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Robust Control Compensation for Space Descent & Landing*

Pedro Simplı́cio1 and Andrés Marcos1

Eric Joffre2, Mattia Zamaro2 and Nuno Silva2

Abstract— This paper presents a complete modelling, syn-
thesis and analysis methodology of control compensators for
descent and landing on small planetary bodies. These missions
are scientifically very rewarding, but also extremely challenging
due to the complex and poorly-known environment around
those bodies, calling for the ability to manage competing
robustness/performance requirements by design. Here, this is
achieved using robust control tools and the recently-developed
structured H∞ framework. The proposed method is verified for
three distinct landing trajectories on the Martian moon Phobos.

I. INTRODUCTION

A renewed scientific interest has been growing in the
exploration of small asteroids in addition to larger planetary
bodies such as Mars, since their weaker gravitational field
makes them more easily accessible. However, these mis-
sions are very challenging from an engineering perspective,
particularly if the natural dynamics of the target asteroid is
exploited to alleviate descent & landing (D&L) propellant
consumption requirements. This is because small bodies are
typically characterised by highly irregular and poorly-known
shapes, which render their environment extremely uncertain
and variable. Moreover, due to the interplanetary distances
involved, fully autonomous algorithms are required to cope
with communication delays and spacecraft subsystems degra-
dation, as demonstrated by the European Rosetta mission.

As part of the UK Space Agency Technology Programme,
the University of Bristol and Airbus Defence and Space
were awarded the project ”Robust and Nonlinear Guidance
and Control for Landing on Small Bodies”, with the aim to
investigate the application of robust control techniques for
the design of D&L guidance and compensation strategies. Al-
though a generic framework was pursued, the project focused
on the Martian moon Phobos, which is a strong candidate for
an European sample return mission. To reach its goal, a sep-
aration between guidance and control compensation schemes
(depicted in the block diagram of Fig. 1 and discussed
later on) was assumed within the project. While previous
studies have been dedicated to the comparison [1][2] and
optimisation [3] of guidance laws, this paper is entirely
focused on the design of robust control compensators.

In fact, significant room for improvement can be achieved
at this level since D&L control compensation is conven-
tionally over-simplified or even non-existent, which is only
practical if the target body is well-known or if guidance
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algorithms do not rely on its natural dynamics. The ap-
plication of robust control techniques is nowadays a well-
established industrial practice for spacecraft attitude control
design (e.g. [4][5]), but not so much for orbital control.
This paper aims therefore to address the latter point. This
approach is further motivated by, and based on, the recently-
developed structured H∞ framework [6][7], which is partic-
ularly suitable for industry-oriented applications.

The paper is organised as follows: Sec. II introduces the
Phobos benchmark under consideration, Sec. III describes
the development of models that capture the D&L dynamics
and uncertainties, Sec. IV is then dedicated to the synthesis
of structured robust control compensators and Sec. V to their
analytical and Monte-Carlo robustness assessment.

II. PHOBOS MISSION BENCHMARK

Landing on Phobos is particularly challenging because of
its reduced mass (8 orders of magnitude smaller than Mars)
and proximity to the red planet (mean orbital altitude about
6000 km), which causes the planet’s sphere of influence to
end just 3.5 km above Phobos’ surface. Hence, there is no
possibility for Keplerian orbits around Phobos and the third-
body perturbation of Mars cannot be neglected. Furthermore,
due to the irregular shape and mass distribution of Phobos,
the gravity of the moon cannot be accurately accounted for
by a spherical field, thus it has to be described using a
gravity harmonics (GH) model. In this case, using spherical
coordinates (r, θ, φ) for distance to barycentre, co-latitude
and longitude, as well as R for a reference radius and µg

for the gravitational constant, the gravity potential is given
by [8]:

Ug(r, θ, φ) =
µg

R

n̄∑
n=0

(
R

r

)n+1 n∑
m=0

Cmn (φ)Pmn (cos θ) (1)

where Pmn (x) are the associated Legendre polynomials and:

Cmn (φ) = Cn,m cosmφ+ Sn,m sinmφ (2)

is the expansion of the GH coefficients Cn,m and Sn,m. For
Phobos, n̄ = 4 (i.e., 28 coefficients) is assumed to suffice.
However, 19 of these coefficients are highly inaccurately
known. In fact, each of them is affected by a Gaussian
dispersion with standard deviation equal to its mean value.

Given the small eccentricity of Phobos’ orbit around Mars
(approximately 0.015), the nonlinear dynamics of a space-
craft in the vicinity of the Mars-Phobos system is typically
described as a circular restricted three-body problem. In this
case, its motion can be written in a body-centred body-fixed
(BCBF) frame with origin at the moon’s barycentre as [1]: ṙ(t)

v̇(t)
ν̇(t)

 = f (r(t),v(t), ν(t)) +

03×3

I3×3

01×3

a(t) (3)
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Fig. 1. Reference GNC architecture (left) and D&L trajectories (right) with corresponding value of ∆V

where the state vector
[
r(t) v(t) ν(t)

]T
gathers the po-

sition and velocity of the spacecraft with respect to Phobos,
as well as the true anomaly of the latter around Mars, and
the control vector a(t) represents any propulsive acceleration
generated by the spacecraft in the BCBF frame. It shall be
noted that the vector field f (r(t),v(t), ν(t)) can become
extremely complex since it has to account for: [i] the three
gravity forces as per Eq. (1) of Mars on Phobos, of Mars
on the spacecraft and of Phobos on the spacecraft, [ii] non-
inertial effects due to the rotation of the BCBF frame and
[iii] propagation of the true anomaly of Phobos for the
computation of its position.

In this benchmark, the behaviour of the spacecraft is
simulated using the block diagram in Fig. 1, where the
”spacecraft dynamics & kinematics” (SDK) model describes
the relative motion of Eq. (3). For ”D&L guidance” logics,
two paradigms can be defined: [i] open-loop, employed when
a reference trajectory {rref(t),vref(t)} and thruster profile
aref(t) are generated before and remain unchanged during
the descent, or [ii] closed-loop, which refers to the case
when the thruster profile is computed in real-time to correct
the trajectory based on onboard measurements (as shown in
Fig. 1 by the dashed lines).

Regardless of the type of guidance that precedes it, the ar-
chitecture may be augmented with a ”control compensator”,
which introduces an additional acceleration vector command
acmp(t) to further alleviate trajectory errors. As anticipated
in Sec, I, the design of such a control compensator is the
main focus of this paper. For synthesis and analysis purposes,
three reference trajectories (RTs) [1] have been designed.
These trajectories are also provided in Fig. 1, together with
their nominal propellant requirements in terms of ∆V .

III. SPACE D&L SUBSYSTEM MODELLING

This section introduces the D&L subsystem models devel-
oped for control design. It covers the spacecraft dynamics
in the vicinity of Mars-Phobos system (Sec. III-A), the
inclusion of gravitational uncertainties via linear fractional
transformations (LFTs) (Sec. III-B) and the definition of
actuator/navigation models (Sec. III-C).

A. Orbital perturbation theory

For control design purposes, it is convenient to have
a linear representation of Eq. (3), which is achieved via
linearised orbital perturbation theory [9]. According to this
theory, state and control variables can be defined at different
operating points along a given trajectory as the sum of a ref-
erence (desired) value and small perturbations (deviations).
The dynamics of these perturbations is then approximated

by the 1st order terms of the Taylor series expansion of
f (r(t),v(t), ν(t)) from Eq. (3) around the reference points:δṙ(t)

δv̇(t)
δν̇(t)

 = Jf (t)

δr(t)
δv(t)
δν(t)

+

03×3

I3×3

01×3

 δa(t) (4)

in which the Jacobian matrix given by:

Jf (t) =

[
∂f

∂r

∂f

∂v

∂f

∂ν

]∣∣∣∣∣∣∣∣
r = rref(t)
v = vref(t)
ν = νref(t)

(5)

is computed via finite differences due to the complexity of
f (r(t),v(t), ν(t)). Performing this linearisation at different
instants of time ti, i = {1, . . . , N} along a reference
trajectory allows to generate a set of linear time-invariant
(LTI) SDK models GiSDK(s):ẋSDK(s)

δr(s)
δv(s)

 =

 J if

03×3

I3×3

01×3

I6×6 06×1 06×3

[xSDK(s)
δa(s)

]
(6)

where J if = Jf (ti) is a constant matrix given by Eq. (5) and
xSDK(s) is the internal state vector.

B. Inclusion of gravitational uncertainties

As introduced in Sec. II, 19 GH coefficients are highly
inaccurately known, which means that the computation of J if
in Eq. (5) is subject to a high level of uncertainty. To capture
the effect of this uncertainty, a mathematical representation
known as linear fractional transformation (LFT) [10] is
employed. Using this approach, it is common to isolate what
is known as an LTI system M(s) and gather all the ”trouble-
making” (uncertain, time-varying or nonlinear) components
into an operator ∆x = diag (δx1 , δx2 , ..., δxn), bounded as
||∆x||∞ ≤ 1. LFTs are particularly attractive because typical
algebraic operations preserve the LFT structure.

To build representative GiSDK(s) LFT models, the follow-
ing procedure (to be repeated for every ti) has been adopted:

1) To minimise the size of the resulting LFT, only the GH
coefficients with higher impact on J if are selected and
denoted ρGH. For this choice, two criteria are applied:
impact of each coefficient on the nonlinear simulation
of Eq. (3) and relative weight of each coefficient on
dedicated interpolations (refer to next step).

2) An appropriate number of dispersed samples is then
generated and the Jacobian matrix in Eq. (5) is evalu-
ated for each sample. Here, two cases are considered:



2σ and 3σ dispersions, capturing respectively 95.5%
and 99.7% of uncertainty. For each case, a matrix with
polynomial dependence on the uncertain parameters
J if (ρGH) is then interpolated, which is accomplished
using the orthogonal least-squares approximation rou-
tine of ONERA’s APRICOT library [11].

3) The LTI system of Eq. (6) with J if (ρGH) is finally
converted into an LFT also via the APRICOT library,
which adjusts the necessary repetitions of each coef-
ficient in ρGH to meet a pre-specified approximation
error. It is therefore reasonable that its size changes
with the level of conservativeness and also along the
trajectory. This behaviour is depicted in Fig. 2.
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C. Actuator and navigation models
The ”allocation & actuation” block in Fig. 1 is responsible

for the introduction of thruster realisation errors. These errors
are time and trajectory dependent, but they are assumed to
be bounded. Therefore, this effect can be naturally captured
using a simple LFT model GA(s) and uncertainty block
∆A(s) = diag (δax, δay, δaz, I3×3 δaod). Here, δax, δay, δaz

are uncertainties affecting the three axes and δaod represents
off-diagonal effects. Note that the relative ranges of ∆A(s)
have been established from Monte-Carlo simulations and
normalised to [-1,1] with M(s) absorbing the scaling factor.
Since ranges are relative, GA(s) is applicable to both full
acmd(t) and perturbed δacmd(t) commands.

The ”sensors & navigation” algorithms introduce two
different effects: a quantisation and a noise error. The former
effect is due to the fact that position and velocity estimates,
r̂(t) and v̂(t), are updated every 60 s, which is sufficient
given the slow dynamics of the spacecraft, but injects a non-
smooth signal. To attenuate it, estimates are filtered by a
first-order low-pass filter GLPF(s) with 0.05 Hz bandwidth.
The noise error is accounted for by colouring white noise
signals nr(t) and nv(t) through first-order transfer functions
GrNAV(s) and GvNAV(s) such that the frequency content
produced by the nonlinear ”sensors & navigation” is recov-
ered. These filters are equally applicable to full and perturbed
estimates since rref(t) and vref(t) are known without error.

IV. STRUCTURED ROBUST CONTROL SYNTHESIS

This section is dedicated to the synthesis of robust control
compensators using structured H∞ optimisation, starting
with a brief overview of this paradigm in Sec. IV-A. Its
application to the D&L problem is illustrated in Sec. IV-B
and nominal results are shown in Sec. IV-C.

A. The structured H∞ framework
The structured H∞ paradigm has been first proposed

as an alternative to tackle the main practical limitation of
standard H∞ optimisation, namely its inability to constrain
controller size or structure by design. This algorithm is part
of the hinfstruct and systune routines of MATLAB [6] and
is nowadays able to seamlessly account for parametric plant
uncertainties [7]. As the name indicates, the control problem
remains the same - an H∞-norm minimisation of the LFT:

||Fu {M(s),∆(s)} ||∞ < 1 (7)

but, thanks to a rearranged formulation, it enables the com-
bined handling of multiple requirements, as well as design
plants. The latter feature is particularly valuable for the D&L
problem since it allows to synthesise controllers that are valid
not only for one, but for a set of points in Space.

Naturally, these advantages come at the expense of a
challenging (non-smooth) mathematical problem. To solve it,
structured H∞ employs local optimisation methods, hence
the initialisation of the algorithm may become of critical
relevance, which was not the case with standard H∞.
Nonetheless, its ability to specify controller structure and
hence take advantage of industry-legacy knowledge makes
structured H∞ a very successful approach and applications
to Space [12][13] and Aeronautics [14] have already flown.

B. Application of structured H∞ to D&L compensation
As introduced in Sec. II, the objective of the control com-

pensator is to provide an additional acceleration command
acmp(t) to compensate for deviations with respect to a RT.
The structure chosen for this compensator is shown in Fig. 3.

GLPF(s)
Ki(s)

03x1

aref

rref

vref

r̂ v̂

𝛿r ̂

𝛿v̂

𝛿rcmd

𝛿rlpf

𝛿vlpf
acmp = 𝛿a

Control compensator

Fig. 3. Control compensator architecture

At the core of the compensator, there is an LTI con-
troller Ki(s) that must be designed to track commanded
deviations δrcmd(t) using position and velocity deviation
measurements δr̂(t) and δv̂(t) with respect to a given RT,
filtered by GLPF(s) (Sec. III-C). An additional command
δvcmd(t) could have been included, but it was found to be
redundant and hence not considered. With such a structure,
the controller can be designed based on the orbital pertur-
bation model (Sec. III-A) by realising that the acceleration
command is actually a perturbation, i.e., acmp(t) = δa(t).
The closed-loop interconnection is depicted in Fig. 4 (left),
which includes the actuator/navigation blocks of Sec. III-
C and the SDK LFT of Sec. III-B. Here, the superscript
i = {1, . . . , 10} specifies different points along the RT and ∗
represents 2σ or 3σ, depending on the LFT conservativeness.

Generically speaking, a different LTI controller Ki(s)
can be synthesised for each design point i but, with the
capabilities of hinfstruct (Sec. IV-A), a single multi-plant
controller K(s) can be synthesised so as to fulfil control
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requirements at all the design points i = {1, . . . , 10}.
Requirements are posed by rearranging the problem as
in Fig. 4 (right) and defined through frequency-dependent
weights Wi(s) and Wo(s). For this problem, weights were
chosen the same for all the design points. Weight Wi(s)
is employed for a differential scaling within the signal
w(s) = [δrcmd(s); nr(s); nv(s)]. For this specific case, with
main focus on the effect of GH uncertainties, no noise has
been considered, thus Wi(s) = diag (I3×3, 03×3, 03×3). The
weight Wo(s), applied to signal z(s) = [δre(s); δa(s)], is
partitioned as Wo(s) = diag (WS(s), WA(s)), where WS(s)
and WA(s) impose tracking and actuation requirements.

More specifically, as a consequence of Eq. (7), the re-
sponse of δre(s) shall be bounded by W−1

S (s), hence this in-
verse shall have [i] small low-frequency gain (10−3) for little
static error, [ii] reasonable high-frequency gain (2) for good
stability margins and [iii] roll-over frequency (10−2 rad/s)
appropriate for the problem. Similarly, δa(s) is bounded
by W−1

A (s) and the inverse shall have [i] reasonable low-
frequency gain (5.5 × 10−4) establishing maximum control
effort, [ii] small high-frequency gain (10−9) for little reac-
tivity to noisy signals, [iii] roll-off frequency (10−3 rad/s)
able to accommodate the tracking bandwidth.

Following the multi-plant approach, plants at different
design points are aggregated in a block-diagonal structure
and the hinfstruct routine is called to find a single stabilising
controller. As mentioned in Sec. IV-A, this routine is nowa-
days able to account for parametric uncertainties ∆i(s) in the
optimisation problem. In the same section, it is anticipated
that the initialisation and choice of tuneable parameters may
be critical for the success of the optimisation. Here, a third-
order controller was chosen with the off-diagonal terms of
its state-space matrices fixed to zero and with reasonable
initial guesses for the remaining terms. As a consequence, the
highly-coupled D&L dynamics will be tackled by a diagonal
(but robust) controller with 24 tunable parameters.

Following this strategy, four controllers have been de-
signed: K0 (not accounting for any uncertainties), KA (ac-
counting for ∆A only), KA,2σ (accounting for ∆A and
∆i

SDK,2σ) and KA,3σ (accounting for ∆A and ∆i
SDK,3σ).

C. Nominal results
Before proceeding to an in-depth robustness analysis, the

nominal behaviour of the designed controllers is analysed.
All of them perform very similarly under nominal conditions,
thus only results concerning KA,2σ are shown in this section.
Fig. 5 shows the singular values of δre(s) and δa(s) channels

against the corresponding H∞ constraints W−1
S (s) (top) and

W−1
A (s) (bottom) along RT1 (in different colours).
From here, it is clear that, in nominal conditions, design

requirements are met for all the points throughout RT1, al-
though margins with respect to W−1

S (s) and W−1
A (s) become

more challenging closer to touchdown. A distinction is also
made between diagonal and off-diagonal terms (continuous
and dashed lines), which shall be as separate as possible to
minimise cross-coupled interactions.
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In addition, to demonstrate the effect of control compen-
sation, a nonlinear simulation of RT1 is depicted in Fig. 6,
showing trajectory and arrows with magnitude and direction
of acceleration reference aref(t), compensation acmp(t),
and total signal (i.e., aref(t) + acmp(t)). The compensator
command is clearly visible, with smaller magnitude than
the reference vector, but enough to correct it and track the
desired trajectory.

V. ROBUSTNESS ANALYSIS AGAINST UNCERTAINTIES

In this section, the impact of gravitational uncertainties
when using different compensators is assessed. This assess-
ment is carried out both analytically via the structured singu-
lar value µ (introduced in Sec. V-A and applied in Sec. V-B)
and through Monte-Carlo (MC) simulation (Sec. V-C).



Fig. 6. Nonlinear simulation of RT1 using controller KA,2σ

A. The µ analysis framework
The fundamental approach for analytical system robust-

ness assessment is based on the structured singular value
µ [10]. Without uncertainties, nominal performance (NP) is
assessed by verifying if Eq. (7) holds for ∆ = 0. Under the
presence of the uncertainties bounded as ||∆||∞ ≤ 1, robust
performance (RP) is assessed through:

µ(M) =
1

min∆p
{σ̄(∆P) : det(I −M∆p) = 0}

(8)

where ∆p corresponds to the block ∆ augmented with a
fictitious uncertainty that closes the input/output channels of
M(s) and σ̄(∆P) represents its maximum singular values.
Smaller values of µ(M) indicate better RP properties and
all the requirements are fulfilled if and only if µ(M) < 1.
Moreover, the norm of the smallest set of uncertainties that
maximises µ(M) is given by ||µ(M)||−1

∞ . The computation
of Eq. (8) is NP-hard, hence its estimation relies on lower
and upper bounds. Robust stability (RS) can also be verified
via µ analysis but, since RS is not of concern for any of the
controllers, it is not addressed here.

B. Application of µ analysis to D&L compensation
An overview of all the information provided by µ analysis

is illustrated in Fig. 7 (shown in the next page for clarity)
for point i = 8, which corresponds to a descent time around
6500 s. On the top plots, curves related to the NP and
RP tests are depicted (there are actually two lines for RP
representing lower and upper bounds of µ). On the bottom,
the sensitivity of RP results against each element of ∆
(directly computed with µ algorithms) is also plotted. A
higher sensitivity indicates that the corresponding uncertainty
has a stronger impact on the solution found with µ.

The left-most column shows the closed-loop analysis with
KA against the effect of ∆A. Since NP and RP curves lie
below 1, the corresponding conditions are met in this case,
which is natural as the uncertainties considered for design
and analysis are the same. NP is more demanding at low
and very high-frequency, which could be anticipated from
the proximity of the closed-loop responses in Fig. 5 with
the W−1

S (s) and W−1
A (s) curves. Performance degradation

caused by the presence of uncertainties is then translated by
RP indicators larger than NP.

The central plots of Fig. 7 show the same analysis with
KA, but now against the combined effect of actuator and
GH uncertainties, [∆A; ∆8

SDK,3σ]. As expected, considering

a wider range of uncertainties leads to the same NP, but
degraded RP, now approaching unity. Also, the elements of
∆8

SDK,3σ are now included in the sensitivities plot. In fact,
the impact of these elements becomes comparable to that of
∆A, precisely at low-frequency where RP is worse.

The right column then shows the results against the same
set of uncertainties [∆A; ∆8

SDK,3σ], but now replacing the
controller with KA,3σ . This leads to NP and RP conditions
being met by a change of closed-loop behaviour at low-
frequency. However, sensitivity frequency responses remain
roughly the same, which indicates that this type of insight is
not intrinsically dependent on the controller being analysed.

C. Monte-Carlo verification
The robustness of the four controllers designed in Sec. IV-

B is now verified via nonlinear MC simulation by comparing
results of the same 2000 samples of the 19 GH coefficients
in Eq. (2) (randomly sampled with Gaussian distributions).
In addition, verification is complemented with worst-cases
(WCs) that correspond to the combination of uncertainties as-
sociated with RP peaks (analytically identified via µ analysis,
at every design point). Since not all of the GH coefficients
are captured by the LFTs, every combination is tested with
the remaining coefficients set to their nominal, +3σ and −3σ
values. Hence, these WCs are expected to have a very low
probability of occurrence, but to be more challenging than
the remaining MC runs.

The outcome of this campaign is illustrated in Fig. 8
for RT1 and KA,2σ , highlighting distance and speed er-
rors with respect to the RT, magnitude of the acceleration
compensation command and total ∆V (i.e., reference plus
compensation). The average and standard deviation of the
maximum values of these indicators using the different
controllers are then listed in Table I. For clarity, failure cases
(i.e., spacecraft crashing on or diverging from Phobos) are
not shown in the plots, but are accounted for in the table.

Fig. 8. Nonlinear simulation of 2000 Monte-Carlo runs and worst cases
from µ analysis of RT1 using KA,2σ

As expected, the non-robust controller K0 is not suitable
for this scenario since it yielded MC and WC failure ratios of
44.15 and 33.33%. The three robust controllers then showed
satisfactory and equivalent distribution indicators, but distinct
failure ratios. With KA, no failures were obtained from the
MC simulations, but 12.5% of the µ WCs resulted in failure.
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Fig. 7. µ bounds (top) and sensitivities (bottom) at i=8 using KA w/ ∆A (left), KA w/ [∆A; ∆8
SDK,3σ ] (centre) and KA,3σ w/ [∆A; ∆8

SDK,3σ ] (right)

TABLE I
ROBUSTNESS INDICATORS FOR RT1 USING DIFFERENT CONTROLLERS

K0 KA KA,2σ KA,3σ

Max. MC values Avg. Std. Avg. Std. Avg. Std. Avg. Std.
|r− rref | (m) 0.503 0.259 0.029 0.013 0.030 0.014 0.038 0.020
|v − vref | (mm/s) 1.234 0.130 1.206 0.008 1.208 0.007 1.212 0.013
|acmp| (mm/s2) 0.411 0.207 0.431 0.208 0.430 0.208 0.429 0.206
∆V (m/s) 8.793 0.630 8.326 0.966 8.326 0.965 8.329 0.955
MC failures (%) 44.15 0.00 0.00 0.10
WC failures (%) 33.33 12.50 0.00 16.67

The situation was improved with KA,2σ , where there was
no MC or WC failure. Finally, results using KA,3σ became
inferior, with failure ratios of 0.1 and 16.37%. Although this
last result may seem counter-intuitive, it is actually a fairly
common pitfall of robust control algorithms, in which per-
formance becomes restricted in case of an over-conservative
uncertainty specification during the design phase.

With this in mind, KA,2σ is selected as the most suitable
compensator. In order to assess its applicability to trajectories
other than the one it has been designed for, the same MC
campaigns are executed for RT2 and RT3 (recall Fig. 1) and
the corresponding indicators are gathered in Table II. Since
no detailed µ analysis was performed along RT2 or RT3, the
consideration of WCs is not pursued here.

TABLE II
ROBUSTNESS INDICATORS FOR DIFFERENT TRAJECTORIES USING KA,2σ

RT1 RT2 RT3
Max. MC values Avg. Std. Avg. Std. Avg. Std.
|r− rref | (m) 0.030 0.014 0.026 0.010 0.026 0.011
|v − vref | (mm/s) 1.208 0.007 0.694 0.253 0.661 0.325
|acmp| (mm/s2) 0.430 0.208 0.332 0.160 0.326 0.164
∆V (m/s) 8.326 0.965 8.714 0.831 7.989 0.830
MC failures (%) 0.00 0.00 0.00

The results of Table II show that the D&L runs along RT2
and RT3 have been executed with similar performance to
RT1 and also without any failure. This conclusion shows that
accounting for the uncertainties encountered along RT1 alone
turned out to be enough for the design of a compensator that
is equally able to cope with other trajectories.

VI. CONCLUSIONS

This papers illustrated how LFT modelling and structured
H∞ synthesis can be effectively adopted to design simple
yet robust control compensators for Space D&L. This in turn

paves the way for more efficient guidance strategies and more
reliable planetary landers. While doing so, emphasis was
placed on the main strengths of the structured H∞ method,
namely its ability to handle multiple plants, as well as on its
challenges, mostly related to its potential sensitivity to initial
conditions. Finally, it was shown how µ analysis can be
directly employed to support the design process and also as a
complement to more conventional Monte-Carlo verification.
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