
 Castelltort, A., & Martin, T. (2017). Handling scalable approximate queries
over NoSQL graph databases: Cypherf and the Fuzzy4S framework. Fuzzy
Sets and Systems. https://doi.org/10.1016/j.fss.2017.08.002

Peer reviewed version

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.fss.2017.08.002

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at https://www.sciencedirect.com/science/article/pii/S0165011417303093?via%3Dihub . Please refer
to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1016/j.fss.2017.08.002
https://doi.org/10.1016/j.fss.2017.08.002
https://research-information.bris.ac.uk/en/publications/handling-scalable-approximate-queries-over-nosql-graph-databases(a80efbce-76cc-4b6e-af0c-a93b0fe04734).html
https://research-information.bris.ac.uk/en/publications/handling-scalable-approximate-queries-over-nosql-graph-databases(a80efbce-76cc-4b6e-af0c-a93b0fe04734).html

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Handling Scalable Approximate Queries over NoSQL
Graph Databases: Cypherf and the Fuzzy4S Framework

Arnaud Castelltort1, Trevor Martin2

1 LIRMM, CNRS-University of Montpellier, France
2Department of Engineering Mathematics, University of Bristol, UK

Abstract

NoSQL databases are currently often considered for Big Data solutions as they

offer efficient solutions for volume and velocity issues and can manage some of

complex data (e.g., documents, graphs). Fuzzy approaches are yet often not

efficient on such frameworks. Thus this article introduces a novel approach to

define and run approximate queries over NoSQL graph databases using Scala

by proposing the Fuzzy4S framework and the Cypherf fuzzy declarative query

language. NoSQL Graph databases are currently gaining more and more interest

and are applied in many real world applications. The Fuzzy4S framework is

defined with an open DSL (Domain Specific Language) allowing it to define

scalable approximate queries at an abstract level. Cypherf is an extension of

Cypher which runs over the Neo4J NoSQL graph databases. This work consists

of a complete approach embedding the whole chain from end-user declarative

query level to implementation issues within the database engine. We provide

both the formal definitions for defining approximate graph NoSQL queries and

the experimental results which demonstrate the interest and efficiency of our

proposition.

Keywords: Approximate Queries, Fuzzy Logic, NoSQL Graph Databases.

1. Introduction

Graphs are often a natural way to represent the world [1]. This is especially

true for social networks, but also in biology, chemistry etc. In such areas,

Preprint submitted to Fuzzy Sets and Systems July 28, 2017

*Manuscript

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

relationships between objects are at least as important as the objects themselves.

For example, retrieving "friend" and "friend of friend" relationships is a key5

operation in social networks or in any other human relations. In [2], we have

highlighted the power of the study of relations in order to retrieve fraud rings

which are defined as sophisticated chains of indirect links between fraudsters

representing successive transactions (money, communications, etc.) from which

rogue behaviours are detected.10

Graphs have been extensively studied in the literature and have recently

gained attention with the development of Semantic Web and ontologies. Many

modelizations, tools and frameworks have been suggested to represent, manage

and analyze graphs with XML, OWL etc.

At the same time, the volume and complexity of information concerning15

these objects and their relationships are growing dramatically, leading to huge

databanks.

This has led to the development of the so-called NoSQL graph databases

that embed both the performance of NoSQL databases and the representativity

of graphs. Several engines exist (OrientDB, Neo4J, HyperGraphDB etc.) [3]. In20

this article, Neo4J is used since it has been considered the top graph database

management for several years 1 (Figure 1, [4]2).

Such database management systems embed query processing that can be

used at different levels, from the declarative level to the programmatic level

within the engine. The Neo4J system offers the declarative Cypher language25

that allows the users to query the graph in a very intuitive manner. These

queries include clauses over both nodes and relationships. Properties can be

defined in the same style that NoSQL databases i.e. with (key : value) lists.

The value can be of any type, including collections.

For instance, it is possible to consider nodes representing people having30

some properties such as age (key = age, value = 28) or hobbies (key = hobby,

1http://db-engines.com/en/ranking/graph+dbms
2http://thoughtworks.fileburst.com/assets/technology-radar-may-2013.pdf, 2013

2

http://thoughtworks.fileburst.com/assets/technology-radar-may-2013.pdf

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 1: Comparison of Graph Database Management Systems (db-engines.com)

value = {tennis, reading, travel}).

In some cases, it is not relevant for users to define queries in a “crisp" way, as

for instance to retrieve people having friends aged between 20 and 30 but they

rather want to retrieve people even if their age is 31 and not strictly between35

20 and 30.

For this reason, we consider approximate queries over such numerical prop-

erties. Such queries can for instance be expressed using the fuzzy set theory

framework. In our proposition we introduce Fuzzy4S, standing for Fuzzy for

Scala. Scala is a modern language mixing object-oriented and functional pro-40

gramming [5]. Fuzzy4S is used within NoSQL databases to define fuzzy queries

by introducing the Cypherf framework (which stands for Cypher fuzzy).

The rest of this article is organized as follows: Section 2 presents the prelim-

inary concepts underlying our work: graph databases and approximate queries.

Section 3 introduces the extension of graph NoSQL queries with the Cypherf45

framework and discusses implementation issues. Cypherf relies on the Fuzzy4S

framework which is detailed in Section 4. Section 5 illustrates our contributions

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

using examples and showing the efficiency of our implementation with experi-

mental load tests over benchmarks. Section 6 concludes this paper and discusses

some of the many research avenues opened by our work.50

2. Preliminary Concepts and Properties

This work merges two topics, namely graph oriented NoSQL databases and

approximate queries that are briefly introduced below.

For illustrating these concepts and in the rest of this paper, we rely on an

example where customers are linked to the hotels they have visited. A hotel is55

described with properties such as the price and location with regards to the city

center. Customers are described by their age.

2.1. Graph Databases

Graphs have been studied for a long time by mathematicians and computer

scientists. A graph can be directed or not, labeled or not. Graph databases rely60

on labeled directed graphs.

Definition 1 (Labeled Directed Graph). A labeled oriented graph G, also

known as oriented property graph, is given by a n-tuple (V,E, α, β, lV , lE) where

V stands for a set of nodes and E stands for a set of edges with E ⊆ (V × V),

α stands for the set of attributes defined over the nodes, β the set of attributes65

defined over the relations, lV : V → P(α) is the labeling function for nodes and

lE : E → P(β) is the labeling function for relationships.

In such databases, α and β are not simple labels such as in labeled graphs.

They are rather defined by (key, value) pairs commonly used by NoSQL databases [6]

to represent the so-called properties over nodes and relations. Keys can occur70

in several nodes or relations.

Figure 2 shows a graph and its anatomy in (key, value) pairs.

Queries in graph databases are defined as traversals over the graph. They

can be run at several levels, either programmatically or by using declarative

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 2: Node and Relationship Properties

languages (as done when using SQL in relational databases). No common set75

of operators has yet been defined as a standard. It should be noted that the

result of a query over a graph is not always defined as a graph.

In Neo4J, declarative queries are run using the so-called Cypher language.

2.2. Neo4J Cypher Language

In Cypher, queries are formulated using the following syntax3:80

[MATCH]

[OPTIONAL MATCH WHERE]

[WITH [ORDER BY] [SKIP] [LIMIT]]

RETURN [ORDER BY] [SKIP] [LIMIT]

Queries are formalized through EBNF Cypher grammar, as shown below.85

For the sake of simplicity, we only show some extracts of the grammar.

3http://neo4j.com/docs/2.2.5/cypher-refcard/

http://neo4j.com/docs/2.2.5/cypher-query-lang.html

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

An EBNF grammar [7] is an extension of BNF (Backus-Naur Form (BNF) [8])

for formalizing the syntax of a language. It has been extensively studied in soft-

ware engineering research works. Roughly speaking, every EBNF grammar is

described by means of rules, every rule being defined with a left and right part.90

An open community works on the openCypher project4 that aims to deliver

a full and open specification of Cypher and to evolve the language through the

production and acceptance of CIPs (Cypher Improvement Proposals). Our work

is part of this trend and aims to contribute with fuzzy extensions.

EBNF Grammar Extract 1. Cypher requests are based on sequences of state-95

ments that are regular queries. Regular queries are based on single queries that

can be combined through unions. Single queries are based on 9 possible clauses:

Match, Unwind, Merge, Create, Set, Delete, Remove, With, Return.

Cypher = [SP], Statement, [[SP], ’;’], [SP] ;

100

Statement = Query ;

Query = RegularQuery ;

RegularQuery = SingleQuery, { [SP], Union } ;105

SingleQuery = Clause, { [SP], Clause } ;

Clause = Match

| Unwind110

| Merge

| Create

| Set

| Delete

4www.opencypher.org

6

www.opencypher.org

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

| Remove115

| With

| Return

;

SP = { whitespace }- ;120

As shown here, Cypher is comprised of several distinct clauses:

• MATCH: the graph pattern to match. TheMATCH clause is the primary

way of getting data from the database into the current set of bindings by

providing an example. It allows users to specify the patterns that Cypher125

will search for in the database.

• UNWIND: expands a list into a sequence of rows.

• MERGE: ensures that a pattern exists in the graph. Either the pattern

already exists, or it is created.

• CREATE: creates nodes and relationships.130

• SET: is used to update labels on nodes and properties on nodes and rela-

tionships.

• DELETE: removes graphs elements (nodes, relationships and paths).

• REMOVE: is used to remove properties and labels from graph elements.

• RETURN: what to return. It defines which parts of the pattern the user135

is interested in. It can be nodes, relationships, or properties on them.

• WITH: allows query parts to be chained together, piping the results from

one to be used as starting points or criteria in the next.

For instance, it is possible to retrieve which hotels have been visited by

customers between the ages of 20 and 30 as shown in listing 1.140

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Listing 1: Retrieve which hotels have been visited by customers between the ages of 20 and

30 Query

1 MATCH (hotel : Hotel) <−[: VISITED]−(c : Customer)

2 WHERE c . age <= 30 and c . age >=20

3 RETURN DISTINCT hotel
145

Such queries allow the user to answer many questions in a very efficient way.

However, they do not allow soft queries, such as retrieving the hotels visited

by young customers where young is defined as a fuzzy set over the numerical

universe of all possible ages. For this reason, we claim that introducing ap-

proximate queries in NoSQL graph databases is important. The next section150

introduces approximate queries.

2.3. Approximate Queries

Many works have been proposed to deal with approximate data and queries.

It should first be noted that the consideration of imperfection may have several

semantics, should the data be uncertain, imprecise, vague, incomplete and/or155

inconsistent [9].

This work focuses on approximate queries considered as imprecise queries

over precise (classical) data, relying on fuzzy set theory [10].

2.3.1. Fuzzy Queries

The works on fuzzy databases have dealt with the various topics: entity-160

relationship models, functional dependencies, relational models, object data-

bases, queries, etc. We focus here on fuzzy queries over classical databases.

In [11, 12, 13] querying regular databases is considered by extending the SQL

language.The FSQL/SQLf and FQL languages have been proposed to extend

queries over relational databases in order to incorporate fuzzy descriptions of165

the information being searched for.

In such systems, approximation is basically associated to fuzzy labels, fuzzy

comparators (e.g., fuzzy greater than) and aggregation over clauses. Thresholds

can be defined for the expected fulfillment of fuzzy clauses.

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

For instance, when considering a database containing crisp descriptions of170

hotels, users can ask for cheap hotels that are close to city center, cheap and

close_to_city_center being fuzzy labels described by fuzzy sets and their mem-

bership functions respectively defined on the universe of prices and distance to

the city center.

For instance, SQLf allows to integrate fuzzy predicates within the WHERE175

clause of an SQL query:

Listing 2: SQLf Query

1 SELECT ∗

2 FROM Table_Hotel

3 WHERE Price is cheap ;180

Some works have been implemented as fuzzy database engines with fuzzy

querying features [14, 15].

Many works have been proposed to investigate how such fuzzy predicates

can be defined by users and computed by the database engine, especially when185

several clauses must be merged. For instance, for retrieving a hotel that is both

cheap AND close to city center, the membership degrees are aggregated with a

t-norm.

Such aggregation can consider preferences, for instance for queries where

price is preferred to distance to city center using weighted t-norms.190

Thresholds can be added when searching for hotels where the cheap degree

is greater than 0.7 for instance.

More detailed definitions of the formalism are provided in the next section.

As we consider graph data, the works on fuzzy ontology querying are very

close and relevant [16, 17]. f-SPARQL provides a flexible extension for SPARQL195

by allowing users to apply fuzzy filters and fuzzy operators. Figure 3 shows the

syntax of this extension.

However, no model has been proposed for NoSQL graph databases. We

thus propose to extend our first work [18] for defining approximate queries over

NoSQL graph databases, as described in the next section.200

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 3: f-SPARQL modifications to the SPARQL standard grammar

3. Fuzzy Queries over NoSQL Graph databases: Towards the Cypherf

Language

3.1. Fuzzy Queries over Graph Dababases

This section addresses fuzzy queries over regular NoSQL Neo4J graph databases.

We claim that fuzziness can be handled at the following three levels: over nodes,205

over properties, and over relationships.

The rest of this section presents each possibility along with its associated

EBNF grammar.

EBNF Grammar Extract 2. An expression is defined with sub-expressions

that can be chained with logical and arithmetical operators.210

Expression = Expression12 ;

Expression12 = Expression11, { SP, (O,R), SP, Expression11 } ;

Expression11 = Expression10, { SP, (X,O,R), SP, Expression10 } ;215

Expression10 = Expression9, { SP, (A,N,D), SP, Expression9 } ;

Expression9 = { (N,O,T), [SP] }, Expression8 ;

220

Expression8 = Expression7, { [SP], PartialComparisonExpression } ;

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Expression7 = Expression6, { ([SP], ’+’, [SP], Expression6) | ([SP], ’-’, [SP], Expression6) } ;

Expression6 = Expression5, { ([SP], ’*’, [SP], Expression5) |225

([SP], ’/’, [SP], Expression5) | ([SP], ’%’, [SP], Expression5) } ;

Expression5 = Expression4, { [SP], ’^’, [SP], Expression4 } ;

Expression4 = { (’+’ | ’-’), [SP] }, Expression3 ;230

Expression3 = Expression2, { ([SP], ’[’, Expression, ’]’) |

([SP], ’[’, [Expression], ’..’, [Expression], ’]’) | ((([SP], ’=~’) |

(SP, (I,N)) | (SP, (S,T,A,R,T,S), SP, (W,I,T,H)) |

(SP, (E,N,D,S), SP, (W,I,T,H)) | (SP, (C,O,N,T,A,I,N,S))), [SP], Expression2) |235

(SP, (I,S), SP, (N,U,L,L)) |

(SP, (I,S), SP, (N,O,T), SP, (N,U,L,L)) } ;

Expression2 = Atom, { [SP], (PropertyLookup | NodeLabels) } ;

240

Atom = Literal

| Parameter

| ((C,O,U,N,T), [SP], ’(’, [SP], ’*’, [SP], ’)’)

| ListComprehension

| PatternComprehension245

| ((F,I,L,T,E,R), [SP], ’(’, [SP], FilterExpression, [SP], ’)’)

| ((E,X,T,R,A,C,T), [SP], ’(’, [SP], FilterExpression, [SP], [[SP], ’|’, Expression], ’)’)

| ((A,L,L), [SP], ’(’, [SP], FilterExpression, [SP], ’)’)

| ((A,N,Y), [SP], ’(’, [SP], FilterExpression, [SP], ’)’)

| ((N,O,N,E), [SP], ’(’, [SP], FilterExpression, [SP], ’)’)250

| ((S,I,N,G,L,E), [SP], ’(’, [SP], FilterExpression, [SP], ’)’)

| RelationshipsPattern

| ParenthesizedExpression

| FunctionInvocation

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

| Variable255

;

3.1.1. Cypherf over Nodes

Dealing with fuzzy queries over nodes allows the user to retrieve similar

nodes.260

To achieve that goal, we decided to reuse the grammar definition available

in Cypher. Indeed, we decided to use fuzzy functions that take nodes as param-

eters. Cypher supports function invocations in place of Expression.

EBNF Grammar Extract 3. FunctionInvocation has a function name fol-

lowed by zero to any numbers of parameters that are separated by commas.265

FunctionInvocation = FunctionName, [SP], ’(’, [SP], [(D,I,S,T,I,N,C,T), [SP]],

[Expression, [SP], { ’,’, [SP], Expression, [SP] }], ’)’ ;

For instance, it is possible to retrieve similar hotels:

Listing 3: Getting Similar Hotel Nodes
270
1 MATCH (h1 : Hotel) , (h2 : Hotel)

2 WITH h1 AS hot 1 , h2 AS hot 2 , SimilarTo (hot 1 , hot 2) AS sim

3 WHERE sim > 0 . 7

4 RETURN hot 1 , hot 2 , sim
275

In this framework, the similarity between nodes is based on the definition of

measures that merge the similarities of every property from the two nodes being

compared. For example, a similarity measure can be built to compare and rank

hotels based on the similarities of both price and size [19].

3.1.2. Cypherf over Properties280

Dealing with fuzzy queries over properties leads to the consideration of fuzzy

linguistic terms and/or fuzzy comparators.

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 4: Proximity to City Center

Such fuzzy queries impact theMATCH,WHERE,WITH and RETURN

clauses from Cypher.

In theWHERE clause, it is then possible to search for cheap hotels in some285

databases, or for hotels located close to city center. Note that the properties

being considered can be defined at the node and relationship levels.

Listing 4: Cheap Hotels

1 MATCH (h : Hotel)

2 WHERE CHEAP (price) > 0290

3 RETURN h

4 ORDER BY CHEAP (h) DESC

Listing 5: Hotels Close to City Center

1 MATCH (c : City)< -[: LOCATED]−(h : Hotel)295

2 WHERE CLOSE (c , h) > 0

3 RETURN h

4 ORDER BY CLOSE (c , h) DESC

In the MATCH clause, integrating fuzzy criteria are also possible:300

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Listing 6: Matching Hotels Close to City Center

1 MATCH (h : Hotel) -[: LOCATED { CLOSE (distance)>0}] -> (c : City)

2 RETURN h

3 ORDER BY CLOSE (h , c) DESC
305

To offer this possibility we have added the concept of fuzzy criterion to

Cypher and we have extended its grammar. Indeed, Cypher is not able to use

functions in “RelationshipPattern”. We thus introduce the following extension.

EBNF Grammar Extension 1. “FuzzyCriteria” is defined as a function in-

vocation that is an optional member of a “RelationshipDetail”. A Relationship310

detail is an optional part of a “RelationshipPattern” which is a part of a “Pat-

ternElementChain”, and so on to the “Pattern”.

The extension of the RelationshipDetail possibilities by the addition of the

FuzzyCriteria offers by transitivity the possibilitiy to the Match clause to use

FuzzyCriteria in a relationship construction.315

Match = [(O,P,T,I,O,N,A,L), SP], (MATCH), [SP], Pattern, [[SP], Where] ;

Merge = (M,E,R,G,E), [SP], PatternPart, { SP, MergeAction } ;

320

Create = (C,R,E,A,T,E), [SP], Pattern ;

Pattern = PatternPart, { [SP], ’,’, [SP], PatternPart } ;

PatternPart = (Variable, [SP], ’=’, [SP], AnonymousPatternPart)325

| AnonymousPatternPart

;

AnonymousPatternPart = PatternElement ;

330

PatternElement = (NodePattern, { [SP], PatternElementChain })

| (’(’, PatternElement, ’)’)

;

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

NodePattern = ’(’, [SP], [Variable, [SP]], [NodeLabels, [SP]], [Properties, [SP]], ’)’ ;335

PatternElementChain = RelationshipPattern, [SP], NodePattern ;

RelationshipPattern = (LeftArrowHead, [SP], Dash, [SP], [RelationshipDetail],

[SP], Dash, [SP], RightArrowHead)340

| (LeftArrowHead, [SP], Dash, [SP], [RelationshipDetail], [SP], Dash)

| (Dash, [SP], [RelationshipDetail], [SP], Dash, [SP], RightArrowHead)

| (Dash, [SP], [RelationshipDetail], [SP], Dash)

;

345

RelationshipDetail = ’[’, [SP], [Variable, [SP]], [RelationshipTypes, [SP]],

[RangeLiteral], [FuzzyCriteria], [Properties, [SP]], ’]’ ;

FuzzyCriteria = ’{’ , [SP], FunctionInvocation, [SP], ’}’

In the RETURN clause, no selection will be achieved, but fuzzy terms can350

be added in order to show the users the degree to which some values possess

properties represented by fuzzy sets, as for instance:

Listing 7: Fuzziness in the Return Clause

1 MATCH (h : Hotel) -[: LOCATED] -> (c : City)

2 RETURN h , CLOSE (h , c) AS ’ ClosenessToCityCenter ’355

3 ORDER BY ClosenessToCityCenter DESC

3.1.3. Cypherf over Relationships

As for nodes, such queries may be based on properties. However it can also

be based on the graph structure in order to better exploit and benefit from it.360

In Cypher, the structure of the pattern being searched is mostly defined in

the MATCH clause.

The first attempt to extend pattern matching to fuzzy pattern matching is

to consider chains and depth matching. Chains are defined in Cypher in the

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

MATCH clause with consecutive links between objects. If a node a is linked365

to an object b at depth 2, the pattern is writen as (a) − [∗2]− > (b). If a link

between a and b without regarding the depth in-between is searched, then it

is written (a) − [∗]− > (b). The mechanism also applies for searching objects

linked through a range of nodes (e.g. between 3 and 5): (a)− [∗3..5]− > (b).

In a similar way to [20], we propose thus to introduce fuzzy descriptors to370

define extended patterns where the depth is imprecisely described. It will then

for instance be possible to search for customers linked through almost 3 hops.

The syntax ∗∗ is proposed to indicate a fuzzy linker.

EBNF Grammar Extension 2. FuzzyLinker is defined as a FunctionInvoca-

tion that can be used in RelationshipDetail.375

RelationshipDetail = ’[’, [SP], [Variable, [SP]],

[RelationshipTypes, [SP]], [RangeLiteral], [FuzzyLinker],

[FuzzyCriteria], [Properties, [SP]], ’]’ ;

FuzzyLinker = ’**’, [SP], FunctionInvocation ;380

Listing 8: Fuzzy Patterns

1 MATCH (c1 : customer) -[: KNOWS ∗∗ almost (3)] -> (c2 : customer)

2 RETURN c1 , c2

Fuzzy linker is related to fuzzy tree and graph mining [21] where some pat-385

terns emerge from several graphs even if they do not occur exactly the same

way everywhere regarding the structure.

Popular hotels may for instance be retrieved when they are chosen by many

people. This is similar to the way popular people are detected if they are followed

by a large number of people on social networks.390

In Cypher, such queries are defined by using aggregators. For instance, the

following query retrieves hotels visited by at least 2 customers:

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Listing 9: Aggregation

1 MATCH (c : Customer) -[: VISIT] -> (h : Hotel)

2 WITH h AS hotel , count (c) AS nbCustomer395

3 WHERE nbCustomer > 1

4 RETURN hotel

Such crisp queries can be extended to consider fuzziness:

Listing 10: Aggregation
400
1 MATCH (c : Customer) -[: VISIT] -> (h : Hotel)

2 WITH h AS hotel , count (c) AS nbCustomer

3 WHERE POPULAR (nbCustomer) > 1

4 RETURN hotel
405

The question then raised is now to implement them in the existing Neo4J

engine.

3.2. Cypherf: Implementation Challenges

3.2.1. Architecture

There are several ways to implement fuzzy Cypher queries:410

1. Creating an overlay language on top of the Cypher language that will

produce well formatted queries expressed as Cypher statements to do fuzzy

computations;

2. Extending the Cypher queries and using the existing low level API behind;

3. Extending the low level API with optimized functions only available to415

advanced users with development skills;

4. Combining the last two possibilities: using an extended Cypher query

language over an enhanced low level API.

Every possibility is debated in this section and a synthesis is then provided.

3.2.2. Creating an Overlay Language420

Concept

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 5: Implementation Ways

The concept is to create a new language dedicated to our framework. Such

dedicated languages are also known as Domain Specific Languages (DSL). In

this work, we consider a high-level fuzzy DSL that will be used to generate

Cypher well-formed queries. The generated Cypher queries will be executed by425

the existing Neo4J engine.

A grammar must be defined for this external DSL which can rely on the

existing Cypher syntax and only enhance it with new fuzzy features. The output

of the generation process is pure Cypher code. In this scenario, Cypher is used

as a low level language to achieve fuzzy queries.430

Discussion

This solution is cheap and non-intrusive but has several serious drawbacks:

• Missing features: fuzzy queries (e.g., retrieving the data matching some

fuzzy criterion) cannot be easily expressed by the current Cypher language

(e.g., Listing 4) without creating ad hoc queries;435

• Performance issues: Cypher is neither designed for fuzzy queries nor for

being used as an algorithmic language. All the fuzzy queries will produce

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cypher query codes that are not optimized for computations embedding

fuzzy sets;

• Lack of user-friendliness: some queries cannot be executed directly against440

the Neo4J environment, it needs a three-step process: (i) write a fuzzy

query, then compile it to get the Cypher query; (ii) use the Cypher gen-

erated queries on the Neo4J database; (iii) reconstruct a “fuzzy answer”

from a regular Cypher query result

3.2.3. Extending the Cypher Queries445

Concept

We propose to extend the Cypher language in order to add new features.

Cypher offers various types of functions: scalar functions, collection functions,

predicate functions, mathematical functions etc. To enhance this language with

fuzzy features, we propose to add a new type of function: fuzzy functions. Fuzzy450

functions are used in the same way as other functions of Cypher (or SQL).

Cypher is an external DSL, which requires to be parsed. The query correct-

ness must be checked and then it has to be executed. In Cypher the execution

consists of retrieving the results from the query using the corresponding graph

traversal.455

The Neo4J’s grammar provides the guidelines of how the language is sup-

posed to be structured and what is and is not valid. In order to implement this

solution, the Cypher grammar must be extended regarding the current gram-

mar parser. Cypher uses the Scala Parser Combinator library (that will be

covered in more details in Section 4) as parsing engine. Once the Cypher query460

is parsed, the code has to be bound on the current programmatic API to achieve

the desired result.

Discussion

This work requires a deep understanding of the Neo4J engine and more

knowledge of Java/Scala programming language (used to write the Neo4J engine465

and API) than the previous solution. The main advantage of this solution is to

19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

offer an easy and user-friendly way to use the fuzzy feature. The disadvantages

of this solution are:

• Performance issue. This solution should have better performance than the

previous one. However, it is still built on the current Neo4J engine API470

that is not optimized for fuzzy queries (e.g. degree computing);

• Cost of maintenance. Until Neo4J accepts to merge this contribution to

the Neo4J project, it will be required to upgrade every new version of

Neo4J with these enhancements. Every new version of Neo4j can make

some breaking changes such as API changes. If so, part of the fuzzy475

extensions will need to be rewritten.

3.2.4. Extending Low Level API

Concept

This scenario consists of enhancing the core database engine with a frame-

work to efficiently handle the fuzzy queries and to extend the programming API480

that can be used by developers.

Discussion

This solution offers a high performance improvement but needs advanced

Neo4J skills, possibly high maintenance costs, a poor user-friendliness experience

(only developers can use it) and a costly development process.485

3.2.5. Extending Cypher Over an Enhanced Low Level API

Concept

The last possibility is to combine the solutions from Sections 3.2.3 and 3.2.4:

adding the features handling the fuzzy queries to the database engine extending

the API while also extending the Cypher language.490

Discussion

Although this solution is user-friendly and provides optimized performance,

it has a heavy development cost (skills, tasks, etc.) and a high cost of mainte-

nance.

20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Scenario Price Features Optimized User

Friendliness

Overlay ++ −− −− −

Language

Extending

Cypher + − + ++

Queries

Extending

Low Level + ++ −− −

API

Cypher over

an Enhanced −− ++ +++ ++

Low Level

API

Table 1: Discussion Sum-Up

Every scenario has pros and cons. Table 1 sums up the above discussion.495

The best, but most costly, solution is still the last one: extending Cypher

query language and build a low level API framework to enhance the Neo4J

database engine with support of fuzzy queries as presented below.

3.3. First Implementation: Naive Implementation

500

Prototype

In [18], a prototype based on the extension of Cypher over an enhanced API

has been introduced allowing fuzzy queries to be run as shown in Figure 6.

This first implementation is called "naive" because it deliberately rejects

sophisticated architecture and is a standard "proof of concept" implementation505

of what has been specified in previous section.

Discussion

21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 6: Protoype Developed

This implementation looks fairly user-friendly: a set of fuzzy functions to

be used in Cypher queries are available to users. The main drawback of this

implementation is that for each specific need a new function has to be developed.510

For instance, as defined in section 3.1.1, to calculate the similarity between

two nodes a function with two arguments (node1 and node2) has to be written.

The calculation of the similarity between two hotels or two cars is based on

different properties. This means that two different functions (SimilarityCars

and SimilarityHotels) are needed. Each function makes assumption on some515

node properties (e.g. top speed, max power for a car).

The same problem occurs on fuzzy queries over properties: the µcheap fuzzy

membership function is considered to calculate to which extent a property

matches the “cheap" fuzzy term. The cheap function cannot be defined with

the same µcheap membership function for a car or a hotel room: µcheapcar
and520

µcheaphotel
have to be implemented in Scala, tested, compiled, and deployed in

the Neo4J engine.

This is also a huge drawback when a user wants to define or refine a mem-

bership function: it is always a code, build, run cycle which requires the help of

an developer or the possession of programming skills.525

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

To conclude, this implementation is acceptable only for people who have few

fuzzy cases to handle or have development skills to implement fuzzy functions

by themselves.

This lack of genericity has highlighted the need for a new solution, described

in the next section.530

3.4. Cypherf: Extending Cypher to Fuzzy Queries

3.4.1. Overview

This new extension has been proposed and implemented to reduce the draw-

backs listed in Section 3.3. The goal of this proposal is to provide an improved

implementation on two axes: it must reduce the need for specific development535

and increase the capacity for the user to create his or her own membership

function.

Experimentation and benchmarking are available in Section 5.

3.4.2. Cypher: an External Domain Specific Language

As said before, Cypher is an external Domain Specific Language for express-540

ing queries on NoSQL graph databases. A Domain Specific Language (DSL) is

a language tailored to a specific application domain [22].

DSLs are everywhere. Among the most popular are SQL for relational

databases, Make for building softwares and CSS for styling description.

The main advantages of DSLs are that they are expressive, concise and de-545

signed at a high level of abstraction. Moreover, during the development cycle,

working on DSL is more scalable and tends to produce a higher payoff. The

main disadvantages are that the language design is hard and that DSLs lead

to performance issues. There are two main categories of Domain Specific Lan-

guages:550

• The first one is known as "internal" DSL. It uses the infrastructure of

an existing programming language to build domain-specific semantics. It

is implemented as a particular form of API in a host general purpose

23

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

language, often referred to as a “fluent" interface. The term fluent is used

for an API that is primarily designed to be readable and to flow.555

• The second category is named "external" DSL. This type of DSL is lan-

guage agnostic, meaning that it is independent from a language syntax.

It can thus be implemented in any language. One of the strengths of this

category of DSL is its expressiveness, as it is not limited to a general/host

programming language. The main drawback is that such languages have560

to be parsed to be manipulated. This requires the writing of a language

parser or the use of a tool that uses a grammar to generate a parser for a

specific language. For instance, AntLR [23] (ANother Tool for Language

Recognition) can be considered for this task.

3.4.3. Cypherf: Adding a Fuzzy DSL to Cypher565

The naive implementation extends the Cypher language with new functions:

fuzzy functions.

This approach does not provide an effective way to express membership

functions. To provide a more generic implementation, it is necessary to add

another Domain Specific Language that allows the end-user to express fuzzy570

expressions.

The choice has been made to enhance Cypher with fewer functions but ones

that allow the user to express fuzzy concerns with a "Fuzzy DSL". This new

extension of Cypher is called Cypherf, standing for Cypherfuzzy.

3.4.4. Features575

Cypherf allows the end-user to use fuzzy features such as defining mem-

bership function with the use of a fuzzy DSL, using t-norms and t-conorms

functions as defined in [24] and using fuzzy linguistic variables.

The available functions are listed below (a formal grammar definition is

available in Section 4.2.3):580

• Fuzzy(µf , value): returns the degree of membership of the µf function

24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

– µf describes the membership function with the Fuzzy DSL

– value is expressed as a Double

• FuzzyLT(fuzzyVariable, value): returns a collection that contains for every

fuzzy term of the fuzzy linguistic variable two properties: the name of the585

term and the degree of compatibility of a "value" with the term. For

instance, for a value X and a fuzzy linguistic variable Age = (Age, [0, 130],

{young,middleaged, old}, {µyoung, µmiddle, µold}) the result will be:

1 {590

2 { name : " young " , degree :µyoung(x)} ,

3 { name : " middle " , degree :µmiddle(x)} ,

4 { name : " old " , degree :µold(x)}

5 }
595

– fuzzyVariable: is expressed as a String that defines the fuzzy variable.

This definition is composed of the name of the fuzzy variable and a

set of fuzzy-terms. Every fuzzy term is defined by its name and its

membership function

– value is expressed as a Double600

• TNorms(tnormName, expression1, expression2): applies a TNorm of

name "tnormName" on expression1 and expression2

• TCoNorms(type, expression1, expression2): same as TNorms but this

time for t-conorms.

3.4.5. Fuzzy DSL605

The fuzzy DSL is used to define membership functions and fuzzy linguistic

variables.

It is processed by an underlying fuzzy framework called "Fuzzy4S" that

implements the fuzzy logic. Fuzzy4S has been developed explicitly as part of

this new implementation but can be used separately in other projects. The610

25

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

grammar of the fuzzy DSL is explained in the section 4.2.3 after the presentation

of the Fuzzy4S framework and the introduction of some underlying concepts.

In this section, some contribution about defining and using fuzzy queries in a

graph database has been proposed. Several implementation scenarios have been

discussed and two implementations confronted. Implementations are based on615

an extension of the declarative graph database query language Cypher and the

development of a low level engine that offers fuzzy features. The last implemen-

tation is more generic and user-friendly because it does not need programming

skills to be used.

The next section presents the underlying fuzzy framework that has been620

developed for Cypherf.

4. Fuzzy4S: A Fuzzy Logic Framework for Scala

In this contribution, approximate queries are considered in the way they are

defined using fuzzy set theory.

4.1. Overview625

In this paper, we introduce Fuzzy4S which is a fuzzy logic framework written

in Scala. Proposed as a library, it includes membership functions, t-norms and

t-conorms [10]. Upon this library, an open Domain Specific Language (DSL)

has been built to define approximate queries at an abstract level. It relies on

the IEC 61131 standard (IEC61131-7) that had been written for fuzzy control630

programming and on jFuzzyLogic (a java fuzzy logic library) [25, 26].

The need for such contributions in the fuzzy set framework has been high-

lighted in [27].

The rest of this section introduces our Domain Specific Language and the

underlying features.635

26

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4.2. Fuzzy4S Grammar

Fuzzy4S can be manipulated directly (by using a Domain Specific Language

based on a grammar that will be presented later in this section) or programmat-

ically (by referencing objects and classes of the framework written in Scala). As

written in [28], Scala is implemented as a translation to standard Java bytecode,640

which implies that the Scala code can be used in Java.

In the case of the Fuzzy4S DSL, the choice has been made to rely on external

DSL which are more expressive than internal DSL. We have thus written a parser

based on the concept of parsing expression grammar (PEG) which can be viewed

as an extension of EBNF [29] and that is introduced below.645

4.2.1. Fuzzy4S: Parsing Expression Grammar (PEG)

A Parsing Expression Grammar (PEG) is a recognition-based grammar for-

malism. The recognition-based systems have been developed in the 1970s. For

decades, the Chomsky’s generative system of grammars, particularly context-

free grammars (CFGs) and regular expressions (REs), has been used to express650

the syntax of programming languages and protocols [30].

As said in [31], the power of generative grammars to express ambiguity is

crucial to their original purpose of modelling natural languages, but this very

power makes it unnecessarily difficult both to express and to parse machine-

oriented languages using CFGs.655

A PEG provides an alternative for describing machine oriented syntax, which

solves the ambiguity problem by not introducing ambiguity in the first place.

Where CFGs express non-deterministic choice between alternatives, PEGs in-

stead use prioritized choice by trying the alternatives in their order and uncon-

ditionally consuming the first successful match.660

Figure 7 shows the notation of common operators available in PEG and the

equivalent notation in Scala.

PEG operators are used in Fuzzy4S to parse the external DSL with a com-

bination of several parsers. This technique is called combinatory parsing.

27

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 7: PEG operators [31] [32]

4.2.2. Combinatory Parsing665

In functional programming, a common approach to parse domain-specific

languages is to model parsers as functions and to define higher-order functions

(also called combinators) that implement grammar constructions such as se-

quencing, choice and repetition. As explained in [33], the basic idea dates back

to 1970s [34] and has become popular since 1980s in a variety of functional670

programming languages [35, 36, 37].

4.2.3. Fuzzy4S Parsing Expression Grammar

The parsing expression grammar for the DSL used in Fuzzy4S is defined in

Listing 11.

Listing 11: Fuzzy4S Parsing Expression Grammar
675
1

2

3 de f number : Parser [Double] = """−?\d+(\.\d∗) ?"""

4 de f point : Parser [Point] = " (" ∼> number ∼ " , " ∼ number <∼ ") "

5 de f functionName : Parser [String] = """ t r i an | t rape | gauss | g b e l l | sigm←↩680

"""

6 de f parameters = rep1 (point) | rep1 (number)

7 de f memberfunction = functionName . ? ∼ parameters

28

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

U0 20 40 60 80 100

25 40 50 65µ

Figure 8: Result of listing 12

8 de f termName = """ [a−zA−Z]\w∗"""

9 de f term = "TERM" ∼> termName ∼ ":=" ∼ memberfunction <∼ " ; "685

10 de f variableName = """ [a−zA−Z]\w∗"""

11 de f fuzzyVariable = "FUZZIFY" ∼> variableName ∼ rep1 (term) <∼ "←↩

END_FUZZIFY"

Listing 12: Fuzzy variable example: fuzzy linguistic definition of Age
690
1 FUZZIFY age

2 TERM young := (25 ,1) (40 ,0) ;

3 TERM middle := trape 25 40 50 65 ;

4 TERM old := (50 ,0) (65 ,1) ;

5 END_FUZZIFY695

As defined in Listing 11, a point can be expressed as a pair of two numbers,

the first one defining the x coordinate and the second one the y coordinate.

A membership function has an optional function name and some parameters

(point or number). A Term defines a fuzzy set, it is composed of a name and a700

membership function. A fuzzy linguistic variable (named fuzzyVariable in List-

ing 11) is composed of a name, for instance age, and all the terms that compose

this fuzzy linguistic variable (young, old, . . .) such as defined in Listing 12 and

represented by Figure 8.

Fuzzy linguistic variable definition can be stored in files and can be loaded in705

Fuzzy4S by using the file path. This choice has been made in order to provide a

simple way for users to create their own library to define their specific linguistic

terms.

One of our potential future project’s feature will be to provide a web ap-

29

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

plication where users can publish their definition of fuzzy linguistic variable to710

compose an open source repository. Users will be able to load definition from

this site by using HTTP URIs.

4.3. Epitomization

We claim that fuzzification is a challenge for graph databases. Our contribu-

tion is to propose an extension of the Cypher language, one of the most widely715

adopted graph database query language, to handle fuzzy queries.

Our first implementation attempt required to create a new function for each

usecase and context (e.g., Cheap, Far, Cold, etc.). Each function implemen-

tation has to be invocated by the use of a FunctionInvocation (in Cypher’s

EBNF grammar).720

We think that this approach was lacking of genericity. We thus decided to

offer a better support of fuzzy features to the end users through the definition of

a domain specific language (DSL) called Fuzzy4S that provides the user with the

ability to define his own fuzzy linguistic vocabulary and terms with associated

functional membership functions and to chain them in their Cypherf queries.725

Upon that, our choice of extending Cypher (instead of creating a separated

language) offers the user more flexibility by the possibility to use functions (e.g.

contains()) and operations (e.g. head()) of the underlying system.

The next section introduces some examples that show the power of our

contribution.730

5. Examples and Experimentation

This section illustrates our contributions with examples and shows the effi-

ciency of our implementation with experimental load tests over benchmarks.

5.1. Using Fuzzy4S

This section is divided into two parts. The first is a showcase of some735

classical examples of what can be done with Fuzzy4S. The second introduces a

web application that offers a web console to try out the Fuzzy4S framework.

30

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 9: Examples of membership functions using Scala4S

5.1.1. Examples

In Figure 9 some examples of using membership functions of Fuzzy4S are

provided both in Scala code and with the external DSL.740

5.1.2. Try Fuzzy4S: a Web Console

A web application is proposed to test the Fuzzy4S functionality. This appli-

cation is a web console that offers the opportunity to define and evaluate some

membership functions with the Fuzzy4S DSL as shown in Figure 10.

5.2. Using Cypherf745

This section uses the example of searching for the best hotel for a trip to

Paris. Two criteria will be explored: the price of the hotel for one night and the

distance to the center of the city.

This section contains examples which can be seen as a step-by-step tutorial:

• example 1 and example 2 introduce basic Cypher query concepts required750

for the rest of this section;

• example 3 and example 4 introduce the use of membership functions with

Cypherf;

• example 5, example 6 and example 7 illustrate how to use linguistic vari-

ables;755

31

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 10: Fuzzy4S web console

• example 8 and example 9 use t-norms and t-conorms.

5.2.1. Data modelization and preliminary examples

Hotel and city center can be modelized as shown in Figure 11.

Using modelization from Figure 11, finding hotels close to the city center of

the town requires calculating the distance from the hotel to the center of the760

city. The Euclidean distance between two points of the plane with Cartesian

coordinates (x1, y1) and (x2, y2) is

d =
√

(x2 − x1)2 + (y2 − y1)2.

Example 1. Calculate the Euclidean distance in a graph database using Cypher

Listing 13: Calculate the euclidean distance between a hotel and the city center

1 match (c : C e n t e r) , (h : H o t e l)765

2 wi th h . name as h o t e l , sqrt ((c . posX − h . posX) ∗ (c . posX − h . posX)←↩

+ (c . posY − h . posY) ∗ (c . posY − h . posY)) as d i s t a n c e

32

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 11: a possible data modelization

3 r e tu rn h o t e l , d i s t a n c e

4 o r d e r by d i s t a n c e
770

Listing 13 shows how to calculate the Euclidean distance. The first line of

Listing 13 specifies which node will be searched in the request, in this example

all the nodes with label “Hotel" or label “Center". The WITH instruction ma-

nipulates the output before passing it to the rest of the query. It is a sort-of

"pipe" command. In this example it takes hotels and center nodes and returns775

the hotel name to the rest of the query as a property called "hotel" and the dis-

tance expressed from the euclidean distance between the node and the center of

the city.

In Example 1 the calculation of the euclidean distance must be done for each

query execution. A better approach could be to store distance information into780

a relationship between the hotel and the city center.

The same technique can be considered for the result of the execution of a

membership function like "close". It can also be stored in the same relationship.

Example 2. Store processed information in a relationship

Listing 14 shows how to store the result of the euclidean distance calculation785

in a relationship between hotel and city center.

33

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 12: a data modelization with relationships

At the end of the query execution, the graph model looks like: (h:Hotel)-

[r:Distance distance:VALUE]->(c:Center) as represented in Figure 12.

Listing 14: Adding a relationship with euclidean distance

1 MATCH (c : C e n t e r) , (h : H o t e l)790

2 WITH h , c , sqrt ((c . posX − h . posX) ∗ (c . posX − h . posX) + (c . posY ←↩

− h . posY) ∗ (c . posY − h . posY)) as d i s t a n c e

3 WITH h , c , d i s t a n c e , f u z z y ("(1200 , 1) (2000 , 0) " , d i s t a n c e) AS ←↩

c l o s e T o C e n t e r D e g r e e

4 CREATE (h) -[r : D i s t a n c e { e u c l i d e a n D i s t a n c e : d i s t a n c e , c l o s e T o C e n t e r :←↩795

c l o s e T o C e n t e r D e g r e e }] -> (c)

5 r e tu rn h , r , c

In order to focus on the fuzzy expression of Cypherf language, the model

has been transformed. The hotels no longer have posX and posY properties,800

only a distance property that expresses the distance between the hotel and the

center of Paris. The resulting data set is shown in Listing 15 and represented

in Figure 13

Listing 15: Dataset

1 CREATE (h1 : Hotel { name : "h1" , price : 60 , distance : 3200})805

2 CREATE (h2 : Hotel { name : "h2" , price : 70 , distance : 2400})

34

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 13: Figure of listing 15

3 CREATE (h3 : Hotel { name : "h3" , price : 80 , distance : 1800})

4 CREATE (h4 : Hotel { name : "h4" , price : 90 , distance : 1300})

5 CREATE (h5 : Hotel { name : "h5" , price : 110 , distance : 499})

6 CREATE (c : Center { city : " Paris "})810

5.2.2. Using a Membership Function

In this section, the goal is to retrieve the hotels close to the city center. To

do so a piecewise membership function, illustrated in Figure 14, is defined as:

f(x) =815
1 0 ≤ x ≤ 1200

−x
800 + 5

4 1200 < x < 2000

0 x >= 2000

Example 3. Using a closeToCenter piecewise membership function in Cypherf

Listing 16 shows the use of the "fuzzy" Cypherf function that allows the user

to use the Fuzzy DSL to describe a membership function. The result is the degree

of membership of the hotel’s distance to the defined membership function.

35

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

distance0

1

1200 2000

Constant flux Field weakening

µ

Figure 14: Distance membership function

Figure 15: Result of querying distance to retrieve hotel

Listing 16: Querying distance to retrieve hotel by closeToCenter degree
820
1 MATCH (h : H o t e l)

2 WITH h , f u z z y ("(1200 , 1) (2000 , 0) " , h . d i s t a n c e) AS d i s t a n c e

3 RETURN h . name , d i s t a n c e

4 O R D E R BY d i s t a n c e DESC
825

Figure 15 shows the result of listing 16.

Example 4. Using a threshold on the degree of membership to closeToCenter

Listing 17 retrieves the first ten results with a degree of 0.8 at least. Figure

16 shows the results.

Listing 17: Retrieving hotels close to city center with a threshold on degree of membership to

closeToCenter, limit to the top three results
830
1 MATCH (h : H o t e l)

2 WITH h , f u z z y ("(1200 , 1) (2000 , 0) " , h . d i s t a n c e) as d i s t a n c e

3 WHERE d i s t a n c e > 0 . 8

36

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 16: Result of querying distance with threshold

4 RETURN h . name , d i s t a n c e

5 O R D E R BY d i s t a n c e DESC835

We have seen in this section how to use a membership function inside Cypherf

query language. The next section shows how to use linguistic variables in

Cypherf.

5.2.3. Using a Linguistic Variable840

Let a linguistic variable price be defined with 3 terms: cheap, midPrice,

expensive.

To allow users to retrieve the degree of membership associated to each term

of a fuzzy linguistic variable, all membership functions must be applied. It is

thus necessary to provide a "price.fl" (fl stands for FuzzyLogic) file that contains845

the variable definition as shown in Listing 18.

Listing 18: definition of price linguistic variable

1 FUZZIFY price

2 TERM cheap := (70 , 1) (85 , 0) ;

3 TERM midPrice := trape 75 85 90 105 ;850

4 TERM expensive := (95 , 0) (110 , 1) ;

5 END_FUZZIFY

Example 5. Using Cypherf with a linguistic variable

If the linguistic variable definition is saved in the /tmp/price.fl location then855

Cypherf query can be used to build a query as in Listing 19.

37

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 17: Result of querying linguistic variable price

Listing 19: Using Cypherf with a linguistic variable

1 match (h : H o t e l)

2 r e tu rn h . name , f u z z y L T ("/ tmp / p r i c e . fl " , h . p r i c e)
860

As shown in Figure 17, the query returns a collection of terms composed of

a name and a degree. This collection is sorted by decreasing degree and (if two

terms have the same degree) by term declaration order in the linguistic variable.

Example 6. Retrieving the most appropriate term of a linguistic variable

Listing 20 shows Cypher query to retrieve the top term of this linguistic865

variable for each hotel, meaning the most appropriate term of the price linguistic

variable for each hotel.

Listing 20: Retrieving the most appropriate term of a linguistic variable

1 MATCH (h : H o t e l)

2 WITH h , h . p r i c e as p r i c e870

3 RETURN h . name , head (f u z z y L T ("/ tmp / p r i c e . fl " , p r i c e))

38

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 18: Result of querying the top term of linguistic variable price

Line 3 of Listing 20 shows the fuzzyLT function returning the head of the

collection, which is to say the element with the highest degree and declared first

in the linguistic terms. Figure 18 shows that each returned element has two875

properties: a name and a degree.

Listing 21 illustrates the name of the hotels and the top price term name.

Results are available in Figure 19.

Listing 21: Display the best price term name

1 MATCH (h : Hotel)880

2 WITH h , h . price AS price

3 RETURN h . name , head (fuzzyLT ("/ tmp / price . fl" , price)) . name

Example 7. Storing fuzzy information in nodes

As seen in Listing 14, information processed from the fuzzy functions can be885

stored back in the graph. For instance, for every hotel, the top-price name can

be stored as a property of the hotel node. Listing 22 illustrates how to store the

39

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 19: Result of querying the name of the top term of linguistic variable price

Figure 20: Result of storing category in Hotel node and grouping by category

most appropriate term in hotel node and shows that data can be grouped based

on fuzzy information. Figure 20 shows the result of Listing 22.

Listing 22: Store back most appropriate term in a node, group by Category
890
1 MATCH (h : H o t e l)

2 WITH h , h . p r i c e AS p r i c e

3 WITH h , head (f u z z y L T ("/ tmp / p r i c e . fl " , p r i c e)) AS p r i c e T e r m

4 SET h . p r i c e C a t = p r i c e T e r m . name , h . p r i c e D e g r e e = p r i c e T e r m . d e g r e e

5 RETURN h . p r i c e C a t , c o l l e c t (h . name)895

5.2.4. Combining Fuzzy Terms

In this example section, the goal is to find the hotels close to the city center

and have low price. To do so, two linguistic variables are used: the price and

the distance of the hotel to the city center. The price definition remains the900

same as in listing 18 and the fuzzy linguistic variable distance is defined as in

Listing 23.

40

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Listing 23: Distance definition

1 FUZZIFY distance

2 TERM close := (1200 , 1) (2000 , 0) ;905

3 TERM medium := trape 1200 2000 2500 3000 ;

4 TERM far := (2500 , 0) (3000 , 1) ;

5 END_FUZZIFY

Example 8. Using t-norms with two fuzzy linguistic variables910

Listing 24 shows the Cypherf query to achieve this goal and Figure 21 shows

the results when using the min t-norm.

Listing 24: Using TNorm

1 Match (h : H o t e l)

2 WITH h as h o t e l , h . p r i c e as h o t e l P r i c e , h . d i s t a n c e as ←↩915

h o t e l D i s t a n c e

3 WITH h o t e l , F u z z y L T ("/ tmp / d i s t a n c e . fl " , h o t e l D i s t a n c e) as ←↩

d i s t a n c e T e r m s , F u z z y L T ("/ tmp / p r i c e . fl " , h o t e l P r i c e) as ←↩

p r i c e T e r m s

4 UNWIND d i s t a n c e T e r m s as d i s t a n c e920

5 UNWIND p r i c e T e r m s as p r i c e

6 r e tu rn h o t e l . name , d i s t a n c e . name , p r i c e . name , T N o r m (" Min " , ←↩

d i s t a n c e . d e g r e e , p r i c e . d e g r e e) as minR o r d e r by T N o r m (" Min " , ←↩

d i s t a n c e . d e g r e e , p r i c e . d e g r e e) desc
925

Example 9. Final example: finding the best hotels

Listing 25: Using TNorm and where clause

1 MATCH (h : H o t e l)

2 WITH h AS h o t e l , h . p r i c e AS h o t e l P r i c e , h . d i s t a n c e AS ←↩

h o t e l D i s t a n c e930

3 WITH h o t e l , F u z z y L T ("/ tmp / d i s t a n c e . fl " , h o t e l D i s t a n c e) AS ←↩

d i s t a n c e T e r m s , F u z z y L T ("/ tmp / p r i c e . fl " , h o t e l P r i c e) AS ←↩

p r i c e T e r m s

4 UNWIND d i s t a n c e T e r m s AS d i s t a n c e

5 UNWIND p r i c e T e r m s AS p r i c e935

6 With h o t e l , d i s t a n c e , p r i c e

7 WHERE p r i c e . name = " c h e a p " and d i s t a n c e . name = " c l o s e "

41

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 21: Using t-norm

Figure 22: Result of using TNorm with where clause

8 RETURN h o t e l . name , d i s t a n c e . name , p r i c e . name , T N o r m (" Min " , ←↩

d i s t a n c e . d e g r e e , p r i c e . d e g r e e) AS minR O R D E R BY T N o r m (" Min " , ←↩

d i s t a n c e . d e g r e e , p r i c e . d e g r e e) DESC940

Figure 22 shows that only one hotel, the cheapest one, could fit with our

request. Nevertheless, sometimes the least expensive option is not the best match.

We thus change the price criterion from "cheap" to "midPrice" as shown in

Listing 26.945

Listing 26: Requesting with price=midPrice and distance=Close

1 MATCH (h : H o t e l)

42

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 23: Result of query with price=midPrice and distance=Close

2 WITH h AS h o t e l , h . p r i c e AS h o t e l P r i c e , h . d i s t a n c e AS ←↩

h o t e l D i s t a n c e

3 WITH h o t e l , F u z z y L T ("/ tmp / d i s t a n c e . fl " , h o t e l D i s t a n c e) AS ←↩950

d i s t a n c e T e r m s , F u z z y L T ("/ tmp / p r i c e . fl " , h o t e l P r i c e) AS ←↩

p r i c e T e r m s

4 UNWIND d i s t a n c e T e r m s AS d i s t a n c e

5 UNWIND p r i c e T e r m s AS p r i c e

6 WITH h o t e l , d i s t a n c e , p r i c e955

7 WHERE p r i c e . name = " m i d P r i c e " and d i s t a n c e . name = " c l o s e "

8 RETURN h o t e l . name , d i s t a n c e . name , p r i c e . name , T N o r m (" Min " , ←↩

d i s t a n c e . d e g r e e , p r i c e . d e g r e e) AS minR O R D E R BY T N o r m (" Min " , ←↩

d i s t a n c e . d e g r e e , p r i c e . d e g r e e) DESC
960

Result of listing 26 is shown in Figure 23.

5.3. Load Testing

5.3.1. Experimental Design

A test protocol has been defined to minimize the side effects (of both the

dynamic compilation as well as the JVM memory management) on performance965

measurement based on works made in [32].

There are some mechanisms in the JVM which are transparent to the pro-

grammer, like automatic memory management, dynamic compilation, adaptive

optimization and so on [38, 39]. These mechanisms are triggered implicitly and

can have an enormous impact on measurements. For example:970

• Just in Time (JIT) compilation: during the program the same code might

exhibit very different performance characteristics. The HotSpot compiler

could potentially compile any part of the code at any point during the

43

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

runtime. This can happen in the middle of running a benchmark, yielding

an inaccurate running time measurement;975

• Classloading: JVM has global program information available (unlike a

typical compiler). One method may be optimized based on the information

in some unrelated method;

• Automatic memory management: the execution of running code can lead

to the triggering of garbage collection cycle which changes the observed980

performance of the code being tested.

To generate better performance measurement, a test protocol has been de-

fined and applied on every test:

• A separate JVM executor is created. Having a separate JVM ensures that

only the bare essentials are needed to run the tests. It prevents the JIT985

compiler from applying some optimizations to the code.

• This executor has a default heap size set to 2GB

• To ensure that the JIT compiler optimized the code appropriately, the

tests code monitors the running time during the warmup to dynamically

detect if the running time has become stable990

• A warmup is done before every test using statistical data analysis such as

confidence interval as described in [40]

[info] Running test set for Fuzzy4S.membershipfunction, curve Test-0

[info] Starting warmup.

[info] 0. warmup run running time: 60 (covNoGC: NaN, covGC: NaN)995

...

[info] 20. warmup run running time: 30 (covNoGC: 0.060, covGC: 0.354)

[info] Steady-state detected.

[info] Ending warmup.

44

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• 36 repetitions of a measurement5 for every input size before moving on to1000

benchmarking wider ranges

• a Min aggregator is used to retrieve the minimum running time of all the

benchmarks run for each size

5.3.2. Fuzzy4S Measurement

The goal of this section is to determine if Fuzzy4S performs as well as a state-1005

of-the-art fuzzy engine written on the JVM. To do so, Fuzzy4S is compared to

JFuzzyLogic [25] a fuzzy logic framework written in Java.

The performance scenario is described below.

• Use a range generator that generates an inclusive range of integer values.

For instance for an x-axis of 10, it generates values 0,1,..,10.1010

• Use a triangular membership function.

• Calculate the running time of JFuzzyLogic and Fuzzy4S frameworks to

parse the membership function and evaluate each value of x for every

range

The result of the benchmark in Figure 24 shows, for this request, better1015

performance for Fuzzy4S than JFuzzyLogic, meaning that Fuzzy4S is an efficient

fuzzy engine implementation.

5.3.3. Cypherf Measurement

This section aims at evaluating the additional runtime costs (overhead) of

Cypherf. This consists of discussing whether or not the extension of Cypher and1020

the use of the Fuzzy4S engine handling fuzzy queries are acceptable. Listing 27

is a pure Cypher query that retrieves hotels’ name whereas query of Listing 28

returns for every hotel its name and the most appropriate price term.

5Using 36 measurements increases the probability to have at least 30 measures after re-

moving outliers due to external events (such as garbage collection), which allows us to tighten

the confidence interval.

45

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 24: Benchmark comparison on 1 million nodes between Fuzzy4S and JFuzzyLogic

frameworks

To better highlight performance measurement of fuzzy runtime overhead, a

LIMIT 10 clause has been added. Indeed, the deserialization of query results is1025

an important part of the overall time of each query.

Listing 27: Pure Cypher query in Neo4j

1 MATCH (h : Hotel) RETURN h . name LIMIT 10

Listing 28: Cypherf query on Neo4j-Fuzzy
1030

1 MATCH (h : Hotel)

2 WITH h , h . price as price

3 RETURN h . name , head (fuzzyLT ("/ opt / research / data / price . fl" , price))

4 LIMIT 10
1035

Figure 25 shows that there is no major difference between Cypher and

Cypherf execution. The additional cost of using fuzzy statements with Cypherf

is thus compatible with the use of NoSQL graph databases.

46

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 25: Benchmark comparison on 1 million nodes between a Cypher and a Cypherf query

6. Conclusion

Graph databases are becoming more and more used by both scientists and1040

practitioners as the available engines are more and more powerful and scalable.

They are used in many application domains, for the industry (e.g., logistics),

ecommerce (e.g., ebay delivery service) or social networks (e.g., LinkedIn). Their

ability to compute complex queries is a key feature. However, there is not yet

any native possibility to compute fuzzy queries.1045

In this article, we thus introduce the necessary frameworks to support ap-

proximate queries in NoSQL graph databases. Fuzzy4S provides a framework

via a Domain Specific Language (DSL) to define approximate linguistic vari-

ables. This DSL can then be used for querying NoSQL graph databases with

Cypherf which extends the existing declarative language to manage approxi-1050

mate queries. Our propositions have been tested, we also have shown that the

overhead is low assessing the power of the primitives that have been introduced.

This work opens up many research topics and possibilities. Regarding Big

Data, many real-world applications and uses could be challenging for our ap-

proach. Fuzzy information may indeed be embedded within the data, especially1055

in the (key; value) properties, as for instance Hotel h1 could be located at

around 800 meters from the city center. It is also the case in social networks for

all numerical properties on people and organizations (age, salary, size, revenue,

etc.) on which various fuzzy variables may be defined depending on the context

47

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

and/or application.1060

In particular, further work may focus on the definition of complex operations

in such a context of schema-less databases, as for instance the definition of the

SimilarTo function on nodes that have to be compared while they may have

disjoint sets of properties.

Moreover, Fuzzy4S and Cypherf may be used to retrieve fuzzy linguistic1065

summaries from large NoSQL databases. Such approaches require to apply

complex queries and will better highlight the power of graph databases (e.g.,

paths).

References

[1] A. laszlo Barabasi, Linked: How Everything Is Connected to Everything1070

Else and What It Means for Business, Science, and Everyday Life, Basic

Books, 2014.

[2] A. Castelltort, A. Laurent, Rogue behavior detection in nosql graph

databases, J. Innovation in Digital Ecosystems 3 (2) (2016) 70–82. doi:

10.1016/j.jides.2016.10.004.1075

URL http://dx.doi.org/10.1016/j.jides.2016.10.004

[3] R. Angles, C. Gutierrez, Survey of graph database models, ACM Comput.

Surv. 40 (1) (2008) 1–39.

[4] T. T. A. Board, Technology radar (2013).

[5] M. Odersky, V. Cremet, I. Dragos, G. Dubochet, B. Emir, S. McDirmid,1080

S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, L. Spoon, M. Zenger,

et al., An overview of the scala programming language (second edition),

Tech. rep. (2006).

[6] I. Robinson, J. Webber, E. Eifrem, Graph Databases, O’Reilly, 2013.

[7] R. E. Pattis, Teaching EBNF first in CS 1, in: R. Beck, D. Goelman (Eds.),1085

Proceedings of the 25th SIGCSE Technical Symposium on Computer Sci-

48

http://dx.doi.org/10.1016/j.jides.2016.10.004
http://dx.doi.org/10.1016/j.jides.2016.10.004
http://dx.doi.org/10.1016/j.jides.2016.10.004
http://dx.doi.org/10.1016/j.jides.2016.10.004
http://dx.doi.org/10.1016/j.jides.2016.10.004
http://dx.doi.org/10.1016/j.jides.2016.10.004
http://doi.acm.org/10.1145/191029.191155
http://dx.doi.org/10.1016/j.jides.2016.10.004

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

ence Education, 1994, Phoenix, Arizona, USA, March 10-12, 1994, ACM,

1994, pp. 300–303. doi:10.1145/191029.191155.

URL http://doi.acm.org/10.1145/191029.191155

[8] D. E. Knuth, backus normal form vs. backus naur form, Commun. ACM1090

7 (12) (1964) 735–736. doi:10.1145/355588.365140.

URL http://doi.acm.org/10.1145/355588.365140

[9] P. Smets, Imperfect information: Imprecision and uncertainty, in:

A. Motro, P. Smets (Eds.), Uncertainty Management in Information Sys-

tems, Springer US, 1997, pp. 225–254.1095

[10] L. Zadeh, Fuzzy sets, Information and Control 8 (3) (1965) 338 – 353.

[11] P. Bosc, O. Pivert, SQLf: a relational database language for fuzzy querying,

Fuzzy Systems, IEEE Transactions on 3 (1) (1995) 1–17.

[12] Y. Takahashi, A fuzzy query language for relational databases, IEEE Trans-

actions on Systems, Man, and Cybernetics 21 (6) (1991) 1576–1579.1100

[13] D. Dubois, H. Prade, Using fuzzy sets in flexible querying: Why and how?,

in: T. Andreasen, H. Christiansen, H. Larsen (Eds.), Flexible Query An-

swering Systems, Kluwer Academic Publishers, Boston, 1997, pp. 45–60.

[14] S. Zadrozny, J. Kacprzyk, Implementing fuzzy querying via the inter-

net/www: Java applets, activex controls and cookies., in: T. Andreasen,1105

H. Christiansen, H. L. Larsen (Eds.), FQAS, Vol. 1495 of Lecture Notes in

Computer Science, Springer, 1998, pp. 382–392.

[15] J. Galindo, J. M. Medina, O. Pons, J. C. Cubero, A server for fuzzy sql

queries., in: T. Andreasen, H. Christiansen, H. L. Larsen (Eds.), FQAS,

Vol. 1495 of Lecture Notes in Computer Science, Springer, 1998, pp. 164–1110

174.

[16] J. Z. Pan, G. B. Stamou, G. Stoilos, S. Taylor, E. Thomas, Scalable query-

ing services over fuzzy ontologies, in: J. Huai, R. Chen, H.-W. Hon, Y. Liu,

49

http://dx.doi.org/10.1145/191029.191155
http://doi.acm.org/10.1145/191029.191155
http://doi.acm.org/10.1145/355588.365140
http://dx.doi.org/10.1145/355588.365140
http://doi.acm.org/10.1145/355588.365140

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

W.-Y. Ma, A. Tomkins, X. Z. 0001 (Eds.), WWW, ACM, 2008, pp. 575–

584.1115

[17] J. Cheng, Z. M. Ma, L. Yan, f-sparql: A flexible extension of sparql, in:

P. G. Bringas, A. Hameurlain, G. Quirchmayr (Eds.), DEXA (1), Vol. 6261

of Lecture Notes in Computer Science, Springer, 2010, pp. 487–494.

[18] A. Castelltort, A. Laurent, Fuzzy queries over nosql graph databases: Per-

spectives for extending the cypher language, in: International Conference1120

on Processing and Management of Uncertainty in Knowledge-Based Sys-

tems, Springer, 2014.

[19] M.-J. Lesot, M. Rifqi, H. Benhadda, Similarity measures for binary and

numerical data: a survey, International Journal of Knowledge Engineering

and Soft Data Paradigms 1 (1) (2008) 63–84. doi:10.1504/ijkesdp.2009.1125

021985.

URL https://hal.inria.fr/hal-01072737

[20] E. Panzeri, G. Pasi, A flexible extension of xquery full-text, in: R. Basili,

F. Sebastiani, G. Semeraro (Eds.), Proceedings of the 4th Italian Infor-

mation Retrieval Workshop, Pisa, Italy, January 16-17, 2013, Vol. 964 of1130

CEUR Workshop Proceedings, CEUR-WS.org, 2013, pp. 29–32.

URL http://ceur-ws.org/Vol-964/paper4.pdf

[21] F. D. R. López, A. Laurent, P. Poncelet, M. Teisseire, FTMnodes: Fuzzy

tree mining based on partial inclusion, Fuzzy Sets and Systems 160 (15)

(2009) 2224–2240.1135

[22] M. Fowler, Domain Specific Languages, 1st Edition, Addison-Wesley Pro-

fessional, 2010.

[23] T. Parr, The definitive ANTLR reference: building domain-specific lan-

guages, Pragmatic Bookshelf; 1 edition, 2007.

[24] E. P. Klement, E. Pap, R. Mesiar, Triangular norms, Trends in logic,1140

Kluwer Academic Publ. cop., Dordrecht, Boston, London, 2000.

50

http://ceur-ws.org/Vol-964/paper4.pdf
https://hal.inria.fr/hal-01072737
https://hal.inria.fr/hal-01072737
http://dx.doi.org/10.1504/ijkesdp.2009.021985
https://hal.inria.fr/hal-01072737
https://hal.inria.fr/hal-01072737
http://dx.doi.org/10.1504/ijkesdp.2009.021985
http://dx.doi.org/10.1504/ijkesdp.2009.021985
http://ceur-ws.org/Vol-964/paper4.pdf

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[25] P. Cingolani, J. Alcala-Fdez, jFuzzyLogic: a robust and flexible Fuzzy-Logic

inference system language implementation, in: FUZZ-IEEE, 2012, pp. 1–8.

[26] P. Cingolani, J. Alcalá-Fdez, jFuzzyLogic: a java library to design fuzzy

logic controllers according to the standard for fuzzy control programming,1145

International Journal of Computational Intelligence Systems 6 (2013) 61–

75.

[27] B. N. D. Stefano, On the need of a standard language for designing fuzzy

systems, in: G. Acampora, V. Loia, C. Lee, M. Wang (Eds.), On the

Power of Fuzzy Markup Language, Vol. 296 of Studies in Fuzziness and Soft1150

Computing, Springer, 2013, pp. 3–15. doi:10.1007/978-3-642-35488-5.

URL http://dx.doi.org/10.1007/978-3-642-35488-5

[28] M. Odersky, L. Spoon, B. Venners, Programming in scala, Artima Inc,

2008.

[29] R. R. Redziejowski, From EBNF to PEG, in: Proceedings of the 21th1155

International Workshop on Concurrency, Specification and Programming,

Berlin, Germany, September 26-28, 2012, 2012, pp. 324–335.

[30] N. Chomsky, On certain formal properties of grammars, Information and

Control 2 (2) (1959) 137 – 167.

[31] B. Ford, Parsing expression grammars: a recognition-based syntactic foun-1160

dation, in: ACM SIGPLAN Notices, Vol. 39, ACM, 2004, pp. 111–122.

[32] P. H. Nguyen, M. Odersky, Scala benchmarking suite-scala performance

regression pinpointing.

[33] G. Hutton, E. Meijer, Monadic parser combinators, School of Computer

Science and IT, 1996.1165

[34] H. Burge William, Recursive programming techniques, Reading Mass:

Addison-Wesley, 1975.

51

http://dx.doi.org/10.1007/978-3-642-35488-5
http://dx.doi.org/10.1007/978-3-642-35488-5
http://dx.doi.org/10.1007/978-3-642-35488-5
http://dx.doi.org/10.1007/978-3-642-35488-5
http://dx.doi.org/10.1007/978-3-642-35488-5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[35] P. Wadler, How to replace failure by a list of successes a method for ex-

ception handling, backtracking, and pattern matching in lazy functional

languages, in: Functional Programming Languages and Computer Archi-1170

tecture, Springer, 1985, pp. 113–128.

[36] G. Hutton, Higher-order functions for parsing, J. Funct. Program. 2 (3)

(1992) 323–343.

[37] J. Fokker, Functional parsers, in: Advanced functional programming,

Springer, 1995, pp. 1–23.1175

[38] B. Goetz, Java theory and practice: Dynamic compilation and performance

measurement, IBM Developer Works (2004) 1–8.

[39] B. Goetz, Java theory and practice: Anatomy of a flawed microbenchmark,

IBM developer-Works.

[40] A. Georges, D. Buytaert, L. Eeckhout, Statistically rigorous java perfor-1180

mance evaluation, ACM SIGPLAN Notices 42 (10) (2007) 57–76.

52

fcypher-alternatives.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298511&guid=3a607d7b-af9d-4f4e-b47b-2e4880520a83&scheme=1

fuzzy-prototype-close.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298512&guid=ac075c98-98b8-4eb0-92cc-8565723718a9&scheme=1

fuzzy4svsjfl.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298513&guid=51b4b854-457c-4326-a28b-ef44c760b1d9&scheme=1

gdbms.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298514&guid=b1766598-42ea-402b-b4fb-f291080bd6f6&scheme=1

peg.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298515&guid=ad025791-0bf2-491b-bbdc-bb89fea747e7&scheme=1

tnorms.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298516&guid=02001508-1fc7-4285-af7f-664eb1724a18&scheme=1

tnormswhere.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298517&guid=7b6eaa21-68dd-4a7f-9908-a6f956e7eebf&scheme=1

tnormswheremidprice.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298518&guid=00532651-abb7-4f18-97b7-c95fe9c95820&scheme=1

bench-neo.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298519&guid=ec8cd221-f962-42df-91bd-5ebc84facddd&scheme=1

bench-neov2.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298520&guid=9aa57400-4129-49e5-97dc-764f032475e4&scheme=1

conceptual_example_rels_organisation.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298521&guid=4c96809a-db8f-4821-bc74-6d421e2c3449&scheme=1

datamodelization.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298522&guid=4cda9d71-7c3d-4c85-9a63-ed6509424ccf&scheme=1

dataset.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298523&guid=74959aff-9be3-47a9-886d-9500c123a5ef&scheme=1

dbengines.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298524&guid=2a2f78c6-f8eb-4362-b4f7-6a1904e4be5f&scheme=1

euclideanrelationships.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298525&guid=9166e1db-c64f-4047-991d-df875f4828ea&scheme=1

fsparql.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298526&guid=c69cc504-5673-480f-8cc5-84d67889b7dd&scheme=1

fuzzy4sexamples.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298527&guid=96ed301f-0964-426e-be9c-213690982f14&scheme=1

fuzzyltprice.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298528&guid=95df9f67-cd01-429e-9d26-d777968570c7&scheme=1

fuzzyltpricehead.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298529&guid=2cacb45c-fd54-460c-a50f-f31f2f267418&scheme=1

fuzzyltpriceheadname.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298530&guid=e0389dce-c12f-420c-9d87-8c47d7c8e911&scheme=1

groupbycat.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298531&guid=6f942612-2685-4042-b6d3-e755cba0cf0f&scheme=1

mfdistance.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298532&guid=4d61747d-cf07-437e-9ba1-ddd42cc9b61c&scheme=1

mfdistancesmall.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298533&guid=29e378e7-a296-43a5-93a5-efb5c1a623c0&scheme=1

mfdistancethreshold.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298534&guid=559c8899-13b9-4497-a487-d991df7469f9&scheme=1

neo4jfuzzyquery.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298535&guid=05d51d2e-f483-41f5-b532-ee681fb38aef&scheme=1

playfuzzy4s.png
Click here to download high resolution image

http://ees.elsevier.com/fss/download.aspx?id=298536&guid=992ca343-c09f-441b-bddf-68dda0e44244&scheme=1

asc-aca.tex
Click here to download LaTeX Source Files: asc-aca.tex

http://ees.elsevier.com/fss/download.aspx?id=298538&guid=a202d7ec-dbe7-4d8d-8e44-4dee8b83391e&scheme=1

biblio-old.tex
Click here to download LaTeX Source Files: biblio-old.tex

http://ees.elsevier.com/fss/download.aspx?id=298539&guid=fa62bb30-1fd8-4131-a04c-8e0e38b69e84&scheme=1

biblio.bib
Click here to download LaTeX Source Files: biblio.bib

http://ees.elsevier.com/fss/download.aspx?id=298540&guid=d575f385-38d4-4cb3-9672-98923a646e8d&scheme=1

neo4j-peg.tex
Click here to download LaTeX Source Files: neo4j-PEG.tex

http://ees.elsevier.com/fss/download.aspx?id=298549&guid=eb305ad6-2c58-4777-b4b1-2fe581e6ff02&scheme=1

sef.tex
Click here to download LaTeX Source Files: sef.tex

http://ees.elsevier.com/fss/download.aspx?id=298552&guid=1dbdb391-20b9-452a-8c01-5fdf5c329d8a&scheme=1

