant free controls) and standard error of the mean (n = 3). Letters denote 

significant differences within each pH condition (One way ANOVA/Kruskal-Wallis; p < 0.05); bars not sharing 

the same letter were significantly different. No significant differences were found between tests designs. 

Figure 4.17: Impact of AgNO3 [6 µg/l Ag] on R. subcapitata 72 hour growth inhibition at a pH of 6 or 8. Growth 

was estimated using different density surrogate methods/test systems; 24 well plate in vivo Chla (black bars), 

flasks in vitro Chla (grey bars) and flasks in vivo Chla (white bars). Data expressed as mean percentage growth 

inhibition (compared to toxicant free controls) and standard error of the mean (n = 3). (n = 1, one experiment 

with three replicates). Letters denote significant differences within each pH condition (One way ANOVA; p < 

0.05); bars not sharing the same letter were significantly different. 

Figure 4.18: Comparison between R. subcapitata growth inhibition from 24 well plate test and the OECD 

standard method (conducted in flasks, in vitro Chla extraction) for AgNO3 [6 µg/l] and NM300K [190 µg/l]. 

Growth inhibition was calculated relative to equivalent concentrations of Suwannee River humic acid, in 

toxicant free controls; i.e. 0 mg/l (black circles), 5 mg/l (grey squares) and 50 mg/l (white triangles) Suwannee 

River humic acid. Data expressed as mean percentage growth inhibition (compared to toxicant free controls) 

of a single experimental condition (three replicates) and standard error of the mean. Correlation between 

flasks using in vitro Chla and 24 well plates using in vivo Chla (Pearson’s product-moment correlation, n = 81 

total observations, r2 = 0.797, p < 0.001). Solid line represents equal growth inhibition boundary between 

tests, and dotted lines represent the factor of five boundaries for differences between the test results.  



Figure 4.19: Comparison between R. subcapitata growth inhibition from 24 well plate test and the OECD 

standard method (conducted in flasks, in vitro Chla extraction) for AgNO3 [6 µg/l] and NM300K [190 µg/l]. 

Growth inhibition was calculated relative to equivalent pH buffering (using 3.5mM 3-(N-

morpholino)propanesulfonic acid), in toxicant free controls; i.e. unbuffered (black circles), pH 6 (grey squares) 

and pH 8 (white triangles). Data expressed as mean percentage growth inhibition (compared to toxicant free 

controls) of a single experimental condition (three replicates) and standard error of the mean. Correlation 

between flasks using in vitro Chla and 24 well plates using in vivo Chla (Pearson’s product-moment correlation, 

n = 108 total observations, r2 = 0.810, p < 0.001). Solid line represents equal growth inhibition boundary 

between tests, and dotted lines represent the factor of five boundaries for differences between the test 

results.  

Figure 4.20: Comparison between R. subcapitata growth inhibition from 24 well plate test and the OECD 

standard method (conducted in flasks, in vivo Chla extraction) for AgNO3 [6 µg/l] and NM300K [190 µg/l]. 

Growth inhibition was calculated relative to equivalent concentrations of Suwannee River humic acid, in 

toxicant free controls; i.e. 0 mg/l (black circles), 5 mg/l (grey squares) and 50 mg/l (white triangles) Suwannee 

River humic acid. Data expressed as mean percentage growth inhibition (compared to toxicant free controls) 

of a single experimental condition (three replicates) and standard error of the mean. Correlation between 

flasks using in vivo Chla and 24 well plates using in vivo Chla (Pearson’s product-moment correlation, n = 81 

total observations, r2 = 0.840, p < 0.001). Solid line represents equal growth inhibition boundary between 

tests, and dotted lines represent the factor of five boundaries for differences between the test results.  

Figure 4.21: Comparison between R. subcapitata growth inhibition from 24 well plate test and the OECD 

standard method (conducted in flasks, in vivo Chla extraction) for AgNO3 [6 µg/l] and NM300K [190 µg/l]. 

Growth inhibition was calculated relative to equivalent pH buffering (using 3.5mM 3-(N-

morpholino)propanesulfonic acid), in toxicant free controls; i.e. unbuffered (black circles), pH 6 (grey squares) 

and pH 8 (white triangles). Data expressed as mean percentage growth inhibition (compared to toxicant free 

controls) of a single experimental condition (three replicates) and standard error of the mean. Correlation 

between flasks using in vivo Chla and 24 well plates using in vivo Chla (Pearson’s product-moment correlation, n 

= 108 total observations, r2 = 0.882, p < 0.001). Solid line represents equal growth inhibition boundary 

between tests, and dotted lines represent the factor of five boundaries for differences between the test 

results. 

 

 

 

 



Figure 4.22: Comparison between R. subcapitata growth inhibition from two methods of measuring growth in 

the same OECD standard test system (flasks; in vivo and in vitro Chla) for AgNO3 [6 µg/l] and NM300K [190 

µg/l]. Growth inhibition was calculated relative to equivalent concentrations of Suwannee River humic acid, in 

toxicant free controls; i.e. 0 mg/l (black circles), 5 mg/l (grey squares) and 50 mg/l (white triangles) Suwannee 

River humic acid. Data expressed as mean percentage growth inhibition (compared to toxicant free controls) 

of a single experimental condition (three replicates) and standard error of the mean. Correlation between 

flasks using in vitro Chla and flasks using in vivo Chla (Pearson’s product-moment correlation, n = 81 total 

observations, r2 = 0.940, p < 0.001). Solid line represents equal growth inhibition boundary between tests, and 

dotted lines represent the factor of five boundaries for differences between the test results. 

Figure 4.23: Comparison between R. subcapitata growth inhibition from two methods of measuring growth in 

the same OECD standard test system (flasks; in vivo and in vitro Chla) for AgNO3 [6 µg/l] and NM300K [190 

µg/l]. Growth inhibition was calculated relative to equivalent pH buffering (using 3.5mM 3-(N-

morpholino)propanesulfonic acid), in toxicant free controls; i.e. unbuffered (black circles), pH 6 (grey squares) 

and pH 8 (white triangles). Data expressed as mean percentage growth inhibition (compared to toxicant free 

controls) of a single experimental condition (three replicates) and standard error of the mean. Correlation 

between flasks using in vitro Chla and flasks using in vivo Chla (Pearson’s product-moment correlation, n = 108 

total observations, r2 = 0.879, p < 0.001). Solid line represents equal growth inhibition boundary between 

tests, and dotted lines represent the factor of five boundaries for differences between the test results. 

Figure 5.1: Representation of photosynthetic light reactions (aka the Z scheme), located on the thylakoid 

membrane of the chloroplast. Left to right: A photon (light) excites a single electron in the P680 reaction 

centre of photosystem II (PSII) to an elevated energy level, where it is passed to pheophytin (the primary 

electron acceptor in the electron transport chain). From here the electron is transferred to the primary (Qa), 

and then to the secondary plastoquinone acceptor (Qb), where it remains. Simultaneously, the oxidised P680 is 

reduced by the enzymatic photolysis of water (H2O) into oxygen (1/2O2), protons (2H+) and electrons (e-). An 

additional photon excites another single electron, which proceeds along the same pathway as the first to Qb. 

The now fully reduced QbH2 transfers the electron pair through cytochrome b6f complex and plastocyanin, 

where they act as the electron donors for the P700 reaction centre in photosystem I (PSI). From here the 

electrons are further excited by photons, and pass to a yet unidentified acceptor (analogous to pheophytin in 

PSII). The electrons pass through a series of iron sulphur proteins bound to the thylakoid membrane. The final 

electron acceptor is oxidised nicotinamide adenine dinucleotide phosphate (NADP+), where it is reduced to 

NADPH by ferredoxin-NADP+ reductase in the stroma of the chloroplast (adapted from Consalvey et al., 2005).     

Figure 5.2: Impact of DCMU [0-100 µg/l] on R. subcapitata photosynthetic efficiency (ΦPSII) over 30 minutes of 

exposure in OECD medium. Toxicant was added after a 5 minute acclimation period and effect on ΦPSII was 

measured for the remaining 25 minutes. Data are expressed as mean ΦPSII and standard error of the mean (n 

= 1, one experiment with three replicates). 



Figure 5.3: Impact of K2Cr2O7 [0-100 mg/l] on R. subcapitata photosynthetic efficiency (ΦPSII) over 30 minutes 

of exposure in OECD medium. Toxicant was added after a 5 minute acclimation period and effect on ΦPSII was 

measured for the remaining 25. Data expressed as mean ΦPSII and standard error of the mean (n = 1, one 

experiment with three replicates). 

Figure 5.4: Impact of AgNO3 [0-500 µg/l Ag] on R. subcapitata photosynthetic efficiency (ΦPSII) over 30 

minutes of exposure in OECD medium. Toxicant was added after a 5 minute acclimation period and effect on 

ΦPSII was measured for the remaining 25. Data expressed as mean ΦPSII and standard error of the mean (n = 

1, one experiment with three replicates). 

Figure 5.5: Impact of NM300K [0-1000 µg/l Ag] on R. subcapitata photosynthetic efficiency (ΦPSII) over 30 

minutes of exposure in OECD medium. Toxicant was added after a 5 minute acclimation period and effect on 

ΦPSII was measured for the remaining 25. Data expressed as mean ΦPSII and standard error of the mean (n = 

3). 

Figure 5.6: Impact of DCMU [0.2-100 µg/l] on R. subcapitata photosynthetic efficiency (ΦPSII) in OECD medium 

in flasks, at 4 hours (black circles) and 24 hours (grey squares). Data expressed as mean percentage 

photosynthetic efficiency inhibition (compared to toxicant free controls) and standard error of the mean (n = 

1, one experiment with three replicates).  

Figure 5.7: Impact of AgNO3 [0.2-20 µg/l Ag] on R. subcapitata photosynthetic efficiency (ΦPSII) in OECD 

medium in flasks, at 4 hours (black circles) and 24 hours (grey squares). Data expressed as mean percentage 

photosynthetic efficiency inhibition (compared to toxicant free controls) and standard error of the mean (n = 

1, one experiment with three replicates). 

Figure 5.8: Impact of NM300K [30-150 µg/l Ag] on R. subcapitata photosynthetic efficiency (ΦPSII) in OECD 

medium in flasks, at 4 hours (black circles) and 24 hours (grey squares). Data expressed as mean percentage 

photosynthetic efficiency inhibition (compared to toxicant free controls) and standard error of the mean (n = 

3). 

Figure 5.9: Impact of NM300K [190 µg/l Ag] and Suwannee River humic acid (5 and 50 mg/l) on R. subcapitata 

photosynthetic inhibition, after 4 and 24 hour exposure in OECD medium. NM300K photosynthetic inhibition 

was calculated relative to equivalent concentrations of Suwannee River humic acid, in toxicant free controls; 

i.e. humic acid free (black), 5 mg/l (grey) and 50 mg/l (white) Suwannee River humic acid. Data expressed as 

mean percentage photosynthetic inhibition (compared to toxicant free controls) and standard error of the 

mean (n = 3). Letters denote significant differences within each timepoint (4 hours, Kruskal-Wallis; 24 hours, 

one way ANOVA; p < 0.05); bars not sharing the same letter were significantly different. 

 

 



Figure 5.10: Impact of AgNO3 [6 µg/l Ag] and Suwannee River humic acid (5 and 50 mg/l) on R. subcapitata 

photosynthetic inhibition, after 4 and 24 hour exposure in OECD medium. AgNO3 photosynthetic inhibition was 

calculated relative to equivalent concentrations of Suwannee River humic acid, in toxicant free controls; i.e. 

humic acid free (black), 5 mg/l (grey) and 50 mg/l (white) Suwannee River humic acid. Data expressed as mean 

percentage photosynthetic inhibition (compared to toxicant free controls) and standard error of the mean (n = 

1, one experiment with three replicates). Letters denote significant differences within each timepoint (One 

way ANOVA; p < 0.05); bars not sharing the same letter were significantly different. 

Figure 5.11: Impact of NM300K [190 µg/l Ag] and pH (6 and 8; buffered using 3.5 mM 3-(N-

morpholino)propanesulfonic acid) on R. subcapitata photosynthetic inhibition, after 4 and 24 hour exposure in 

OECD medium. NM300K photosynthetic inhibition was calculated relative to equivalent pH buffering, in 

toxicant free controls; i.e. unbuffered (black), pH 6 (grey) and pH 8 (white). Data expressed as mean 

percentage photosynthetic inhibition (compared to toxicant free controls) and standard error of the mean (n = 

3). Letters denote significant differences within each timepoint (Kruskal-Wallis; p < 0.05); bars not sharing the 

same letter were significantly different 

Figure 5.12: Impact of AgNO3 [6 µg/l Ag] and pH (6 and 8; buffered using 3.5 mM 3-(N-

morpholino)propanesulfonic acid) on R. subcapitata photosynthetic inhibition, after 4 and 24 hour exposure in 

OECD medium. NM300K photosynthetic inhibition was calculated relative to equivalent pH buffering, in 

toxicant free controls; i.e. unbuffered (black), pH 6 (grey) and pH 8 (white). Data expressed as mean 

percentage photosynthetic inhibition (compared to toxicant free controls) and standard error of the mean (n = 

1, one experiment with three replicates). Letters denote significant differences within each timepoint (One 

way ANOVA; p < 0.05); bars not sharing the same letter were significantly different. 

Figure 5.13: Comparison of data obtained from OECD 201 algal growth inhibition testing and photosynthetic 

efficiency for both NM300K and AgNO3 toxicity to R. subcapitata in OECD medium, at 4 (black circles, solid line) 

and 24 (grey squares, dashed line) hours. Cells were exposed to Suwannee River humic acid (0, 5 and 50 mg/l) 

and pH modification (unbuffered, pH 6 and pH 8 using 3.5 mM 3-(N-morpholino)propanesulfonic acid), 

containing either no toxicant, AgNO3 [6 µg/l Ag] or NM300K [190 µg/l Ag]. A positive correlation was observed 

between 72 hour in vivo growth rate and photosynthetic efficiency at 4 (r2 = 0.64; p < 0.001) and 24 (r2 = 0.72; 

p < 0.001) hours (n = 168). 

Figure A3.1: Impact of potassium dichromate (K2Cr2O7) [0.03-10 mg/l] on R. subcapitata growth rate inhibition 

in OECD medium, at 24 hours (black circles) 48 hours (grey squares and 72 hours (white triangles). Data 

expressed as mean percentage growth inhibition (compared to toxicant free control) and standard error of the 

mean (n = 1, one experiment with three replicates). 

 

 



Figure A4.1: Impact of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) [0.2-100 µg/l] on R. subcapitata 

growth rate inhibition in OECD medium, at 24 hours (black circles) 48 hours (grey squares and 72 hours (white 

triangles). Data expressed as mean percentage growth inhibition (compared to toxicant free control) and 

standard error of the mean (n = 1, one experiment with three replicates). 

Figure A6.1: Impact of AgNO3 [0.2-20 µg/l Ag] on R. subcapitata photosynthetic efficiency (ΦPSII) in OECD 

medium in flasks, at 4 hours (black circles) and 24 hours (grey squares). Data expressed as mean percentage 

photosynthetic efficiency inhibition (compared to toxicant free controls) and standard error of the mean (n = 

1, one experiment with three replicates). 

Figure A6.2: Impact of NM300K [30-150 µg/l Ag] on R. subcapitata photosynthetic efficiency (ΦPSII) in OECD 

medium in flasks, at 4 hours (black circles) and 24 hours (grey squares). Data expressed as mean percentage 

photosynthetic efficiency inhibition (compared to toxicant free controls) and standard error of the mean (n = 

3). 

Figure A6.3: Impact of NM300K [190 µg/l Ag] and Suwannee River humic acid (5 and 50 mg/l) on R subcapitata 

photosynthetic inhibition, after 4 and 24 hour exposure in OECD medium. NM300K photosynthetic inhibition 

was calculated relative to equivalent concentrations of Suwannee River humic acid, in toxicant free controls; 

i.e. humic acid free (black), 5 mg/l (grey) and 50 mg/l (white) Suwannee River humic acid. Data expressed as 

mean percentage photosynthetic inhibition (compared to toxicant free controls) and standard error of the 

mean (n = 3). 

Figure A6.4: Impact of AgNO3 [6 µg/l Ag] and Suwannee River humic acid (5 and 50 mg/l) on R. subcapitata 

photosynthetic inhibition, after 4 and 24 hour exposure in OECD medium. AgNO3 photosynthetic inhibition was 

calculated relative to equivalent concentrations of Suwannee River humic acid, in toxicant free controls; i.e. 

humic acid free (black), 5 mg/l (grey) and 50 mg/l (white) Suwannee River humic acid. Data expressed as mean 

percentage photosynthetic inhibition (compared to toxicant free controls) and standard error of the mean (n = 

1, one experiment with three replicates). 

Figure A6.5: Impact of NM300K [190 µg/l Ag] and pH (6 and 8; buffered using 3.5 mM 3-(N-

morpholino)propanesulfonic acid) on R. subcapitata photosynthetic inhibition, after 4 and 24 hour exposure in 

OECD medium. NM300K photosynthetic inhibition was calculated relative to equivalent pH buffering, in 

toxicant free controls; i.e. unbuffered (black), pH 6 (grey) and pH 8 (white). Data expressed as mean 

percentage photosynthetic inhibition (compared to toxicant free controls) and standard error of the mean (n = 

3).  

 

 

 



Figure A6.6: Impact of AgNO3 [6 µg/l Ag] and pH (6 and 8; buffered using 3.5mM 3-(N-

morpholino)propanesulfonic acid) on R. subcapitata photosynthetic inhibition, after 4 and 24 hour exposure in 

OECD medium. NM300K photosynthetic inhibition was calculated relative to equivalent pH buffering, in 

toxicant free controls; i.e. unbuffered (black), pH 6 (grey) and pH 8 (white). Data expressed as mean 

percentage photosynthetic inhibition (compared to toxicant free controls) and standard error of the mean (n = 

1, one experiment with three replicates).  

 

 

 

 

 


