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Abstract 

We describe in this work a broadband magnetic E-shape Piezoelectric Energy 

Harvester (PEH) with wide frequency bandwidth. We develop first a nonlinear 

electromechanical model of the harvester based on the Hamilton variation principle 

that simulates the effect of the nonlinear magnetic restoring force at different spacing 

distances. The model is used to identify the distances existing between two different 

magnets that enable the system to perform with a specific nonlinearity. The 

performance of the E-shape PEH is also investigated thorough experiments, with 

E-shape energy harvesters at different spacing distances tested under several base 

accelerations excitations. We observe that the frequency domain output voltage of the 

system shows a general excellent controllable performance, with a widening of the 

frequency bandwidth. The half-power bandwidth of the linear energy harvester for a 

distance of 25mm is 0.8Hz only, which can be expanded to 2.67 Hz for the larger 

distance of 11mm between magnets. The energy harvester presented in this work 

shows promising performances for broad spectrum vibration excitations compared to 

conventional cantilever PEH systems with tip mass. 
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1. Introduction 

Energy harvesting allows the capture of small amounts of energy from one 

or more surrounding energy sources. The energy is then converted into electricity, and 

then stored for later use. Examples of the application of energy harvesters range from 

lightweight systems to wireless sensor networks (Kim et al., 2011). Vibration energy 

harvesters are in general considered as eco-friendly designs, with long operational life 

and low maintenance costs compared to traditional batteries. Many research groups 

have devoted significant efforts to improve the performance of vibration energy 

harvesting systems. Piezoelectric energy harvesters have a special appeal, because 

piezoelectric materials possess high energy conversion rates from mechanical 

vibration to electrical power by using simple baseline designs. 

Williams and Yates (1996) introduced the concept of vibration energy 

harvester for the first time in 1996. Since their seminal work, three main classes of 

energy harvesters have been designed to transfer vibrational energy into electrical 

power: the electrostatic (Mitcheson et al., 2004), electromagnetic (Arnold, 2007) and 

piezoelectric ones (Anton and Sodano, 2007; Priya, 2007). Piezoelectric energy 

harvesting has been particularly successful in vibration-based energy transduction 

applications, because of its relatively simple design and high energy transfer 

efficiency. Xu et al. (2013) have evaluated the key parameters that define the energy 

harvesting performance (including the generated electrical energy/power), and the 

mechanical to electrical energy conversion efficiency of a new ‘33’ mode PZT-Stack 

energy harvester. Ren et al. (2006) have investigated the energy harvesting 
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performance in 1-3 composites PMN-PT single crystals embedded in a soft epoxy 

matrix. Traditional PEHs typically consist in a cantilever beam with piezoelectric 

layers, a tip mass and an electrical circuit (Sodano et al., 2005). In order to obtain the 

maximum electrical power, traditional vibration-based energy harvesters have to be 

designed to match one or more of their natural frequencies to the base excitation 

frequencies (Erturk and Inman, 2008; Song et al., 2010; Rafique and Bonello, 2010; 

Lu et al., 2016). To overcome these technical limitations, some researchers have 

focused on increasing the bandwidth of PEHs. Some possible solutions for this 

problem involve the use of periodic tuning of the harvester resonance to match the 

excitation frequency in all the operative conditions. The baseline designs to improve 

the PEHs performance mainly consist in linear and nonlinear energy harvesters 

(Twiefel and Westermann, 2013). Shahruz (2006) has presented a theoretical study 

related to a linear piezoelectric generator array consisting in an ensemble of 

cantilevers with tip masses. The beams were modeled as SDOF systems. The 

tunability of the PEH bandwidth was provided by the appropriate design of the 

dimensions of the beams and the proof masses. Xue et al. (2008) introduced a novel 

design for a broadband PEH by integrating multiple linear piezoelectric bimorphs 

with different physical dimensions. Numerical calculations have shown that the 

operational frequency of the energy harvesters of this concept could be widened and 

shifted to the dominant excitation frequency band to achieve higher energy harvesting 

efficiencies. Qi et al. (2010) have also designed a novel nonlinear device using a 

clamped-clamped beam piezoelectric fiber composite generator. This particular PEH 
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design showed a wide-band energy harvesting performance compared to a traditional 

piezoelectric harvester with a single cantilever. 

Another harvester configuration able to generate large bandwidths makes 

use of nonlinear bistable structures. The Reader is referred in this case to the energy 

harvesters made by bistable piezoelectric composite plates (Betts et al., 2012; Arrieta 

et al., 2013). Several other works (Harne and Wang, 2013; Wu et al., 2014; Harne et 

al., 2013) have focused on the dynamics of coupled linear oscillator-bistable energy 

harvester systems. Their results justify the holistic design approach used in 

linear-bistable coupled systems to enhance the performance and robustness of general 

bistable energy harvesters. Erturk et al. (2009, 2011) have presented a nonlinear 

broadband piezoelectric power generator induced by magnets. The magnetic PEH was 

a significant improvement compared to a traditional Duffing oscillator configuration. 

The experimental electromechanical trajectories of the magnetic PEH were 

instrumental to verify that the piezomagnetoelastic configuration proposed was 

feasible, and it could generate power an order of magnitude larger than the one 

provided by traditional piezoelastic counterparts at several frequencies. Masana and 

Daqaq (2011), and Daqaq et al. (2014) introduced other models and analysis of 

nonlinear structures for piezoelectric energy harvesters. Westermann et al. (2012) 

developed a mechanical model that describes a vibration-based piezomagnetoelastic 

energy harvester containing a piezoelectric cantilever beam and two permanent 

magnets. The same type of nonlinear PEH was also introduced by Ferrari et al. (2010, 

2011); the experimental results of this single-magnet piezoelectric device showed a 
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400% improvement of the voltage generated by the converter, compared to the linear 

case. Su et al. (2014) presented a broadband magnet-induced dual-cantilever PEH. 

The new design featured a significant improvement in terms of operational bandwidth, 

compared to a traditional piezoelectric energy harvester. Kim and Seok (2014) looked 

at the dynamic modeling and bifurcation analysis of a bistable energy harvester, and 

the numerical results demonstrated the potential significant performance of this type 

of PEH design. Zhou et al. (2014) evaluated through theory and experiments the 

performance of a broadband piezoelectric based vibration energy harvester with a 

triple-well potential induced by the presence of a magnetic field. The performance of 

the PEH was improved by the use of tunable magnetic fields, and the frequency 

bandwidth could be also significantly expanded (Ramlan et al., 2009; Mann and Sims, 

2009; Ramezanpour et al., 2016; Abdelkefi et al., 2016). 

The aforementioned previous work mainly described an energy harvester 

constituted by a piezoelectric cantilever beam with a permanent magnet attached to 

the free end, while another stationary magnet was poled along the opposite direction 

and fixed to a reference heavy frame near the magnet. The design however is not 

compact, and it is also quite difficult to scale. In this paper we propose instead a novel 

bistable structure that consists of three piezoelectric cantilever beams, with three 

couples of magnets fixed at the end of each beam. We will demonstrate that with this 

design it is possible to obtain a more compact and scalable broadband PEH. The 

system shows nonlinear dynamic characteristics under the presence of a magnetic 

field; when the vibration-induced acceleration levels allow to overcome the potential 
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energy wells, the beam transits across different stable equilibrium positions. In this 

way, the piezoelectric materials can acquire larger strains and therefore - in theory - 

large voltages. Moreover, the frequency-response curves will tend to move towards 

the right (i.e., higher frequencies); this behavior leads to a broadening of the response 

bandwidth of these energy harvesters.  

2. Design of the E-shape energy harvester 

The nonlinear PEH system of this study is shown in Figure 1. The energy 

harvesting system is made from three cantilever beams and three groups of magnets. 

We use a [0/90]3 carbon fiber laminate (T300/6509, Guangwei Composites Co. Ltd) 

to fabricate the three cantilever beams, because this cross-ply stacking sequence has a 

relatively low modal damping ratio associated to the first mode than other laminates 

(Paknejad et al., 2016). During the fabrication of the carbon fiber laminate the 

distributed PZT layers are bonded to the surface, which also act as electrodes here. 

The PZTs (PZT 5H, Sinoceramics Inc., China) are distributed as arrays on the two 

surfaces of the beam before the cure in autoclave. The curing temperature is 150 °C 

and the process lasts 2 hours. The direction of the polarization of the top and bottom 

PZT layers is the same, therefore the connection is a parallel one. Three groups of 

NdFeB magnets (Yongbang Magnets Co. Ltd) are fixed at the free end of each beam. 

The moment of the magnetic dipoles between two groups of magnets is . 

Both the model and the manufactured sample consist in three beams fixed along the 

same horizontal plane. In that sense, only the effect of the horizontal distance ‘d’ is 

here considered; the vertical displacement of the magnets along the z-direction will 

20.019Am
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however affect the magnetic force, and this point needs to be taken into account for a 

more refined analysis. 

The E-shape energy harvester designed here features some particular 

characteristics compared to other piezoelectric energy harvesters. First of all, the 

system contains three cantilever beams, and that implies that more PZT layers can be 

connected to acquire electrical power. Secondly, the most notable difference between 

the proposed energy harvester and other ones described in open literature is that the 

traditional tip mass is replaced by magnets; the latter could be used both to adjust the 

natural frequency and to provide additional dynamic restoring forces during vibration. 

This is a departure from the majority of prototypes of piezoelectric cantilever beam 

energy harvesters, which use the tip mass just to adjust the resonance frequency, or 

use permanent magnets located near the free end of a ferromagnetic cantilever beam 

that need a complex and bulky frame as a fixture (Erturk et al., 2009). On the contrary, 

the E-shape energy harvester does not need an additional frame to fix the magnets, 

and the system is therefore simpler and more compact. The third feature of the 

E-shape design is its scalability: it is relatively easy to add an additional cantilever 

beam if one needs more power output. 

3. Modeling of the E-shape energy harvester  

The piezoelectric material used in this study is a PZT-5H layer attached to 

the surface of the cantilever beams, so the piezo-layer can be considered as a bending 

element. The PZT layer is poled along the z-axis, and the dynamic excitation is 

assumed to exist only along the z-axis; the piezoelectric material is therefore assumed 
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to experience only one-dimensional stresses along the x-direction. The constitutive 

equations for a linear piezoelectric material in a reduced matrix form can be expressed 

as follows: 

                              (1) 

In (1)  is the strain component,  is the stress,  is the electric displacement, 

 is the electric component,  is the piezoelectric constant and  is the 

permittivity at constant strain. Furthermore, the 1 and 3 directions are here coincident 

with the x and z directions of Figure 1. The PZT layer is poled along the thickness 

direction (z-axis).  

The governing equations of motion of the PEH can be derived following the 

Hamilton variational principle: 

                     (2) 

The kinetic energy of the system can be written as: 

       (3) 

Where  is the volume of the beam substructure and  is volume of the PZT 

layer. The densities  and  are referred to the beam and the PZT layer. The 

mass of the magnet is , and  is the distance from the center of the magnet to 

the base. The transverse displacement along the z-direction at a distance  is 
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electrical energy can be expressed as (Song et al., 2010): 

  (4) 

Using the linear constitutive equation (1), we can further relate stress and 

electric displacement to strain according to: 

              (5) 

The electric field  can be related to the voltage by the relation 

. The stress in the substructure is expressed by Hooke’s law as: 

                            (6) 

The work done by the external force can be written as (Song et al., 2010): 

  (7) 

In (7)  is the charge density and  is the electrical voltage. The magnetic force 

 can be derived using a dipole-dipole model (Figure 2). 

The force within the magnetic dipole is given by (Tang and Yang, 2012): 

                            (8) 

where  are the moments of the magnetic dipoles, and  is the vacuum 

permeability. The expression of the magnetic force used here is different with the one 

described in the models shown in (Erturk et al., 2009, 2011; Daqaq et al., 2014; 

Westermann et al., 2012; Ferrari et al., 2010; Stanton et al., 2010); the specific model 
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The magnetic force around the z-direction can be written as: 

         (9) 

       (10) 

The vertical magnetic force shown here can be expanded into its Taylor 

series around . Here,  are the transverse 

displacements of the magnet. The magnetic moments of beam-1, beam-2 and beam-3 

are indicated as . The spacing distance between two beams (beam-1 and 

beam-2, or beam-2 and beam-3) is . We obtain the following expressions: 

       (11) 

      (12) 

The resultant magnetic force acting on the middle cantilever beam around 

the z-direction is . Here, we consider the positive force of the magnets 

acting along the z-direction. By using a modal decomposition method, the 

displacement function can be written as: 

                     (13) 
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      (14) 

where , and the constant  can 

be evaluated by applying the orthogonality conditions. Substituting Eq. (14) into (13) 

and Eq. (12), (11), (7), (4), (3) into (2), the governing equations of this nonlinear 

energy harvester are: 

            (15) 

Where: 
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the density, thickness and width of the PZT layer, and  are the distances 

between the starting and ending positions of the PZT layer on the beams. We only 

consider a resistive load in this work. If the PEH system is connected to other 

electrical loads (such as a capacitance or a SSHI circuit), the model can be derived 

based on the formulation presented by Roundy et al. (2004), who described the 

modeling of different types of electrical loads. 

In the model used in this paper we assume that the three couples of magnets 

vibrate only around the vertical direction. Each beam has two permanent magnets that 

attract each other, and are fixed at the free end. When the three groups of magnets are 

disposed like in Figure 2 the system will feature two stable conditions. Two groups of 

magnets are attached to the two outer beams on the free end of the structure, and the 

third group of opposed poled magnets is fastened to the free end of the inner beam. 

The magnetic force can be tuned by adjusting the distance between two beams. With 

the decrease of the distance between each beam, the magnetic force exerted on each 

cantilever beam will become larger. By combining Eqs. (11) and (12) we can simulate 

the magnetic force along the z-direction at different spacing distances. When the 

distance between two couples of magnets becomes narrow the restoring force around 

the z-direction increases, and assumes a nonlinear behavior ( , d=17, 14, 11 

mm - Figure 3). Conversely, when the distance between two magnets becomes large 

the system tends to become linear. As the spacing distance decreases to , 

the system will start to feature some nonlinearity. With spacing distances decreasing 

to  and  the system shows a distinct symmetric double well 

1 2,p pL L

/d Ll =

0.2125l =

0.175l = 0.1375l =
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with two stable positions and one unstable equilibrium point at the origin. The 

bistable system will jump between two potential wells if the excitation can overcome 

the potential energy barriers. In the current design the bistability (stable states 1 and 2) 

is obtained by using the three groups of magnets (Figure 4). The system will therefore 

vibrate across different stable equilibrium positions when the excitation is sufficiently 

high to overcome the potential energy well.  

4. Numerical simulations 

        To simulate the parametric features of the dynamic response and voltage 

output of the E-shape energy harvesting system we operate a dimensionless 

transformation of the governing equations by defining , ,  

,  and , , . The 

quantity  is the natural frequency for the linear case. The dimensionless frequency 

is defined as , where  is the resonance frequency of the harvester 

coupled with the magnetic force under lower-level excitation. This resonance will 

shift towards lower frequencies when the repulsive magnetic spacing distance 

decreases (Tang et al., 2012). The simulations are aimed at identifying the behavior 

between  and . The specific dimensions, mass, mechanical and piezoelectric 

properties used for the E-shape energy harvester system are shown in Table 1. The 

damping ratio is obtained from the average of three experimental FRFs (Frequency 

Response Functions) in the linear regime. An example of an experimental FRF is 

shown in Figure 5. The damping ratio is estimated as , where  
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and  are two points that correspond to the half power bandwidth, and  is the 

natural frequency. The average damping ratio calculated at the end of the experiments 

is . During the simulations, the initial boundary conditions and physical 

parameters are assumed to be the same, therefore the output voltage of the three 

simulated beams is also equal. 

The numerical solution is performed using a Matlab Ode45 routine with the 

dimensionless independent variable  increased from 0.5 to 1.5 at constant intervals 

of 1/240. After the dimensionless transformation the spacing distance d=25, 17, 14, 

11mm becomes . Once the program completes one 

cycle the output data is taken as the initial value for the next step. 

Figure 6 shows the results of the E-shape energy harvester under four 

different excitation accelerations ( ). When the base excitation is 0.5g, the 

response shows a slight stiffening towards high frequencies. After the excitation 

acceleration is increased the nonlinear behavior is much more significant, with a 

voltage jump after reaching the peak value. The difference between the upward and 

the downward sweep is more evident at high base accelerations. This type of behavior 

is consistent with the one observed in other nonlinear energy harvesters, notably in 

bistable Duffing oscillators (Erturk and Inman, 2011), single-magnet nonlinear 

piezoelectric converters (Ferrari et al., 2011) and nonlinear electrostatic harvesters 

(Tvedt et al., 2010). 

After decreasing the spacing distance to  the response curve 

shows a even more remarkable stiffening and bending under the same base excitation 

lowerf rf

0.015z =

W

0.3125,0.2125,0.175,0.1375l =

0.2125l =

0.175l =
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(Figure 7). The amplitude voltage at 0.5g is however relatively small compared the 

analogous one shown in Figure 6, which means that the lower excitation cannot 

overpower the magnetic force within the system. After overcoming this barrier the 

unstable region of the system (i.e., the area between the high-energy jump down and 

the low-energy jump up) becomes however wider. For the case of , the 

magnetic force provides a bigger effect on the response curve. The system needs now 

a higher level of excitation to overcome the magnetic field, therefore the system under 

1g of excitation still shows an almost linear energy harvesting performance (Figure 

8).  

Figure 9 shows more specifically the influence of the spacing distance 

under the same base acceleration of 3g. Figure 9 (a) is related to the response of 

beams 1 and 3 under the same magnetic force. When the spacing distance is larger 

and the magnetic force is small, the system can be treated as linear. With the decrease 

of d the unstable region expands and the response curve presents some significant 

bending. Figure 9 (b) shows the response of beam-2, with the magnetic force acting 

upon the middle beam being larger than in beams 1 and 3 (see Eq. (15)). The 

simulations show that the amplitude of beam #2 is slightly larger than the ones of 

beams #1 and #3, however the unstable regions feature the same degree of variation. 

It is evident from these simulations that the E-shape PEH exhibits a 

significant tunability under different working conditions. Higher magnetic forces can 

create nonlinear behavior, but also need larger base accelerations. The nonlinear 

response shows that when the excitation frequency of the system increases towards 

0.1375l =
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high frequencies, the output voltage will follow the upper branch up until the 

maximum value, followed by a jump down to the low-energy orbit. On the opposite, 

during the downward sweep the response follows the low-energy orbit at first, and 

then jumps to the upper branch. These behaviors can also be found in other nonlinear 

piezoelectric harvesters. In the present work we however combine the concepts of 

multi-beams vibrational PEHs and the piezomagnetoelastic energy harvester to create 

a new type of nonlinear system.  

5. Experimental results 

5.1 Experimental setup and procedures 

An E-shape PEH has been fabricated following the guidelines of paragraph 

2 to validate the model proposed so far. Within the manufactured prototype the 

distance between magnets can be changed through the introduction of a slide rail. The 

three cantilever beams with PZT layers have dimensions . 

Based on the results from the simulations, the distance between the two selected 

magnets are 25mm, 17mm, 14mm and 11mm. When d=25mm the magnetic force 

assumes a linear behavior and the system therefore can be considered as a linear PEH. 

The experimental setup is shown in Figure 10. We use a signal generator (80 MHz 

waveform generator, Agilent 33250A), a power amplifier (LA-200, YMC piezotronics 

Inc.), a shaker (MS-200, 200N, YMC piezotronics Inc.) and an electrical circuit and 

oscilloscope (Agilent DSO6034A) with the E-shape EH. The energy harvester is 

mounted on a shaker that provides the base excitation, with the signal controlled by 

the signal generator and the power amplifier. The output voltage of the energy 

11 80 0.7mm mm mm´ ´
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harvester is measured by the oscilloscope.  

The piezoelectric layers are connected in parallel, and the polarization 

orientation of the PZT layers is the same (along the z-direction). The open circuit 

voltage output of the energy harvester is first trialled, and the nonlinearity behavior of 

the E-shape energy harvester is compared with the one of the linear system. The 

forward and backward sweep test is operated within 10Hz to 30Hz at a sweep rate of 

of 0.1Hz/s. After this experiment, the nonlinear behavior of the E-shape PEH with 

different magnetic forces is investigated by recording the output voltage in the 

frequency domain. The frequency bandwidths between the E-shape and the linear 

energy harvesters are then compared.  

5.2 Open-circuit experimental results 

In this experiment the energy harvesting performance of the E-shape PEH 

without magnets is measured in terms of open-circuit output voltage. For this test we 

have chosen two spacing distances between the three cantilever beams (d=25mm and 

d=14mm) to investigate the effect of the magnetic force. The open-circuit voltage is 

measured at 15 Hz and 1.5 g base excitation. Figure 11 shows the voltage response for 

the case of the linear energy harvesting system (d=25mm) and the nonlinear system. 

The voltage generated by the E-shape energy harvester at d=14mm shows an obvious 

nonlinear behavior (blue curve), with a RMS voltage of 4.2 V for d=14mm. The 

nonlinear behavior of the E-shape energy harvester generates 297% RMS voltage 

more than the one provided by the linear piezoelectric cantilever beams. The increase 

of the voltage output from the piezoelectric patches is mainly due to the nonlinear 
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magnetic force.  

5.3 Results related to the energy harvesting experiments 

5.3.1 Linear analysis 

Figure 9 shows the results from the simulations. The linear case here 

corresponds to the E-shape PEH with the larger spacing distance (d=25mm), which 

implies that the effect of the magnetic force is close to zero at that particular spacing 

distance. The magnetic force in Eq. (15) can be therefore reduced, and the system 

model is now represented by three linear cantilever beams. The numerical values of 

the first natural frequency is 24.9Hz. From the experimental results shown in Figure 

12 one can observe that the voltage responses of the system are typical of linear 

PEHs.  

The maximum output voltage occurred at 24Hz, 23.9Hz and 24Hz 

respectively. These values are very close to the numerical first natural frequency. The 

half-power bandwidth of the linear system is 0.8Hz, and the banwidth for a voltage 

larger than 10V is 3.7Hz at 0.5g excitation.  

5.3.2 The effects of the spacing distance on the harvester performance 

For the nolinear case, the voltage-frequency curves tend to veer either 

towards the left or the right, indicating the presence of a hardening or softening 

nonlinearity. The veering of the voltage/frequency curves allows to widen the 

response bandwidth of energy harvesters (Daqaq et al., 2014). It is worth noticing that 

in the voltage experimental data shown in figures 12 to 15 noise is present when the 
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frequency is far away from the resonance; this could induce residual output voltage. 

From the simulations shown in Figure 6 (d=17mm) it is possible to observe that the 

frequency response curve follows a slight bend when the excitation is at 0.5g. When 

the excitation level increases the curve tends to bend even more. The frequency 

domain response with upward and backward sweep at constant excitation acceleration 

is shown in Figure 13. The dots shown in Figures 13, 14 and 15 are related to the 

experimental data, while the lines correspond to a fitting using a order three 

polynomial function. 

The maximum output voltage of the E-shape energy harvester at d=17mm is 

increased with the excitation acceleration (analogous to Figure 6). For a low-level 

excitation (0.5g) the peak of the response curve is now slightly shifted to 21.3Hz, 

which implies that the system has a reduced linear stiffness (Tang and Yang, 2012). 

Furthermore, for the same excitation acceleration the simulation results (Figure 6) 

show that the peak of the response curve is slightly moved to a frequency of 21.2Hz 

(the experimental one is 21.3Hz). The upward and downward sweeps do not show 

remarkable differences. With the increase of the excitation the peaks of the simulated 

responses are moved to frequencies of 21.6Hz at 1g, 22.1Hz at 2g and 23.2Hz at 3g. 

We can also observe the change of the peaks in the experiments (Figure 13); in that 

case the response shows a bend corresponding to 22Hz at 1g, 22.3Hz at 2g and 

22.7Hz at 3g. The increase of the excitation has a clear influence on the peak 

amplitude of the response. For example (beam #1 at 3g excitation), when the 

frequency increases towards higher values the output voltage grows continuously 
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from 4.4V at 10Hz to 59.4V at 22.7Hz. After that the voltage jumps down to 6.3V, 

which indicates that the beam vibrates only around one stable point. When the sweep 

direction is reversed the voltage increases slowly from 2.9V at 30Hz to 9.4V at 

21.4Hz. After that, the output voltage jumps to 45V at 21.3Hz, and then decreases 

gradually.  

For the comparisons between simulations and experiments of the peak 

voltage when d=17mm, the dimensionless voltage shown in figure 6 should be 

multiplied by the parameter , which corresponds to . One 

can observe that the simulated peak voltages agree well with the experimental ones; 

for example, when the excitation is equal to 1g, the average experimental peak 

voltage is 43.7V (41.7V from the simulations, with a 4.6% error). At higher 

excitations (3g), the peak voltage obtained from the simulations is 70.2V, which is 7% 

higher than the experimental value.  

The spacing distance of the piezoelectric cantilever beam is then reduced to 

d=14mm, which means that the magnetic force of the system becomes larger. The 

experimental results are shown in Figure 14. The decrease of the spacing distance 

creates a higher magnetic force, and the system therefore needs more energy to 

overcome the potential barrier. The bifurcation then occurs at higher base 

accelerations. For d=14mm, a 0.5g excitation can not provide a veer to the right of the 

voltage-frequency response curve. If the excitation is raised to 1g the frequency 

response of the energy harvester shows an evident bend, similarly to the simulation 

results shown in Figure 7. The peak of the response curve is bent at a frequency of 

/c pV L C= - Q 3512cV =
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21.1Hz, while the analogous simulation peak is at 21.8Hz). For higher excitations the 

peaks are bent at 22.2Hz and 23.6 Hz for 2g and 3g, respectively. With the increase of 

the excitation the frequency response curve tends to bend in a more remarkable way. 

We can also obseve this variation in the simulations, with the response curve bending 

at 22.6Hz and 24.2Hz for 2g and 3g, respectively. The computed value of the peak 

voltage at 1g of excitation is 41.1V (Figure 7), with a 0.5% error against the 

experimental results shown in Figure14 (41.3V). When the excitation is increased to 

3g, the simulated peak voltage (79.8V) is 9.8% larger than the experimental one.    

The experimental results shown in Figure 15 are related to a spacing 

distance further reduced to 11mm. For this bistable configuration, when the excitation 

acceleration is very small the vibration can not supply sufficient energy for the system 

to overcome the two potential wells. Similarly to what observed in Figure 8, the 1g 

excitation cannot create a bend of the frequency response curve. The three beams will 

therefore vibrate only around one stable point with small amplitudes (small limit cycle 

oscillations). The system now needs more vibrational energy to cross the potential 

barriers (almost 2g in terms of excitation, analogous to what present in Figure 8), and 

the minimum output voltage at 3g of excitation is above 5V. The response curve 

reaches a peak at 21.5Hz with 2g of excitation, and this value increases to 22.7Hz and 

23.6Hz for 3g and 4g, respectively. The simulated peak of the response curve occurs 

at 21.3Hz for a 2g excitation, and this differs from the experimental case. At 3g and 

4g excitations the simulated peaks are bent in the vicinity of 23.3Hz and 25.1Hz. The 

simulated peak voltage at 1g of excitation shown in Figure 8 is 24.2V, which is higher 
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than the experimental one (20.3V). When the bease excitation is 2g, the peak voltage 

obtained from the simulation is now 65.9V, which is 9.7% smaller than the 

experimental value. The simulation results do however agree well with the 

experimental ones when the base excitation increases to 4g at d=11mm, with a 0.9% 

error. 

        In summary, the comparison between the simulation and the experimental 

results shows the effect of the magnetic force when the spacing distance d (or the 

nondimensional parameter  in the simulations) is decreased. In that case, both the 

model and the experiments show a frequency-response with a hardening spring 

behavior that bends the peak towards higher frequencies, and for higher excitation 

levels this bending becomes more significant. The decrease of the spacing distance 

can enhance the contribution provided by the magnets, while at the same time the 

system needs higher excitation levels to overcome the potential barriers. The 

comparison between the simulation and the experimental results shows in general a 

quite good agreement of the frequency response behavior.  

5.3.3 Bandwidth comparison 

The comparison of the bandwidth of the E-shape PEH with different 

spacing distances is shown in Table 2. The table represents the average half-power 

bandwidth (Umax/ ) of the three beams and the frequency range at several specific 

voltages (10V, 15V and 20V). For the bandwidth comparison, we use in this work the 

values of the absolute voltages in a similar way to the analysis shown in (Daqaq et al, 

2014; Masana and Daqaq, 2011; Pan et al, 2017). The average half-power bandwidth 

l

2
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of the linear energy harvester (d=25mm) is 0.8Hz, which is relatively narrow; the 

simulated average half-power bandwidth at d=25mm is 0.72Hz, which shows a 10% 

error. At d=17mm, the simulated half-power bandwidth (1.72 Hz) is now 2.9% higher 

than the experimental one. As the distance d is decreased to 14mm, both the simulated 

and experimental half-power bandwidth values are increased (2.13Hz for the 

simulation and 2.15Hz for the experiment, with a 0.9% error). When the spacing 

distance is decreased the effect of the magnetic force becomes obvious, and the 

half-power bandwidth can be expanded to 2.67 Hz at d=11mm (the simulation 

provides 2.59Hz, which is 3% smaller than the experiment). This bandwidth 

expansion is significant, leading to a 234% improvement. Moreover, for the same 

spacing distance the frequency range increases with the base excitations. For output 

voltages larger than 10V the average bandwidth is 6.9 Hz (d=25mm, 3g excitation). 

However, when the spacing distance is decreased, the average frequency bandwidth at 

10V is significantly improved. When d=11mm the bandwidth improves to 10.4Hz 

with the same excitation acceleration (3g). The nonlinearity of the system is created 

by the magnetic force, which is significantly affected by the spacing distance. A 

bistable nonlinear energy harvester can be obtained by decreasing the spacing distance 

of the magnets. At low levels of excitation the oscillations of the bistable harvester is 

confined around one potential well. On the contrary, at higher levels of excitation 

chaotic oscillations and larger orbit oscillations happen, and the magnitude of the 

output voltage is significantly improved. The analysis of the frequency bandwidth 

shows that the decrease of the spacing distance expands the bandwidth of the system. 
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However, for smaller spacing distances with larger nonlinear forces the harvester will 

need higher excitation levels to overcome the potential barrier. Appropriate large 

spacing distances are therefore suitable for low-level excitation environments, but if 

the excitation is large enough the E-shape energy harvester with small spacing 

distances could also work effectively. 
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6. Conclusions 

In this work, a novel nonlinear piezoelectric generator for energy harvesting 

from environmental vibrations has been designed and evaluated. The nonlinear 

behavior can be obtained by three groups of magnets attached to the free end of the 

structure. The model of the E-shape energy harvesting system is developed using the 

Hamilton principle, and the influence of the magnetic force is taken into account. The 

magnetic force exerted on the system changes by controlling the spacing distance 

between the three cantilever beams.. The simulations show that the use of a higher 

magnetic force can create a nonlinear behavior but it also needs larger excitation, and 

the frequency-response curve will tend to veer towards the right, with jump 

phenomena during different directions of the frequency sweep. The E-shape PEH has 

been also evaluated experimentally with different spacing distances at several base 

excitation accelerations. For the linear case with larger spacing distances the 

maximum output voltage occurs near the resonant frequency of each beam. When the 

spacing distance decreases the voltage-frequency curve will bend towards the right 

and the linear stiffness is reduced. A typical nonlinearity can be observed from both 

the simulations and the experimental results. The output voltage of the system in the 

frequency domain shows a general excellent performance, and the frequency 

bandwidth of the harvested system significantly improves. The average half-power 

bandwidth of the linear energy harvester at the highest distance is only 0.8Hz. When 

the spacing between beams is decreased, the effect of the magnetic force becomes 

more obvious, and the average half-power bandwidth can be expanded up to 2.67 Hz, 
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which implies that the half-power bandwidth is increased by 2.34 times. Moreover, 

the frequency range at specific voltage values is larger than the linear case. Compared 

to conventional cantilever PEHs with traditional tip mass, the energy harvester 

designed and tested in this work appears to be more suitable for a wide spectrum of 

environmental vibrational configurations.  
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Figure Captions 

Figure 1. Schematic view of the magnet-induced bistable piezoelectric energy harvesting system. 

Figure 2. Magnetic force model in the E-shape system 

Figure 3. Simulated results for the magnetic force along the z-axis at different spacing distances 

Figure 4. Magnets configuration for the energy harvester  

Figure 5. Experimental FRF curve of the cantilever beam 

Figure 6. The voltage response at different excitation accelerations with  

Figure 7. The voltage response at different excitation accelerations with  

Figure 8. The voltage response at different excitation accelerations for  

Figure 9. The voltage response at different spacing distance with 3g excitation (a) Beam-1, 3; (b) 

Beam-2 

Figure 10. Schematic of the experimental setup 

Figure 11. Open-circuit voltage of the system without electrical load at 15Hz 

Figure 12. The voltage-frequency curves for d=25mm, and base acceleration of 0.5 g (Left) and 1 

g (Right) 

Figure 13. Voltage-frequency curves with different excitation accelerations for a spacing distance 

of d=17mm (From left to right are beam-1, beam-2, beam-3) 

Figure 14. Frequency-response curves of the output voltage amplitude with different excitation 

accelerations for a spacing distance d=14mm (From left to right are beam-1, beam-2, beam-3) 

Figure 15. Frequency-response curves of the output voltage amplitude with different excitation 

acceleration when spacing distance d=11mm (From left to right are beam-1, beam-2, beam-3) 
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Table Captions 

Table 1. Basic material property 

Table 2. Bandwidth comparison with different spacing distances 
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Figure 1. Schematic view of the magnet-induced bistable piezoelectric energy harvesting system. 

 

Figure 2. Magnetic force model in the E-shape system 
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Figure 3. Simulated results for the magnetic force along the z-axis at different spacing distances 

 

   

(a) Stable state 1, (b) Stable state 2 

Figure 4. Magnets configuration for the energy harvester  

 

Figure 5. Experimental FRF curve of the cantilever beam 
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Figure 6. The voltage response at different excitation accelerations with  

 

Figure 7. The voltage response at different excitation accelerations with  

 

Figure 8. The voltage response at different excitation accelerations for  
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Figure 9. The voltage response at different spacing distance with 3g excitation (a) Beam-1, 3; (b) 

Beam-2 

 

Figure 10. Schematic of the experimental setup 

(b) 

(a) 
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Figure 11. Open-circuit voltage of the system without electrical load at 15Hz 

  

Figure 12. The voltage-frequency curves for d=25mm, and base acceleration of 0.5 g (Left) and 1 

g (Right) 
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Figure 13. Voltage-frequency curves with different excitation accelerations for a spacing distance 

of d=17mm (From left to right are beam-1, beam-2, beam-3) 

 

 

 



 42 

 

 

 

 

Figure 14. Frequency-response curves of the output voltage amplitude with different excitation 

accelerations for a spacing distance d=14mm (From left to right are beam-1, beam-2, beam-3) 
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Figure 15. Frequency-response curves of the output voltage amplitude with different excitation 

acceleration when spacing distance d=11mm (From left to right are beam-1, beam-2, beam-3) 
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Table 1. Basic material property 

Properties CFRP PZT-5H Magnet 

Density/(kg/m3) 1600 7800 7500 

Length/(mm) 80 60 10 

Width/(mm) 11 10 10 

Thickness/(mm) 0.7 0.2 2.5 

Modulus/(GPa)  60.6 150 

Poisson’s ratio 0.33 0.289 -- 

Piezoelectric stress 

constants/(C/m2) 
-- -17.15 -- 

Absolute permittivity/(F/m) -- 3800 -- 

Moments of magnetic 

dipoles/( ) 
-- -- 0.019 

1

2

12

125
9
3.7

E GPa
E GPa
G GPa

=
=
=

2Am
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Table 2. Bandwidth comparison with different spacing distances 

Spacing 
distance 

Half-power bandwidth Excitation 
acceleration 

Frequency 
bandwidth 
( 10V) 

Frequency 
bandwidth 
( 15V) 

Frequency 
bandwidth 
( 20V) Simulation Experiment 

d=25mm 0.72Hz 0.8 Hz 

0.5g 3.7 Hz 2.4 Hz 1.6 Hz 

1g 5 Hz 3.6 Hz 3.1 Hz 

2g 6.1 Hz 4.7 Hz 3.8 Hz 

3g 6.9 Hz 5.4 Hz 4.4 Hz 

d=17mm 1.72Hz 1.67 Hz 

0.5g 4.4 Hz 2.7 Hz 1.8 Hz 

1g 6.8 Hz 5.4 Hz 3.7 Hz 

2g 6.5 Hz 5.6 Hz 4.5 Hz 

3g 7.7 Hz 6.7 Hz 5.9 Hz 

d=14mm 2.13Hz 2.15 Hz 

1g 5.1 Hz 3.1 Hz 1.6 Hz 

2g 8.1 Hz 5.9 Hz 4.6 Hz 

3g 10.2 Hz 6.3 Hz 4.9 Hz 

4g 12.2 Hz 6.7 Hz 5.2 Hz 

d=11mm 2.59Hz 2.67 Hz 

1g 3.2Hz 2.1Hz -- 

2g 8.8 Hz 6.1 Hz 4.8 Hz 

3g 10.4 Hz 7.1 Hz 5.3 Hz 

4g 16 Hz 8.4 Hz 6.8 Hz 

g=9.8 m/s^2 
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