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Abstract: Biological tissues like bone, wood, and sponge possess hierarchical cellular 

topologies, which are lightweight and feature an excellent energy absorption capability. Here 

we present a system of bio-inspired hierarchical honeycomb structures based on hexagonal, 

Kagome, and triangular tessellations. The hierarchical designs and a reference regular 

honeycomb configuration are subjected to simulated in-plane impact using the nonlinear finite 

element code LS-DYNA. The numerical simulation results show that the triangular 

hierarchical honeycomb provides the best performance compared to the other two hierarchical 

honeycombs, and features more than twice the energy absorbed by the regular honeycomb 

under similar loading conditions. We also propose a parametric study correlating the 

microstructure parameters (hierarchical length ratio r and the number of sub cells N) to the 

energy absorption capacity of these hierarchical honeycombs. The triangular hierarchical 

honeycomb with N = 2 and r = 1/8 shows the highest energy absorption capacity among all 

the investigated cases, and this configuration could be employed as a benchmark for the 

design of future safety protective systems. 
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1. Introduction 

Honeycomb structures have been widely used in aerospace engineering, mechanical, and civil 

engineering due to their excellent mechanical performance and lightweight characteristic [1]. 

The hexagonal honeycomb is a suitable material for protective and packaging applications 

because of its excellent energy absorption capacity [2, 3]. In the past decades, a significant 

number of researchers have investigated the crashworthiness of honeycomb structures using 

theoretical, experimental, and numerical simulation methods. Wierzbicki [4] made use of the 

super folding element theory to analysis the crashworthiness of the hexagonal honeycomb 

structure under the out-of-plane loading. The theoretical prediction showed that the 

crashworthiness of a honeycomb bears strict relations with the core material, the wall 

thickness, and width. Wu and Jiang [5] have carried out experimental studies on six types of 

aluminum honeycombs under quasi-static and dynamic out-of-plane loading. The 

experimental results showed that the dynamic crushing strength was significantly higher than 

the quasi-static crushing strength. Cricrì et al. [6], Papka and Kyriakides [7], and Ruan et al. 

[8] investigated the behavior of regular hexagonal honeycombs under in-plane loading using 

numerical simulations. The results show that the numerical methods can provide high fidelity 

predictions of the deformation modes and the crushing forces of the honeycomb topology.  

The investigations above have focused on honeycombs with one-order cellular 

configurations. Natural materials like wood, bone, and sponge have, however, hierarchical 

cellular structures, i.e., higher-order ones [9, 10]. Arguably the hierarchical configuration 

explains why these classes of natural materials possess good energy absorption, as well as 

high lightweight characteristic. For this reason, several research groups have investigated the 

mechanical performance of hierarchical structures. Chen el al. [11] reported a class of 

hierarchically architected honeycombs with simultaneous prominent wave attenuation and 

load-carrying capabilities. The mechanisms responsible for the broad phononic band gaps and 

enhanced stiffness depend on the geometric features of the hierarchical honeycombs rather 

than their composition. Zheng et al. [12] have fabricated a novel metallic hierarchical 

metamaterial with several three-dimensional features spanning up to seven orders of 

magnitude, from nanometers to centimeters. This novel metallic hierarchical metamaterial 

was found to have a significantly higher specific strength compared to aluminum, stainless 
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steel, and titanium foams, as well as silica aerogel and Al2O3 nanolattices. Vigliotti and Pasini 

[13] have evaluated the improvement in terms of stiffness and strength of lattices with 

multiple hierarchical levels compared to traditional structures. Sun et al. [14] have designed a 

hierarchical triangular lattice with lattice-core sandwich walls. The axial crushing 

experimental results of the hierarchical topology show a significantly higher crashworthiness 

than the single-cell and the multi-cell lattice structure. Additionally, Zheng et al. [15] have 

investigated the behavior of hierarchical woven lattice composites and found that hierarchical 

lattice structures provide a significant boost to the energy absorption capability of the 

lightweight woven textile material compared with the non- hierarchical configuration.  

    Hierarchical hexagonal honeycombs, which combine the advantages of the regular 

hexagonal configuration in order one and possess a nested hierarchical structure, are 

extremely promising for crashworthiness applications. Zhang et al. [16] and Sun et al. [17] 

have investigated the axial crushing behaviors in self-similar regular hierarchical honeycombs 

using an explicit finite element code. The results show that the first-order and the 

second-order hierarchical honeycomb improve the specific energy absorption by 81% and 

186% compared to the regular hexagonal honeycomb, respectively. Zhao et al. [18] designed 

and tested configurations of hierarchical composite honeycombs (HCHs). HCHs were found 

to possess remarkable specific energy absorption. Sun et al. [19, 20] have evaluated the 

in-plane stiffness of these hierarchical honeycombs, which was significantly higher than that 

of the regular honeycomb. Chen and Pugno [21, 22] have analyzed the in-plane elastic 

buckling properties of hierarchical honeycombs and the in-plane elastic properties of 

hierarchical nano-honeycombs. Qiao et al. [23] have in particular investigated the 

crashworthiness performance of a second order hierarchical honeycomb under in-plane 

loading by using theoretical analyses and finite element simulations. The results gathered 

from these two modeling techniques have clearly shown that the hierarchical honeycomb 

concept provides an improved energy absorption capacity over traditional hexagonal and 

triangular honeycombs. More recently, Chen et al. [24] have fabricated one type of 

hierarchical honeycombs using commercial 3D printers. Their experimental results indicate 

that the 3D printed hierarchical honeycombs exhibit a progressive failure mode under uniaxial 

compression along with improved stiffness and energy absorption. Remarkably, these 
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hierarchical honeycombs also exhibit high energy dissipation at large imposed strains (up to 

60%) under cyclic loading. 

The aforementioned studies on the mechanical performance of hierarchical honeycombs 

are, however, focused on the regular honeycomb configuration, with cell walls consisting of 

only one topological type of substructure. Here we propose three different types of 

hierarchical honeycombs with various topological substructures (i.e., the hexagonal, Kagome 

and triangular honeycombs), all subjected to in-plane dynamic loading conditions and their 

in-plane energy absorption capacity explored. The paper is organized as follows. The 

structural description of the proposed hierarchical honeycombs and the finite element 

modeling are presented in Section 2. The dynamic in-plane properties of the honeycombs are 

studied and discussed in Section 3. The main conclusions are summarized in Section 4. 

2. Hierarchical honeycombs and their finite element models 

2.1. Structural description 

The cross-section configurations of the three hierarchical honeycombs and the regular 

honeycomb evaluated in this work are presented in Fig. 1 (a) and (b). The three types of 

hierarchical honeycombs are constructed by substituting the cell walls of the regular 

honeycomb with the corresponding cellular structure (i.e., hexagonal, Kagome and triangular 

honeycombs). The detailed configurations of these cellular structures are shown in Fig. 1 (c).  

We introduce two geometric parameters to describe the topology of the proposed 

hierarchical honeycombs. The first design parameter is the hierarchical length ratio r = lh /l0, 

where lh is the cell wall length of the hexagonal hierarchical honeycomb, and l0 denotes the 

length of the cell wall of the regular (level 0) honeycomb. The other design parameter used in 

this work is N, which represents the number of complete sub cells away from the central axis 

of each cell wall. As an example, Fig. 2 shows the configurations of three different 

hierarchical honeycombs with N = 1, 2 and 3 and r = 1/8. 
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Fig. 1. Geometrical illustrations of the proposed hierarchical honeycombs. (a) Regular 

honeycomb, hexagonal hierarchical honeycomb, Kagome hierarchical honeycomb, and 

triangular hierarchical honeycomb. (b) Representative volume element of each type of 

honeycomb. (c) The corresponding cell wall of each type of honeycomb. Here r = 1/8 and N = 

1. 

(a)

(b)

(c)
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Fig. 2. The configurations of hierarchical honeycombs with N = 1, 2 and 3. (a) Hexagonal, (b) 

Kagome and (c) triangular. Here r = 1/8. 

 

For the purpose of comparison, all results have been acquired for configurations having 

equivalent mass by imposing the following condition [25]: 

                                                  (1) 

In Eq. (1), t0 and l0 represent the thickness and the length of the cell of a regular honeycomb 

(always at level 0). The simulations carried out in this work have been performed by fixing l0 

= 20 mm, t0=0.8 mm, and an out-of-plane thickness of 10 mm. As a result, the relative density 

for all of the considered honeycombs is 0.05. The parameters th and lh in Eq. (1) are the 

(a)

(b)

(c)
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thickness and length of the cell wall of the nested hexagonal lattice, respectively. P indicates 

the number of hexagonal nested cells with one-half thickness and is determined by N and r. 

From Eq. (1), one can extract the thickness and the length of the hexagonal hierarchical 

lattice as: 

                                    

(2) 

Similarly, the thickness and the length of the Kagome and triangular hierarchical 

honeycombs can be calculated as: 

                                    

(3) 

                                       

(4) 

In Eq. (3) and Eq. (4), tk and lk are the thickness and length of the Kagome lattices; tt and lt 

otherwise represent the thickness and the length of the triangular lattice. The number of 

hierarchical cells for the Kagome and triangular lattices are Q and R, respectively. 

The test configurations considered in this work are shown in Table 1. Some particular 

topologies were not evaluated, for example, Kagome and triangular hierarchical honeycombs 

with at N = 3, and other configurations for r = 1/14. For r = 1/5, the maximum value of N 

considered in this work is 2. In the other cases, the size of the finite element models is 

extremely large and would have required massive computational efforts beyond our current 

capabilities.  

Table1. Illustrations of the investigation cases. 

 N r 
 

Hexagonal 
1 
2 
3 

1/5 
1/5 
/ 

1/8 
1/8 
1/8 

1/11 
1/11 
1/11 

1/14 
/ 
/ 

 
Kagome 

1 
2 
3 

1/5 
1/5 
/ 

1/8 
1/8 
1/8 

1/11 
1/11 
1/11 

/ 
/ 
/ 

2

0 0
2

0 0

  3 16 11 1
2 3 3 2 3

h

h

t t t
l l lQg

ì üé ùæ öï ïê ú= - - -í ýç ÷
ê úè øï ïë ûî þ

2

0 0
2

0 0

  3 16 11 1
2 3 3 2 3

k

k

t t t
l l lQg

ì üé ùæ öï ïê ú= - - -í ýç ÷
ê úè øï ïë ûî þ

2

0 0
2

0 0

  1 4 3 1 1 1
33 2 3

t

t

t t t
l R l lg
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8 
 

 
Triangular 

1 
2 
3 

1/5 
1/5 
/ 

1/8 
1/8 
1/8 

1/11 
1/11 
1/11 

1/14 
/ 
/ 

2.2. Finite element modeling 

The finite element model consists of three parts: two rigid plates and the hierarchical 

honeycomb confined within those plates (Fig. 3). The hierarchical honeycombs are 

discretized using shell elements, while the remaining two plates are meshed with hexahedral 

elements. Of the two rigid plates, the top one has an initial velocity of 5 m/s, while the bottom 

one is fixed. The hierarchical honeycombs are made of aluminum alloy AA3030-H19, 

Young’s modulus E = 69 GPa, Poisson’s ratio v = 0.33, density ρ = 2700 kg/m3, yield strength 

σys = 115.8 MPa and ultimate tensile stress σus = 160 MPa [26]. The cell walls of the 

hierarchical honeycombs were modeled using the piecewise linear plasticity material model 

(MAT_24 in LS-DYNA) [27]. To simulate the contact between the two plates and the 

hierarchical honeycombs, two “automatic_nodes_to_surface” contacts with static and 

dynamic friction coefficients of 0.3 and 0.2 were used, respectively. Moreover, an 

“automatic_single_surface” contact was defined to simulate the contact within the 

hierarchical honeycomb itself during collapse [28]. 

 

Fig. 3. FE model of the hierarchical honeycomb subject to in-plane loading. 
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2.3. Crashworthiness criteria 

In this work, the mean crushing force (Fs) and the energy absorption (EA) are used as 

crashworthiness metrics. EA can be calculated as [31]:  

                                                          (5) 

In Eq. (5), l indicates the total crushing distance (l = 60 mm in our cases). The variable x 

represents the crushing displacement, and F is the corresponding impact force. A higher value 

of EA indicates higher energy absorption capability. The mean crushing force Fs for a given 

deformation x can be expressed as: 

.
                                                            (6) 

In general, the higher the mean crushing force Fs, the more efficient is the crashworthiness 

performance of a structure [32]. 

 

2.4. Validation of the FE modeling 

To validate the computational framework used in this work, we have benchmarked our 

simulations with the ones related to a regular hexagonal honeycomb under in-plane dynamic 

loading with displacement control of 0.5 mm/min. [29]. Figs. 4 and 5 show the comparison of 

our FE simulations with the experimental data. One can notice from Fig. 4 that the 

numerically simulated deformations correlate well with those from the experiments. Moreover, 

the value of the crushing force obtained from the FE analysis is in excellent agreement with 

the one measured from the experiments (Fig. 5). The overall more than the satisfactory 

correlation between numerical and experimental results, in terms of both deformations and 

crushing force, show the baseline fidelity of the models developed here and their feasibility 

for being extended to the hierarchical honeycombs. 
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Fig. 4. Comparison of the deformations obtained from the finite element analysis and the 

experiment [28] related to a regular hexagonal honeycomb (Here ε denotes the nominal 

compressive strain). 

 

 
Fig. 5. Comparison of the crushing forces obtained from the finite element analysis and the 

experiment [28]. 

 

2.5. Sensitivity analysis of the mesh size  

Previous studies have shown how the mesh size (i.e. the number of elements per cell wall 

thickness of the honeycomb) affects the accuracy of the finite element results [30]. This is 

particularly important for the case of hierarchical honeycombs and the converging values of 

the crushing force. We have therefore performed sensitivity analyses to determine the 

appropriate element size for the FE models. The simulated force-displacement curves for cell 

walls with 4 and 6 elements are compared in Fig. 6. It can be observed that the two 

ε = 0 ε = 11.9%

ε = 20.9% ε = 34.9%

ε = 43.8% ε = 55.8%

Experiment Simulation
Experiment Simulation
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force-displacement curves are very similar, indicating that a minimum number of 4 elements 

per cell wall can provide a reasonable accuracy for our predictions. 

 

 

Fig. 6. Effect of the number of elements per cell wall on the crushing force of the hierarchical 

honeycombs. (a) Hexagonal, (b) Kagome, and (c) triangular 

 

3. Numerical results and discussion 

3.1. Comparison of different hierarchical honeycombs 

Fig. 7 shows a direct comparison between the crushing forces of the three types of 

hierarchical honeycombs with the same r and N values. As a further benchmark, we have also 

considered the crushing force of the regular honeycomb (i.e., non-hierarchical) configuration. 

From observing Fig.7, one can distinctively notice that the crushing force of the triangular 

hierarchical honeycomb is the highest, and this is consistent with the fact that the triangular 

lattice configuration is the specific stiffest planar topology [33]. When N = 1, the crushing 

force of the regular honeycomb is higher than those of the Kagome and the hexagonal 

hierarchical honeycombs, however, it is lower than the one of the triangular hierarchical 

lattice. For N = 2 and 3, the crushing force of the regular honeycomb is generally higher than 

the one of the hexagonal hierarchical honeycomb, but lower than that the one shown by the 

Kagome hierarchical honeycomb.  

 

(a) (b) (c)
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Fig. 7. Comparison of the crushing forces of the three hierarchical honeycombs with regular 

honeycomb. (a) r = 1/5, N = 1; (b) r = 1/8, N = 1; (c) r = 1/11, N = 1; (d) r = 1/5, N = 2; (e) r = 

1/8, N = 2; (f) r = 1/11, N = 2; (g) r = 1/8, N = 3 and (h) r = 1/11, N = 3. 

 

Fig. 8 shows the comparison of the EAs of the three hierarchical honeycombs with 

different geometric parameters N and r. It is worth reiterating that all the hierarchical 

honeycombs have the same weight, and in that sense, the results represent directly specific 

energy absorptions. The triangular hierarchical honeycomb features the best performance 

amongst the three hierarchical topologies, including the regular honeycomb case. The 

Kagome hierarchical configuration tends to have a lower specific energy (between 17% and 

75% of the one shown by the triangular topologies). The lower performance is provided by 

the hexagonal hierarchical tessellations. The triangular hierarchical honeycomb with N=2 and 

r=1/8 features the best performance between the different tessellations, with over twice EA 

values than that of the regular honeycomb. Not all of the hierarchical honeycombs have, 

however, an improved performance compared to the hexagonal configuration: the hexagonal 

(a) (b) (c)

(d) (e) (f)

(g) (h)
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hierarchical honeycomb has indeed a lower energy absorption capacity than the regular 

honeycomb. The Kagome hierarchical honeycomb with N = 2 and 3 has a better energy 

absorption than the regular honeycomb, however, the hierarchical version with N = 1 has a 

lower EA than the regular hexagonal configuration.  

 

 

Fig. 8. Energy absorption of the hierarchical honeycombs with different geometric 

parameters. 

 

3.2. Deformation modes 

The average crushing force has a strict relation with the deformation mode of the structure [7], 

and therefore it is essential to understand the deformation mechanisms of the hierarchical 

honeycombs. Figs. 9-11 shows the deformation modes of the three hierarchical honeycombs 

with r = 1/8 and N = 1 at different nominal compressive strains. The deformation modes of 

the three hierarchical honeycombs are quite evidently different from each other. Specifically, 

during the deformation of the hexagonal hierarchical honeycomb (Fig. 9), a V shape firstly 

occurs at the impact side due to the initiation of shear bands. The shear bands develop layer 

by layer until the hexagonal hierarchical honeycomb becomes compacted. The deformations 

of the Kagome hierarchical honeycomb are, however, different (Fig. 10). In this case, the 

shear band front initiates at the support side. With the increase of the impact displacement, the 

shear band appears at the impact side and then the center section collapses. The Kagome 
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hierarchical honeycomb is then crushed layer by layer until it is densified. The triangular 

hierarchical honeycomb is, however, subjected to an I-shaped band initially occurring at the 

indentation side (Fig. 11). A smaller shear band then appears at the support side, followed by 

a gradually collapse starting from the center. From the above observations, it is clear to infer 

that the filled substructures significantly affect the deformation modes of these hierarchical 

honeycombs. 

To further understand the mechanical response of the proposed hierarchical honeycombs, 

local deformation patterns of the hierarchical honeycombs with r = 1/8 and N = 1 are shown 

in Fig. 12. One can see that the local deformation of the hexagonal hierarchical honeycomb 

was a “Y” shape cell. In the compressive process of the hexagonal hierarchical honeycomb, 

the “Y” shape cell would rotate around the cross center until it was compacted. While the 

representative deformable cells for the Kagome and triangular hierarchical honeycombs were 

an “X” shape cell and a “six-side-cross” shape cell, respectively. Similarly, when the Kagome 

and triangular hierarchical honeycombs were crushed, the “X” and “six-side-cross” shape 

cells would rotate around their cross centers, respectively, until they were compacted. 

Generally, the rotation of the “six-side-cross” shape cell could absorb more dynamic energy 

than the rotations of the “Y” and “X” shape cells. This is the reason why the triangular 

hierarchical honeycomb exhibits a better energy absorption capacity than the other two 

hierarchical honeycombs. 
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Fig. 9. FE predicted deformation modes of the hexagonal hierarchical honeycombs with r = 

1/8 and N = 1 under different nominal compressive strains. 

 

 
Fig. 10. FE predicted deformation modes of the Kagome hierarchical honeycombs with r = 
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1/8 and N = 1 under different nominal compressive strains. 

 

 

Fig. 11. FE predicted deformation modes of the triangular hexagonal hierarchical 

honeycombs with r = 1/8 and N = 1 under different nominal compressive strains. 
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Fig. 12. Local deformation patterns of the hierarchical honeycombs with r = 1/8 and N = 1. (a) 

Hexagonal, (b) Kagome and (c) triangular. 

 

3.3. Hexagonal hierarchical honeycombs 

Figs. 13 and 14 show the force-displacement relations of the hierarchical honeycombs with 

different N and r. The mean crushing forces are calculated using Eq. (6) and are summarized 

in Fig. 15. The function F(x) in Eq. (6) is the transient crushing force. From Fig. 15, one can 

notice that the mean crushing force of the hexagonal hierarchical honeycomb is sensitive to 

the design variables N and r. The average crushing force increases with the increase of N (Fig. 

15 (a)), while it decreases for increasing r values (Fig. 15 (b)). The hexagonal hierarchical 

honeycomb with N = 2 and r = 1/5 has the highest mean crushing force among all the 

considered cases. The hexagonal hierarchical honeycomb with N = 1 and r = 1/14 has, 

however, the worst mean crushing force value within the hierarchical cellular structures 

considered here. These geometric analyses indicate that the N and r parameters significantly 

(a)

(b)

(c)
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affect the crushing forces of the hexagonal hierarchical honeycombs. 

 

 

Fig. 13. Comparison of mean crushing forces of hexagonal hierarchical honeycomb with 

different N. (a) r = 1/5; (b) r = 1/8 and (c) r = 1/11. 

 

 

Fig. 14. Comparison of crushing forces of the hexagonal hierarchical honeycombs with 

different r. (a) N = 1; (b) N = 2 and (c) N = 3. 

 

Fig. 15. Effect of geometric parameters on the mean crushing force of the hexagonal 

hierarchical honeycomb. (a) N and (b) r. 

 

3.4. Kagome hierarchical honeycombs 

Fig. 18 shows the variation of the mean crushing force of the Kagome hierarchical 

honeycomb when the N and r parameters change, which were calculated from the 

force-displacement curves, as shown in Figs 16 and 17. The crushing force of the Kagome 

(a) (b) (c)

(a) (b) (c)

(a) (b)
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configuration with larger N values is higher than the one related to the topology with smaller 

N (Fig. 16). From Fig. 17, one can also observe that the crushing force-displacement curves 

of the Kagome lattices with different values of r have almost the same values. We note that 

the mean crushing forces of these honeycombs are quite sensitive to the variable N, but less so 

when it concerns the r parameter (Fig. 18). When the value of N increases, the mean crushing 

force tends to become larger. When the parameter r increases, however, the change of the 

average crushing force is limited. In particular, the Kagome hierarchical honeycomb with N = 

3 and r = 1/11 shows the highest mean crushing force, while the structure with N = 1 and r = 

1/8 has the lowest one. These results are quite different from the ones related to the hexagonal 

hierarchical honeycomb configuration.  

 

 
Fig. 16. Comparison of crushing forces of the Kagome hierarchical honeycombs with 

different N: (a) r = 1/5; (b) r = 1/8 and (c) r = 1/11. 

 

Fig. 17. Comparison of crushing forces of the Kagome hierarchical honeycombs with 

different r. (a) N = 1; (b) N = 2 and (c) N = 3. 

(a) (b) (c)

(a) (b) (c)
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Fig. 18. Effect of geometric parameters on the mean crushing force of the Kagome 

hierarchical honeycomb. (a) N and (b) r. 

 

3.5. Triangular hierarchical honeycombs 

Figs. 19 and 20 show the force-displacement curves related to the triangular hierarchical 

honeycombs, all displaying a noticeable plateau region that indicates the presence of a stable 

collapse deformation. Before the compaction of the triangular honeycombs, the crushing 

forces oscillate between 200 N and 600 N. This is an indication that the triangular hierarchical 

honeycomb could feature a high crushing force efficiency [29] for impact engineering 

applications. Fig. 21 shows the effect of the variables N and r on the mean crushing force of 

the triangular hierarchical honeycomb, which was calculated from the force-displacement 

curves shown in Figs 19 and 20. The N and r parameters both affect the mean crushing force 

significantly, which does not monotonically increase or decrease for increasing N values. For 

the r = 1/5 case, the mean crushing force decreases for higher values of N. For the case of r = 

1/8, however, the mean crushing force increases with the increase of N from 1 to 2, and then 

decreases for N passing from 2 to 3. In the case of r = 1/11, the mean crushing force tends to 

monotonically increase higher N. On the opposite, when r increases, the variation of the mean 

crushing force is more complex. For the triangular lattice at N = 1, the mean crushing force 

monotonously decreases with increasing r values. For the case N = 2 instead, the mean 

crushing force first increases for values of between r = 1/5 and r = 1/8 and then decreases 

from r = 1/8 to r = 1/11. In the case of the triangular hierarchical honeycomb with N = 3, one 

can observe only a slight variation of the mean crushing force with the increase of r. By 

observing Fig. 21, one can notice that the triangular hierarchical honeycomb with N = 2 and r 

= 1/8 features the highest mean crushing force, and therefore the best energy absorption 

(a) (b)
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capacity amongst the lattices considered in this work. 

 

 

Fig. 19. Comparison of crushing forces of the triangular hierarchical honeycombs with 

different N. (a) r = 1/5; (b) r = 1/8 and (c) r = 1/11. 

 

 

Fig. 20. Comparison of crushing forces of the triangular hierarchical honeycombs with 

different r. (a) N = 1; (b) N = 2 and (c) N = 3. 

 

 

Fig. 21. Effect of geometric parameters on the mean crushing force of the triangular 

hierarchical honeycomb. (a) N and (b) r. 

 

4. Conclusions 

In this work, we have investigated, by using the nonlinear finite element code LS-DYNA, the 

(a) (b) (c)

(a) (b) (c)

(a) (b)
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energy absorption property of three types of hierarchical honeycombs with different 

configurations under in-plane dynamic loading. As a further benchmark, we have also 

considered a reference and non-hierarchical hexagonal honeycomb configuration. Our 

numerical simulations indicate that triangular hierarchical lattice features the best energy 

absorption capacity. The triangular hierarchical topology also performs significantly better 

than the regular honeycomb in terms of crashworthiness. In particular, the triangular 

hierarchical honeycomb with geometry design variables equal to N = 2 and r = 1/8 has the 

highest crushing resistance performance, with over twice the value of absorbed energy 

compared to the regular honeycomb. In this regard, triangular hierarchical honeycomb can be 

considered to replace the regular honeycomb configuration in the field of the impact 

engineering for safety protection. We also observe that for the hexagonal and Kagome 

hierarchical honeycombs with parameters equal to N = 1 and r = 1/8, the collapse modes 

follow a shear band “V” shape. While for the triangular hierarchical honeycomb with N = 1 

and r = 1/8, the collapse mode is, however, composed of a mix of compressive “I” and the 

shear band “V” shapes. Further parametric analyses suggest that the energy absorptions of the 

hexagonal and triangular hierarchical honeycombs are quite sensitive to the design variables 

N and r. For the Kagome hierarchical honeycomb, the effect of the parameter N on its energy 

absorption is significant, however, the influence of the design variable r is almost negligible. 

The numerical simulations presented here not only provide us a better understanding on the 

dynamic response of a new type of cellular structures, but also offer new opportunities for the 

design of structured materials capable of achieving extreme and customizable energy 

absorption properties that can be of particular interest for applications in automotive, 

aerospace, semiconductor, and energy. Future work will be redirected toward the advanced 

fabrication and high strain rate mechanical testing of the proposed hierarchical honeycombs 

with different materials and length scales. 
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