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Characterization of nonlinear ultrasonic diffuse
energy imaging
Jack Potter and Anthony Croxford

Abstract—Nonlinear ultrasonic diffuse energy imaging is a
highly sensitive method for the measurement of elastic nonlin-
earity. While the underlying principles that govern the technique
are understood, the precise behavior and sensitivity have not
previously been quantified. This article presents experimen-
tal, theoretical and numerical modeling studies undertaken to
characterize nonlinear diffuse energy imaging. The influence of
incoherent noise, elastic nonlinearity and instrumentation error
are quantified. This work enables prediction of spatial sensitivity,
aperture and amplitude dependence of the measurement, all of
which moves the technique towards industrial viability. Further,
while previous studies have focused on detection of closed cracks,
the ultimate aim for nonlinear ultrasonic imaging in application
to material testing is the detection of damage precursors, which
requires a sensitivity to weak classical nonlinearity. This study
identifies the experimental requirements necessary for this to
be achieved, greatly expanding the potential applicability of
nonlinear ultrasonic array imaging.

I. INTRODUCTION

The measurement of elastic nonlinearity is of importance to
a number of fields. In application to the nondestructive testing
of materials, the microstructural changes that form in advance
of macroscopic damage exhibit a weak, classical nonlinear
elastic response[1]. Furthermore, other discrete defects such
as closed cracks and kissing bonds exhibit a strong non-
classical nonlinear response as a consequence of contact-
acoustic effects[2]. Detection of damage at earlier stages both
increases safety and allows for cost reduction by increasing
the necessary length of inspection intervals. Great interest
also exists within the field of bio-medical imaging for which
nonlinearity has been found to be strongly correlated with
pathological changes in tissue.

Regardless of the underlying mechanics, the effect of non-
linear elasticity on a propagating ultrasonic field is some
form of spectral distortion. The fundamental challenges of
nonlinear ultrasonic measurements come from the weakness
of this effect and from the difficulty of isolating the source
of spectral distortion spatially. Many techniques have been
developed for nonlinear ultrasonic inspection. Classical tech-
niques typically excite the field and measure distortions using
monolithic transducers. The most prevalent of these methods
are harmonic generation[3] and wave mixing[4], [5]. Harmonic
generation considers the self-interaction of a longitudinal wave
and provides a measurement proportional to the integral of
elastic nonlinearity along the propagation path of the wave.
Wave mixing techniques involve the interaction of two or more
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incident waves. If the mode, frequencies and wave vectors
are selected to satisfy certain specific phase matching criteria
then a secondary scattered wave is generated at either the
sum or difference frequencies of the incident waves. Since the
secondary wave is only generated at the intersection of the
incident waves, a degree of nonlinear localisation is achieved.
The effective imaging resolution is however limited by the
size of the interaction volume. Further, the complicated ex-
perimental requirements of such methods limit their practical
applicability.

A focus of much work in recent years has been on the
development of techniques that use ultrasonic phased arrays
for imaging elastic nonlinearity. This has been motivated
primarily due to the ability of ultrasonic arrays to easily
generate specifically designed interference patterns within a
material and to remotely isolate the source of scattered waves.
The primary application of these techniques has been the
imaging of discrete defects such as tightly closed cracks.
Such defects exhibit a very strong localized nonlinear response
and consequently the imaging of which presents a much less
challenging problem than the weak nonlinearity associated
with damage precursors. The most common approach adopted
to this problem has been the detection of distortion within the
portion of the field scattered coherently from the inspection
point. Most commonly sub- or superharmonic components of
the signal are analyzed[6], [7], [8]. Other techniques seek to
modulate a parameter of the system and examine changes
within the transmission bandwidth of the back scattered signal.
These modulation parameters have included static load[9],
temperature[10] and amplitude of the transmitted signal[11].
These coherent scattering techniques recover only a small
proportion of the total information pertaining to elastic nonlin-
earity that is encoded onto the field. This is because they can
only analyze the part of the field that happens to be scattered
back to the receiver from the inspection point. Information
contained within the rest of the field is lost.

An array imaging technique has previously been proposed
that measures nonlinearity without a reliance on a backscat-
tered signal and is known as nonlinear ultrasonic diffuse
energy imaging[12]. This technique infers the elastic nonlin-
earity at a point in space by contrasting the diffuse energy
of the ultrasonic fields produced by sequential and parallel
focusing at that point. This method has been shown to be
highly sensitive to fatigue cracks, being capable of accurate
detection and sizing at very early stages of crack growth[13].
Within the class of array imaging techniques, nonlinear dif-
fuse energy imaging is uniquely positioned for application
to damage precursor detection since there is no backscatter
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associated with classical forms of nonlinearity. Further, there
is no fundamental physical reason to negate its application
to these problems, limitations are instead due to practical ex-
perimental considerations. As with any conventional imaging
technique, in order to demonstrate industrial viability a process
of characterization must be undertaken. A crucial part of this
is the determination of sensitivity to elastic nonlinearity, from
which the experimental requirements for damage precursor
measurement may be obtained. The purpose of this study is
to obtain an understanding of the behavior and sensitivity of
nonlinear diffuse energy imaging.

II. NONLINEAR DIFFUSE ENERGY IMAGING

The theory of nonlinear diffuse energy imaging, as de-
scribed by [12], will first be reviewed. An ultrasonic phased
array may be operated in two main modes of transmission.
Firstly there is classical physical beamforming, for which
elements are triggered in parallel with the application of some
relative phase delays. In this case some designed interference
pattern (often a steered or focused beam) is physically formed
within a specimen. The second mode of transmission is what
is commonly referred to as full matrix capture [14]. In this
case elements transmit sequentially and the responses for each
transmitter-receiver pair are collated to form the so-called full
matrix. The interference effects of the classically beamformed
parallel transmission can be emulated by applying phase de-
lays in post-processing of the full matrix, resulting in synthetic
beamforming. The parallel and sequential transmission modes
are illustrated in Fig. 1. The sequential capture approach to
array imaging relies on an assumption of linear superposition
and for linear systems, in the absence of random noise, the
two methods are exactly equivalent. In the presence of elastic
nonlinearity the propagation of these parallel and sequential
fields differ, an effect which may be exploited in making
nonlinear measurements.

When a parallel field is focused, the material physically
sees higher stress at the focal spot than in any of the in-
dividual transmission cycles of a sequential capture. Since,
by definition, a nonlinear system loses proportionality, there
is a higher flux of energy from the transmission bandwidth
due to nonlinearity at the focal point for a parallel field.
Since generally the inspection point is inaccessible to the
measurement system this relative nonlinear loss cannot be
measured directly and must be inferred through some other
measurement of the field.

Parallel and sequential fields have identical linear propaga-
tion, identical transmission energy and, where there is no in-
terference between element transmissions, identical nonlinear
self-interaction effects. The only differences in propagation
occur as a consequence of interference between the fields
produced by different element transmissions, which is an effect
dominated by the focal point. Consequently, after the focal
time, the difference in total system energy in the transmission
bandwidth between parallel and sequentially focused fields is
approximately equal to that which occurred through nonlinear
losses at the focal point. If the total energy (within the
transmission bandwidth) of the system could be measured for

the parallel and sequential focusing cases, then the difference
between the two values would provide a measure of elastic
nonlinearity at the focal point.

Measurement of total system energy for the early-time,
coherent field is not feasible since it would require the field
to be measured at every point. The total energy may however
be inferred through analysis of the subsequent diffuse field.
Sometime after initial transmission of sound, the field will
homogenize as a consequence of multiple scattering. In this
state energy is statistically uniform throughout the system
and the statistical diffuse energy measured at any point is
proportional to the total energy in the system. Furthermore, the
relative loss of energy that occurred at the focal point is spread
uniformly. Consequently, the relative diffuse energy of parallel
and sequentially focused fields is proportional to the relative
energy loss at the focal point which in turn is a function of
the elastic nonlinearity at that location. This is the operating
principle of the nonlinear diffuse energy imaging technique,
the metric for which is defined as the normalized difference
in sequential and parallel diffuse energy. This metric, for
inspection location r̄f , may be written as follows[12]

γ(r̄f ) =
Es(r̄f )− Ep(r̄f )

Es(r̄f )
, (1)

where Ep and Es are the parallel and sequential diffuse energy
values respectively. Experimentally the sequential energy term
is obtained through integration of diffuse energy across the
transmission bandwidth, averaged across all receiving ele-
ments. For an array of N elements and center frequency ω0

this may be expressed as

Es(r̄f ) =

N∑
j=1

∫ 4
3ω0

2
3ω0

∣∣∣∣∣
N∑
k=1

Fk,j(ω)e−iωδk(r̄f )

∣∣∣∣∣
2

dω

 , (2)

where Fk,j(ω) is the complex valued frequency spectra of
the diffuse full matrix for which the indices k and j denote
transmission and reception elements respectively. δk(r̄f ) is the
delay applied to element k required to achieve focusing at
point r̄f . The 2/3 ω0 evaluated bandwidth is the largest for
which there is no internal movement of energy. Similarly, the
diffuse parallel energy, Ep, is given by

Ep(r̄f ) =

N∑
j=1

(∫ 4
3ω0

2
3ω0

|Hj(r̄f , ω)|2 dω

)
, (3)

where Hj(r̄f , ω) is the diffuse spectra of the signal received
on the j element when all elements are transmitted in parallel
with delays δk(r̄f ).

In order to demonstrate the properties of the technique
an experimental imaging example is considered. A closed
fatigue crack was grown within an aluminium test piece.
A 5 mm diameter hole was machined behind the crack tip
alongside a second hole to provide a reference. This test
block was designed to approximate fatigue crack growth
initiated at a fixing hole. Full details of its preparation are
available[12]. Inspection was conducted using an Imasonic
(Voray-sur-l’Ognon, France) 64 element ultrasonic array with
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Fig. 1. Schematic illustration of (a) parallel and (b) sequential field focusing.

a nominal centre frequency ω0 of 5 MHz and pitch of 0.63 mm,
in conjunction with a Micropulse FMC model array controller
manufactured by Peak NDT Ltd (Derby, UK). To obtain a
diffuse field a reception delay of 0.1 ms was applied and
energy was evaluated over a window length of 0.12 ms.

Selection of reception delay represents a compromise be-
tween field diffusivity and signal to noise ratio. If the reception
delay is too small then the statistical conditions that the
measurement requires (most importantly the spatial homo-
geneity of the field) are not satisfied, resulting in imaging
artefacts. Conversely, if the delay is too long then random
noise dominates the received signal and the effective dynamic
range of the acoustic measurement is reduced. Longer window
lengths allow the statistical properties of a diffuse state to be
reached at earlier times but increase the computational expense
of the measurement. In this case, the window length used is the
maximum that the instrument can acquire in a single capture.

Typical nonlinear and linear images acquired for this sample
are shown in Fig. 2. The linear image can be seen to be dom-
inated by the back wall and hole reflections. Some evidence
of the defect is provided by shadowing effects on the left
hole caused by diffraction at the crack tip. This shadowing
effect can be seen a slight null on the left hole reflection
in comparison with the undamaged hole. This is however an
unclear indication and no sizing information is present. The
nonlinear image shows only a clear indication from the defect
as a consequence of the local nonlinear elastic response. Note
the complete absence of back wall and hole reflections within
the nonlinear image. This excellent linear suppression is a
direct consequence of the diffuse energy measurement. Since
imaging is not based upon a coherently scattered signal from
the inspection point, instrument and material nonlinearity do
not produce artifacts from linear features as is the case with
coherent nonlinear imaging techniques. This is important since
a geometric feature which acts as a stress raiser to initiate crack
growth is itself inherently a strong linear scatterer. Conse-
quently, without separation of linear and nonlinear modalities,
a small defect can be masked by the feature it grows from.

The high sensitivity of the nonlinear metric is derived from
two aspects of the measurement. Firstly, by measuring the

energy flux from the transmission bandwidth, the movement
of energy to any frequency component is captured making the
metric broadly sensitive to any underlying nonlinear mechan-
ics. Secondly, the nature of the diffuse measurement is such
that regardless of spatial directivity of energy flux (be it purely
a distortion of the forward propagating field or some nonlinear
scattering phenomena), it contributes to the measured value.
This implicitly provides a full reception aperture around every
inspection point.

The measurement is predicated on the hypothesis that
information pertaining to elastic nonlinearity at the focal point
is preserved in the relative diffuse energy of parallel and
sequential fields. In order to move the technique towards
industrial viability it is necessary to precisely quantify the de-
gree to which elastic nonlinearity and other factors contribute
towards the experimentally acquired metric in addition to
determining the ultimate measurement capability. Broadly, the
factors contributing to the measured γ value may be grouped
into three terms as follows

γ(r̄f , r̄) = η(r̄f , r̄) + p+ e(r̄), (4)

where η(r̄f , r̄) represents the contribution of elastic nonlin-
earity. This includes the effect from both the focal point and
the wider material contributions. This determines the locali-
sation of the measurement in addition to spatial sensitivity. p
is the contribution of incoherent noise to the measurement
and finally e(r̄) contains the remaining experimental error,
most significantly effects of instrumentation nonlinearity and
repeatability, and is the term which ultimately determines the
limit of experimental sensitivity. The focus of this work is the
characterization of these terms.

III. INCOHERENT NOISE

Firstly, the effect p of incoherent noise on the measurement
shall be considered. Incoherent noise is a zero-mean random
process. For conventional linear or nonlinear imaging based
on the recorded amplitude of a scattered wave, incoherent
noise appears directly as noise within the image space. In this
case, because the evaluated quantity is statistical energy the
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Fig. 2. Experimental images (a) nonlinear metric γ (b) linear (total focusing method) (dB)

effect of random noise is different. Random noise has a non-
zero mean contribution on the measured energy value which
is, in a statistical sense, spatially independent. Further, the
relative contribution of noise is not equivalent for parallel and
sequential focusing. Consequently the effect of noise is not
removed in the subtraction process, leading to an offset in the
resulting nonlinear image.

Let A be a parameter proportional to the acoustic energy of
a single sequential response and let the energy due to random
noise be some quantity εA, such that total expected energy
of a sequential measurement is E

[
F 2
k,j

]
= A(1 + ε). For a

given level of random noise the value of ε will decrease as
the amplitude of A increases. For a diffuse field this energy
is independent of transmitting and receiving elements. For a
parallel measurement the acoustic energy of each response is
N times that of a sequential measurement however the noise
energy is the same such that E

[
H2
j

]
= A(N + ε).

If an idealised diffuse field is assumed then both inter-
element responses and noise are uncorrelated. In this case
all statistical energy terms will add independently when the
individual fields are summed. In reality the diffuse responses
of the full matrix are weakly correlated but this is a small
effect. Under these assumptions, the evaluated parallel energy
summed across all receiving elements would be

Ep = AN(N + ε). (5)

Similarly, once the post-processed focusing is applied by
delaying and summing across transmitters, the sequential
energy is

Es = AN2(1 + ε). (6)

Relating these terms to the imaging metric γ, the contribu-
tion of noise to the image is found to be

p =
Es − Ep
Es

=
(N − 1)ε

N(1 + ε)
, (7)

which has the limit

lim
N→∞

p(N) =
ε

1 + ε
. (8)

Consequently, for ε� 1, the image offset due to incoherent
noise is expected to approach a value of approximately ε as
the number of transmitting elements increases. The energy in
the received signals acquired when no sound is transmitted by
the array is due to random noise. The ε value may therefore
be found experimentally by evaluating the energy received by
the array in sequential transmission operation, which contains
the acoustic and noise energy values, relative to the energy
received when operated passively (that is the energy of the
signal recorded when no sound is transmitted), which contains
only noise. This measured energy value can be contrasted
to the value measured using a sequential transmission to
find the experimental ε value. For the previously described
experimental example this is found to be ε = 0.009. Eq. (7)
is plotted in Fig. 3(a) for this example. It is clear that for the
large number of elements of a typical ultrasonic array (in this
case 64), the image offset due to incoherent noise will be close
to ε.

The influence of element number on the baseline measure-
ment, γ0, is evaluated experimentally through a series of tests
increasing the transmission aperture symmetrically about the
centre. The baseline value is taken as the rms γ within an
undamaged region of material. This relationship is shown in
Fig. 3(b) and demonstrates the type of asymptotic response
predicted by the analysis of incoherent noise.

If the sequential measurements are acquired using a number
of experimental averages equal to the number of elements, N ,
the noise energy will be reduced by a factor of N relative the
acoustic energy such that E

[
F 2
k,j

]
= A(1 + ε/N). For this

case, the sequential energy Es term then becomes equivalent
to parallel energy Ep obtained with no averaging. Applying
N averages to the sequential acquisition only should therefore
remove the statistical effect of incoherent noise from the
resulting nonlinear image. This would also be equivalent to a√
N relative increase in reception gain for sequential captures
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A

4

)(
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∂ul
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+
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+ 2
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∂xl∂xk

∂ul
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)
+

(
K +

µ

3
+
A

4
+B

)(
∂2ul
∂xi∂xk

∂ul
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+
∂2uk
∂xl∂xk

∂ui
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+

(
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3µ
+B

)(
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∂ui
∂xl

)
+

(
A

4
+B

)(
∂2uk
∂xl∂xk

∂ul
∂xi

+
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∂uk
∂xl

)
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(
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∂ul
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)
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(9)
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Fig. 3. (a) Theoretical incoherent noise contribution, p (b) Experimental baseline measurement.

but only if all the incoherent noise appears after the gain stage
of the signal chain.

The experimental study of the baseline nonlinear measure-
ment was repeated with the inclusion of N sequential averages,
the results of which are plotted in Fig 3(b). It is seen that the
effect of averaging is to reduce the baseline measurement for
large element numbers by very close to the measured ε value.
This is consistent with the previous analysis and suggests that
the effect of random noise on the nonlinear measurement is
both well understood and, despite the weak acoustic signals
associated with diffuse measurements, can be largely removed.
The remaining baseline measurement (γ ≈ 0.005) is expected
to comprise of nonlinear material effects and instrumentation
error.

It should be noted that noise is still detrimental to the
measurement since, as a consequence of bit-rate limits, the
acoustic information lost through signal quantization increases
proportionally with noise. Additionally, if the noise is not
perfectly uncorrelated (as is common with periodic elec-
tromagnetic interference), this approach will not completely
remove the contribution to the baseline value. All subsequent
experimental results are obtained using N sequential averages.

IV. MODELING

The term η which describes the influence of elastic non-
linearity on the measurement is now considered. The imaging
metric, γ, captures the total nonlinear energy loss from the
transmission bandwidth. The relative parallel-sequential en-
ergy loss which occurs as the fields propagate through the focal

point is preserved in the relative diffuse energy. The difference
in total energy of the parallel and sequential coherent fields is
equivalent to that of the diffuse fields. Consequently, in order
to find the nonlinear elastic contribution to the metric, it is
not necessary to model the diffuse field itself. The relative
nonlinear energy loss need only be computed for the early
time, coherent component of the field. Modeling is undertaken
in order to quantify the relative energy flux produced when an
array is focused in a nonlinear elastic medium.

Previous experimental studies have examined nonlinear dif-
fuse energy imaging in application to fatigue cracks[12], [13].
The measured nonlinear response in those examples is almost
certainly due predominantly to non-classical contact acoustic
effects. The ultimate aim of this form of nonlinear imaging
however is in application to damage precursor detection. This
requires sensitivity to weak, classical elastic nonlinearity. To
this end, the dependence of nonlinear diffuse energy imaging
on third order elastic strain energy is considered. The govern-
ing partial differential equation for such a system is given by
Eq. (9)[4], where ρ0 is the material density and K and µ are
the bulk and shear moduli respectively. A, B and C are the
Landau-Lifshitz third order elastic constants[15]. Alternatively
these may be expressed in terms of the Murnaghan constants
[16] as l = B + C, m = A/2 +B and n = A.

A. Incident field

A perturbative approach is adopted to the solution of Eq.
(9) in which the displacement field ū(t, r̄) is considered as the
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Ū (0)(r̄, ω) = ∆(2πcl/ω0)1/2T (ω)

N∑
n=1

{
Ān(r̄)DLn(r̄, ω)Bn(r̄)e

iω

(
|r̄ − ān|
cl

− δn
)

+Ā⊥n (r̄)DSn(r̄, ω)Bn(r̄)e
iω

(
|r̄ − ān|
ct

− δn
)}

.

(10)

sum of a linear incident field ū(0) and a secondary nonlinear
component ū(s), such that

ū(t, r̄) = ū(0)(t, r̄) + ū(s)(t, r̄). (11)

The incident field is evaluated in the frequency domain
from an analytical solution for a focused ultrasonic array.
The model, which contains both longitudinal and shear field
components, is expressed in Eq. (10).

Each element is considered to transmit with the same
displacement amplitude ∆ (defined as the peak amplitude
one fundamental wavelength from the element center) and
with a Gaussian spectra T (ω) = e−α(ω−ω0)2 centered at
the fundamental frequency w0. The nth element has position
an such that the amplitude unit vector of the longitudinal
field component from each transmitting element is Ān(r̄) =
(r̄− ān)/ |r̄ − ān|. Beam spread is accounted for by the term
Bn(r̄) = |r̄ − ān|−

1
2 . The element directivity is approximated

as the far-field response of a line source of width b acting on
an elastic half-space [17]. These analytical solutions for the
longitudinal and shear directivity functions are

DLn(ω, θn) =

sinc
(
πωb sin θn

cl

) (( cLcS )2 − 2 sin2 θn

)
cos θn

F0(sin θn)
,

(12)

and

DSn(ω, θn) =

sinc
(
πωb sin θn

ct

)
cl
cs

5/2

(
( clcs )2 sin2 θn − 1

)1/2

sin 2θn

F0(
cL
cS

sin θn)

(13)
respectively, where

F0(ζ) =

(
2ζ2 −

(
cL
cS

2
))2

− 4ζ2(ζ2 − 1)1/2

(
ζ2 −

(
cL
cS

)2
)1/2

.

(14)

Finally the element transmission delay is given by δn.
For a focused longitudinal field in an isotropic material,
δn = |ān − r̄f | /cl, where r̄f is the focal position and cl is
the longitudinal velocity. The linear material parameters for
aluminium are taken as; density ρo = 2700 kg/m3, Young’s
modulus of E=90 GPa and Poisson’s ratio ν = 0.35, which
relate to the linear elastic moduli by K = E/3(1 − 2ν)

and µ = E/2(1 + ν). The array parameters are selected to
match the experiment and are N = 64, pitch w =0.63 mm,
element width b=0.5 mm and center frequency ω0=5 MHz. α
is chosen such that the half power response corresponds to
the manufacturer’s stated frequency of 2/3ω0. The third order
elastic constants are taken as the following measured values
for undamaged aluminium[18]; A= -344 GPa B= -124 GPa
and C = -19.5 GPa.

B. Secondary field

Since the secondary field component is much smaller than
the incident component, its contribution to the right hand side
of Eq. (9) may be neglected. This allows the nonlinear forcing
per unit volume to be approximated as Eq. (15). The secondary
field component produced by this forcing may therefore be
obtained from the solution of the following

ρ0
∂2u

(s)
i

∂t2
− µ ∂2u

(s)
i

∂xk∂xk
−
(
K +

µ

3

) ∂2u
(s)
l

∂xl∂xi
= Fi. (16)

This partial differential equation is solved numerically using
a finite difference scheme. At each time step, t, the incident
field described by Eq. (10) is evaluated as ū(0)(r̄, t) =
1

2π

∫∞
−∞ Ū (0)(r̄, ω)eiωt dω. The first and second order spa-

tial derivatives of the incident field are then evaluated and
from this the nonlinear forcing is computed. Numerical time-
stepping is achieved using a fourth order Runge-Kutta method
and all spatial derivatives are computed using fourth order
finite difference approximations.

C. Imaging metric

Since a numerical integration step is required, the full
nonlinear partial differential equation given by Eq. (9) could
be solved directly in a similar manner without the requirement
for perturbative approximations and producing a more accurate
solution for the field. The motivation for this modeling is to
evaluate the energy flux from the incident field both in terms of
total magnitude and, importantly, where in space it occurs. By
keeping the explicit separation of the incident and secondary
field components this energy flux is more easily computed
than if the field was modeled as a whole. In the approach
taken here there is no nonlinear energy loss from the incident
field. It may however be found implicitly by evaluating the
nonlinear work done by the incident field on the secondary.
This nonlinear work is equal to the energy flux that would
occur from the incident to secondary field components and
may be expressed as
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Fig. 4. Nonlinear weighting function Ψ(r̄) for focal point of (a) r̄f=[-5 10] mm, (b) r̄f=[0 15] mm and (c) r̄f=[5 20] mm (focal points indicated by white
cross).

Ψ(r̄) =

∫ t2

t1

F̄ (r̄, t) ˙̄u(s)(r̄, t) dt, (17)

where t1 and t2 denote the time limits of the simulation,
F̄ = (Fi, Fj) is the nonlinear forcing vector and ˙̄u(s) is
the velocity vector of the secondary field component. The
computed time window is chosen to be sufficiently long that
the field propagates through the region of interest, which in this
case corresponds to values to t1 = 0 and t2 = 10µs. Crucially
evaluating the energy flux in this way allows it to be isolated
for any point in space. This function provides insight into the
degree of localization of the nonlinear measurement. Fig. 4
shows Eq. (17) evaluated for some example focal positions.
This highlights that the imaging metric does not provide a
point-like measurement of elastic nonlinearity but rather is a
spatially averaged value that is weighted strongly to the focal
point. This function is also closely related to the point spread
function for the nonlinear imaging technique.

The total energy loss from the parallel transmission case
may be obtained through the spatial integral of Eq. (17). This
may then be related directly to the metric γ by evaluating the
total energy flux in the parallel and sequential cases normalised
to the total transmission energy, ET . If Ψs(r̄) denotes the
spatial energy flux for the sequential transmission case, the
contribution of elastic nonlinearity to the nonlinear imaging
metric may be expressed as

η(r̄f ) =
Es − Ep
Es

=

∫
Ψ(r̄f , r̄) dr̄ −

∫
Ψs(r̄) dr̄

ET
. (18)

Note that the sequential term in Eq. (18) is spatially in-
variant since all nonlinear losses occur during acquisition and
are independent of the post-processed focusing operation. The
total system energy is evaluated by applying Guass’s theorem
to the field described by Eq. (10). The energy transmitted by
each element is obtained through a closed surface integral of
acoustic intensity flux around the element. This may be written
as follows

ET = N

∫ t2

t1

∮
(σ̄(0) ˙̄u

(0)
l ) · n̄+ (τ̄ (0) ˙̄u(0)

s ) · n̄⊥ ds dt, (19)

where σ̄(0) and τ̄ (0) are the field stresses due to the longitudi-
nal and shear components respectively and n̄ is the unit vector
normal to the surface. The longitudinal and shear components
of the particle velocities are denoted ˙̄u

(0)
l and ˙̄u

(0)
s respectively.

Eq. (18) can be used to make predictions regarding the
sensitivity of the imaging metric to elastic nonlinearity.

V. NONLINEAR SENSITIVITY

A. Spatial sensitivity

By evaluating Eq. (18) for focal locations covering an
imaging space, the dependence of the measured γ value on
the location of the measurement point relative to the array
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Fig. 5. Spatial variation of measured nonlinear response (a) numerical surface η(r̄f ) (b) Experimental and numerical lateral section for z = 15mm.

can be determined. This is shown in Fig. 5(a), from which
it can be seen that the measured value for given elastic
constants will vary as a function of position. This is primarily
a consequence of variations in the intensity of the focused
parallel field due to array directivity. Notably, as a result of
higher order amplitude dependence, the region of insensitivity
close to the array is more pronounced than is seen with
linear imaging. This presents a potential practical challenge
for near-surface nonlinear imaging. Fig. 5(a) also represents
the expected image generated for uniform elastic nonlinearity
if all other factors contributing to the measured γ value can
be removed.

While it is difficult to experimentally validate the entire
surface shown in Fig. 5(a), it is comparatively straight forward
to acquire a lateral section of it. The fatigue crack specimen
considered in the earlier example provides a discrete nonlinear
elastic feature much stronger than the surrounding material. As
such it can be used as a close experimental approximation to a
point-like nonlinear feature. By acquiring a series of nonlinear
images with the array translated relative to the crack position
the lateral sensitivity can be examined. This translation is
achieved by mechanically scanning the lateral position of the
array along the surface of the specimen. Taking the peak
nonlinear value from these images allows a section of the
spatial variation surface to be populated at a depth equal to
that of the crack tip. This is plotted in Fig. 5(b) alongside the
numerical equivalent, both normalized to their peak values.
Good agreement is seen between the two, providing a degree
of validation for the numerical model.

This agreement also provides some insight into how the
crack responds to a focused field. Since the model assumes
an isotropic elastic nonlinearity, this result suggests there is
no strong directivity associated with the nonlinear response
of the crack. Despite the crack having a nominal direction of
growth, its topography on the scale of the field displacements
(which is the length scale at which nonlinear contact-acoustic

effects occur and is in the order of nm) will be highly
irregular. There would therefore be no strongly preferential
direction for surface normals, resulting in the measurement
being rather insensitive to the direction of the incident field.
This is important since it reduces the effect of factors such
as defect orientation on detectability. This is a proposed
explanation for the observed agreement between the modeling
and experimental results observed for the crack considered
here. This study however does not provide sufficient evidence
that this represents the general nonlinear response of fatigue
cracks of any size and geometry.

B. N scaling

The dependence of the measured nonlinear response on the
number of array elements and size of transmission aperture is
now examined. Firstly the case of imaging within a scalar field
is considered. For this example the total transmitted energy
will be proportional to N∆2. Neglecting effects of element
directivity, the parallel focal amplitude is proportional to N∆.
For some arbitrary quadratic nonlinearity β, the energy flux
at the focal point for parallel transmission is proportional to
βN4∆4 and for the sequential case is proportional to βN∆4.
For this simplified approximation the measured nonlinear
value would be

η =
Es − Ep
Es

∝ ∆2(N3 − 1)β. (20)

It can be seen that for scalar field applications, such as
biomedical imaging, the nonlinear diffuse energy measurement
would have a cubic dependency on the number of transmitting
elements. Consequently the sensitivity of the measurement
could be expected to be improved to any arbitrary degree sim-
ply by increasing the number of array elements as illustrated
in Fig 6(a).

The N scaling in application to nonlinear imaging of elastic
solids is not so straight forward due to the manner in which
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Fig. 6. Nonlinear amplitude γ variation with number of transmitting elements for (a) scalar field (b) vector field.

amplitude vectors interfere. Take the example of an array
focused at a location below its center. At this focal position
the vertical component of the amplitude vectors associated
with the transmission of each element sum constructively,
resulting in an increase in the stress seen by the material
for parallel transmission. In this symmetric configuration the
lateral components of the field interfere destructively thereby
not contributing to any nonlinear energy flux in the parallel
case. As the transmission aperture of the array is increased,
the edge elements contribute an increasing proportion of their
amplitude to the lateral direction. These additional elements
therefore add little to absolute intensity at the focal point but
do increase the total energy of the system. The consequence
of this is a limit to sensitivity that can be achieved through
increasing element number. Simulation results for the effect
of element number are shown in Fig. 6(b). It is seen that
initially the the nonlinear metric has a high order dependency
on element number which then reduces as subsequent elements
contribute increasingly less to the focal amplitude. Continuing
to increase the aperture size further will in fact eventually
reduce the measured nonlinear value as the total system
energy increases linearly with element number, resulting in
the existence of some optimal array size.

The effect of aperture size is also examined experimentally
by monitoring the peak nonlinear response of the fatigue crack
specimen as the number of elements used for transmission
is increased symmetrically from the center of the array. This
is shown normalized to the maximum value in Fig. 6(b) in
which excellent agreement can be seen with the numerical
results. As before, the good agreement with the model provides
insight into the nonlinear response of the fatigue crack. The
measured nonlinear response of the crack is dominated by non-
classical contact acoustic effects as is evident by the significant
subharmonic generation observed in similar specimens[19].
The modeling here assumes a classical form of nonlinear-
ity which is not representative of the underlying nonlinear
mechanics of a closed crack. The model therefore can not
predict where, in terms of frequency or space, nonlinear energy
flux occurs for such a defect. Despite this, the observed

experimental agreement suggests that the nonlinear behavior
in terms of total energy flux from the transmission bandwidth
obeys quadratic amplitude scaling.

The smoothness of the function observed experimentally is
perhaps unexpected since contact acoustic nonlinearity would
be expected to exhibit some amplitude dependent thresholding
behavior. One possible explanation for this observation could
be, in a similar manner to the apparent isotropy of the
response, that the smoothness is a consequence of the averaged
effect of the complex geometry present at the scale of the
displacements. Although any given contact point along the
crack may exhibit its own thresholding behavior, because each
contact point has a different orientation and local stress state,
when the total effect is averaged over the order of a wavelength
it behaves as a smooth function. The leveling off of the
response around N = 10 is due to the limit of measurement
sensitivity rather than an indication of thresholding behavior.

C. Amplitude dependence

The computed relationship between transmission amplitude
∆ and the nonlinear metric is plotted in Fig. 7. As is consistent
with the prediction of Eq. (20), γ is seen to be a quadratic func-
tion of transmission amplitude. These results are computed
using third order elastic constants for undamaged aluminum
and can therefore be used to predict the expected contribution
of bulk material nonlinearity to the experimental baseline mea-
surement. In order to relate these results to the experimental
example considered here, the transmission amplitude must first
be measured. A Polytec OFV-505 laser vibrometer was used
to measure the back wall displacement of the test block in
front of a single transmitting element. The model parameter
∆ is defined as the displacement one fundamental wavelength
in front of the element. After a correction is applied to the
measured back wall displacement to account for beam spread
the experimental ∆ is found to be approximately 6nm.

As shown in Fig. 7(a), the predicted contribution from the
bulk material nonlinearity of undamaged aluminium would be
.07% (γ = 0.0007) for this excitation amplitude. As discussed
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in Sec. 3, the measured baseline value after the effect of noise
has been removed is 0.5%, almost an order of magnitude larger
than the predicted nonlinear material component. If all other
factors have been accounted for then this disparity must be due
to intrumentation error. Specifically this relates to the ability
of the instrument to transmit identical energy in parallel and
sequential transmission modes. This result would be indicative
of a transmission energy close to 0.5% higher in the sequential
transmission mode.

The nature of the diffuse measurement makes this technique
uniquely suited to the the imaging of damage precursors since
there is no requirement for the backscatter of sound from
the inspection point. In order to detect damage precursors
the experimental sensitivity to changes in third order elastic
constants on the order of the undamaged material values is
required [20], [21], [22]. The results presented here allow the
required improvements in sensitivity to be quantified. As has
been shown, sensitivity cannot be improved through increasing
aperture or element numbers. One option for increasing sensi-
tivity is to increases transmission amplitude. Fig. 7(a) shows
that an amplitude increase of a little under three times the
current value would provide the critical value, ∆c, at which the
bulk nonlinearity produces the largest single contribution to the
measured baseline value. At this point changes in third order
elastic constants would become measurable. Alternatively,
measurement sensitivity may be improved through efforts to
reduce or correct for instrument nonlinearity. If the nonlinear
response of the instrumentation can be accurately character-
ized, most notably any differences in the energy transmitted in
sequential and parallel operation modes, then corrections may
be applied to the processing in order to remove these effects
from the measurement.

VI. CONCLUSIONS

The factors contributing to the measured value obtained
using the nonlinear ultrasonic diffuse energy imaging tech-
nique have been identified and characterized. Models have
been presented for the effects of incoherent noise and elastic

nonlinearity, the results of which are supported by experi-
mental studies on the nonlinear imaging of fatigue cracks.
The sensitivity, localization, spatial variability, aperture and
amplitude dependence of the image metric are quantified.
Insight has also been gained into the nonlinear response of
fatigue cracks. It is seen that such defects exhibit a largely
isotropic response for this imaging modality. Further, the total
energy flux from the transmission bandwidth is seen to be
well characterized using simple cubic approximations to strain
energy. The ultimate aim of nonlinear imaging in application
to nondestructive evaluation is to achieve the detection of
damage precursors. This study identifies the experimental
requirements necessary for that to be achieved. These results
advance nonlinear diffuse energy imaging towards industrial
viability.
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