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Abstract. Ocean deoxygenation has been observed in all
major ocean basins over the past 50 yr. Although this sig-
nal is largely consistent with oxygen changes expected from
anthropogenic climate change, the contribution of external
forcing to recent deoxygenation trends relative to natural in-
ternal variability is yet to be established. Here we conduct
a formal optimal fingerprinting analysis to investigate if ex-
ternal forcing has had a detectable influence on observed dis-
solved oxygen concentration ([O2]) changes between∼ 1970
and∼ 1992 using simulations from two Earth System Mod-
els (MPI-ESM-LR and HadGEM2-ES). We detect a response
to external forcing at a 90 % confidence level and find that
observed [O2] changes are inconsistent with internal variabil-
ity as simulated by models. This result is robust in the global
ocean for depth-averaged (1-D) zonal mean patterns of [O2]
change in both models. Further analysis with the MPI-ESM-
LR model shows similar positive detection results for depth-
resolved (2-D) zonal mean [O2] changes globally and for
the Pacific Ocean individually. Observed oxygen changes in
the Atlantic Ocean are indistinguishable from natural internal
variability. Simulations from both models consistently under-
estimate the amplitude of historical [O2] changes in response
to external forcing, suggesting that model projections for fu-
ture ocean deoxygenation may also be underestimated.

1 Introduction

The oceanic oxygen inventory is coupled to the climate sys-
tem via a number of physical and biogeochemical processes
making oxygen a useful tracer for detecting changes in the
state of the earth system (Joos et al., 2003; Brennan et al.,
2008). In particular, changes in temperature, ocean circula-
tion, biological production and respiration, expected in re-
sponse to global climate change, all exert a major control on
dissolved oxygen concentration ([O2]). Open ocean deoxy-
genation has been recorded in nearly all ocean basins during
the second half of the 20th century (Helm et al., 2011) with
more acute [O2] decreases in the coastal ocean (Gilbert et
al., 2010). Oxygen time series measurements also show his-
torical expansion and intensification of established oxygen
minimum zones (OMZs) in the eastern tropical Atlantic and
equatorial Pacific since 1960 (Stramma et al., 2008) along
with long-term [O2] decreases in the subarctic North Pacific
between 1956 and 2006 (Whitney et al., 2007).

Historical deoxygenation has been associated with global
climate change, chiefly due to enhanced ocean stratification
in a warming climate which increases the ventilation age of
downwelling water masses, and augmented by the reduced
solubility of dissolved oxygen at higher temperatures (Keel-
ing et al., 2010). These findings are supported by prognostic
simulations from a suite of Atmosphere-Ocean General Cir-
culation Models (AOGCMs), which show ventilation-driven
reductions in global mean [O2] between 3 and 12 µmol kg−1
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by 2100 (Sarmiento et al., 1998; Bopp et al., 2002; Matear
and Hirst, 2003; Fr̈olicher et al., 2009). Global [O2] de-
creases have also been simulated over longer timescales in
response to protracted ocean warming. For example, model
simulations using Intermediate Complexity Earth System
Models (EMICs) produce a tripling in the volume of sub-
oxic ([O2] < 5 µmol kg−1) waters by 2500 (Schmittner et al.,
2008). Ocean deoxygenation and expansion of the OMZs has
also been projected to persist on millennial timescales for
EMIC simulations with high greenhouse gas emissions or
high climate sensitivity (Shaffer et al., 2009).

All global models simulate that the most significant [O2]
decreases occur at mid- to high latitudes, consistent with
observations and caused by decreasing ventilation of the
oceanic interior in response to enhanced upper ocean strat-
ification. However, models generally do not reproduce the
deoxygenation observed at low latitudes, which leads to con-
siderable uncertainties for future projections. The predictive
skill of coarse resolution ocean models at low latitudes is lim-
ited by the need to resolve zonal currents thought to be im-
portant in supplying oxygen into the tropical OMZs (Keel-
ing et al., 2010; Brandt et al., 2010; Stramma et al., 2010).
Climate change integrations of coupled AOGCMs often sim-
ulate [O2] increases in the tropical thermocline associated
with reductions in the volume of O2-depleted waters at low
latitudes, contrary to recent trends (Matear and Hirst, 2003;
Gnanadesikan et al., 2012). Gnanadesikan et al. (2007) pro-
pose that this oxygenation is driven by reduced exchange be-
tween poorly ventilated deep water and the tropical thermo-
cline in a more stratified ocean. However, this process has
been posited to be a numerical artifact tied to unrealistically
high rates of diapycnal mixing in coarse resolution ocean
models (Keeling et al., 2010). A recent sensitivity study by
Duteil and Oschlies (2011) confirms the importance of ver-
tical diffusivity and its parameterisation on the evolution of
suboxic areas in global models. Simulated oxygenation of
suboxic zones has also been attributed to an elevated sup-
ply of oxygen from isopycnal diffusion in one study using
the GFDL ESM2.1 (Gnanadesikan et al., 2012). Up to now,
biogeochemical models can reproduce observed low-latitude
deoxygenation and expansion of hypoxic and suboxic waters
in the tropical OMZs only when they take into account poorly
constrainedpCO2-driven changes to the C:N ratio in primary
production (Oschlies et al., 2008; Tagliabue et al., 2011) or
the alteration to CaCO3 mineral ballasting in response to
ocean acidification (Hofmann and Schellenhuber, 2009).

The implications of a climate change signal in [O2]
changes are profound, owing to the deleterious impact of re-
duced oxygen concentrations and expanding hypoxic zones
on marine ecosystems and fisheries (e.g., Doney et al., 2012;
Stramma et al., 2012b), and the sensitivity of biolimiting
marine nutrient cycles such as nitrogen and phosphorous to
oceanic redox conditions (Keeling et al., 2010). However, at-
tribution of secular [O2] changes to global climate change
is confounded by natural interannual to decadal variability

driven by the leading climate modes which act to mask any
climate-driven signal (e.g., the North Atlantic Oscillation,
Frölicher et al., 2009). To this end, modelling studies have
demonstrated that internal variability associated with the ma-
jor climate modes in the North Pacific drive propagating
O2 anomalies that are large enough to frequently preclude
unequivocal detection of anthropogenic trends in dissolved
oxygen on decadal timescales and regional scales (Deutsch
et al., 2006; Ito and Deutsch, 2010). However, Deutsch et
al. (2005, 2006) highlight that in the North Pacific strong
historical [O2] decreases within the lower ventilated thermo-
cline are reproduced by models and are likely to be driven by
long-term changes in ocean ventilation and circulation, but a
formal detection study is required to separate external causes
from internal variability.

We use an optimal fingerprinting methodology to objec-
tively quantify the detectability of externally forced changes
in oceanic [O2] relative to natural internal periodicity. Nu-
merous detection studies have been conducted investigating
the impact of external forcing on oceanic variables such as
ocean temperature (e.g., Barnett et al., 2005; Pierce et al.,
2006; Gleckler et al., 2012) and salinity (Stott et al., 2008;
Terray et al., 2012), but these techniques have not yet been
used for biogeochemical tracers like oxygen. [O2] changes,
therefore, provide a novel means for detecting and attribut-
ing anthropogenic climate change in the oceans and for the
evaluation of model performance (Hegerl et al., 2006). As
such, this study aims to conduct a formal optimal finger-
printing analysis to investigate the “signal in noise” problem
of historical changes in oceanic oxygen using [O2] data and
simulations from two Earth System Models (ESMs) partic-
ipating in Phase 5 of the Coupled Model Intercomparison
Project (CMIP5).

2 Methods

2.1 Observations and CMIP5 models

We use a recent collation of global World Ocean Circula-
tion Experiment (WOCE) O2 data compared with earlier
ocean oxygen profiles (Helm et al., 2011) to investigate
the cause of the observed historical changes in global ma-
rine oxygen distribution. This compilation maps all histori-
cal [O2] data (1940–1988; mean year∼ 1970) onto the loca-
tions of WOCE profiles to facilitate comparison with WOCE
measurements (∼ 1989–2000; mean year∼ 1992) using an
optimal-interpolation technique that adapts the length scales
to suit the density and distribution of oxygen data (Helm
et al., 2010). The [O2] data is binned into regular 1◦

× 1◦

grid cells with 101 fixed pressure levels, excluding shal-
low (< 1000 m) profiles and observations above 100 m where
seasonal variability dominates the oxygen signal (Garcia et
al., 2005). Noise variance calculated using the difference be-
tween neighbouring data points is used to provide an a priori
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estimate of natural variability in [O2] data (Helm et al., 2010,
2011; Bindoff and Wunsch, 1992). This technique accounts
for mesoscale processes and to some extent longer period in-
ternal variability such as the dominant climate modes.

This dataset is used in an optimal detection analysis along
with the biogeochemical output from two state-of-the-art
ESMs (MPI-ESM-LR and HadGEM2-ES) participating in
the CMIP5 experiments (Taylor et al., 2009, 2012). [O2]
fields from MPI-ESM-LR and HadGEM2-ES have been se-
lected here because they display a higher level of realism in
simulating both climatological [O2] distribution and histori-
cal oxygen changes compared to the other available CMIP5
ESMs. Sufficient qualitative agreement between modelled
and observed [O2] distribution allows for direct quantitative
comparison using an optimal fingerprinting algorithm with-
out any requirement for a prior transformation of the model’s
variables (e.g., Banks and Bindoff, 2003).

The Max Plank Institute for Meteorology Earth System
Model used here (MPI-ESM-LR; Giorgetta et al., 2012) is
a low resolution model version that includes the ECHAM6
atmospheric GCM with T63 horizontal resolution (1.875◦)
and 47 vertical layers (Stevens et al., 2013; developed from
ECHAM5 (Roeckner et al., 2006) with modifications in
the shortwave radiative transfer and representation of the
middle atmosphere). It is coupled to the MPIOM physi-
cal ocean model (Jungclaus et al., 2013; Marsland et al.,
2003) which includes a thermodynamic-dynamic sea ice
component (Notz et al., 2013) and ocean biogeochemistry
model (HAMOCC5; Ilyina et al., 2013; Maier-Reimer, 1993;
Maier-Reimer et al., 2005) implemented on a curvilinear
bipolar orthogonal grid with a nominal horizontal resolu-
tion of 1.5◦ and 40 z-levels which increase in thickness with
depth. The HAMOCC5 ocean biogeochemistry component
includes an extended Nutrient-Phytoplankton-Zooplankton-
Detritus (NPZD) type ecosystem model (Six and Maier-
Reimer, 1996) along with over 30 prognostic variables in the
water column and the upper sediments including co-limiting
nutrients nitrate, phosphate and iron, as well as DIC and
oxygen. The ocean and atmosphere components are coupled
daily without flux corrections.

The Hadley Centre Global Environment Model Ver-
sion 2 Earth System Model (HadGEM2-ES, Collins et al.,
2011; HadGEM2 Development Team, 2011) is also a cou-
pled AOGCM and has an atmospheric resolution of N96
(1.875◦ × 1.25◦) with 38 vertical levels. The ocean model
has a 1◦ × 1◦ horizontal resolution (increasing smoothly to
1/3◦ at the equator) with 40 unevenly spaced depth levels.
The ocean biogeochemistry component of this model is Diat-
HadOCC, which is an NPZD model with two phytoplank-
ton functional types (developed from the HadOCC model;
Palmer and Totterdell, 2001), and includes the nutrient cy-
cles of nitrogen, silica and iron along with prognostic tracers
such as dissolved oxygen.

We use output from the∼ 1000 yr control (piControl) ex-
periments of MPI-ESM-LR and HadGEM2-ES, which pre-

Table 1. Summary of CMIP5 model output used in the optimal
detection, comprising MPI-ESM-LR and HadGEM2-ES historical
and piControl integrations. ALL= natural+ anthropogenic external
forcing. * control length after drift removal.

Model Experiment (name) Forcing Ensemble Control
size (n) length

(years)

MPI-ESM-LR Historical (r1:ni1p1) ALL 3
piControl (r1i1p1) 1 1000

HadGEM2-ES Historical (r1:ni1p1) ALL 4
piControl (r1i1p1) 1 965∗

scribe non-evolving pre-industrial forcings, and an ensem-
ble of historical experiments for the period∼ 1850 to 2005
(Table 1). The piControl runs were initialised from a pre-
industrial spin-up to pseudo-equilibrium. Boundary condi-
tions for the historical experiments are prescribed from ob-
servations as an evolving record of climate forcing factors.
These include external forcings from: historical greenhouse
gas concentrations, tropospheric and stratospheric ozone
changes, surface emissions of tropospheric aerosols and land
use changes as well as the natural forcings from changes
in solar irradiance and volcanic aerosols. Each member of
the model ensemble is initialised from a different point
in the control simulation in order to create a spectrum of
equally plausible historical simulations each starting at a dif-
ferent phase of internal variability. The MPI-ESM-LR and
HadGEM2-ES CMIP5 experimental design and spin-up are
described in Mauritsen et al. (2012) and Jones et al. (2011),
respectively. A persistent climate drift in HadGEM2-ES oxy-
gen fields has been isolated from a 20 yr low-pass filtered ver-
sion of the control run and subtracted at each grid point of the
historical [O2] data using the corresponding segment of the
piControl integration. Since residual drift can also bias noise
estimates required for the optimal fingerprinting procedure
(as estimated from long control experiments) an equivalent
point-by-point drift is also removed from the HadGEM2-ES
piControl integration. In this case removal of a linear trend
diagnosed from a low pass filter provides an adequate repre-
sentation of climate drift behaviour, as distinct from natural
internal periodicity.

2.2 Optimal fingerprinting method

We test the null hypothesis that historical changes in [O2] are
indistinguishable from natural internal variability (β = 0) us-
ing an optimal detection algorithm (Hasselmann, 1997; Allen
and Tett, 1999). This statistical technique is widely used in
the detection and attribution of climate change (e.g., IDAG,
2005; Hegerl et al., 2010) and also provides a powerful test
of ESM performance which includes the effect of natural
internal variability. We use this technique to regress model
simulated patterns of [O2] change (xi) against correspond-
ing observed patterns (y) using a Total Least Squares (TLS)

www.biogeosciences.net/10/1799/2013/ Biogeosciences, 10, 1799–1813, 2013
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~1970

y = β(xHIST- vHIST) + v0

TOTAL LEAST SQUARES = 
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Fig. 1. Schematic summary of the optimal detection method used here. The left panels show the observed distribution of dissolved oxygen
data (y; µmol kg−1) for ∼ 1970 and∼ 1992, averaged between 100–3000 m. The right panels show the masked and re-mapped ensemble
mean model output (xHIST) from historical simulations of ESMs (MPI-ESM-LR or HadGEM2-ES) averaged between 100–3000 m.y and
xHIST are then provided to the Total Least Squares regression as zonal mean [O2] differences between the two time periods, wherevHIST
andv0 are estimates of the noise in the model response and observations, respectively.

method (Allen and Stott, 2003) which estimates the scal-
ing factors (βi) required to match simulated and observed
changes following Eq. (1):

y =

1∑
i=1

βi(xi − vi) + v0 (1)

where in the single signal case, for thei-th forcing,vi is the
error in the model responsexi andv0 is the climate noise in
the observations. If the confidence interval that containsβ

exceeds zero a signal is detected in response to an imposed
forcing i. If this scaling factor is consistent with one the sim-
ulated and observed responses are said to be similar in mag-
nitude. In this study, the simulation consists of the ESM, all
of its parameters and all of the temporal and spatial varia-
tions of the external forcingi transformed through the phys-
ical and chemical processes represented in the model. Thus,
a value ofβ consistent with one demonstrates that forcingi

and the theory are consistent with the observations, and aβ

estimate which is significantly greater than 0 demonstrates
that the null hypothesis of no contribution from forcingi can
be rejected. TLS is likely to yield a more robustβ estimate
than an Ordinary Least Squares (OLS) approach because it
also includes a signal error term (vi) arising from averag-
ing across a finite model ensemble to obtain the simulated
response pattern. Signal error (vi) is inversely proportional
to the model ensemble size (n) and can negatively bias scal-
ing factors (Allen and Tett, 1999), particularly for variables
where the forced response is small relative to internal vari-
ability. Thus, TLS is widely used in optimal detection studies
as a more conservative approach which explicitly accounts
for the effect of noise in simulated response patterns relative

to that which is found in the observations (e.g., Stott et al.,
2003, 2008; Terray et al., 2012).

We focus our single fingerprint analysis on the “all forc-
ings” historical scenario of MPI-ESM-LR and HadGEM2-
ES, with model output being bi-linearly interpolated onto
a 1◦

× 1◦ grid and masked to emulate the pattern of miss-
ing values found in the observations of Helm et al. (2011)
(Fig. 1). [O2] changes between∼ 1970 and∼ 1992 are then
calculated for these experiments and provided as model re-
sponse patterns (xHIST) in the TLS regression against corre-
sponding observed [O2] changes (y) in order to estimate scal-
ing factors (β). The instrumental record of dissolved O2 mea-
surements is not sufficiently long to get a reliable approxima-
tion of internal climate variability (v0), and also includes per-
turbations driven by external forcing. In order to characterise
unforced climate variability in [O2] on a global scale, we es-
timatev0 by sampling non-overlapping 22 yr slabs of [O2]
fields taken from the long (∼ 1000 yr) control integrations
of MPI-ESM-LR and HadGEM2-ES. The non-overlapping
model [O2] fields are also masked and re-gridded as “pseudo-
observations”. Subsampled model piControl output is then
used to (1) estimate internal variability in [O2] data and (2)
place 5–95 % uncertainty limits on calculated scaling factors.

The TLS regression is carried out in a reduced dimen-
sion space where model and observed data are projected
onto k leading Empirical Orthogonal Functions (EOFs) of
simulated internal variability. Signal-to-noise ratios are op-
timised in a standard way via normalisation of observations
and model response patterns by internal climate variability
(e.g., IDAG, 2005), a transformation which down-weights
patterns of [O2] change with high internal variability and
vice versa. Dimensionality of the detection space in this
study is further reduced by averaging across multiple en-
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semble members in each historical CMIP5 experiment (see
Table 1), and by calculating zonal means for observed and
modelled [O2] changes. The analysis of Helm et al. (2011)
shows pronounced global [O2] decreases between∼ 1970
and ∼ 1992 in all ocean basins, accommodating a zonally
averaged spatial domain. This removes small-scale variabil-
ity in [O2] and allows the detection analysis to focus on
global and basin-scale patterns of oxygen change. Gridded
dissolved oxygen data are also smoothed vertically and hor-
izontally. Modelled [O2] changes are calculated as temporal
averages of annual data between 1960–1980 and 1990–2000
in order to be consistent with the historical spread of obser-
vations, with sensitivity tests demonstrating simulated [O2]
changes to be relatively invariant across a range of small
changes in averaging period.

We prepare model fingerprints and observations for the op-
timal detection analysis using two different zonal averaging
schemes: (1) 1-D analysis: zonal mean of depth-averaged
[O2] changes between 100 and 3000 m; (2) 2-D analysis:
zonal mean [O2] changes explicitly resolve depth (between
100–3000 m) globally and separately for the Atlantic and Pa-
cific basins. Both MPI-ESM-LR and HadGEM2-ES models
are used in the 1-D analysis. The MPI-ESM-LR model only
is used to extend the work and provide a more detailed 2-D
analysis. For the 2-D optimal detection, masked MPI-ESM-
LR output and observations are remapped onto a∼ 5◦ lat-
itude by ∼ 10◦ longitude grid with 40 unevenly spaced z-
levels to mediate the effects of internal noise on the signal
whilst still retaining the depth structure of meridional [O2]
change between∼ 1970 and∼ 1992. The use of several mod-
els and several spatial averaging schemes provides multiple
model fingerprints that are used to quantify possible errors
in model response patterns (“structural uncertainty”) driven
by inadequate representation of physical and biogeochemical
process in ESMs (e.g., Hegerl and Zwiers, 2011).

In order to avoid spurious detection it is a necessary pre-
requisite that the internal variability estimated from control
simulations (v0) provides a realistic estimate of observed cli-
mate noise in [O2]. As such, the number of EOFs retained
in the optimal detection analysis is guided by checking the
fidelity of model simulated internal variability against the
residual observed variance atk truncations using a standard
residual consistencyF test (Allen and Tett, 1999). This check
is used to test the null hypothesis that internal variability as
simulated by models is consistent with observed variability
on the scales retained in the analysis. Failure of the residual
consistency test could also indicate that the timing or pat-
tern of ESM response is incorrect. We choose to truncate
the 1-D MPI-ESM-LR analysis at 40 EOFs (k = 40) since
this is the first truncation for which the residual test passes
the consistency check, reducing the likelihood of keeping
poorly sampled higher order EOFs in the optimal detection.
Fewer truncations (k = 31) are needed to pass the residual
consistency check in the 1-D HadGEM2-ES analysis, how-
ever, scaling factors are not substantially different at higherk

Table 2. Comparison of decadal standard deviations of [O2]
(µmol kg−1) between observations and CMIP5 piControl experi-
ments at Ocean Station Papa in the Eastern North Pacific (50◦ N,
145◦ W, σ = 26.9, ∼ 250–350 m) and the Oyashio Current re-
gion in the Western North Pacific (39–42◦ N, 143–145◦ E, σ =

26.9, ∼ 400–450 m). piControl output from MPI-ESM-LR and
HadGEM2-ES is sampled to calculate multiple estimates of decadal
standard deviations for each time series. The mean and (10th–90th)
percentile ranges of piControl estimates are shown. Observations
are detrended using a linear fit to extract variability. Drift has been
removed from the control integration of HadGEM2-ES as described
in Sect. 2.1.

Observations MPI-ESM-LR HadGEM2-ES

Ocean Station Papa 11.1 9.1 (6.2–12.0) 5.3 (3.9–6.7)
Oyashio Current region 8.1 9.9 (4.9 – 15.1) 1.4 (0.4–2.4)

values (see Sect. 3.2). The 2-D analysis both globally and be-
tween ocean basins required the maximum number of EOFs
(k = 49) to be retained in the regression to pass the residual
consistency check (apart from for the Atlantic basin where
theF testp value falls marginally outside the 5–95 % range).
A higher number of retained EOFs is consistent with the
greater amount of information needed to describe spatial pat-
terns of both depth and latitude variations, with more modes
being necessary to explain variability in the depth-resolved
signal.

In addition to the residual consistency test, we assess the
reliability of model simulated climate variability by compar-
ing piControl output with detrended subsurface [O2] mea-
surements from two long-term time series: Ocean Station
Papa (1956–2007, Whitney et al., 2007) and the Oyashio
Current region (1968–1998, Ono et al., 2001). Observed
decadal standard deviations calculated for both time se-
ries fall within the 10–90 % ranges of MPI-ESM-LR con-
trol simulation estimates, demonstrating that this model pro-
vides a robust estimate of internal variability in [O2] on
decadal timescales (Table 2). The HadGEM2-ES control
simulation significantly underestimates decadal variability
in [O2] when compared to time series data and is, thus,
less reliable than simulations from MPI-ESM-LR in the
context of our analysis.

3 Results

3.1 Model-data comparison

We evaluate model performance by comparing simulated
and observed zonally averaged [O2] distributions for the
∼ 1992 time period. Historical integrations of MPI-ESM-LR
and HadGEM2-ES are able to capture the general latitude-
depth pattern of [O2] distribution present in the observations
(Fig. 2). The [O2] minimum between 20◦ S and 20◦ N is
reproduced at mid-depths by both models, with increasing
[O2] towards higher latitudes in both hemispheres. However,
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HadGEM2-ES simulates higher than observed oxygen con-
centrations in the [O2] minimum. MPI-ESM-LR overesti-
mates the spatial extent of low-latitude [O2] minimum waters
and produces erroneously high [O2] south of 60◦ S. Ilyina
et al. (2013) present a detailed comparison between biogeo-
chemical tracers in MPI-ESM-LR CMIP5 historical simula-
tions and observations using a range of statistical metrics to
assess model capability.

A marked meridional structure also exists in observed
depth-averaged zonal mean [O2] changes, with deoxy-
genation increasing with latitude poleward of 40◦ (up to
12 µmol kg−1) in both hemispheres (Fig. 3). Pronounced
deoxygenation in the mid- to high-latitude ocean is op-
posed by no change or a small zonal mean [O2] increase of
∼ 1–2 µmol kg−1 between 20◦ S and 20◦ N. Both MPI-ESM-
LR and HadGEM2-ES historical integrations show predom-
inant global decreases in [O2] at high latitudes consistent
with but smaller (< 5 µmol kg−1) than the observations, with
no net oxygen change at low latitudes. Observed and mod-
elled global mean [O2] decreases both reach their maxima
at ∼ 60◦ N. In some regions MPI-ESM-LR and HadGEM2-
ES historical experiments show a much reduced or inverse
[O2] change signal, particularly in areas of the Southern
Ocean (65◦ S) and at∼ 50◦ N where significant observed
zonal mean [O2] decreases (3–6 µmol kg−1) contrast with
small oxygen increases in both models.

The consistency between models and observations is fur-
ther examined in zonal mean sections as a function of depth
(Fig. 4). [O2] data show acute deoxygenation of the venti-
lated thermocline (100–1000 m depth) at all latitudes, with
large oxygen decreases (> 10 µmol kg−1) extending through-
out the water column poleward of 40◦ in both hemispheres
(Fig. 4a). These regions of deoxygenation are countered by
areas of increasing [O2] (5–10 µmol kg−1) located between
30◦ S and 30◦ N below 1000 m depth and within the shallow
subtropical gyres (15–30◦). Both models generally reproduce
the key zonal mean features of observed [O2] change, simu-
lating [O2] decreases at high latitudes and within the ther-
mocline, with an area of increasing [O2] beneath∼ 1500 m
depth at mid- to low latitudes. In agreement with data, MPI-
ESM-LR simulates strong [O2] depletion extending through-
out the water column north of 40◦ N and shows a distinct
region of increased [O2] beneath∼ 1500 m between 30◦ S
and 30◦ N (Fig. 4b). MPI-ESM-LR also displays significant
deoxygenation between 40◦ S and 60◦ S, but this is opposed
by a limb of [O2] increase within the interior of the Southern
Ocean (a feature which is entrained into the depth-averaged
trend of Fig. 3). HadGEM2-ES exhibits deoxygenation in
the upper ocean at mid- to high latitudes in both hemi-
spheres, with [O2] depletion extending down to∼ 3000 m
depth south of 65◦ S and at∼ 60◦ N (Fig. 4c). Near ubiqui-
tous [O2] decreases are also simulated in the ventilated ther-
mocline, apart from within the subtropical gyres (15–30◦)
where HadGEM2-ES reproduces, in part, the observed [O2]
increases. However, the oceanic interior between 60◦ S and
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Fig. 2. Zonal mean [O2] distribution (µmol kg-1) for ~1992 as a function of latitude and depth 2 

from (A) observations (Helm et al., 2011), and historical integrations of (B) MPI-ESM-LR 3 

and (C) HadGEM2-ES. 4 

5 

Fig. 2. Zonal mean [O2] distribution (µmol kg−1) for ∼ 1992 as
a function of latitude and depth from(A) observations (Helm et
al., 2011), and historical integrations of(B) MPI-ESM-LR and(C)
HadGEM2-ES.

40◦ N becomes increasingly oxygenated over the modelled
analysis period, with an anomalous region of positive [O2]
change below∼ 1500 m in the polar north and protruding
into the upper ocean at∼ 65◦ S. Both models fail to emulate
the pattern of [O2] loss recorded by observations in the low-
latitude OMZs (< 1000 m), displaying small [O2] increases
within the tropical thermocline between 20◦ S and 20◦ N.
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Fig. 3.  Zonal mean change (~1992 minus ~1970) in [O2] (µmol kg-1) as a function of latitude 2 

averaged between 100 and 3000 metres depth for observations (black; Helm et al. [2011]), 3 

and HadGEM2-ES (green) and MPI-ESM-LR (red) historical integrations.  Error bars in 4 

observed [O2] are given at the 95 % confidence level and are associated with instrumental 5 

uncertainty, un-resolved ocean processes and methodological uncertainty in forming the zonal 6 

averages (derived from an a priori estimate of noise using the method of Bindoff and Wunsch 7 

[1992]). 8 
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Fig. 3. Zonal mean change (∼ 1992 minus ∼ 1970) in [O2]
(µmol kg−1) as a function of latitude averaged between
100–3000 m depth for observations (black; Helm et al., 2011),
and HadGEM2-ES (green) and MPI-ESM-LR (red) historical
integrations. Error bars in observed [O2] are given at the 95 %
confidence level and are associated with instrumental uncertainty,
un-resolved ocean processes and methodological uncertainty in
forming the zonal averages (derived from an a priori estimate of
noise using the method of Bindoff and Wunsch, 1992).

This failure of the models to replicate the low-latitude OMZs
is discussed in Sect. 1 and is well known. Overall, simulated
[O2] changes for both models tend to be similar but smaller
in magnitude than recorded by observations, with MPI-ESM-
LR exhibiting generally more skill at reproducing patterns of
observed [O2] change as a function of depth.

On a basin scale (Fig. 5) there is a higher level of agree-
ment between modelled and observed water mass changes
over the analysis period in the Pacific compared to the At-
lantic. MPI-ESM-LR reproduces observed deoxygenation of
the high-latitude North Pacific down to∼ 3000 m depth,
and shows a general trend towards decreasing [O2] levels
within the ventilated thermocline. In comparison, the struc-
ture of modelled oxygen changes within the Atlantic Ocean
is largely inconsistent with observations. MPI-ESM-LR sim-
ulates extensive deoxygenation (up to 4 µmol kg−1) through-
out much of the Atlantic between 1000 and 3000 m depth,
and does not resolve major regions of observed [O2] increase
in the interior of the Atlantic between 30◦ S and 30◦ N. In
both the Atlantic and Pacific basins, following the global
trend, MPI-ESM-LR does not reproduce the pronounced de-
oxygenation signal recorded within the low-latitude OMZs.
This model-data mismatch is most apparent in the thermo-
cline of the tropical Atlantic where MPI-ESM-LR shows
strong [O2] increases of> 5 µmol kg−1 in opposition to ob-
served [O2] depletion.

Changes in upper ocean stratification are associated with
changes in the ventilation (and oxygenation) of subsurface
water masses. Figure 6 shows historical changes in zonal
mean upper ocean density stratification as a function of lat-
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Fig. 4.   Zonal mean change (~1992 minus ~1970) in [O2] (µmol kg-1) as a function of latitude 2 

and depth from (A) observations (Helm et al., 2011), and historical integrations of (B) MPI-3 

ESM-LR and (C) HadGEM2-ES. 4 
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Fig. 4. Zonal mean change (∼ 1992 minus ∼ 1970) in [O2]
(µmol kg−1) as a function of latitude and depth from(A) obser-
vations (Helm et al., 2011), and historical integrations of(B) MPI-
ESM-LR and(C) HadGEM2-ES.

itude (between 200 m and 1000 m) from observations and
for MPI-ESM-LR and HadGEM2-ES models. Observed and
model derived zonal mean density stratification generally in-
creases at mid- to high latitudes between∼ 1970 and∼ 1992,
with decreases in global stratification within the subtropi-
cal and equatorial ocean. However, at high latitudes in the
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Fig. 5.Observed (left) and simulated (right) patterns provided to the
2-D optimal detection as zonal mean [O2] changes (µmol kg−1) as
a function of latitude and depth for the global ocean (60◦ S–60◦ N;
A), and for the Pacific(B) and Atlantic(C) ocean basins. Masked
MPI-ESM-LR [O2] fields and observations are interpolated onto
a ∼ 5◦ latitude by∼ 10◦ longitude grid with 40 unevenly spaced
depth levels and zonally averaged.

Southern Ocean both MPI-ESM-LR and HadGEM2-ES un-
derestimate the observed stratification change signal, with
major increases in stratification between 50◦ S and 60◦ S
not reproduced by either model. Analysis of the density
structure of these models show that in this region the den-
sity profile is more homogeneous than observed with more
vigorous vertical mixing.

3.2 Optimal detection analysis

We apply the optimal detection approach outlined in Sect. 2.2
to quantitatively investigate the consistency of modelled and
observed changes in [O2], and to assess the detectability of
observed changes in response to external forcing. Figure 7
shows observations and model response patterns provided to
the 1-D TLS regression using MPI-ESM-LR and HadGEM2-
ES oxygen fields, plotted against the model-estimated range
of internal variability. The envelope of estimated internal
variability in [O2] scales with latitude in both models such
that sub-polar and polar regions where a strong zonal mean
deoxygenation signal is observed coincide with areas of
largest internal variability (±2–4 µmol kg−1). Nevertheless,
the magnitude of observed zonal mean [O2] change exceeds
the spread of simulated internal variability in the mid- to
high-latitude ocean, with a deoxygenation signal emerging
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Fig. 6.  Zonal mean change (~1992 minus ~1970) in upper ocean stratification as a function 2 

of latitude from observations (black; Helm [2008]), and HadGEM2-ES (green) and MPI-3 

ESM-LR (red) historical integrations.  The Stratification Index is calculated as the vertical 4 

density gradient (δρ/δz) between 200 m and 1000 m depth.  Model stratification is estimated 5 

by calculating density (kg m-3) from CMIP5 historical temperature and salinity fields at 200 m 6 

and 1000 m depth levels. Positive values indicate an increase in upper ocean stratification 7 

over time.  These stratification changes differ from those presented by Helm et al. (2011) 8 

because we exclude surface data (<100 m) from Hadley SST climatology.  Error bars for 9 

observed stratification changes are given at the 95 % confidence level as in Fig. 3. 10 

11 

Fig. 6. Zonal mean change (∼ 1992 minus∼ 1970) in upper ocean
stratification as a function of latitude from observations (black;
Helm, 2008), and HadGEM2-ES (green) and MPI-ESM-LR (red)
historical integrations. The Stratification Index is calculated as
the vertical density gradient (δρ/δz) between 200–1000 m depth.
Model stratification is estimated by calculating density (kg m−3)

from CMIP5 historical temperature and salinity fields at 200 m and
1000 m depth levels. Positive values indicate an increase in upper
ocean stratification over time. These stratification changes differ
from those presented by Helm et al. (2011) because we exclude sur-
face data (< 100 m) from the Hadley SST climatology. Error bars
for observed stratification changes are given at the 95 % confidence
level as in Fig. 3.

above natural internal variability poleward of 30–40◦ in both
hemispheres. Simulated internal variability is smaller in the
HadGEM2-ES piControl experiment such that observed [O2]
decreases become distinct from internal variability across
more of the mid-latitude ocean. Both MPI-ESM-LR and
HadGEM2-ES historical integrations simulate more muted
deoxygenation signals compared to the observations which
are largely within the range of internal variability at all lat-
itudes. Structural errors in the pattern of [O2] change sim-
ulated by both models also generally fall within the spread
of internal variability. Observations and model response pat-
terns have also been provided to the TLS regression from
depth-resolved 2-D [O2] changes globally and for the Pacific
and Atlantic basins between 100–3000 m depth (Fig. 5).

Scaling factors (β) resulting from the single fingerprint
analysis confirm that a statistically significant change in ob-
served [O2] in response to external forcing is detected and
inconsistent with simulated internal variability at a 90 %
confidence level (Fig. 8). Projection of observations onto
the simulated “all forcings” response of MPI-ESM-LR and
HadGEM2-ES shows a detectable change in depth-averaged
zonal mean [O2] between∼ 1970 and∼ 1992, since the best
estimates of the scaling factors and their confidence intervals
at the global scale are significantly different from 0. Scal-
ing factors calculated for the MPI-ESM-LR and HadGEM2-
ES 1-D analyses are 2.82 and 3.59, respectively, indicating
that the effect of external forcing is detectable and that the
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Fig. 7.  Observed (black) and simulated (red or green) patterns provided to the 1-D optimal 2 

detection as zonal mean [O2] changes (µmol kg-1) averaged between 100 and 3000 metres 3 

depth using MPI-ESM-LR (A) and HadGEM2-ES (B) historical experiments.  The spread of 4 

internal variability (shown by the shaded area) is estimated by sampling model piControl 5 

simulations, as described in Sect. 2.2. 6 

7 

Fig. 7. Observed (black) and simulated (red or green) patterns pro-
vided to the 1-D optimal detection as zonal mean [O2] changes
(µmol kg−1) averaged between 100–3000 m depth using MPI-
ESM-LR (A) and HadGEM2-ES(B) historical experiments. The
spread of internal variability (shown by the shaded area) is esti-
mated by sampling model piControl simulations, as described in
Sect. 2.2.

models and observations have significant correlations in the
latitudinal pattern of variation. However, since theseβ val-
ues are greater than one we can infer that the ESM simulated
[O2] responses to external forcing are significantly underes-
timated and need to be amplified (by a factor of between∼ 2
and∼ 4) to be consistent with observed changes. The resid-
ual consistency test passes for both model experiments indi-
cating no inconsistency between residual observed variance
and model simulated internal variability, and suggesting that
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Fig. 8.  Best estimates and 5–95% uncertainty ranges of regression coefficients (β) from 2 

single fingerprint optimal detection analysis.  Two types of model response pattern are 3 

projected onto dissolved oxygen observations.  Left: A 1-D global depth-averaged (100–3000 4 

m) zonal mean [O2] change using MPI-ESM-LR (k = 40) and HadGEM2-ES (k = 31).  Right: 5 

A 2-D depth-resolving zonal mean [O2] change globally and for the Atlantic and Pacific 6 

Ocean basins (k = 49) using MPI-ESM-LR only (* indicates a failed residual consistency test 7 

at all EOF truncations). 8 
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Fig. 8. Best estimates and 5–95 % uncertainty ranges of regression
coefficients (β) from single fingerprint optimal detection analysis.
Two types of model response pattern are projected onto dissolved
oxygen observations. Left: a 1-D global depth-averaged (100–
3000 m) zonal mean [O2] change using MPI-ESM-LR (k = 40) and
HadGEM2-ES (k = 31). Right: a 2-D depth-resolving zonal mean
[O2] change globally and for the Atlantic and Pacific Ocean basins
(k = 49) using MPI-ESM-LR only (* indicates a failed residual con-
sistency test at all EOF truncations).

both ESMs simulate the externally forced signal adequately
to explain observed [O2] changes. For both MPI-ESM-LR
and HadGEM2-ESβ estimates for the 1-D analysis are ro-
bust across a range of truncations proximal to the chosen
values ofk, adding confidence to the presented optimal de-
tection results (Fig. 9).

In agreement with the 1-D result, the 2-D detection analy-
sis using MPI-ESM-LR yields a best estimate scaling fac-
tor of greater than 1 (β = 2.26) for the global ocean, al-
though in this case the 5–95 % uncertainty bounds on this
value are consistent with 1. This range of estimatedβ values
demonstrates that the simulated response of the MPI-ESM-
LR model provides a good fit to observed zonal mean [O2]
changes between∼ 1970 and∼ 1992 in response to external
forcing. A positive detection result (β = 5.30) is also found
for observed [O2] changes in the Pacific Ocean using a 2-
D pattern with MPI-ESM-LR. However, this scaling factor
is much larger than 1 indicating poor model-data agreement
in amplitude. In contrast, the null hypothesis that observed
changes in marine oxygen are caused by natural internal vari-
ability cannot be rejected for the Atlantic Ocean, where the
5–95 % range ofβ estimates are indistinguishable from zero,
with a best estimate scaling factor of less than 1 (β = 0.89).
The residual consistency test fails for this region only, sug-
gesting that there are elements of the observed [O2] variabil-
ity which are not well captured by the model in the Atlantic
Ocean. Overall, an external influence on historical changes
in observed [O2] is detected for the zonally averaged global
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Fig. 9.  Regression coefficients (β) and their 90% confidence intervals plotted as a function of 2 

EOF truncation (k) for 1-D MPI-ESM-LR (A) and HadGEM2-ES (B) optimal detection 3 

analyses.  β estimates are relatively invariant where the residual consistency check passes (at k 4 

values shown in red). 5 

Fig. 9. Regression coefficients (β) and their 90 % confidence inter-
vals plotted as a function of EOF truncation (k) for 1-D MPI-ESM-
LR (A) and HadGEM2-ES(B) optimal detection analyses.β esti-
mates are relatively invariant where the residual consistency check
passes (atk values shown in red).

ocean and Pacific basin, although the observed response is
larger than that simulated by ESMs at all scales.

4 Discussion

This study presents, for the first time, an optimal finger-
printing analysis detecting statistically significant global de-
creases in observed oceanic [O2] in response to external forc-
ing, as distinct from internal variability driven by the leading
climate modes. The primary natural external forcing imposed

on [O2] is explosive volcanism, a perturbation on the climate
system that is generally limited to the ocean’s upper∼ 500 m
on interannual timescales (Frölicher et al., 2009). Because
the observed and modelled deoxygenation occurs throughout
the water column and on interdecadal timescales, we can in-
fer that rising greenhouse gas concentration is the main driver
of a detectable external forcing on historical [O2] changes
between∼ 1970 and∼ 1992. In the 1-D analysis we find
the most detectable [O2] change signal relative to internal
variability at mid- to high latitudes in regions of water mass
renewal where the observed subsurface zonal mean oxygen
decreases are largest. Helm et al. (2011) attribute∼ 85 % of
global ocean deoxygenation in polar regions to elevated up-
per ocean stratification which increases the ventilation age of
downwelling water parcels allowing for more biological oxy-
gen consumption to occur, consistent with a range of prog-
nostic modelling studies (Sarmiento et al., 1998; Bopp et
al., 2002; Matear and Hirst, 2003). We also find significant
increases in upper ocean stratification between∼ 1970 and
∼ 1992 at high latitudes for MPI-ESM-LR and HadGEM2-
ES historical integrations concurrent with enhanced subsur-
face deoxygenation. Moreover, the inability of either model
to reproduce observed increases in zonal mean stratification
in the Southern Ocean could provide a mechanistic expla-
nation for why modelled [O2] decreases are considerably
smaller than observed in this region. Jungclaus et al. (2013)
also show that the ocean model within MPI-ESM-LR overes-
timates ventilation in the Antarctic Circumpolar Current sys-
tem, producing enhanced oxygenation of the oceanic interior
in this region. Large uncertainties are entrained into model
estimates of physical circulation changes owing to incom-
plete assessments of the competing roles of stratification and
wind forcing (e.g., Le Qúeŕe et al., 2007; B̈oning et al., 2008;
Downes et al., 2011) in controlling ventilation processes in a
warmer world.

Although we find a clearly identifiable influence of exter-
nal forcing on recorded patterns of [O2] change, best esti-
mates ofβ for both 1-D and 2-D global analyses are consis-
tently greater than one suggesting that model responses need
to be scaled up to match the observations. There are a num-
ber of potential explanations for this result. One possibility,
endemic to climate sensitive variables that are locally hetero-
geneous and difficult to simulate (Masson and Knutti, 2011),
is that [O2] data could exhibit too much small-scale variabil-
ity to be directly comparable with smoother model fields.
This potential discrepancy could yield observed change sig-
nals with artificially inflated amplitudes relative to model re-
sponse patterns, although we try to account for this effect
by spatially smoothing the data prior to model evaluation.
Detection results are robust across a range of EOF trunca-
tions and temporal averaging schemes with no evidence of
under or over fitting within the TLS regression, such that
methodological choices about data processing are unlikely to
have significantly biased scaling factors. Model errors could
also contribute to elevatedβ values if imposed forcings in
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CMIP5 historical experiments are too weak or ESMs are less
responsive to external forcing than in reality. Since CMIP5
historical forcings are prescribed from observations (Taylor
et al., 2009, 2012) the former seems unlikely; however, there
is evidence to support the proposition that the current gener-
ation of ESMs systematically underestimate observed vari-
ability in [O2]. For example, in good agreement with our
1-D scaling factors, hindcast simulations initialised globally
(Rödenbeck et al., 2008) and for the North Pacific (Deutsch
et al., 2005, 2006) underestimate observed interannual to
decadal variability in ocean oxygen by a factor of between
∼ 2 and∼ 3. It has been suggested that coarse resolution
models might underestimate variability in simulated passive
tracers since they do not resolve mesoscale ocean dynamics
(Hirst et al., 2000; Jochum et al., 2007). Moreover, coupling
frequency between the ocean and atmosphere (once a day in
MPI-ESM-LR and HadGEM2-ES simulations) might also be
insufficient to fully capture climate variability in state-of-the-
art ESMs. This could support the assertion that the response
of models to secular climate change may also be underes-
timated, since a more naturally variable ocean-climate sys-
tem will likely be more sensitive to imposed external forc-
ings (von Storch and Zwiers, 1999; Swanson et al., 2009).
However, the piControl derived estimates of natural internal
variability used in this analysis are shown to be consistent
with observed variance using a standard residual consistency
test and comparison of simulated noise with two observa-
tional estimates (Sect. 2.2 and Table 2).

Qualitative model-data comparison (Sect. 3.1) suggests
that regional differences between modelled and observed pat-
terns of [O2] change could also contribute to the weaker
simulated zonal mean signal. However, consistent with the
assumption of the TLS detection model that “structural
uncertainty” has the same structure as internal variability
(e.g., Terray et al., 2012), model errors generally fall within
the range of internal variability (Fig. 7). Regional differences
probably result from the omission of key biogeochemical and
physical processes that control marine oxygen distribution at
a local scale. Particularly, 2-D model response patterns are
unable to reproduce a net deoxygenation signal in the trop-
ical thermocline, consistent with deficiencies in modelling
studies (Bopp et al., 2002; Matear and Hirst, 2003; Stramma
et al., 2012a). Stramma et al. (2012a) report that the spu-
rious tropical [O2] increases at 300 dbar in the UVic ESM
may be primarily related to the inability of coarse resolu-
tion ocean models to resolve the fine scale equatorial cur-
rents which control the oxygen budget of the OMZs (Brandt
et al., 2010; Stramma et al., 2010). Their sensitivity study
suggests that alternative proposed model deficiencies such as
artificially high rates of diapycnal mixing within the tropical
thermocline (Gnanadesikan et al., 2007) and the omission of
a pCO2 sensitive C:N stoichiometry in primary production
(Oschlies et al., 2008; Tagliabue et al., 2011) do not resolve
the erroneous tropical [O2] increases in their model. In the
case of MPI-ESM, a comparison between the low resolution

(analysed in this study) and eddy-permitting model configu-
rations (MPI-ESM-MR with a nominal resolution of∼ 0.4◦)
shows only a slight improvement in the representation of
[O2] in the thermocline (Ilyina et al., 2013). This indicates
that eddy-permitting spatial resolution of the ocean model
alone is insufficient to solve the coupled models deficien-
cies with respect to [O2] dynamics. Other model-data dis-
crepancies, particularly simulated oxygen increases within
the ocean interior at high latitudes, are likely to be related
to persistent errors in model physical mixing and deep ocean
ventilation, as reported for historical CMIP5 experiments of
IPSL-CM5A and CNRM-CM5.1 (Śeférian et al., 2012). In
addition, the inability of models to capture [O2] dynamics
in ice-covered high-latitude areas can be attributed to uncer-
tainties in the underlying sea-ice models related to the growth
and melting of seasonal ice (e.g., Notz et al., 2013).

Counter to the global and Pacific Ocean detection results,
our analysis finds observed patterns of [O2] change in the
Atlantic basin to be indistinguishable from natural internal
variability. The high internal variability of Atlantic oxygen
has been reported by others (e.g., Johnson and Gruber, 2007)
and in an analysis of the essential ocean indices the At-
lantic scored poorly from the perspective of the strength of
signal-to-noise ratio (Banks and Wood, 2002). These find-
ings are supported by modelling studies which show secular
increases in Apparent Oxygen Utilisation (AOU) of the sub-
surface North Atlantic to be rendered statistically insignif-
icant by internal variability associated with the North At-
lantic Oscillation (Fr̈olicher et al., 2009). Thus, in the At-
lantic, high levels of internal variability coupled to a smaller
observed mid- to high-latitude deoxygenation trend (relative
to the Pacific and Southern Oceans; Helm et al., 2011) reduce
the signal-to-noise ratio, contributing to the null detection re-
sult for this basin. The same conclusion was reached for sea
surface salinity where the single fingerprint analysis of Ter-
ray et al. (2012) shows robust detection of observed salinity
changes in response to anthropogenic forcing for the Pacific
basin but with scaling factors consistent with 0 for the At-
lantic Ocean.

5 Summary and conclusions

Our analysis shows that the global consistency and pro-
nounced meridional structure of [O2] changes between
∼ 1970 and∼ 1992 recorded by Helm et al. (2011) provide
a distinct fingerprint of climate change in the oceans, which
is robustly detected against internal variability as simulated
by models. The unprecedented spatiotemporal coverage of
data and sensitivity of [O2] to climate perturbation provides a
unique opportunity to validate the response of ESMs to con-
ditions of global change on multidecadal timescales. Rigor-
ous assessment of ESMs against observations using detec-
tion and attribution methods supports the need to improve
model physics and biogeochemistry, but also reveals that
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these models already have significant capacity to simulate
many aspects of the ocean system, particularly the deoxy-
genation at mid- to high latitudes. However, both MPI-ESM-
LR and HadGEM2-ES underestimate the observed [O2] re-
sponse to external forcing, suggesting that model projections
for future ocean deoxygenation in response to climate change
may be too conservative. Furthermore, both models perform
poorly at low latitudes, indicating that model projections in
that region may not be reliable.

Detectable anthropogenic contributions to recent trends in
ocean temperature (Barnett et al., 2005; Pierce et al., 2006;
Gleckler et al., 2012) and salinity (Stott et al., 2008; Ter-
ray et al., 2012) have already been identified. Taken to-
gether, these marked changes to global heat and freshwa-
ter fluxes implicitly support our finding that stratification-
driven global deoxygenation has started to emerge from the
envelope of internal variability. We find the most detectable
changes in [O2] relative to internal variability to occur at
high latitudes where the independent and synergistic effects
of secular ocean warming, acidification and deoxygenation
could have a major impact on polar ecosystems and biogeo-
chemical cycles (Gruber, 2011). Subsurface [O2] changes
at high latitudes (particularly in the Pacific and Southern
Oceans) should, therefore, be monitored closely alongside
more widely documented [O2] decreases within the OMZs
(e.g., Stramma et al., 2008) to better constrain the anthro-
pogenic fingerprint of climate change in the oceans. Models
predict that ocean deoxygenation at mid- to high latitudes
will continue to intensify under global warming conditions,
such that climate-driven perturbation to oceanic oxygen will
become more distinct with time. Therefore, on-going obser-
vational efforts from time-series, repeat hydrographic sec-
tions and global in-situ profiling floats (e.g., Argo; Gruber et
al., 2010) are crucial to better understanding natural variabil-
ity in marine O2 on multidecadal timescales and improving
the detectability of emergent anthropogenic trends.
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