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A REMARK ON THE WORD LENGTH IN SURFACE

GROUPS

VIVEKA ERLANDSSON

Abstract. Let Σ be a surface of negative Euler characteristic and S a
generating set for π1(Σ, p) consisting of simple loops that are pairwise
disjoint (except at p). We show that the word length with respect to
S of an element of π1(Σ, p) is given by its intersection number with
a well-chosen collection of curves and arcs on Σ. The same holds for
the word length of (a free homotopy class of) an immersed curve on Σ.
As a consequence, we obtain the asymptotic growth of the number of
immersed curves of bounded word length, as the length grows, in each
mapping class group orbit.

1. Introduction

Let Σ be a compact, connected, orientable surface of genus g and with
r (possibly none) boundary components. To rule out degenerate cases, as-
sume 3g + r > 3. Choose a base point p on Σ and let S be a generating set
of the fundamental group π1(Σ, p) whose elements we identify with (homo-
topy classes of) loops based at p. We say the generating set S is a simple
generating set if it consists of simple loops that are pairwise non-homotopic
and disjoint except at the base point. Note that the standard generating
set for a surface group is simple. Also, any triangulation of Σ with a single
vertex p is a simple generating set for π1(Σ, p). Suppose that S is a simple
generating set. We denote the word length of an element w in π1(Σ, p) with
respect to S by |w|S .

By a curve on Σ we mean a properly immersed closed curve (i.e. the
image in Σ of a proper immersion of the unit circle), not freely homotopic
to a point or boundary component. By an arc we mean the image of the
unit interval under a proper immersion such that the two endpoints are on
the boundary of the surface. We say two curves are homotopic if they are
freely homotopic, and two arcs are homotopic if they are homtopic relative
to the boundary.

We define the intersection number, ι(w,α), of a loop w based at p with
a curve or arc α on Σ \ {p} to be the minimum number of intersections
points between transverse representatives of α and w′ as w′ runs over all
loops homotopic to w relative to the base point p:

ι(w,α) = min{|w′ ∩ α| : w′ ∼p w and in general position}
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where ∼p denotes homotopic relative to p. Although closely related to it,
note that this is not the standard geometric intersection number on Σ or
Σ \ {p}. If λ =

∑
tiαi is a weighted system of curves and arcs, i.e. ti ∈ R+

and each αi a curve or arc, then ι(w, λ) =
∑
ti · ι(w,αi). Our first theorem

states that, for a simple generating set S, we can compute the word length
of w by its intersection number with a well-chosen set of curves and arcs on
Σ \ {p}. We stress that this is a precise equality.

Theorem 1.1. Let S be a simple generating set for π1(Σ, p). There exists a
collection of weighted curves and arcs λS on Σ\{p} such that ι(w, λS) = |w|S
for all w ∈ π1(Σ, p).

The collection λS of (weighted) curves and arcs will be constructed ex-
plicitly. Although this is not the main focus of the paper, Theorem 1.1
yields in particular a linear time algorithm to compute the word length in
π1(Σ, p) with respect to a simple generating set: a word is of shortest length
(i.e written with the minimal number of generators possible) if and only
if it does not form any bigons with λS (see Proposition 3.2 for the precise
statement).

Continuing with our results, note that instead of elements of the funda-
mental group, one can consider free homotopy classes of (closed, immersed)
curves on Σ. To that end, recall that a free homotopy class [γ] of a closed
curve γ can be identified with a conjugacy class, again denoted [γ], of a
certain element in π1(Σ, p). The word length of the curve γ, denoted `S(γ),
with respect to the generating set S is defined as

`S(γ) = min{|δ|S : δ ∈ [γ]}.

The intersection number of a (free homotopy class of a) curve γ and an
arc or curve α is defined as usual as the minimum number of intersections
of transverse representatives of α and γ′ as γ′ runs over all curves freely
homotopic to γ:

ι(γ, α) = min{|γ′ ∩ α| : γ′ ∼ γ and in general position}

where ∼ denotes freely homotopic. We note that this is the usual geometric
intersection number of curves on Σ. In this setting:

Theorem 1.2. Let S be a simple generating set for π1(Σ, p) and λS the col-
lection of weighted curves and arcs provided by Theorem 1.1. Then ι(γ, λS) =
`S(γ) for all curves γ ⊂ Σ.

As we will see below (Corollary 4.1), the collection of weighted curves and
arcs λS is unique with this property.

Theorem 1.2 has an immediate consequence which again shows how spe-
cial simple generating sets are: the word length, with respect to a simple
generating set S, of the kth-power of a curve is the kth-multiple of the word
length of the curve, that is `S(γk) = k · `S(γ). It is easy to give examples to
show this is not true for general generating sets.
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Another comment, more central to the results of this paper, is that The-
orem 1.1 implies that the length function `S on the set of curves on Σ with
respect to a simple generating set S extends naturally to the space of cur-
rents on Σ. To be precise, let C(Σ) denote the space of currents and recall
that the set of all curves on Σ is a subset of C(Σ) and the geometric inter-
section number of curves extends to an intersection form on the space of
currents. In particular, considering the collection of curves and arcs λS as
a current, we get that the function µ 7→ ι(λS , µ) is a homogenous, contin-
uous extension of the word length to C(Σ). Here homogenous means that
`S(tµ) = t · `S(µ) for all t ∈ R+. We have:

Corollary 1.3. Let S be a simple generating set for π1(Σ, p). The length
function `S extends to a homogenous continuous function `S : C(Σ) → R+.

�

Counting Curves. We now discuss an application of Theorem 1.2. Being
able to see the length function as given by intersection with a current allows
us to count curves of bounded word length. Before making this precise,
recall that combining results of [Mir16] and [ES16] one obtains that if ρ is
a metric of non-positive curvature on Σ, then for any immersed curve γ0

(1.1) lim
L→∞

|{γ ∈ MCG(Σ) · γ0 : `ρ(γ) ≤ L}|
L6g−6+2r

exists and is positive. Here MCG(Σ) · γ0 denotes the mapping class group
orbit of γ0 and `ρ(γ) the length of a geodesic in the homotopy class of γ.
As an application of Theorem 1.2 we will prove that limit (1.1) also exists
when replacing `ρ with `S for a simple generating set S. This question was
motivated by work of Chas, specifically by her empirical results concerning
curves on the one-holed torus and their word lengths. It was she who first
investigated the precise behavior of the growth of the number of curves of
a given type with bounded word length (see, among others, [Cha16]). Chas
conjectured that the limit (1.1) exists also when considering word length and
that it is closely related to the limit above (see Conjecture 1 of [Cha16]),
which our theorem verifies:

Theorem 1.4. Let Σ be a surface of genus g and with r boundary compo-
nents, where 3g + r > 3. Let S be a simple generating set for π1(Σ, p) and
γ0 a closed immersed curve on Σ. Then

lim
L→∞

|{γ ∈ MCG(Σ) · γ0 : `S(γ) ≤ L}|
L6g+2r−6 = C

exits and is positive. Moreover, C = Cγ0 · µThu({ν ∈ ML : `S(ν) ≤ 1})
where Cγ0 > 0 is a constant depending only on γ0 and µThu is the Thurston
measure on ML(Σ), the space of measured laminations of Σ.

The work of Chas suggests moreover that the ratio Cγ0/Cγ′0 , for two curves

γ0, γ
′
0, is a rational number (again see Conjecture 1 of [Cha16]). In the case of

the one-holed torus and orbits of curves with small self-intersection number,
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she provides strong numerical evidence for this, and related, conjectures.
The methods we use in this paper provide no explicit constants.

It should perhaps be pointed out that there is, in general, no algorithm
to determine whether or not two words in S are in the same mapping class
group orbit. Still, the construction of the current λS lets us count the
number of curves in each orbit as in the theorem above.

It is an interesting question to determine if Theorem 1.4 still holds for
more general generating sets. While it is possible that some of the ideas of
this paper still apply, the precise methods can not be used as is. For example,
consider the one-holed torus and let a, b be the standard generators of its
fundamental group. Then the word length with respect to the generating
set {a, b, a10} is not given by any current.

Remark 1.5. While writing this paper, Parlier and Souto came up with
an alternative argument to obtain Theorem 1.4. We later combined the
insights of their work and this paper to prove that Theorem 1.4 also holds
for general generating sets (see [EPS]). However, Theorems 1.1 and 1.2
cannot be generalized beyond simple generating sets.

The paper is organized as follows. In Section 2 we will give the necessary
background and definitions needed. In Section 3 we construct the collection
of curves and arcs λS for a simple generating set S and prove Theorems
1.1 and 1.2. Finally, in Section 4 we give some background on currents and
prove Theorem 1.4.

Acknowledgements. I am very grateful to Moira Chas, Hugo Parlier, and
Juan Souto for their help and encouragement throughout this project. I also
thank Juan Souto for pointing out Corollary 4.1 to me. Also, I would like
to thank the University of Fribourg for giving me the opportunity to spend
a semester there, and to acknowledge support from Swiss National Science
Foundation grant number PP00P2 128557. Lastly, I thank the referees for
their useful comments.

2. Background

Throughout the paper Σ will be a connected, orientable, compact surface
of genus g with r boundary components such that 3g + r > 3. Fixing once
and for all a base point p, we will always consider the fundamental group
π1(Σ, p) based at p. If w and w′ are loops based at p and homotopic relative
to p we write w ∼p w′. We identify the elements of π1(Σ, p) with homotopy
classes of loops based at p.

Recall that an arc on a surface Σ is an immersed arc whose endpoints
are on its boundary ∂Σ and whose interior is disjoint from ∂Σ. That is, an
arc is the image of a proper immersion of the unit interval to Σ, i : I → Σ,
such that i−1(∂Σ) = {0, 1}. We further assume arcs to be non-trivial, i.e.
not homotopic (relative boundary) to a point. Also, a curve on Σ is a
closed immersed curve, i.e. the image of a proper immersion S1 → Σ,
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that is essential and non-peripheral (i.e. not freely homotopic to a point or
boundary component).

A subset S = {g1, . . . , gn} ⊂ π1(Σ, p) is a generating set for π1(Σ, p) if any
element w ∈ π1(Σ, p) can be written as w = gα1

n1
gα2
n2
· · · gαlnl for some gni ∈ S

and αi ∈ Z. We say that S is a simple generating set if all elements in S are
simple loops that are pairwise disjoint (except for at the base point). Note
that, in particular, the standard minimal generating set for a genus g surface,
S = {a1, b1, a2, b2 . . . , ag, bg} where the product of the commutators satisfy
[a1, b1] · · · [ag, bg] = 1, is a simple generating set. Also, as mentioned in the
introduction, any one vertex triangulation on Σ gives a simple generating
set (this time non-minimal). In particular, the number of simple generating
sets, up to automorphisms of π1(Σ, p), is super exponential in the complexity
of the surface (see [Pen92] or [DP14] for more details).

We define the word length of w ∈ π1(Σ, p) with respect to a generating
set S, denoted by |w|S , to be the minimum number of generators needed to
write the word w. That is,

|w|S = min{|α1|+ · · ·+ |αl| : w′ = gα1
n1
gα2
n2
· · · gαlnl and w′ ∼p w}.

Let λ be a properly immersed curve or arc (or union of such) on Σ \
{p} and let |w ∩ λ| denote the number of intersection points of transverse
representatives of w and λ. We define the (geometric) intersection number
between w and λ, ι(w, λ), to be the minimum number of intersection points
between transverse representatives of λ and w′ as w′ runs over all loops
homotopic to w relative p. That is:

ι(w, λ) = min{|w′ ∩ λ| : w′ ∼p w and in general position}.

Note that both |w|S and ι(w, λ) only depend on the homotopy class of w.
Given two curves γ, γ′ in Σ we write γ ∼ γ′ if γ and γ′ are (freely)

homotopic, and denote the (free) homotopy class of γ by [γ]. Each curve
γ can be identified with a (non-unique) element in π1(Σ, p) by identifying
it with a curve through p that is homotopic to γ and viewing it as a loop
based at p. Hence we can write γ as a word in the generators in S. Suppose
w is a word representing γ. Then the curve given by conjugating w by any
other word u gives a curve that is freely homotopic to γ as well. In fact,
conjugacy classes of elements in π1(Σ, p) correspond to homotopy classes of
curves on Σ. The word length, `S(γ), of (the homotopy class of) γ with
respect to a generating set S is defined as the minimum word length among
all elements in the conjugacy class corresponding to γ. That is,

`S(γ) = min{|δ|S : δ ∈ [γ]}.

We define the (geometric) intersection number between γ and another
curve or arc (or union of such) λ to be the minimum number of intersections
between transverse representatives of λ and γ′ as γ′ runs over all curves in
the free homotopy class of γ, that is:

ι(γ, λ) = min{|γ′ ∩ λ| : γ′ ∼ γ and in general position}.
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As above, `S(γ) and ι(γ, λ) only depend on the free homotopy class [γ].

3. Proof of Theorems 1.1 and 1.2

3.1. Constructing the collection of curves and loops λS. Consider
the surface Σ \ S obtained by cutting Σ along the loops corresponding to
the generators. Since S generates π1(Σ, p) we obtain a disjoint union of
simply connected or possibly once-holed polygons. Note that all vertices
are identified to a single point, namely the base point p, and the edges
correspond to the generators. We start by constructing arcs in each polygon,
which then will be connected in such a way to create a union of arcs and
curves on Σ:

(i) Mark two points, away from the vertices, on each edge of each polygon

(ii) For each once-holed polygon P , connect each marked point with a sim-
ple arc in the interior of P to the hole, such that all arcs are pairwise
disjoint (see Figure 1a)

(iii) For each simply connected polygon P with an even number of sides,
and for each pair of opposite edges, connect the two points on one edge
with two simple disjoint arcs in the interior of P to the two points on
the opposite edge (see Figure 1b)

(iv) For each simply connected polygon P with an odd number of sides,
connect the two points on each side with two simple arcs in the inte-
rior of P , disjoint from each other, to a point on each of the two edges
incident to the vertex opposite this side (see Figure 1c)

(v) Glue the polygons back together according to the side pairing given by
the cutting Σ \ S. When gluing two polygons together along a side e
we have to decide how to connect the two endpoints on e of the arcs
in one polygon to the two endpoints of the arcs in the other:
• Case 1: If at least one of the polygons has a hole or is even sided,

connect the arcs pairwise without creating a new intersection.
• Case 2: If both polygons are simply connected and odd sided,

connected them by creating a crossing.
See Figures 1d and 1e.

Denote the resulting union of arcs and curves by λ′S . Note that, by con-
struction, λ′S intersects each generator exactly twice. In order to get a nicer
representation, we multiply each curve and arc in λ′S by the coefficient 1/2
to obtain λS . We refer to λS as the collection of (weighted) curves and arcs
associated to the simple generating set S. By the construction of λS the
following lemma is immediate:

Lemma 3.1. Suppose S is a simple generating set for π1(Σ, p) and λS the
associated collection of curves and arcs. If w = gα1

n1
gα2
n2
· · · gαlnl ∈ π1(Σ, p)
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Figure 1a. Arcs in one-holed polygons

Figure 1b. Arcs in simply connected even sided polygons

Figure 1c. Arcs in simply connected odd sided polygons

Figure 1d. The two cases when gluing two polygons along
a side: Case 1 on the left, Case 2 on the right.
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Figure 1e. Connecting arcs when gluing polygons. Gen-
erators in thick lines and arcs in thin lines. Note the extra
crossing in dashed lines.

where gni ∈ S and αi ∈ Z, then

|λS ∩ w| = |α1|+ · · ·+ |αn|.
In particular, ι(w, λS) ≤ |w|S for all w ∈ π1(Σ, p). �

3.2. The proof. To prove Theorems 1.1 and 1.2 we need to show that the
word length of (a homotopy class of) a loop or curve with respect to a
simple generating set S is given by its intersection number with λS . The
main technical step is showing that, when considering a word either as a loop
or a curve in Σ, the presence of bigons with λS is equivalent to being able
to reduce the number of generators in the word. To make this precise, let us
say that a word w in S is shortest if its length (i.e. the number of generators
appearing in w) is not longer than the length of any other word representing
the same element as w. Equivalently, a word is shortest if its length realizes
the word length of w. Accordingly, we say a word is cyclically shortest if
it is not longer than any other word representing the same conjugacy class.
Finally, we need to define a bigon: First consider elements w ∈ π1(Σ, p) as
loops. That is, a path w : [0, 1] → Σ such that w(0) = w(1) = p. We say
w and an arc or curve α ⊂ Σ \ p form a bigon if there exist an interval
I ⊂ (0, 1) and an arc a ⊂ α such that w(I) and a have the same endpoints
and when concatenated they form a homotopically trivial curve. When we
consider w as (a free homotopy class of) a closed curve w : S1 → Σ we
modify the definition by allowing I ⊂ S1. Bigons will be important to us
because if we have a curve (or arc) α and a collection of curves and arcs λ,
then |α ∩ λ| = ι(α, λ) if and only if α and λ form no bigons.
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Proposition 3.2. Let S be a simple generating set for π1(Σ, p) and λS the
associated collection of curves and arcs. Then:

(i) w ∈ π1(Σ, p) is shortest if and only if w, when considered as a loop,
does not form a bigon with λS.

(ii) w ∈ π1(Σ, p) is cyclically shortest if and only if w, when considered as
a curve, does not form a bigon with λS.

Assuming Proposition 3.2 for now, we will prove Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2. Let S be a simple generating set for π1(Σ, p)
and λS the associated collection of curves and arcs. We start with consid-
ering Theorem 1.1. Let w ∈ π1(Σ, p) and w′ a shortest word with respect
to S which defines the same element as w, i.e. w′ ∼p w. Then, by defini-
tion, |w|S = |w′|S and ι(λS , w) = ι(λS , w

′). By Proposition 3.2 w′ forms
no bigons with λS . Hence |λS ∩ w′| = ι(λS , w

′). But by Lemma 3.1, since
w′ is shortest, |λS ∩ w′| = |w′|S . Therefore we have ι(λS , w) = ι(λS , w

′) =
|λS ∩ w′| = |w′|S = |w|S , as desired.

Theorem 1.2 is proved similarly. �

We point out the following fact that also results from Proposition 3.2:

Corollary 3.3. Let S be a simple generating set for π1(Σ, p) and λS the
associated collection of curves and arcs. Then each curve and arc in λS is
essential. Moreover, ι(g, λS) = 1 for all g ∈ S. �

It remains to prove Proposition 3.2 which we will do below.

3.3. Looking for bigons. The results of this section hold for any simple
generating set for any surface Σ satisfying 3g + r > 3. However, first we
will assume that Σ is closed and return to the general case at the end of the
section.

Consider tiling the universal cover Σ̃ of Σ by the lifts of the polygons in
Σ \ S. Call this tiling T . Note that the 1-skeleton of T corresponds to the

lifts of S, which we denote S̃, and every vertex of T is a lift of the base point
p. Let λ̃S be the lift of λS to Σ̃. Note that if P is a union of polygons in
T , every edge in P is adjacent to at most two polygons. We call the edges
adjacent to only one polygon the exterior edges of P and the rest the interior
edges. By a path p̃ in S̃ we mean a path that traverses edges of the graph S̃
that is either infinite or starts and ends at vertices, and the length of such
a path is defined as the number of edges it traverses. Note that each path
corresponds to a word in S and the length of the path corresponds to the
length of the word. The purpose of this section is to show that if a path p̃ in
S̃ forms a bigon with λ̃S , then there is a subpath of p̃ that can be replaced
by a shorter path, and hence the corresponding word is not shortest.

We will prove the above fact using a variation of Dehn’s algorithm (see
[Deh87] or [Sti93]), used to solve the word problem. Recall the proof of

Dehn’s algorithm in, for example, [Sti93, Chapter 6]: We tile Σ̃ by the
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fundamental domain of Σ and consider a path p̃ in the 1-skeleton of T ,
corresponding to a word w. If p̃ is a closed loop, then there must be a tile
D in T of which p̃ traverses more than half its edges, in succession. Call
this subpath p̃′. Then p̃ can be replaced with a shorter loop defining a
word homotopic to w by replacing the subpath p̃′ with a path traversing the
complementary edges in D. This way, whenever we have a loop (i.e. a word
representing the trivial word), we can chip away the tiles in T until we are
left with a trivial loop.

Returning now to our setting with a tiling T of Σ̃ given by Σ\S, suppose

there is a path in S̃ that forms a bigon with λ̃S . Say the two sides of the
bigon are p̃ and ã for some path p̃ in S̃ and some arc ã of a leaf α̃ ⊂ λ̃S .
We define a sequence of nested regions P0 ⊂ P1 ⊂ P2 ⊂ · · · inductively.
Let P0 be the union of the polygons in T that ã intersects, and let Pi be
the union of all polygons that have at least one vertex in Pi−1. Moreover,
let Bi denote the boundary of Pi for each i ≥ 0, set A0 = P0, and define
Ai = Pi \ Pi−1 for each i ≥ 1.

Suppose the path p̃ intersects Bk but does not intersect Bl for any l > k.
We will show that if k 6= 0, then p̃ must have a subpath p̃′ that traverses
at least half the edges, in succession, of a polygon (or possibly the union
of two adjacent polygons) P in Ak (see Lemma 3.5 below). Replacing the
subpath p̃′ with the path p̃′′ that traverses the complementary edges in P
gives a path of at most the same length. Note that the bigon the new path
bounds with ã no longer contains P in its interior. Repeating this argument
one can assume that a path p̃ corresponding to a shortest word lies in P0.
Finally, we will show that (Lemma 3.6) if a path p̃ in P0 forms a bigon with
ã, then p̃ traverses more than half of the exterior edges, in succession, of P0.
Again, this implies that p̃ could not have corresponded to a shortest word.

Before proving the mentioned lemmas, we need the following:

Lemma 3.4. Every vertex in P0 has valence at most 4 in P0 (i.e. each
vertex has at most 4 incident edges that lie in P0).

Proof. Let v be a vertex of P that is k-valent in P, i.e. it has k edges incident
to it that lie in P. Note that ã intersects each interior edge of P0 and v has
at most two exterior edges incident to it. Suppose k > 3. Then v has at
least two incident interior edges. Since ã intersects every interior edge, any
two such adjacent edges (i.e. edges that bound the same polygon) must be
edges of a triangle, due to the construction of λS . Hence, if k = 3 + l there
are l triangles incident to v. Suppose l > 2. Then there are two triangles
∆1 and ∆2 that share an edge e and e is adjacent to v. For i = 1, 2, let ci
and di be the two other edges of ∆i, where ci is also an interior edge in P
adjacent to v. Hence ã is built from an arc in λ̃S with one endpoint on c1
and one on e and another arc with one endpoint on c2 and one on e. But
when the two triangles are glued together along side e these two arcs do
not get glued together due to the rules for constructing λS (see Figure 2), a
contradiction. Hence l ≤ 1 and k ≤ 4. �
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v

e

d2
d1

c2c1

Figure 2. A vertex of valence 5. The arcs of λ̃S that cross
the common side of the two triangles drawn in dashed lines.

Lemma 3.5. Suppose p̃ and ã form a bigon in Σ̃ where p̃ is a path in S̃ and
ã is an arc of a leaf α̃ ⊂ λS. Suppose there exists k > 0 such that p̃ intersects
Bk but not Bl for any l > k. Then p̃ traverses at least half the (exterior)
edges, in succession, of a polygon or a union of two adjacent polygons P in
Ak. Moreover, none of the complementary edges of P lie on Bk.

Proof. Suppose S is a simple generating set with |S| = n ≥ 3 (note that this
is a trivial assumption when Σ is closed, but will play a role in the general
case). Let T be the tiling of Σ̃ corresponding to the lifts of Σ \ S and note
that every vertex of T is of valence at least 6.

We claim that every vertex on Bi has valence at most 4 in Pi. This is
true for i = 0 by Lemma 3.4. Suppose the claim holds for Bi−1. Then, since
every vertex in T has valence 2n there are at least 2n − 4 polygons in Ai
incident to each vertex on Bi−1. It follows (since n ≥ 3) that every polygon
in Ai has at most one edge on Bi−1. Therefore every polygon in Ai share an
edge with at most 3 other polygons in Pi, and these edges are consecutive.
Hence, if Pm is an m-gon in Ai it has at least m − 3 consecutive edges on
Bi, and m − 2 such edges if it has no edge on Bi−1. If v is a vertex on Bi
incident to a triangle in Ai with an edge on Bi−1 it has valence 4 in Pi, and
in all other cases it has valence 3 in Pi. By induction, this proofs the claim.

Note that since each vertex v on Bk−1 has valence at most 4 in Ak−1, v
has at least 2n−4 ≥ 2 incident edges that are in Ak and not on Bk−1. Hence
there cannot be two adjacent polygons in Ak (i.e. polygons that share an
edge) that both have an edge on Bk−1. In particular, if an m-gon in Ak has
only m− 3 of its edges on Bk then the adjacent polygons in Ak have all but
two of it’s edges on Bk.

Now suppose k > 0 is the largest integer such that p̃ intersects Bk. Then
p̃ traverses an edge e1 from Bk−1 to Bk and a path (possibly just a vertex)
of length l ≥ 0 on Bk and then an edge e2 from Bk to Bk−1.

If l = 0, i.e. the path is just a vertex on Bk, then e1 and e2 are edges of
the same polygon which must be a triangle. Hence p̃ traverses 2 edges of
this triangle and we are done.
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So suppose l ≥ 1. Then p̃ traverses an edge on Bk of at least one polygon
in Ak. Let Pm be the first such m-gon, for some m ≥ 3. The path traverses
at least m − 3 edges of Pm lying on Bk, and m − 2 if it has no edge on Bk
(which in particular has to be the case if m = 3). If e1 is also an edge of
Pm, then p̃ traverses at least m − 2 (and 2 if m = 3) consecutive edges of
Pm and we have proved the proposition. Now suppose e1 is not an edge of
Pm. Then it must be an edge of a triangle ∆ adjacent to Pm which has
an edge on Bk−1. Then Pm has no edge on Bk−1, and hence p̃ traverses
m− 2 consecutive edges of Pm (lying on Bk). Let P be the union of ∆ and
Pm which has m+ 1 exterior edges. The path p̃ traverses m− 1 successive
exterior edges of P , and none of the complementary edges lie on Bk. �

Lemma 3.5 implies that if p̃ represents a shortest word, then we can
assume that p̃ is a path contained in P0. Next we show that even this path
can be replaced with a shorter path defining the same word, and hence the
path did not represent a shortest word.

Lemma 3.6. Let p̃ be a path contained in P0 that forms a bigon with ã.
Then p̃ traverses more than half the exterior edges of P0, in succession.

Proof. We first consider the case when P0 is a single polygon, say an m-gon
Pm of T . If m is even, ã is an arc between two opposite sides of the m-gon
and hence p̃ must traverse at least (m/2) + 1 edges of Pm. If m is odd,
then ã is an arc between an edge and one of the edges incident to the vertex
opposite the first edge. Hence p̃, in order to form a bigon with ã, must
traverse either (m + 1)/2 or (m + 3)/2 edges of Pm, and these edges are
successive. See Figure 3.

Now we consider the case when P0 is the (connected) union of k polygons.
We can view P0 as a single polygon by ignoring the interior edges. Suppose
ã has one of its endpoints on exterior edge e1 and the other on exterior edge
e2. We claim that if P0 has an even number of exterior edges, then e1 and
e2 are opposite each other in P0, when viewed as a single polygon; if it has
an odd number of exterior edges, then e2 is an edge incident to the vertex
opposite e1. Hence, applying the argument above, the path p̃ must traverse
at least half the exterior edges of P0 in order to form a bigon with ã.

We prove the claim by induction on k. The base case, k = 1, follows
directly by the definition of λS . Suppose the claim holds for k − 1, i.e. ã
restricted to any connected union P of k−1 polygons is an arc with endpoints
on exterior sides opposite each other if it is an even sided polygon, and on
an exterior side and the exterior side incident to vertex opposite the first if
it is odd sided. Consider P0, a union of k polygons, and ã with endpoints
on (exterior) edges e1 and e2 of P0. Let Pm be the m-sided polygon in P0
that has e2 as one of its edges. Let P = P0 \Pm, i.e. the union of the other
k − 1 polygons. Note that P is connected. Suppose it has n exterior edges.
Then P0 has m + n − 2 exterior edges. Consider ã restricted to P. It has
its endpoints on edge e1 and some exterior edge e of P. Note that the edge
e is also an edge of Pm (and an interior edge of P0).
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Figure 3. Example of bigons, drawn in bold. The solid lines
represent generators (edges) and the dashed lines represent
arcs of λS .

Now, suppose n is even. By the induction hypothesis, e is opposite e1 in
P.

Assume m is also even. Then, since ã is an arc of a leaf in λ̃S , e2 is
opposite e in Pm. We have m + n − 2 even, and e1 and e2 opposite sides
in P0 as desired. Now assume m is odd. Then e2 is an edge incident the
vertex opposite e in Pm. We have m + n − 2 odd, and e3 is an (exterior)
edge incident to vertex opposite e1 in P0.

Similar argument proves the induction step when n is odd. (See Figure
4). �

Next we briefly consider the case when Σ has boundary components, and
explain how the lemmas above also hold in this case. As above, let Σ̃ be its
universal cover and T the tiling corresponding to the simple generating set
S. Since Σ is not closed, some of the tiles in T will be non-compact. Let p̃
be a path in S̃ that form a bigon with some arc ã of a leaf α̃ ⊂ λ̃S . We claim
that, with the notation as above, all tiles in Ai for all Ai whose interior p̃ or
ã intersect, are in fact compact. To see this, not first that the claim follows
trivially for i > 0 since a bigon bounds a compact region. Hence we only
need to show that the claim holds for A0 = P0, and hence that every tile
that ã intersects is compact. Suppose not, i.e. there exists a non-compact
tile P̃ that ã intersects. Let P be the corresponding one-holed polygon on
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Figure 4. P0 union of polygons. Interior edge in thin line,
exterior edges in bold, arcs of λ̃S that intersect interior edge
shown in dashed lines.

Σ\S and α ⊂ λS the leaf corresponding to α̃. But then, by the construction
of λS , α has an endpoint on the boundary component, a contradiction to
the fact ã forms a bigon with p̃. Hence the claim is true, and when |S| ≥ 3
we can apply Lemmas 3.5 and 3.6 also to non-compact surfaces.

Lastly, we need to consider the case |S| = 2. Then Σ is a one-holed torus
T and S is a free basis for π1(T, p) and hence it differs from the standard
generating set by an element of the mapping class group of T. So T \ S is a
one-holed square and the associated γS consist of arcs between the hole and
itself. It is clear, with similar argument as above, that no path in S̃ in the
tiling of non-compact squares can form a bigon with such an arc.

Armed with Lemmas 3.5 and 3.6, we can now prove Proposition 3.2,
showing that a word is shortest (or cyclically shortest) if and only if the
corresponding loop (or curve) does not make a bigon with λS .

Proof of Proposition 3.2. Suppose w is shortest (or cyclically shortest) but

forms a bigon with λS . Consider the lifts to the universal cover Σ̃, tiled by
T . Each lift of w is a path in S̃, choose one of them and call it p̃. This
path forms a bigon with some arc ã of a leaf α̃ ⊂ λ̃S . Let P0 be the union
of the polygons ã intersects. By Lemma 3.5, since w is shortest, p̃ must be
contained in P0. By Lemma 3.6, if p̃ forms a bigon with ã it must traverse
more than half the exterior edges of P0 and can hence be replaced with a
shorter path, contradicting the fact that w is shortest. Hence w cannot form
a bigon with λS .

Now suppose that w, viewed as a loop, does not form any bigons with
λS . Then |w∩λS | = ι(w, λS). Suppose there exists a word w′ homotopic to
w that is shorter than w. Then it follows from Lemma 3.1 that |w′ ∩ λS | <
|w ∩ λS | = ι(w, λS) = ι(w′, λS), a contradiction.
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Similar argument proves the statement when viewing w as a curve. �

4. Counting curves

In this section we will prove Theorem 1.4 but first we need to recall some
facts and definitions about (geodesic) currents. The reader is referred to
[Bon88, Bon91, Ota90, AL] for more details. Endow the interior of Σ with
a complete hyperbolic metric, say of finite volume, to obtain the hyperbolic
surface Σ1. As introduced by Bonahon [Bon88], a (geodesic) current is

a π1(Σ)-invariant Radon measure on the space G(Σ̃1) of geodesics in the
universal cover of Σ1. Let C(Σ) denote the set of all currents on Σ. C(Σ)
is independent of the choice of finite volume hyperbolic metric in the sense
that if Σ2 is another such structure on Σ, then the corresponding universal
covers Σ̃1 and Σ̃2 are quasi-isometric and this quasi-isometry extends to a
homeomorphism of their ideal boundaries, and hence of the spaces G(Σ̃1)

and G(Σ̃2).
We say a current λ ∈ C(Σ) is filling if every geodesic in Σ is transversally

intersected by some geodesic in the support of λ.
Any union of curves and arcs λ ⊂ Σ defines a current in the following

way: The set of lifts λ̃ of λ to the universal cover Σ̃ is a π1(Σ)-invariant

discrete subset of G(Σ̃) and we can define a measure µλ which is supported

on λ̃ by defining

µλ(B) = |B ∩ λ̃|
for any Borel set B ⊂ G(Σ̃). By abuse of notation we will identify λ and the
current it defines. This way the set of curves on Σ can be viewed as a subset
of C(Σ). In fact, the set of all weighted curves {tδ : t ∈ R+, δ a curve} is
dense in C(Σ).

Recall that a measured lamination on Σ is a closed subset L ⊂ Σ of simple,
pairwise disjoint geodesics together with a transverse measure supported on
L. Let ML(Σ) denote the space of measured laminations on Σ. (For the
same reason as for currents, this makes sense without referencing to a metric
on Σ). As above, we can consider the set of lifts L̃ of L to the universal

cover of Σ and identify it with a measure on G(Σ̃) and this measure agrees
with the transverse measure. In this way we can view ML(Σ) as a subset of
C(Σ).

Recall that if Σ is of genus g with r boundary components, ML(Σ) is
homeomorphic to R6g−6+2r and has thus a natural topology. The space
ML(Σ) also has a mapping class group invariant integral PL-manifold struc-
ture (where integral means that the change of charts are given by linear
transformations with integral coefficients). It is endowed with a mapping
class group invariant measure in the Lebesgue class, the so-called Thurston
measure µThu (see [Thu80]). It is an infinite but locally finite measure,
positive on non-empty open sets, and satisfies

µThu(L · U) = L6g−6+2rµThu(U)
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for all U ⊂ ML(Σ) and L > 0. On charts, the measure µThu is just the
standard Lebesgue measure.

In [Bon88] Bonahon defines a symmetric map ι(·, ·) : C(Σ) × C(Σ) →
R+ which extends the geometric intersection form of curves on Σ to the
space of currents. This map, called the intersection form, is symmetric,
bi-homogenous, and invariant under the action of the mapping class group
of Σ. When Σ is closed, the intersection form is also continuous, but this
fails in general. However, this problem can be solved if we work with convex
cocompact surfaces (see [DLR10]) but in any case this issue has no relevance
to this paper.

Recall also that for each hyperbolic, or more generally any negatively
curved, structure X on Σ there exists a filling current λX associated to it,
called the Liouville current (see [Bon88, Ota90]) which satisfies

(4.1) ι(γ, λX) = `X(γ)

for all curves γ ⊂ Σ. In particular, one can view the current λS associated to
a simple generating set S as a combinatorial version of the Liouville current.
It is a theorem of Otal [Ota90, Theorem 2] that a current is determined by
its intersection with all curves, that is, two currents λ, µ ∈ C(Σ) satisfy
ι(λ, γ) = ι(µ, γ) for all curves γ ⊂ Σ if and only if λ = µ. Hence we obtain
from Theorem 1.2 that the current λS associated to a simple generating set
is unique:

Corollary 4.1. The collection of curves and arcs λS satisfying Theorem 1.2
is unique up to homotopy. �

After these preliminary comments we return now to the setting of The-
orem 1.4. More concretely, suppose Σ has genus g and r boundary com-
ponents, where 3g + r > 3. Let MCG(Σ) denote the mapping class group
of Σ. Let γ0 ⊂ Σ be a curve and consider the mapping class group orbit
MCG(Σ) · γ0 of γ0. That is:

MCG(Σ) · γ0 = {γ ∈ Σ : γ = f(γ0) for some f ∈ MCG(Σ)}.

Let X be a complete hyperbolic structure on Σ, and let `X(γ) denote the
length with respect to X of the unique geodesic in the homotopy class of γ.
In [Mir08] and [Mir16] Mirzakhani proved that for any curve γ0, the number
of (homotopy classes of) curves in the mapping class group orbit of γ0 of
length bounded by L is asymptotic to a polynomial in L. More precisely
she showed the following (stated here in the form we will use):

Theorem 4.2 (Mirzakhani, [Mir16] Theorem 1.1). Let X be a complete
hyperbolic metric on Σ. Then for every immersed curve γ0,

lim
L→∞

|{γ ∈ MCG(Σ) · γ0 : `X(γ) ≤ L}|
L6g−6+2r

= Cγ0MX

where Kγ0 > 0 is a constant depending only on the mapping class group
orbit of γ0 and MX = µThu({ν ∈ ML(Σ) : `X(ν) ≤ 1}).
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In [ES16] we investigated the existence of the more general limit

(4.2) lim
L→∞

|{γ ∈ MCG(Σ) · γ0 : ι(γ, λ) ≤ L}|
L6g−6+2r

where λ is any filling current on Σ. We showed that

Theorem 4.3 (Erlandsson-Souto, [ES16] Corollary 4.4). Let λ1, λ2 ∈ C(Σ)
be two filling currents. Then

lim
L→∞

|{γ ∈ MCG(Σ) · γ0 : ι(γ, λ1) ≤ L}|
|{γ ∈ MCG(Σ) · γ0 : ι(γ, λ2) ≤ L}|

=
µThu({ν ∈ ML(Σ) : ι(ν, λ1) ≤ 1})
µThu({ν ∈ ML(Σ) : ι(ν, λ2) ≤ 1})

for every immersed curve γ0 ⊂ Σ.

We will use the two theorems above to prove Theorem 1.4.

Proof of Theorem 1.4. Note that Theorem 4.3 implies that the existence of
limit (4.2) is independent of the choice of filling current λ. Let X be a
complete hyperbolic metric on Σ and λX the corresponding Liouville current.
Then, substituting λX for λ, limit (4.2) exists by Mirzakhani (Theorem 4.2).
Hence limit (4.2) exists for any filling current λ ∈ C(Σ). Moreover,

(4.3) lim
L→∞

|{γ ∈ MCG(Σ) · γ0 : ι(γ, λ) ≤ L}|
L6g−6+2r

= Cγ0Mλ

for any filling current λ, where Mλ = µThu({ν ∈ ML(Σ) : ι(ν, λ) ≤ 1}).
In particular, (4.3) holds when replacing λ with the current λS associated

to a simple generating set S for π1(Σ, p). Hence, applying Theorem 1.2, we
have

lim
L→∞

|{γ ∈ MCG(Σ) · γ0 : |γ|cS ≤ L}|
L6g+2r−6 = Cγ0 · µThu({ν ∈ ML : |ν|cS ≤ 1}),

proving Theorem 1.4. �

Note that the proof of Theorem 1.4 gives no information on the constant
Cγ0 . It is in fact a very interesting question to investigate how it depends on
the curve γ0. Recall that, as mentioned in the introduction, Chas [Cha16]

has conjectured that the ratio
Cγ0
Cγ1

, for two curves γ0 and γ1, is always

rational.
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