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Observer design for sampled-data systems with unknown inputs and
uncertainties based on quasi sliding motion

Thang Nguyen1, Christopher Edwards2, and Guido Herrmann3

Abstract— In this paper, the state and unknown input esti-
mation problem is addressed for a sampled-data system whose
dynamics is affected by external signals and uncertainties.
Unlike the numerous sliding mode observers for dynamical
continuous-time systems which employ a nonlinear switching
injection term to force the state errors to converge to zero
in finite time, the observer design problem for sampled-data
systems is often faced with limitations on the hardware, where
the sampling time period cannot be made arbitrarily small.
Hence, an approximate implementation of an observer, which
is designed for a continuous-time system, is not always suitable
in the sampled-data context. By exploiting the quasi-sliding
motion concept, we propose an observer which takes into
account the sampling time period. A theoretical analysis is
provided to formally show the convergence of the observer.
In the formulation, estimates of the unknown inputs are also
given. Simulation results are shown to illustrate the efficacy of
the proposed method.

I. INTRODUCTION

There have been a great number of papers concerning the
problem of estimating state variables and unknown inputs for
continuous-time systems using sliding mode approaches: see
[1], [2], [3], [4], [5], [6], [7] and references therein. A typical
property of these observers is that a sliding surface based
on the output error is constructed and a nonlinear switching
injection term is introduced to force the output errors to reach
the sliding surface in finite time. The unknown inputs are
then reliably reconstructed based on the nonlinear injection
term (often passed through low-pass filters).

The problem of designing observers for discrete-time
systems with unknown inputs has also been addressed ex-
tensively [8], [9], [10], [11], [12], [13]. In [8], a sampling
delayed observer is constructed if the system is left-invertible
without invariant zeros. In that scheme, some variables that
are not affected by the unknown inputs are calculated and a
change of coordinates is employed to make the transformed
system well-suited for designing the delayed estimator. The
states and unknown inputs of the linear systems are recovered
after some finite number of sampling delays. In [9], a delayed
observer is designed to reconstruct the unknown states and
unknown inputs of a discrete-time system. A parameteriza-
tion of the observer gain was developed to decouple the
unknown inputs from the estimation error. In [10], [11],
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the reconstruction of the state and the unknown input for
a class of discrete-time linear systems is conducted based on
geometric methods. A finite impulse response (FIR) system
processes the output measurements to reconstruct the initial
state and the subsequent state trajectory, with a possible
delay related to the properties of the original system, from
which the unknown input is recovered with a further delay
of one step. In [12], a H∞ filter approach was proposed for
discrete-time linear system with unknown inputs, in which
there are no similarity transformations. The description of
the original model is modified to construct a linear filter,
from which the original states and the unknown inputs of
the system are extracted. In [13], a delayed observer was
designed based on linear matrix inequalities (LMIs) from
which the observer gains and peak-gain performance bounds
on a pre-specified performance output of the observer are
calculated. The unknown inputs can be reconstructed to a
specified level of accuracy if the system is minimum-phase
and the specified delay is sufficiently large.

As discussed above, numerous observers have been de-
signed for continuous-time and discrete-time systems, in
comparison, relatively little effort has been spent on sampled-
data systems. In [14], an observer scheme was proposed for
robust fault reconstruction for a class of continuous systems
in which the output measurement is taken at the sampling
times but the control input is still a continuous function.
It should be noted that in sampled-data systems, switching
actions at infinite frequency (required at least theoretically
by sliding mode systems) cannot be achieved due to the
sample/hold process. As a result, there is no ideal sliding
mode. Instead, only “quasi sliding modes“ are obtained,
which keeps the system state in a boundary layer of the
sliding surface ([15]). Since the measurement is taken at
sampling times, there is no continuity in the output measure-
ment. Furthermore, the system behavior between sampling
times should be taken into account in sampled-data systems,
which is different from discrete-time systems.

In this paper, we aim to design an observer to estimate
the state and unknown input of a sampled-data system. The
method is based on quasi-sliding motion ideas and requires
that the system is minimum-phase and relative degree one.
The difference between this work and other papers in the
literature is that a one-step delay is used for the observer
and our work is focused on sampled-data systems, which take
into account the sampling time. Furthermore, the accuracy of
the state and input estimates is analyzed.

The contributions of the paper are the following: a new
sampled-data observer is proposed to estimate state variables



and unknown signals simultaneously for a class of sampled-
data systems which are under the influence of external
disturbances and uncertainties. Furthermore, it is constructed
based on quasi-sliding motion ideas to capture the behavior
of the system states and external disturbances. A convergence
and robustness analysis is provided to justify the proposed
method.

Throughout the paper, λ{A} denotes the spectrum of the
matrix A. Matrix Im stands for an identity matrix of order m.
As in [16], a vector function f (t,s) ∈ Rn is said to be O(s)
over an interval [t1, t2], if there exist positive constants K
and s∗ such that ‖ f (t,s)‖ ≤ Ks, ∀s ∈ [0,s∗], ∀t ∈ [t1, t2].
The notation f [k] stands for f (kTs), where k = 0,1,2, ...
denotes the index of the discrete-time sequence as a result
of sampling where Ts is the sampling time period.

The organization of the paper is as follows. Some pre-
liminaries are given in Section II and the estimator design
is derived in Section III. Numerical results are employed to
illustrate the efficacy of the proposed method in Section IV.
Finally, Section V gives some conclusions.

II. PRELIMINARIES

Here we revisit the construction of a sliding mode observer
for a continuous time linear system with external distur-
bances and uncertainties in [2].

Consider an uncertain linear dynamical system described
by

ẋ(t) = Ax(t)+Bu(t)+F f (t)+Mξ (t,y,u) (1)
y(t) = Cx(t),

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the system
control input, y(t) ∈ Rp is the system output, f (t) ∈ Rq is
an unknown bounded exogenous disturbance, ξ (t,y,u) ∈ Rκ

is the uncertainty, q≤ p < n, and the matrices C and F are
of full rank. The system matrices A, B, C, F , and M are
constant and of appropriate dimension. It is assumed that
the state variables of the system (1) are unknown and only
the control input u(t) and output y(t) are available.

We use the following assumptions for our design and
analysis.

Assumption 1: System (1) has the following properties:

• rank(CF) = q
• The invariant zeros (if any) of (A,F,C) lie in the left

half plane.
Assumption 2: The disturbance f (t) and its first and sec-

ond time derivatives are bounded.
Assumption 3: The uncertainty ξ (t,u,y) is unknown but

bounded subject to ‖ξ (t,y,u)‖< ν where the positive scalar
ν is known.

If p> q and Assumption 1 is satisfied then the system ma-
trices (A,F,C), through state transformation, can be brought
into the following structure:

A =

[
A11 A12
A21 A22

]
, F =

[
0
F0

]
, C =

[
0 T0

]
(2)

where A11 ∈ R(n−p)×(n−p), F2 ∈ Rp×q is nonsingular, T0 ∈
Rp×p is orthogonal, and

F0 =

[
0
F2

]
(3)

where F2 ∈ Rq×q and detF2 6= 0. A state observer of the form

ż(t) = Az(t)+Bu(t)−Gley(t)+Gnvn

y0(t) = Cz(t) (4)

was proposed in [2] where the discontinuous output error
injection vector vn is

vn =

{
−ρ(t,y,u) P0ey

‖P0ey‖ if ey 6= 0

0 otherwise
(5)

where ey := y0− y, and the scalar function ρ : R+×Rp×
Rm→ R is a design parameter. Matrices P0, Gn, and Gl are
determined from solving an H∞ optimization problem [2],
specifically:

Minimize γ with respect to the variables P, H, and E
subject toPA+AT P− γCT (DDT )−1C −PBd ET

−BdT P −γI HT

E H −γI

< 0 (6)

where Bd =
[
0 M

]
, D =

[
D1 0

]
with nonsingular D1 ∈

Rp×p, and H =
[
0 H2

]
with H2 ∈ Rq×κ . Once the solution

of (6) is obtained, if P is decomposed as

P =

[
P11 P12
PT

12 P22

]
, (7)

then from [2] a choice for the observer gains is

Gl = γP−1CT (DDT )−1 (8)
L = P−1

11 P12 (9)

Gn =

[
−LT T

0
T T

0

]
(10)

P0 = T0(P22−LT P11L)T T
0 . (11)

For a sampled-data system, the observer in (4) may not be
suitable as the control input u(t) is kept constant between
consecutive sampling periods and the measurement is taken
at sampling times. Furthermore, the sample period Ts of the
system may not be small due to limitations of the system
hardware. Hence, we cannot obtain an infinite switching
mechanism in (5) to estimate the unknown input f (t). There-
fore, in this paper an observer for a sampled-data counterpart
of system (1) is considered, which estimates the system states
and the unknown input f (t).

To simplify the design and analysis process which follows,
introduce the following transformation [2]:

TL =

[
In−p L

0 T

]
(12)



where L is calculated from (9) and T is an orthogonal matrix.
In the new coordinates, the system matrices take the form

A =

[
A11 A12
A21 A22

]
,F =

[
0

F2

]
,C =

[
0 Ip

]
,

M =

[
M1
M2

]
,B = TLB, (13)

where in particular A11 = A11 +LA21 and F2 = T F2. Note
that L is such that A11 is Hurwitz i.e. its eigenvalues lie
in the left half side of the complex plane [2]. Rewrite the
original dynamical system (1) in the new coordinates as

˙̄x(t) = A x̄(t)+Bu(t)+F f (t)+M ξ (t,y,u) (14)
y(t) = C x̄(t),

where x̄ is the state variable in the new coordinates. The
sampled-data counterpart of (14) is given by

x̄[k+1] = Φx̄[k]+Γu[k]+d[k]+β [k]

y[k] = Cx̄[k], (15)

where Φ = eA Ts , Γ =
∫ Ts

0 eA τ dτB. The disturbance is

d[k] =
∫ Ts

0
eA τF f ((k+1)Ts− τ)dτ, (16)

the uncertainty is

β [k] =
∫ Ts

0
eA τM ξ (τ̄,y(τ̄),

u(τ̄))dτ, (17)

where τ̄ = (k+1)Ts− τ and Ts is the sampling time period.
As in [17], [18], define ¯A , ¯̄A as

¯A =
1
Ts
(Φ− In) (18)

¯̄A =
1

T 2
s
(Φ− In−TsA ). (19)

Then,
¯A = A +Ts

¯̄A , (20)

and since

Φ =
∞

∑
k=0

T k
s

A k

k!
, (21)

it follows
¯̄A =

∞

∑
k=2

T k−2
s

A k

k!
= O(1), (22)

and hence,
Φ = In +Ts(A +Ts

¯̄A ). (23)

Let

Π =
∫ Ts

0
eA τ dτF (24)

and define

F̄ =
Π

Ts
, (25)

¯̄F =
1

T 2
s
(Π−TsF ). (26)

Then, as argued in [18],

Π = TsF̄ = Ts(F +Ts
¯̄F ) = Ts(F +Ts

¯̄F ) = O(Ts). (27)

Let F̄ and ¯̄F be conformably partitioned into F̄1, F̄2, ¯̄F1,
¯̄F2 compatible with F in (13). Due to the structures of F

and Π in (13) and (27) respectively,

Π =

[
T 2

s
¯̄F1

TsF̄2

]
. (28)

Some properties of the disturbance d[k] are described in
the following lemma, [19], [20], [18].

Lemma 2.1: If Assumption 2 holds, then

d[k] = Π f [k]+
Ts

2
Πv[k]+T 3

s ∆d0[k]

= Π
( f [k]+ f [k+1])

2
+T 3

s ∆d0[k]

= Π f [k+1/2]+T 3
s ∆d[k], (29a)

d[k]−d[k−1] = O(T 2
s ), (29b)

d[k]−2d[k−1]+d[k−2] = O(T 3
s ), (29c)

where v(t) = ḟ (t), and

∆d[k] = ∆d0[k]−
Π

2

∫ (k+1)Ts

kTs

∫
σ

kTs

v̇(τ)dσdτ, (30)

where

∆d0[k] = Gv[k]

+
1

T 3
s

∫ Ts

0
eA τF

∫ (k+1)Ts−τ

kTs

∫
β

kTs

v̇(σ)dσdβdτ.

(31)

Note that d0[k] = O(1) and from (29a)

G = (− 1
12

A − Ts

12
¯̄A )F = O(1) (32)

Proof: The proof follows the results presented in [18].

Our objective is to design a sliding mode observer for the
sampled-data system (15) that generates the estimates of x[k]
and the unknown disturbance f [k].

III. MAIN RESULTS

In this section, we will create an observer for the sampled-
data system in (15). The convergence of the proposed
observer will be discussed initially in the situation when
the disturbance and uncertainty are not taken into account.
Finally, the estimate of the disturbance and the bound on the
state estimates will be analyzed.

A. Observer design

From the previous section, it is possible to write

Φ =

[
Φ11 Φ12
Φ21 Φ22

]
, Π =

[
0

Π2

]
, C =

[
0 C2

]
, (33)

where Φ11 ∈ R(n−p)×(n−p), Π2 ∈ Rq×q, and C2 ∈ Rp×p. Par-
tition the observer state as

z[k] =
[

z1[k]
z2[k]

]
(34)



where z1[k] ∈ Rn−p and z2[k] ∈ Rp. Define an observer for
(15) as

z1[k+1] = Φ11z1[k]+Φ12y[k]+Γ1u[k]

z2[k+1] = Φ21z1[k]+Φ22y[k]+Γ2u[k]+w[k] (35)

where the injection signal w[k] is to be designed.
Define e[k] = z[k]− x̄[k] and write

e[k] =
[

e1[k]
e2[k]

]
. (36)

Let the output error be ey[k] = e2[k] = z2[k]−y[k]. From (28)
and Lemma 2.1,[

e1[k+1]
e2[k+1]

]
=

[
Φ11 0
Φ21 0

][
e1[k]
e2[k]

]
−
[

T 2
s

¯̄F2
TsF̄2

]
f [k+1/2]

−T 3
s

[
δd1[k]
δd2[k]

]
−
[

β1[k]
β2[k]

]
+

[
0

w[k]

]
. (37)

Note that from (23)

Φ11 = In−p +Ts(A11 +Ts
¯̄A11). (38)

Since the eigenvalues of A11 =A11+LA21 lie in the left hand
side of the complex plane [2], there exists a small enough
Ts such that the eigenvalues of Φ11 lie in the unit circle (for
details, see the arguments in [18]).

At steady state, if β1[k] = O(T 2
s ), then (37) implies that

e1[k] = O(Ts). (39)

Rewrite the dynamics of e2[k] as

e2[k+1] = w[k]+θ [k] (40)

where

θ [k] = Φ21e1[k]−TsF̄ f [k+1/2]−T 3
s δd2[k]−β2[k]. (41)

Note that θ [k] contains unknown components. In the con-
tinuous case, a nonlinear switching injection term would
be introduced to make e2[k] converge to 0 in finite time
and introduce a sliding mode. However, in the sampled-
data context, this cannot be achieved. Instead, a quasi-sliding
mode can be obtained to bring e2[k] as close to 0 as possible.
Let

w[k] =−θ [k−1]. (42)

Then from (40) and (42), the function w[k] satisfies

w[k] = w[k−1]− e2[k]. (43)

It also follows from (41) that

e2[k+1] = θ [k]−θ [k−1]
= Φ21(e1[k]− e1[k−1])
−TsF̄ ( f [k+1/2]− f [k−1/2])
−T 3

s (δd2[k]−δd2[k−1])
−(β2[k]−β2[k−1]). (44)

Since

f [k+1/2] = f [k−1/2]+
∫ (k+1/2)Ts

(k−1/2)Ts

v(σ)dσ

and v(t) = ḟ (t) is bounded,

f [k+1/2]− f [k−1/2] = O(Ts). (45)

We can derive a similar lemma for β [k] using arguments
similar to those in Lemma 2.1 for d[k]. Following this
reasoning, it is easy to show that

β2[k]−β2[k−1] = O(T 2
s ). (46)

Then arguing as in [18], the error dynamics in (37) implies
e1[k+1]− e1[k] = O(Ts), and hence, from (44), (45), (46)

e2[k+1] = O(T 2
s ). (47)

This shows that the output estimation error is maintained in
an O(T 2

s ) boundary layer of the output sliding surface. The
presence of the past value of w[k] constitutes dynamical be-
havior for this correction term. Hence, to study the dynamics
of the estimation error overall, it is necessary to augment the
dynamics of w[k] to that of e1[k] and e2[k]. The estimation
error can be described by the following system:

e1[k+1] = Φ11e1[k]−T 2
s

¯̄F1 f [k+1/2]−T 3
s δd1[k]

−β1[k]

e2[k+1] = Φ21e1[k]+w[k]−TsF̄2 f [k+1/2]−T 3
s δd2[k]

−β2[k]

w[k+1] = −Φ21e1[k]+TsF̄2 f [k+1/2]+T 3
s δd2[k]

+β2[k]. (48)

B. Convergence analysis

In this section, we investigate the convergence of the esti-
mator (35) when the external disturbance and the uncertainty
do not affect the system. In this specific case, the dynamics
of the estimation errors in (48) can be rewritten ase1[k+1]

e2[k+1]
w[k+1]

=

 Φ11 0 0
Φ21 0 Im
−Φ21 0 0

e1[k]
e2[k]
w[k]

 (49)

It can be seen from (49) that the eigenvalues of the system
matrix in (49) are Φ11 and 0. Since the eigenvalues of Φ11
lie in the unit circle (as argued in the previous subsection),
the eigenvalues of the system matrix of the estimation error
dynamics in (49) lie in the unit circle. This implies the errors
e1[k] and e2[k] converge to 0 exponentially. We conclude this
subsection with the following theorem.

Theorem 3.1: In the absence of the external disturbances,
the observer in (35) guarantees that the estimates of the state
variables converge to the true values exponentially.
Proof: The proof follows from the analysis above.

C. Reconstruction of the external disturbance

Now we consider the case when the external disturbance
and uncertainty influences the dynamics of the system. From
equation (27),

Φ21 = O(Ts).

In addition, e1[k] = O(Ts) as pointed out in (39) provided
that β1[k] = O(T 2

s ). Hence, if β2[k] = O(T 2
s ), from (48),

w[k] = TsF̄2 f [k−1/2]+O(T 2
s ), (50)



and hence, f [k−1/2] can be calculated from w[k]. Note that

f [k]− f [k−1/2] =
kTs∫

(k−1/2)Ts

v(σ)dσ = O(Ts).

Hence, f [k] can be approximated by f [k−1/2] provided the
sampling period Ts is small enough. From (50),

w[k]≈ TsF̄2 f [k−1/2],

or in other words,

f [k]≈ f [k−1/2]≈
F̄ †

2
Ts

w[k] (51)

where F̄ †
2 is the left pseudo-inverse of F̄2. We conclude the

above analysis with the following theorem.
Theorem 3.2: Under the influence of the external distur-

bance f [k] and the uncertainty, if Assumptions 1 and 2 hold
and β [k] =O(T 2

s ), the closeness of the state estimates to their
real values is guaranteed to be O(Ts), and the unknown input

signal is recovered as f [k] ≈ F̄ †
2

Ts
w[k] where w[k] is defined

in (43).
Proof: The proof follows from the analysis above.

IV. NUMERICAL EXAMPLE

In this section, we employ the VTOL aircraft model model
in [2] to illustrate our proposed method. The system states
are horizontal velocity, vertical velocity, pitch rate, and pitch
angle. The outputs are horizontal velocity, vertical velocity,
and pitch angle. The control inputs are collective pitch
control and longitudinal cyclic pitch control. The system
matrices in (1) are:

A =


−9.9477 −0.7476 0.2632 5.0337
52.1659 2.7452 5.5532 −24.4221
26.0922 2.6361 −4.1975 −19.2774

0 0 1.0000 0

 ,

B = F =


0.4422 0.1761
3.5446 −7.5922
−5.5200 4.4900

0 0

 , C =

1 0 0 0
0 1 0 0
0 0 0 1

 ,
M =

[
0 0 1 0

]T
.

The parametric uncertainty ξ is given by

ξ =
[
0 ∆32 ∆34

]
y

where ∆32 = 0.05 and ∆34 = 0.02. It is clear that CF is of
full rank and it can be shown the triple (A,F,C) does not
possess any invariant zeros. Hence, the method proposed in
this paper is applicable. The system matrices are brought to
the form in (1) by using the following transformation:

T0 =


−6.5287 −0.7428 −1.0000 0

0 0 0 1.0000
1.0000 0 0 0

0 1.0000 0 0



Matrix L is calculated from the solution of (6) using the
method described in [2]:

L =
[
3.1251 0 0

]
. (52)

Since the state transition matrix A is stable, we do not need
to use a controller to stabilize our system. In this paper, the
sampling period is Ts = 0.05s. The control signals are chosen
as

u1[k] = 0.1+0.1 sin(0.1Tsk)

u2[k] = 0.1 sin(0.5Tsk+π/2).

The external signals are

f1(t) = 0.1+2 sin(t)
f2(k) = −0.5+ sin(t−π/2).

Fig. 1 illustrates the evolution of the state variables and
their estimates. Here the estimate of x3 takes a longer
time than the others to converge, and the performance (as
expected) is degraded due to the effect of the uncertainty. In
Fig. 2, it can be seen that a quasi-sliding motion takes place
in an O(T 2

s ) boundary layer around the origin. Fig. 3 shows
that the estimates of the external signals converge to the true
values.

The simulation results in this section illustrate our analysis
and show that our method can reliably estimate the state
variables and unknown inputs for sampled-data systems.

Fig. 1. Evolution of the state estimates and their true values

V. CONCLUSION

This paper has presented a new observer to estimate the
state variables and unknown inputs in a class of sampled-data
systems in the presence of external signals and uncertainties.



Fig. 2. Evolution of the output errors
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Fig. 3. Evolution of the external disturbances and their estimates

The method is based on quasi-sliding motion concepts and
the design is derived from the continuous time counterpart. A
stability and robustness analysis was provided. Simulations
were conducted to illustrate the effectiveness of the proposed
method.
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