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Abstract
Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and 
the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in min-
erals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure 
and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the 
lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pres-
sures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution 
models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent 
variable. This approach has been previously applied to models of order–disorder, but the implications for the thermodynam-
ics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy 
are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the 
endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange 
within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the 
use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory 
provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of 
excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data 
are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties 
and their variation as a function of pressure and temperature. The formulation is expected to be useful for geochemical and 
geophysical studies of the Earth and other planetary bodies.

Keywords High pressure · Excess properties · Solution model · Solid · Elasticity

Introduction

Thermodynamic and thermoelastic models of minerals and 
melts underpin our knowledge of the structure and dynamics 
of the Earth, its evolution through time, and the causes of 
seismic velocity variations in the deep interior. The physi-
cal properties of mineral endmembers are usually well con-
strained by a significant body of experimental and theoreti-
cal work to high pressure and temperature. However, most 
geologically interesting phases span a compositional range, 

which can be described as a solid solution of distinct end-
members. The variation of physical properties across these 
solid solutions is often less well constrained than the proper-
ties of the bounding endmembers, and must be approximated 
(Davies and Navrotsky 1983; Powell et al. 2014).

If the endmembers of a solid solution are structur-
ally, volumetrically, and chemically similar, mixing can 
be approximated as ideal. In an ideal solution model, the 
non-configurational contributions to the total potentials 
(internal energy, enthalpy, Gibbs free energy, and Helm-
holtz free energy) are equal to the sum of endmember 
potentials multiplied by the molar fractions of each end-
member. Unfortunately, for many geologically interest-
ing minerals, mixing is non-ideal, and excess enthalpies 
excess , volumes Vexcess and/or entropies Sexcess are often 
observed (e.g., Kerrick and Darken 1975). Constraining 
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these excess properties has proven difficult, both because 
impurities, ordering, and poor crystallinity can influence 
excess properties, and because of the challenging nature 
of the experiments required to measure those excesses. 
Indeed, the differences between estimates of excess prop-
erties reported by different research groups are often sev-
eral times the reported measurement errors (c.f. Berman 
1990). In addition, most measurements of excess proper-
ties are confined to room pressure and low temperature, far 
from the conditions of interest. Relatively little attention 
has been paid to the pressure and temperature dependence 
of these excess properties.

In the Earth Sciences, thermodynamic models of solid 
solutions have typically been formulated as explicit func-
tions of the Gibbs free energy. This is true both of disor-
dered models appropriate at high temperatures (Stixrude 
and Lithgow-Bertelloni 2011; Holland et al. 2013) and of 
models including order–disorder (e.g., Carpenter 1988; 
Ghiorso 1990; Putnis 1992; Salje 1993; Holland and 
Powell 1996; Ghiorso and Evans 2002; Holland and Pow-
ell 2006). In these models, parameter values describing 
interaction energies are typically either constant, or linear 
functions of pressure and temperature. This is equivalent 
to assuming that excess non-configurational volumes and 
entropies are zero or pressure-temperature independ-
ent. Excess volumes and entropies must approach zero 
at high pressure and low temperature, respectively, and 
it is unclear to what extent constant non-zero excesses 
impact thermodynamic and elastic properties at geologi-
cally interesting conditions. Furthermore, several pub-
lished studies suggest that excess entropies and volumes 
are dependent on pressure and temperature (e.g., Andrault 
et al. 2007; Benisek and Dachs 2012; Du et al. 2015). An 
understanding of the robustness and potential origins of 
these observations would be particularly useful for seismic 
studies which use thermodynamic models at high pres-
sures and temperatures (Sanloup et al. 2000, 2004; Davies 
et al. 2012; Mosca et al. 2012; Deschamps et al. 2012; 
Gudkova et al. 2014).

Some studies of non-ideal solutions have moved beyond 
empirical fitting by specifically considering the energetic 
consequences of mixing dissimilar endmembers. The mod-
els developed are typically still parameterised in terms of 
the Gibbs free energy, but the parameterizations include a 
consideration of the elastic energy required to match the 
volumes of the endmember lattices at 1 bar (e.g., Ferreira 
et al. 1988; Ganguly et al. 1996; Urusov 2000). In this study, 
I show that this technique is equivalent to reformulating non-
ideality as a function of the Helmholtz free energy, which 
has long been recognised as a natural potential to use for 
solid–solid reactions (e.g., Landau 1937; Dove 1997; Hobbs 
and Ord 2016).

I provide several examples which illustrate that the use of 
the Helmholtz free energy decreases the number of empiri-
cally fitted parameters required to fit experimental data, and, 
therefore, has greater predictive power than the traditional 
Gibbs free energy approaches. For pyrope-grossular garnet, the 
model is able to predict the magnitude and pressure–tempera-
ture dependence of the excess non-configurational entropy, 
which is extremely difficult to constrain experimentally. The 
implementation introduced in the following sections allows 
for the addition of further parameters where they are required 
to fit experimental data.

Excess thermodynamic properties 
of solutions

Non‑ideality in Gibbs free energy

In an ideal solution composed of multiple endmembers with 
molar proportions pi , molar volumes are linearly dependent 
on composition (X) at fixed pressure (P) and temperature (T). 
Any non-ideality in volume is incorporated via an excess term:

To satisfy the thermodynamic identity 
(

�

�P

)
T
= V  , the non-

configurational molar Gibbs free energy  of an ideal solu-
tion must also be linearly dependent on composition. The 
Gibbs free energy of a generalised non-ideal solution is, 
therefore:

where the excess energy term accounts for any non-ideality 
and configurational energy. The thermodynamic properties 
of a solid solution are found by appropriate differentiation 
of Eq. 2:

(1)V(P,T ,X) =
∑
i

piVi(P,T) + Vexcess(P,T ,X).

(2)(P,T ,X) =
∑
i

pii(P,T) + excess(P,T ,X),
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(
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)
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=
∑
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piSi −
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Finally, the other thermodynamic properties can be obtained 
using the usual identities:

A wide variety of different models for excess have been 
proposed. The simplest of these models assume com-
plete disorder in the solid solution, and take the form 
excess = excess + PVexcess − TSexcess , where the excess 
energy, volume, and entropy terms are constants. The 
entropy term accounts for both the configurational entropy 
and any non-configurational contribution. The compositional 
dependence of the excess free energy can be parameterised 
in a number of different ways, via (sub)regular (Helffrich 
and Wood 1989), (a)symmetric (Holland and Powell 2003; 
Diener et al. 2007), and Redlich–Kister models (Prausnitz 
et al. 1998), amongst others. If certain parameters are not 
well constrained by the existing measurements, they are 
commonly taken to be equal to zero or approximated using 
the excesses observed for the same element exchange in 
other phases (e.g., Powell et al. 2014).

In many natural solid solutions, order–disorder processes 
are important at the conditions of interest, and the excess 
energy and entropy terms can no longer be treated as con-
stant (Sack 1980; Sack and Ghiorso 1989; Ghiorso 1990). 
Common macroscopic treatments of order–disorder include 
the highly successful “Landau” (Carpenter 1988; Putnis 
1992; Salje 1993) and generalised “Bragg–Williams”-
type models (Nell and Wood 1989; Ghiorso 1990; Putnis 
1992; Holland and Powell 1996). In the Landau model, it is 
assumed that the “Landau” free energy (  ) of a transition is 
a polynomial expansion of the order parameter (Q). In the 
geological sciences,  is usually equated with the Gibbs free 
energy, but it is more correctly related to the Helmholtz free 
energy (Dove 1997). Typically, this equation takes the form:

where the field term H allows for non-convergent ordering 
(Carpenter et al. 1994) and Tc is the critical temperature, 
which may be pressure-/volume-dependent. In contrast, 

(7)

�(P,T ,X) =
1

V

(
�V

�T

)
P
=

1

V

(∑
i

(
pi �i Vi

)
+

�2excess

�P�T

)
.

(8) =  − PV

(9)CV = CP − V T �2 KT

(10)KS = KT

CP

CV

(11)� =
� KT V

CV

.

(12) = −HQ +
1

2
a(T − Tc)Q

2 +
1

4
bQ4 +

1

6
cQ6 +⋯ ,

Bragg–Williams models explicitly add ordered members 
to the solid solution, and minimise the Gibbs free energy 
by varying the amount of the ordered and disordered end-
members subject to the bulk composition constraints. Both 
the Landau and Bragg–Williams models are capable of 
accurately reproducing experimentally derived variations 
in the state of order and configurational entropy (Holland 
and Powell 1996).

One important contributor to non-ideality that is not 
included in the above models is the elastic energy required 
to deform the endmembers to form the solid solution. The 
very act of mixing two dissimilar endmembers involves 
expansion, contraction, and more generally distortion of the 
endmember lattices. In the following sections, the non-ideal 
model is reformulated to investigate the contribution of this 
effect to the free energy, and its pressure and temperature 
dependence.

The elastic model

Let us follow the logic of Ferreira et al. (1988) in approxi-
mating the elastic energy associated with creating a solid 
solution. It is assumed that the proportion of each end-
member is sufficiently large that the exchanging atoms have 
overlapping strain fields, and, therefore, cannot be treated as 
impurities (Carpenter et al. 1999). In very dilute solid solu-
tions, elastic strain energies are local and should be treated 
as such (Wood and Blundy 1997; Carpenter et al. 1999).

Consider two isotropic endmember minerals A and B, 
held at 0 K, where endmember A has a smaller equilibrium 
volume than endmember B. Forming the solution AxB1−x , 
therefore, requires an expansion of lattice A and contraction 
of lattice B. Each of these operations is associated with a 
change in elastic energy. In the absence of chemical interac-
tion between the two lattices (i.e., if we do not break or form 
any new bonds), a solution of A and B at a given volume will 
have an elastic energy equal to the molar weighted sum of 
the endmember elastic energies:

This static model can be extended to high temperature by 
assuming that the phonon density of states of the solution is 
equal to the molar weighted sum of the endmember densi-
ties of state, evaluated at volume V. The resulting entropy 
S of the solution is then equal to the molar weighted sum 
of the endmember entropies (Kieffer 1979). Using the rela-
tionship between the internal and Helmholtz free energies 
(  =  − TS ), an analogue to Eq. 2 is derived as follows:

(13)elastic(V ,X) =
∑
i

pii(V).

(14) (V , T ,X) =
∑
i

pii(V , T) + excess(V , T ,X).
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The properties of the solid solution at any fixed volume and 
temperature are found by partial differentiation of Eq. 14:

The other thermodynamic properties ( CP , KS , � ) can be 
found using Eqs. 9–11. A generalisation of the isotropic 
model to arbitrary stress fields and anisotropic endmembers 
is given in Appendix A, which yields an expression for the 
shear modulus, again as a function of volume, temperature 
and composition:

If excess is a constant, an expression can also be derived for 
the variation in K′ across the solution:

To calculate the non-ideality of an elastic solution with end-
member proportions pi at a given pressure and temperature, 
one must first solve Eq. 16 to find the equilibrium volume 
(although an approximate solution can be found using the 
expressions in Appendix B). Even when endmember vol-
umes differ by as much as 10% (as is the case for highly 
non-ideal binary solutions such as pyrope-grossular), the 
thermodynamic deviations from ideality are almost quad-
ratic with composition, justifying use of the regular solution 
model (e.g., Helffrich and Wood 1989). Interaction param-
eters for these models can be constrained using the excesses 
calculated at the midpoint of each binary (and ternary/higher 
order) system. For example:

(15)S(V , T ,X) = −
(
�

�T

)
V
=
∑
i

piSi −

(
�excess

�T

)

V
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(
�

�V
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T
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∑
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T
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�2excess
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V
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1

KT

�2

�V�T
=

1

KT

(∑
i

pi�iKTi −
�2excess

�V�T

)
.

(20)G(V , T ,X) =
∑
i

piGi.

(21)K�(V , T ,X) =

∑
i piKiK

�
i∑

i piKi

.

(22)WAB

(P,T) ∼ 4

A50B50

excess (P,T).

In the above derivation, I have ignored the chemical mix-
ing which must take place during solid solution formation. 
For example, in the case of the simple A–B binary, some 
of the A–A and B–B bonds in the endmember lattices will 
be replaced with A–B bonds. Such bonds are usually inter-
mediate in length, and as such this “chemical” contribution 
to mixing typically reduces the non-ideality of the system 
(Ferreira et al. 1988). The magnitude and compositional 
dependence of excess(V , T) are discussed in “The chemical 
contribution to the excess Helmholtz energy”.

The chemical contribution to the excess Helmholtz 
energy

Short‑range clustering

The excess Helmholtz energy excess(V , T ,X) (Eq. 14) is 
attributable to changes in bonding and structure resulting 
from mixing of the independent endmembers at constant 
volume and temperature (Sect. “The elastic model”). There 
are two components to this mixing. The exchange of atoms 
on particular sites in the lattice creates bonds which are 
distinct from those in the endmember lattices. In complex 
structures, there is also a potential energy contribution from 
distortion and tilting of structural groups within the lattice.

As a first approximation, let us assume that the chemi-
cal effects of mixing a set of endmember lattices (A, B ...) 
are dominated by short-range bonding within clusters of n 
atoms which sit on a distinct exchange site in the lattice 
(c.f. Inden 2001). For example, if the energetics of the A–B 
binary system can be described by short-range bonding in 
four-atom clusters, there are five possible combinations of 
atoms: AAAA, AAAB, AABB, ABBB, and BBBB. Ferreira 
et al. (1988) argued that to a first approximation, mixed clus-
ters (AAAB, AABB, and ABBB in our simple example) are 
completely relaxed at standard state conditions. The relaxed 
elastic energy of the solid solution at the composition cor-
responding to cluster c (given by endmember proportions 
pci ) can be obtained by solving Eq. 16 for Vc at standard state 
conditions ( [P0, T0] ), and then substituting into the following 
expression (modified from Eq. 14):

The total excess energy excess of a solid solution of compo-
sition X can be then determined by multiplying the relaxed 
elastic energy of each cluster by the probabilities of finding 
each cluster type in the solution Pr(c,X) and adding a term 
accounting for the configuration entropy:

(23)elastic,c =
∑
i

pci
(
i(Vc, T) − i(V0i, T)

)
.

(24)excess(V , T ,X) =

m∑
c=1

Pr(c,X)excess,c − TSconf(V , T ,X)
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where nonelastic,c is a term accounting for any other chemical 
effects affecting the free energy of each cluster. The prob-
abilities are found by minimising the Helmholtz free energy 
subject to the bulk composition constraints. Descriptions of 
how to calculate Sconf from the proportions of clusters using 
the cluster variational method (CVM) and the more easily 
extensible cluster site approximation (CSA) can be found in 
Inden (2001).

In a solid solution with a completely disordered site with 
elemental proportions [PA,PB,… ,PL] , the probability Pr(c) of 
a cluster with composition [xA, xB,… , xL] (where xi is the num-
ber of atoms of type i) is given by the multinomial distribution:

In the special case of a disordered binary solution with 
quadratic elastic energies of mixing, and where non-elas-
tic excesses are negligible, the excess non-configurational 
energy is a fixed proportion of the total unrelaxed elastic 
energy (Appendix 1 in Ganguly et al. 1993):

Relationship with macroscopic models of order–disorder

The insights obtained from the microscopic treatment 
in “Short-range clustering” can be related to generalised 
Bragg–Williams models of order–disorder (Ghiorso 1990; 
Ghiorso et al. 1995; Holland and Powell 1996; Ghiorso and 
Evans 2002; Holland and Powell 2006). These macroscopic 
models consider order–disorder processes via mixing of end-
member phases and intermediate ordered compounds. In the 
compact symmetric formalism of Holland and Powell (1996), 
the state of order in a binary An–Bn system with an ordered 
phase O ( O = ArBn−r ) is obtained by solving the equilibrium 
relationship:

where the order parameter Q is equal to the proportion of the 
ordered phase ( pO = 1 − pA − pB ) and

(25)excess,c = −elastic,c + nonelastic,c,

(26)Pr(c) =
n!

xA!xB!⋯ xL!
P
xA
A
P
xB
B
⋯P

xL
L
.

(27)excess(V , T ,X) = −
(
n − 1

n

)
elastic(X) − TSconf(X).

(28)0 = a + bQ + cX + RT lnKD,

(29)a =�R + nWAO


− (n − r)WAB


(30)b =
2

n

(
− r2WAO


− (n − r)2WBO



(31)+ r(n − r)
(
WAB


−WAO


−WBO



))

(32)c =r
(
WBO


−WAO


−WAB



)

The reaction energy �R corresponds to that required to 
create n moles of the ordered phase from the endmembers 
( (rAn + (n − r)Bn) → nO ). The interaction parameters Wij


 are 

derived from laboratory experiments.
As noted in the previous section, within solid solutions, the 

Helmholtz free energy is a more natural potential to use than 
the Gibbs free energy. The above expressions remain valid if 
 is exchanged for  , because 

(
�

��

)
P
=
(

�

��

)
V
 (see Appendix 

C). The rest of this section shows how the elastic model can 
be used to provide parameter estimates for the Bragg–Williams 
model evaluated at constant volume and temperature.

The mixed-atom clusters in “Short-range clustering” can 
be considered the microscopic counterparts to a unique set of 
ordered compounds. For example, in the four-site cluster con-
sidered in the previous section, a solid solution of composition 
AB3 at 0 K will be composed entirely of ABBB clusters (as 
long as the ABBB cluster is more stable than any linear com-
bination of the other clusters). The Helmholtz energy is linear 
between adjacent stable compounds at 0 K, because mixing 
between these compounds involves intercluster bonding not 
considered in the model in “Short-range clustering”. These 
observations provide a set of heuristics for the macroscopic 
model:

where excess,O is the excess Helmholtz free energy of the 
ordered compound (Eq. 25). The factor n in the first expres-
sion arises from the n moles of the ordered phase created 
in the reaction rA + (n − r)B → nO . If n = 2 and the excess 
energy is quadratic with composition (a reasonable assump-
tion except in cases of extreme non-ideality), then complete 
disordering at high temperature requires that:

This expression uses Eq. 26 to deduce that the proportion of 
the mixed cluster at the midpoint of the binary is 0.5 when 
the solution is completely disordered. If n > 2 , stabilising 
a single ordered phase (O = ArBn−r ) at 0 K requires non-
zero non-elastic energies ( nonelastic,c ) to destabilise the other 
potential ordered phases. The excess energy associated with 
each cluster can, therefore, not be quadratic as a function 
of composition and there is no obvious way to estimate an 
appropriate value of WAB


 . The only requirement is that the 

(33)+ (n − r)
(
WBO


−WAO


+WAB



)

(34)KD =
(1 − pA)(1 − pB)

pApB
.

(35)�R = nexcess,O

(36)WAO


= WBO


= 0,

(37)WAB


= 4(excess,O)∕2) = 2excess,O.
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ordered phase is more stable than the antiordered phase, 
which is only true if

Calculating excesses and activities at fixed pressure 
and temperature

A common use for thermodynamic solution models is in 
phase equilibrium calculations. These calculations solve 
(either directly or indirectly) the equilibrium relations for 
the independent set of endmember reactions:

where ni is the number of moles of endmember i in the reac-
tion, and �i is the chemical potential (or partial Gibbs free 
energy) of that endmember. For a solution with bulk com-
position � , and free energy :

The elastic model is described in terms of the Helmholtz 
energy at constant volume and temperature, and so calcula-
tion of the chemical potentials of the endmembers at con-
stant pressure requires the following steps:

1. Find the equilibrium volume for a solid solution of a 
given composition by solving Eq. 16.

2. Find the Gibbs free energy  by inserting the equilib-
rium volume into Eq. 14 and then using the Legendre 
transformation  =  + PV .

3. Calculate the compositional partial derivative of the 
Gibbs free energy 

(
�

��

)
P
 . This can be computed by dif-

ferentiation of Eq.  14 with respect to composition, 
because 

(
�

��

)
P
=
(

�

��

)
V
 (see Appendix C).

4. Find �.

Applications

Room‑condition excess enthalpies in the alkali 
halides

The endmembers of the B1-structured alkali halides 
(K,Na,Rb)(Cl,Br,I) have volumes from 27.0 cm3∕mol 
(NaCl) to 59.6 cm3∕mol (RbI) at standard state. At room 
temperature, their bulk moduli lie between 10 and 25 GPa, 
with the larger bulk moduli typically corresponding to the 
endmembers with the smaller volumes (Dewaele et al. 2012; 
Dorogokupets and Dewaele 2007; Chang and Barsch 1971; 

(38)WAB


>
n2

2r(n − r)
excess,O.

(39)0 =
∑

ni�i,

(40)�i(P,T) = (P, T ,X) +

(
�(P, T ,X)

��

)

P

⋅ (�i − �).

Sato-Sorensen 1983; Sceats et al. 2006). The large range of 
endmember volumes make these simple compounds a use-
ful system for testing theoretical models of solid solution 
excesses.

Interaction enthalpies and volume differences ( �V  ) of 
the alkali halides have been compiled by Davies and Nav-
rotsky (1983). These data are plotted in Fig. 1, along with 
the excess enthalpies predicted by the elastic model. The 
observed interaction energies compiled by Davies and Nav-
rotsky (1983) are in good agreement with the model extrapo-
lations given that all but two of the nine binaries (KI–RbI 
and KCl–NaCl) have mean bulk moduli between 15 and 
20 GPa. The relationship between �V  and excess enthalpy 
excess is almost quadratic. Elastic model predictions (Uru-
sov 2000; Geiger 2001, this study) are nearly quadratic, 
because the volume change of the endmembers can be well 
approximated by compression and expansion of bonds with 
harmonic potentials.

High‑pressure excesses in jadeite–aegirine 
pyroxenes

Elastic solid solution models can be evaluated at any P–T 
conditions of interest, as long as endmember equations of 
state are available. Figure 2 shows the isotropic elastic model 
predictions for jadeite–aegirine ( Na(Al, Fe)Si2O6 ) room-
temperature equations of state, based on the endmember 
equations of state provided in Table 1. 

The model with constant excess (dashed lines in Fig. 2) 
underestimates the magnitude of the negative excess 
volumes at zero pressure. It is, therefore, necessary to 

Fig. 1  Excess enthalpies of A50B50 alkali halide solutions as 
a function of the difference in volumes between endmembers 
( �V = 2|(V1 − V2)∕(V1 + V2)| ). Solid lines correspond to the predic-
tions of the elastic model using the Rydberg/Vinet equation of state 
(Rydberg 1932; Vinet et al. 1986) with K� = 5.5 . A cluster size of 2 
is used, which is equivalent to assuming complete relaxation of every 
bond pair between dissimilar cations or anions (e.g., K–Cl–Na)
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apply a negative excess pressure to each solution (con-
stant dexcess∕dV  in Eq. 16). The resulting equations of 
state provide an excellent fit to the observed excess vol-
umes (solid lines in Fig. 2). The evolution of the equation 
of state across the binary can be approximated by the fol-
lowing subregular model:

(41)Pexcess(V , T) = pjd p
2
aeg

WP
jd,aeg

+ paeg p
2
jd
WP

aeg,jd
,

where WP
jd,aeg

= −1.6 GPa and WP
jd,aeg

= −0.8 GPa. This 

example demonstrates that a good approximation to solid 
solution equations of state can be obtained with the isotropic 
elastic model using fewer parameters than the conventional 
Gibbs formulations, which would require a pressure-depend-
ent excess volume term.

The need for an empirical excess pressure term to fit 
jadeite–aegirine data to the isotropic elastic model is not 
surprising, as the endmembers are monoclinic and have 
structural flexibility which is not considered in the simple 
model. The excess pressure term probably reflects the fact 
that negative excess volumes across the solution (relative to 
the elastic model) should inhibit changes in tilting of adja-
cent SiO4-tetrahedra (Boffa Ballaran et al. 1998), decreasing 
the compressibility. This hypothesis is supported by the data 
of Nestola et al. (2006), which shows that compressional 
anisotropy rapidly decreases with increasing jadeite content 
(their Fig. 1e).

High P–T excesses in garnet

It has been suggested that elastic energies dominate non-
ideality in garnet solid solutions (Ganguly et al. 1996; 
Boffa Ballaran et al. 1999; Bosenick et al. 2001). Indeed, 
the garnet structure cannot accommodate compression 
via pure rotations of structural units (Hammonds et al. 
1998), so the formation of solutions between dissimilar 

Fig. 2  Pressure–volume data in the binary system jadeite–aegirine 
(Nestola et al. 2006). Dashed lines correspond to volumes predicted 
by the zero-parameter elastic model based on the endmember proper-
ties of jadeite and aegirine. Solid lines correspond to the models after 

applying a small excess pressure to each composition (Table 1). Note 
that this single parameter provides an excellent fit to the equations of 
state, including the decay of excess volumes with pressure

Table 1  Best-fit Rydberg/Vinet equation of state parameters for jade-
ite–aegirine pyroxenes from the room-temperature data of Nestola 
et al. (2006)

Fitting is conducted using the automated routines in the software 
package burnman (Cottaar et al. 2014)

Composition 0 ( cm3∕mol) K0 (GPa) K
′
0

Pexcess (GPa)

jd0ae100 (fit) 64.626 ± 0.003 116.0 ± 0.4 4.5 ± 0.1

jd35ae65 (fit) 63.017 ± 0.003 124.3 ± 0.2 3.9 ± 0.2

jd35ae65 (fit) 63.021 ± 0.002 122.9 ± 0.2 4.5 [fixed]
jd35ae65 

(model)
63.019 123.2 4.48 −0.300

jd74ae26 (fit) 61.492 ± 0.002 130.4 ± 0.5 4.5 ± 0.2

jd74ae26 
(model)

61.499 129.9 4.49 −0.195

jd100ae0 (fit) 60.561 ± 0.003 133.9 ± 0.7 4.6 ± 0.2

jd100ae0 (fit) 60.559 ± 0.002 134.5 ± 0.2 4.5 [fixed]
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endmembers must involve a significant amount of bond 
strain (Boffa Ballaran et  al. 1999). One of the most-
studied garnet solutions is the pyrope-grossular binary 
( (Mg,Ca)3Al2SiO12 ). In comparison with the nearly ideal 
Mg2+–Fe2+ exchange in the pyrope–almandine system 
(Ganguly et al. 1996; White et al. 2014), the exchange of 
Mg2+ for the much larger Ca2+ cation (ionic radii of 0.89 
and 1.12 Å  respectively; Shannon 1976) on the dodeca-
hedral (X) site leads to large excess enthalpies and even 
exsolution at low temperatures (Cressey 1978; Wang et al. 
2000). However, published studies do not agree on the 
compositional dependence of the thermodynamic excesses 
across the binary (Table 2).

Here, I construct a disordered elastic model from the 
pyrope and grossular endmember equations of state pro-
posed by Stixrude and Lithgow-Bertelloni (2011). The 
excess Helmholtz free energy ( excess ; Eq. 14) is calculated 
assuming that the bonds within Mg–Mg–Ca and Mg–Ca–Ca 
clusters are fully relaxed at the standard state equilibrium 
volume (i.e., n = 3 in “The chemical contribution to the 
excess Helmholtz energy”) as proposed by Ganguly et al. 
(1993). The 1 bar predictions computed from this model are 
in good agreement with the experimental excesses reported 
in the literature (Newton et al. 1977; Haselton and Westrum 
1980; Ganguly et al. 1993; Dachs and Geiger 2006), as 
shown in Fig. 3. Particular noteworthy are the excess entropy 
predictions, which agree well with recent calorimetric data 
(Dachs and Geiger 2006). The excess entropies in the elas-
tic model are a consequence of the volume dependence of 
the endmember densities of state (Stixrude and Lithgow-
Bertelloni 2011), and, therefore, arguably represent the most 
conservative model.

Figure 4 shows the elastic model predictions for the 
py50gr50 composition at high pressures and temperatures. 
At 1000–1500 K, the excess Gibbs free energy predicted by 
the model is in remarkably good agreement with the empiri-
cal fit proposed by Green et al. (2012) on the basis of phase 
equilibria. The non-configurational excess entropy results in 
systematic deviations from Green et al. (2012) at lower and 
higher temperatures.

Although the model fits the data well, it differs from all 
of the published models compiled in Table 2. The key differ-
ence is that the elastic model excesses are almost perfectly 

quadratic as a function of composition. Given the scatter in 
the experimental data, and the disagreement between exist-
ing models, this is probably reasonable. Any strong asym-
metry in excess properties may be the result of ordering 
(e.g., Newton and Wood 1980), or microstrain (e.g., Du et al. 
2015). Whatever the cause, the elastic model may be a more 
robust predictor of excess properties at mantle conditions 
(where deviatoric stresses are low and elements are largely 
disordered on the dodecahedral site) than empirical models 
calibrated at low temperatures.

Finally, the elastic model can be used to predict seismic 
velocities across the pyrope–grossular binary (Fig. 5). The 
positive excess volume and negative excess bulk modulus 
(Fig. 4) induce a small negative deviation from ideal bulk 
sound speeds, in contrast to constant excess volume models, 
which predict a positive deviation. The elastic model pre-
dictions are in disagreement with Du et al. (2015), whose 
results imply a large decrease in bulk sound speed across 
the solid solution. To fit the volume excesses of Du et al. 
(2015) within the elastic model framework, an excess pres-
sure of ∼ 1 GPa is required in the center of the binary, while 
to fit the bulk sound speed, the excess pressure must be on 
the order of 2.5 GPa. Simultaneously fitting the bulk modu-
lus and volume would require large values of �2excess∕�V

2 . 
Given the success of the elastic model in predicting the room 
pressure volumetric and thermal properties (Fig. 3), it seems 
unlikely that such large values are reasonable.

The bridgmanite solid solution

Bridgmanite is a magnesium silicate mineral with the 
CaTiO3-perovskite structure (Pbnm space group; Tschauner 
et al. 2014). It is the dominant mineral in the Earth’s lower 
mantle, playing a key role in determining the seismic veloci-
ties and density structure of the deep mantle from the 660 
km discontinuity until its breakdown to the CaIrO3-type 
post-perovskite structure a few hundred kilometers above the 
core-mantle boundary (Murakami et al. 2004). The composi-
tions of mantle bridgmanites can broadly be described by the 
general formula ABO3 , where A = (Mg2+, Fe2+, Fe3+, Al3+ ), 
and B = (Al3+, Si4+) (Frost and Myhill 2016). Minor com-
ponents include CaSiO3 and Na0.5Al0.5SiO3 (Litasov 
et al. 2004; Holland et al. 2013). The four most important 

Table 2  Maximum model 
excesses (and the composition 
of the maximum excess) in the 
pyrope–grossular system at 
1 bar and 300 K according to 
several published studies

excess (kJ/mol) Vexcess ( cm3∕mol) Sexcess (J/K/mol) References

12.0 ( py60) 0.25 ( py50) – Berman (1990)
08.5 ( py40) 0.30 ( py35) – Ganguly et al. (1993)
06.5 ( py60) 0.35 ( py60) 0 (assumed) Green et al. (2012)
– 1.00 ( py50) – Du et al. (2015)
– – 4.7 ± 0.5 ( py50) Haselton and Westrum (1980)
– – 2.9 ± 0.5 ( py50) Dachs and Geiger (2006)
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endmembers of bridgmanite are, therefore, MgSiO3 , FeSiO3 , 
AlAlO3 , and FeAlO3 , although MgSiO3 is the only endmem-
ber which is stable in the bridgmanite structure (Wicks and 
Duffy 2016).

Within this simplified bridgmanite system, only the 
MgSiO3–FeSiO3 and AlAlO3–FeAlO3 binaries involve 
exchange on a single site. The other four involve coupled 
exchange to maintain charge balance. This is an important 
point, as the assumptions of bond relaxation in “The chemi-
cal contribution to the excess Helmholtz energy” rely on 
exchange on a single site in the lattice. Coupled exchange 
may be associated with non-negligible energy costs. For 
example, in the MgSiO3–FeAlO3 binary eightfold coordi-
nated Mg2+ will have a larger ionic radius than Fe3+ , while 
sixfold coordinated Si4+ will have a smaller ionic radius 
than Al3+ (Shannon 1976). Complete relaxation is, there-
fore, unlikely for either Fe3+–O–Si4+ (smaller cations) or 
Mg2+–O–Al3+ (larger cations) bond structures. Nevertheless, 
the two bond structures are likely to have competing effects 
on the equilibrium volume. For this reason, I focus on the 
elastic model predictions for the excess volumes and bulk 

moduli within the solid solution, given endmember proper-
ties derived from the literature (Table 3). MgSiO3 proper-
ties are chosen to fit experimental data (Fiquet et al. 2000; 
Murakami et al. 2007). The FeSiO3 and AlAlO3 properties 
are extrapolated from MgSiO3 using the trend in volume 
and bulk modulus reported by Caracas and Cohen (2005). 
The FeAlO3 properties represent a small thermal adjustment 
from Caracas (2010).

The modelled elastic properties for solutions along each 
binary are mostly within error of experimentally derived 
values (also listed in Table 3). The exceptions are the bulk 
modulus of AlAlO3-bearing bridgmanite and the K′ of 
FeAlO3 bridgmanite. The elastic behaviour of the MgSiO3

–AlAlO3 binary is extremely difficult to characterise experi-
mentally (Fig. 6). Samples with similar bulk compositions 
produce estimates of bulk moduli spanning about 20 GPa 
(Daniel et al. 2001, 2004; Walter et al. 2004; Yagi et al. 
2004; Andrault et al. 2007). This may be the result of high 
compressibility of defect-structured bridgmanite or sensi-
tivity to deviatoric stress (Andrault et al. 2007). The elastic 
model with (adjusted) ab initio endmember properties may, 

Fig. 3  Non-configurational pyrope–grossular excesses for a dis-
ordered, purely elastic solution model (with energy corrected for 
relaxed 3-atom clusters, as described in “The chemical contribution 
to the excess Helmholtz energy”) calculated at 1 bar. Plotted uncer-

tainties in the experimental data correspond to the measured values, 
rather than the excesses. The conversion from the measured values to 
excess properties has been estimated by fitting a quadratic function to 
all the datapoints and removing the linear component of that function
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therefore, present a more appropriate model for mixing than 
the experimental data. Brillouin measurements of 5 mol% 
AlAlO3-bearing bridgmanite (Jackson et al. 2004) are in 
good agreement with the elastic model.

The experimental values for K′ of the MgSiO3–FeAlO3 
solution (Kurnosov et al. 2017) have major implications 
for both the seismic velocities in the lower mantle, and 
our ability to thermodynamically model the bridgman-
ite solid solution. Figure 7 shows the experimental data 
in K′-space (Stacey and Davis 2004), where it becomes 
clear that K′ increasingly diverges from the MgSiO3 trend 
(Fiquet et al. 2000; Murakami et al. 2007), and from the K′ 
of the lower mantle. Extrapolation from the experimental 
MgSiO3 and (MgSi)0.9(FeAl)0.1O3 data requires increasing 

non-ideality with pressure to avoid negative values of K′ 
for the FeAlO3 endmember (see Eq. 21). In the context of 
the elastic model, this non-ideality would have to include 
a large �2∕�V2 component that changes sign at small vol-
umes to ensure plausible values of K′ ( > 5∕3 ; Stacey and 
Davis 2004) across the binary. The alternative is that the 
high-pressure experimental data may have been affected 
by deviatoric stresses, as previously invoked to explain 
data on the MgSiO3–AlAlO3 binary (Andrault et al. 2007). 
Given the excellent agreement between the ab initio and 
elastic model predictions, and the agreement with the low-
pressure XRD and Brillouin data, the second possibility 
seems more likely. The implication is that seismic studies 
of the Earth’s lower mantle need not consider excess vol-
umes or large K′ variations in bridgmanite solid solutions.

Fig. 4  Non-configurational py50gr50 excesses for a disordered, purely elastic solution model (with energy corrected for relaxed 3-atom clusters, 
as described in “The chemical contribution to the excess Helmholtz energy”) as a function of pressure
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Discussion

Elastic models of solid solutions are based on the idea that 
excess nonconfigurational energies of formation are domi-
nated by the endmember lattice distortions required to make 
the solution, and partial relaxation due to changes in bonding 
(c.f. Geiger 2001). As strain is the independent variable, 
mixing in the elastic model is best understood by consider-
ing the Helmholtz free energy, rather than the Gibbs free 
energy. This concept is certainly not new, despite being 
rarely used in the geological literature. Indeed, the origins 
of common order–disorder models lie in the work of Landau 
(1937), who used Helmholtz free energies when consider-
ing solid–solid transformations. The prevalence of solution 
models based on the Gibbs free energy presumably derives 

from the “ideal” mixing model (itself based on mixing in 
gases) and its ease of use when considering systems where 
pressure and temperature are the independent variables. 
Indeed, Dove (1997) used the Gibbs free energy only as a 
connection to experiment, noting that the Helmholtz energy 
was strictly the more correct potential to use. Given that 
some mineral databases now use equations of state based 
on the Helmholtz energy (Stixrude and Lithgow-Bertelloni 
2005, 2011), it may, in some cases, be convenient to use 
elastic models directly. Even if Gibbs formulations are still 
used, the elastic model can provide heuristic values for 
poorly constrained model parameters. Non-elastic contribu-
tions to interaction parameters could be estimated via com-
parison with other phases, as proposed for models based on 
the Gibbs free energy (e.g., Powell et al. 2014).

In this study, I show that the elastic model formulation 
behaves well at both high temperatures and high pressures. 
The inclusion of short-range bonding contributions to the 
free energy can provide good predictions of excess energies 
in simple and more complex cubic systems (Sects. “Room-
condition excess enthalpies in the alkali halides” and “High 
P–T excesses in garnet”). The agreement between the model 
and experimental excess entropies within the pyrope–gros-
sular binary is particularly striking. The magnitude of the 
excesses suggests that the non-configurational Gibbs free 
energy decreases by almost 50% between room-temperature 
and typical mantle potential temperatures.

The elastic model also places stringent constraints on 
the variation of material properties within solid solutions 
which differ from those normally imposed in Gibbs for-
mulations. For example, it has sometimes been assumed 
that the ratios KT∕V  or V∕KT are linear functions of com-
position (e.g., Ferreira et al. 1988; Ganguly et al. 1993; 
Stixrude and Lithgow-Bertelloni 2005) in disordered solid 
solutions. This assumption implies that positive excess 
volumes are associated with positive excess bulk mod-
uli, which is unintuitive and leads to increasing volume 
excesses at high pressure. In contrast, the elastic model 
predicts that excess volumes tend to zero at high pressure, 

Fig. 5  Model bulk sound velocities along the pyrope–grossular join 
at 300, 1000, and 1500 K. The models plotted are an ideal solution 
(dashed lines), a model with a constant volume excess (dot-dashed 
lines), and the elastic model described in the text (solid lines). Data 
points are calculated from the experimentally derived 300 K equa-
tions of state of Du et  al. (2015), with isentropic bulk moduli cal-
culated using the thermodynamic identity KS = K

T
(1 + ��T) and 

the thermal expansion and Grüneisen parameter taken from an ideal 
pyrope–grossular solution (the choice of model is unimportant at 300 
K)

Table 3  Properties of 
bridgmanite at 300 K (third-
order Birch–Murnaghan 
equation of state)

The values MgSiO3 provide a good fit to Fiquet et  al. (2000) and Murakami et  al. (2007). The 
(MgSi)0.87(FeSi)0.13O3 , (MgSi)0.75(AlAl)0.25O3 , and (MgSi)0.9(FeAl)0.1O3 equations of state are fit to data 
from Wolf et al. (2015), Walter et al. (2004), and Kurnosov et al. (2017), respectively (see text)

Composition V0 ( cm3∕mol) K0 (GPa) K
′
0

MgSiO3 (this study) 24.45 253 ± 2 3.90 ± 0.10

FeSiO3 (adjusted from CC2005) 24.88 251 3.90
AlAlO3 (adjusted from CC2005) 25.91 223 4.03
FeAlO3 (adjusted from C2010) 27.68 207 3.73
(MgSi)0.87(FeSi)0.13O3 (W2015) 24.50 ± 0.05 (24.50) 253 ± 4 (253) 3.9 [fixed] (3.90)
(MgSi)0.75(AlAl)0.25O3 (W2004) 24.81 ± 0.01 (24.80) 256 ± 2 (245) 3.9 [fixed] (3.90)
(MgSi)0.9(FeAl)0.1O3 (K2017) 24.74 ± 0.02 (24.76) 247 ± 1 (247) 3.7 (3.88)
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and that excess non-configurational entropies tend to zero 
at low temperature.

There are limitations to the elastic model. The model 
requires that the elastic strain fields due to individual 
atomic exchanges overlap; this assumption breaks down 
in dilute alloys (Wood and Blundy 1997; Carpenter et al. 
1999). Rigid rotations of structural units are not consid-
ered, although such effects may be accommodated by 
excess pressure terms (Sect. “High-pressure excesses in 
jadeite–aegirine pyroxenes”). Finally, the examples given 
in this paper use the isotropic approximation to the elas-
tic model. Such a model may not be applicable to highly 
anisotropic minerals, especially if the endmembers of 
those minerals have very different lattice parameters. It 
is possible to generalise the equations in “The elastic 
model” to anisotropic materials and non-hydrostatic stress 
fields (Appendix A). In the future, it should be possible 
for systematic high-pressure elasticity studies (e.g., Fan 
et al. 2015; Huang and Chen 2014) to probe the limits 
of applicability of the isotropic model. It should also be 
possible to design ab initio simulations to test the full ani-
sotropic elastic model. Such work would provide a better 
understanding of the variation of shear modulus within 
solid solutions, and more generally the effect of deviatoric 
stresses on the thermodynamics and elasticity of natural 
rocks (Hobbs and Ord 2016).

Fig. 6  Elastic properties of the stoichiometric MgSiO3–AlAlO3 and 
defect-structured MgSiO3–MgAlO2.5v0.5 binaries. Ab  initio data 
are shown as open symbols (Thomson et  al. 1996; Brodholt 2000; 
Caracas and Cohen 2005; Panero et  al. 2006). Experimental data 
are shown as red closed symbols (Fiquet et al. 2000; Ito et al. 1998; 

Kubo et  al. 2000; Walter et  al. 2004). Data set values are shown as 
purple closed symbols (Stixrude and Lithgow-Bertelloni 2005, 2011; 
Holland et al. 2013). Red and blue lines correspond, respectively, to 
elastic models for the MgSiO3–AlAlO3 and MgSiO3–MgAlO2.5v0.5 
binaries

Fig. 7  Pressure dependence of K′ for MgSiO3 bridgmanite (this 
study), FeAlO3 bridgmanite (minor thermal adjustment to simula-
tion “AFM12” from Caracas 2010) using third-order Birch-Murna-
ghan equations of state up to 150 GPa, and the elastic model predic-
tions for the (MgSi)0.9(FeAl)0.1O3 solid solution. The elastic model 
predictions clearly diverge from experimental Brillouin measure-
ments up to 40 GPa (Kurnosov et  al. 2017). Similar experiments 
on MgSiO3 (Murakami et  al. 2007) are incompatible with a similar 
decrease in K′ , and as a result, the experimental data on MgSiO3 and 
(MgSi)0.9(FeAl)0.1O3 cannot be simultaneously fit with any physically 
plausible elastic model (see text). Also shown are values of K′ for the 
Earth inferred from the Preliminary Reference Earth Model (Dzie-
wonski and Anderson 1981). The 1:1 line represents the loci of possi-
ble infinite-pressure values, and the upper edge of the plot represents 
a theoretical limit on K′ (Stacey and Davis 2004)
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Appendix A: Generalisation to anisotropic 
solutions and non‑hydrostatic stress states

The model presented in “The elastic model” makes the approx-
imations that the solid solutions are isotropic, and subjected to 
a hydrostatic stress field. The second approximation is likely 
to be appropriate at the high temperatures and low stresses 
present in the majority of the deep Earth, but the first is only 
appropriate for glasses, for which the elastic model is unlikely 
to hold.

The elastic model assumes that the energy required to 
deform individual endmembers to the same lattice structure 
contributes to the excess energy of the solution with that struc-
ture, with atomic exchange typically relaxing some of that 
energy. For anisotropic materials and stresses, the deforma-
tions required are also generally anisotropic. Thus, the gener-
alisation of the isotropic elastic model requires the relationship 
between Helmholtz free energy and strain: (Holzapfel 2000):

where ℂT  is the isothermal stiffness tensor and � is the 
Green strain tensor. By analogy with Eq. 16, the stress state 
� experienced by the anisotropic solid solution with lattice 
parameters corresponding to a metric tensor � is equal to the 
molar weighted sum of the endmember stress states with the 
same lattice parameters:

Now, consider the change in stress accompanying a small 
symmetry-preserving change in the metric tensor ��:

(42)ℂT (�,T) =
1

V

(
�2 (�,T)

����

)

T

(43)�(�,T) =
1

V

(
� (�,T)

��

)
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,

(44)�(�, T) =
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pi�i +
1

V

(
�excess

��

)

T

.

(45)�� = �(� + ��, T) − �(�, T)

(46)= ℂT ∶ ��

Therefore, in the anisotropic elastic model, the isothermal 
stiffness tensor is equal to the molar sum of endmember 
tensors:

The formulation, therefore, preserves lattice symmetry 
between endmembers. In an hydrostatic environment, the 
thermodynamic properties of isotropic solutions satisfy the 
expressions in “The elastic model”. Furthermore, because 
isotropic isothermal and adiabatic shear modulus are equal 
to each other (Landau 1986):

For anisotropic materials, the expressions in “The elastic 
model” are not necessarily satisfied; Eq. 17 is one such 
example:

The accurate application of the generalised anisotropic elas-
tic model requires knowledge of the effect of finite devia-
toric stresses on the elastic constants. For small changes in 
unit cell ratios and angles, the response of the endmem-
bers to non-hydrostatic stresses can be linearised (i.e., (
�ℂT∕��

)
V
= 0 ). In these circumstances, solving Eq. 44 

only requires P(V, T) and ℂT (V , T) for each endmember.

Appendix B: Approximating excess 
properties without solving for V

The elastic model equations in “The elastic model” can 
be solved for any endmember equations of state, but there 
may be occasions when an analytical approximation to the 
equilibrium volume is favoured over inverting for the exact 
solution. One such approximation can be obtained by apply-
ing the Murnaghan equation of state and Eq. 16 to a solid 
solution with endmember proportions pi at a reference pres-
sure Pr:

(47)=
∑
i

piℂTi ∶ �� +
1
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�2excess

����

)

T

��.
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T

.
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∑
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The subscripts "ri" indicate that the endmember property 
should be evaluated at the reference pressure. Rearrang-
ing for volume, and using the approximation that K� = K�

r
 

(Eq. 21) for all phases, we have:

The endmember equations of state can then be evaluated at 
this volume to find an approximation to the Helmholtz free 
energy at Pr (Eq. 14).

Appendix C: Proof that 
(
�

��

)
P

=

(
�

��

)
V

We start from the relation between the Helmholtz and Gibbs 
free energies:

The relationship between 
(

�

�x

)
P
 and 

(
�

�x

)
V
 can be derived 

from the following total derivatives:

Substituting Eqs. 61 into 57 yields the desired equality:
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