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ABSTRACT

The virtual source method (VSM) developed by Langfeld et al., (2016) is
based upon the integral equations derived by using Green’s identity with
Laplace’s equation for the velocity potential. These authors presented
preliminary results using the method to simulate standing waves. In this
paper, we numerically model a non-linear standing wave by using the
VSM to illustrate the energy and volume conservation. Analytical for-
mulas are derived to compute the volume and potential energy while the
kinetic energy is computed by numerical integration. Results are com-
pared with both theory and boundary element method (BEM).

KEY WORDS: Numerical wave tank (NWT), boundary integral equa-
tion, energy conservation, accuracy, stability.

INTRODUCTION

Many methods have been developed to study wave/structure interactions
numerically by using the so called numerical wave tank (NWT). A
comprehensive approach is to use ’CFD’ methods to solve the full
Navier-Stokes equations. For example Huang et al. (1998) developed
a numerical model to simulate a nonlinear wave fields generated
by a piston-type wavemaker by solving Navier-Stokes equations.
Park et al (2001) developed the viscous 3D numerical wave tank
to simulate regular, irregular and fully nonlinear multi-directional
waves. However, a simple but common approach is the use of the fluid
potential. Longuet-Higgins and Cokelet (1976) simulated an overturning
wave using potential flow theory with a mixed Eulerian-Lagrangian
method in combination with a boundary integral equation formulation.
Wu and Taylor (1994) employed the finite element method for the
nonlinear potential flow equation. Grilli et al. (2001) introduced the
development of three-dimensional numerical wave tanks which contains
an arbitrary bottom topography, sloping beach and the possibility to
include wave makers. The nonlinear potential flow equation is solved
with a combination of a boundary element method (BEM) and a mixed
Eulerian-Lagrangian technique to compute the free surface motion.
Recently, Langfeld et al. (2016) introduced the virtual source method
(VSM) for solving free-surface potential flow problems and applied it to

simulate standing waves in 2D and 3D.
In this paper we investigate the global error behaviour of the VSM for

standing waves. The results are compared with the boundary element
method solutions.

GOVERNING EQUATIONS AND TANK GEOMETRY

Top

Free surface

/

Wall |
)
S

>

=)
Wall ,

Wall §

Fig.1 Wave tank geometry.

An ideal fluid is assumed so that the fluid velocity can be described by
the gradient of velocity potential ¢. A Cartesian coordinate system is
chosen such that z = 0 corresponds to the calm water level and z is pos-
itive upwards as shown in figure 1. Then the governing equation of the
velocity potential in the fluid domain Q is Laplace’s equation,
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On the free surface, the kinematic free surface boundary condition is
defined as,
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while the dynamic boundary condition is defined by the following equa-
tion.
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To satisfy the impermeability condition (no-flux condition), the normal

velocity is set to be zero at the walls.
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BOUNDARY ELEMENT METHOD (BEM)

The boundary element method solves Laplace’s equation (1) first by con-
verting to a boundary integral equation and then dividing the problem
boundary into small boundary elements. It results in a system of linear
algebraic equations. In this paper, boundary element discretisation was
done by using linear elements with piecewise constant variables.

Boundary Integral Equation

The velocity potential and the corresponding free surface profiles are ob-
tained by solving the discretised form of the following integral equation:
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where x and x, are the source and field points, respectively, G(X; Xo) is
the Green function satisfying Laplace equation, I" is the boundary, and
A(Xp) is the collision angle at a point on the boundary.

Numerical Implantation of BEM

For a simple approximation of ¢ and g—"f on the boundary I', assume that

these functions are constant over each of the boundary elements. Specif-
ically, consider the approximation:
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where N is the number of boundary elements, ¢; and p, are the values of
¢ and g—ﬁ at the midpoint of I, respectively.
An approximation of (5) together with (6) can be written as:
N
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To solve equation (7), we note that either ¢, or p; is known from (2)-
(4). There are, therefore, N unknown constants on the right hand side
of equation (7) to be computed by generating N equations include the
unknowns. Consider that (X¢) in equation (7) is given at the midpoints of
Iy, Iy, I3, ..., Ty, then by using equation (5):
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where (X,,) is the midpoint of T,.

Equation (9) forms a linear algebraic system of N equations containing
the N unknowns on the right hand side of equation (7) and can be written
as:
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where a™ | p and z® are defined as:
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After solving the above linear system, the values of ¢ and % will be
known over the elements I';, 'y, I's, ..., I'y and equation (7) with A(x¢) =
1 represents an explicit formula for computing ¢ at the interior of Q, as

follows:
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Mixed Eulerian-Lagrangian method (MEL)

In order to represent the free surface elevation with distributed nodes
on the boundary, the Mixed Eulerian-Lagrangian method (MEL) is em-
ployed. The use of the fully nonlinear free surface time-stepping method
for 2D waves by the MEL technique was first introduced by Longuet-
Higgins and Cokelet, (1976). Here we use the so-called semi-Lagrangian
method when a given node moves only in the vertical direction. Then the
free surface boundary conditions in equations (2) and (3) is modified as
follows:
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Smoothing scheme

During the simulation of nonlinear waves, sawtooth instability may occur
on the free surface. To avoid this, we use a Chebyshev 5-point smoothing
scheme as introduced by Longuet-Higgins and Cokelet, (1976) along the
free surface for every 4" time step:
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Sequence of the Solution Procedure

The sequence followed for computing the BEM solution is as follows:

1. Define the number of elements on wall;, wall,, wall; and the free
surface.
Initialize the free surface profile.

Specify ¢ or g—ﬁ on the boundaries.

Solve Laplace’s equation for g—f or ¢ on the boundary.
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Generate the grid to compute the velocity potential in the interior
points.

6. Use finite differences to approximate the velocities at each point
in the grid.

7. Approximate Z—z at each node on the free surface by finite differ-
ences.

8. Apply the MEL dynamic and kinematic B.C. given in equations
(13) and (14) to update ¢ and 7 on the free surface points except
the first and last nodes.

9. Use the quadratic extrapolation to approximate the ¢ and 7 for
the first two nodes and last two nodes on the free surface.

10. Use (15) to smooth the free surface and ¢ on the free surface

except the first and last two nodes.

11. Advance the solution in time by repeating the procedure (step
3-10) at every time step up to the final step.

THE VIRTUAL SOURCE METHOD

Langfeld et al. (2016) presented the virtual source method (VSM) to find
the solution to Laplace’s equation (1) for the problem expressed in figure
1. They introduced dimensionless variables by chosen the tank width L,
and height L, as fundamental units of length as:

x=Lx z=L.Z (16)

while the dimensionless variables of velocity, velocity potential and time
is defined as:
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Finally, the kinematic and dynamic boundary conditions of the free sur-
face (3)and (2) becomes, respectively:
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where k = %
According to Langfeld et al., (2016), the velocity potential can be ex-
pressed analytically by the following sum:

o(x.1) = 3 (1) cos(h,x)F (KI’Z, Li) (20)
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where o,(¢) is the n'™ component of the Fourier cosine transform of the
velocity potential along the top boundary, k, = 7~n and
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The function F consists of an alternating sum with rapidly vanishing

terms. It can be therefore numerically evaluated in a rapid and reliable

way.

Numerical Implementation of the VSM

To compute the velocity potential and free surface components, the infi-
nite sum (20) is replaced by a finite sum with a finite frequency compo-
nents N, as:
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From the last equation, the velocity components can be found analyti-
cally at any point in space and time (mesh-free),
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Now, the dimensionless Bernoulli equation (18) can be written as:
op
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Hence,
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In order to calculate 22 choose a set of resolution points N,, N, > N,,
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then:
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The last equation produces an overdetermined linear system to compute
the time derivative of o ,(f). In this paper, we used the least squares
to solve the above system then we used Runge-Kutta 4 integration to
find o, (7). However, Runge-Kutta integration need to compute the time
derivative dn/dt. Langfeld et al., (2016) used Fourier expansion of the
spatial dependence to compute the free surface elevation analytically as:
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where N, is the number of frequency components.
The latter equation represent the Airy mode decomposition and the spatial
derivative is known analytically by:
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Therefore, from equations (19),(24),(25),(29)and (30) one can get,
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In the same manner of computing do,(f)/dt, choose a set of Ny > 2N,
points for X, then the overdetermined system can be solved again us-
ing least squares. The use of Runge-Kutta 4 integration now can give
a(t), b(t), and o ,(t) at time z.
Sequence of the Solution Procedure
For VSM, the sequence of solution can be summarised as:

1. Define the tank lengths, number of frequency components N, and
resolution points Nj.

Initialize the free surface profile.
Define the linear system (28) and solve it by using least squares.
Define the linear system (31) and solve it by using least squares.

Use Runge-Kutta 4 integration to find a(t), b(¢), and o,(r)

AU

Advance the solution in time by repeating the procedure (step
3-5) at every time step up to the final step.

COMPUTATION OF ENERGY AND VOLUME

To check the accuracy of NWT models, Grilli et al. (1989) reported that
a global check of the time stepping accuracy is provided by the volume
error relative to initial volume. This is:

Vol(t) — Vol
Vol.er M’ (32)
V()l()
where Vol is the initial volume of water in the tank and Vol(¢) is defined
as:

Vol(t) = fh(x, 1) dx, (33)
r

where I is the bottom wall, in dimensionless units the, we obtain:

Vol(t) = L, L, Vol(7) (34)

Vol(7) = |h(% 1 d . (35)

To asses the energy conservation, the total energy defined as the sum of
kinetic energy and potential energy. Following Langfeld et al.(2016), the
kinetic energy is given by:

KE(t) = lpf o(x,1).Vo(x, t).ds, (36)
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The dimensionless kinetic energy is defined by:
KE(1) = pg L] L. KE(®), (39)
where,
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The potential energy is given by:

1
PE®) = 5pg f (h(x, 1))’ dx. (41)
Dimensionless potential energy is given by:
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ie.
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For the BEM the model, the global volume, kinetic energy and potential
energy are computed numerically by using the numerical integration of
quadrilateral elements as presented in Smith et al. (2014). For the VSM
model, the kinetic energy is computed numerically from equation (40) by
using Simpson’s rule. Global volume and potential energy were found by
evaluating equations (35) and (43) analytically as follows:

Vol(7) = ao(?), (44)
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NUMERICAL RESULTS AND DISCUSSION

In this section, the numerical results of both BEM and VSM for a stand-
ing wave test problem are discussed through checking the global accu-
racy by computing the volume and energy.

Standing sinusoidal waves are simulated in a numerical wave tank as
shown in figure 1. The dimensions of the tank are L, = 1m width and
ho = 0.1m initial water height. The initial fluid configuration is at rest.
The wave shape is initially set to:

h(x,t) = hy + acos(kx) cos(wt) + L= [cosz(u)t)

1
4cosh”(khy)

4sinh2(kh0) cos(2wt)] cos(2kx), (46)

where, k = £ is the wave number, w = [k g tanh(kho)] is the angular

frequency and T = Z is the wave period. For all simulations, N4 and N,
are chosen as Ny = N. and N, = N,.

Figures 2 and 3 present the time histories of the relative error of the
global volume and total energy for two wave amplitudes a = 0.01 and
a = 0.02 for both BEM and VSM models. For the BEM scheme, we
use 250 boundary element along the free surface, 50 on wall; and 25
on each wall; and wall,. The VSM scheme is run with 100 resolution
points N, and 15 frequency components N.. The time step is chosen as



At/T = 1/1600 for both schemes. It can be seen that for VSM scheme,
relative errors for both total energy and global volume are close to zero
for both large and small amplitude. However, it can be noticed that the
volume and energy conservation is affected by the by the wave amplitude
value. Moreover, there is a clear loss of energy and volume for high
amplitude when the BEM scheme is used.
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Fig.3 Relative error of global energy as a function of time.

For more analysis, we define the solution of At/T = 1/3200 and the
same numbers of boundary elements above as a reference solution for
BEM scheme, while the VSM reference solution is chosen with At/T =
1/1600 and the same numbers of resolution and frequency components
as above. In order to determine the approximate order of accuracy of the
current BEM and VSM schemes, the /,-norm of the potential and kinetic
energy error compared with the reference solutions are plotted against the
numbers of time steps per period for different amplitudes. Generally, it is
found that as time step is decreased the /,-norm error of energy decreases
in value.

Figures 4 and 5 show the /,-norm in the kinetic and potential energy for
the reference BEM ad VSM solutions versus the number of time steps per
wave period. It can be observed that for both BEM and VSM, the error
tends to be small as the wave amplitude value decreases. The results

show that the convergence rate to the reference VSM solutions is better
than fourth order. However, the convergence rate to the reference BEM
solutions is less than second order.
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Fig.4 The (log-log) scale plot of the /;-norm of errors in the po-
tential and kinetic energy between BEM solutions and ref-
erence solution versus the number time steps per period.
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Fig.5 The (log-log) scale plot of the /,-norm of errors in the po-
tential and kinetic energy between VSM solutions and ref-
erence solution versus the number time steps per period.

For fixed N,, N,, and for time step < 7/25, the results of the VSM
simulations showed a fixed error in total energy. In order to indicate the
error source, we fixed the time step and ran the simulation with various
resolution points N, and frequency components N.. The number of
frequency components does not affect the solution when N, is between
15 and 35. However, the results showed that the error increased as the
number of frequency components increased above 35 and this possibly
due to ill-conditioning of the resulting matrix system.



In order compare computation times, we have measured the computa-
tions time of the test problem above when a = 0.02 for 5 wave periods.
The parameters are chosen as 100 and 200 boundary elements along the
free surface for the BEM and the same number of resolution points N,
are chosen for the VSM while the number of frequency component N¢
IS chosen as 15 because as we see above there no benefit from increasing
N,.. Table 1 shows the simulation computation time for each method. It
can be noticed that in both BEM and VSM, the computation time is di-
rectly proportional to the time step size as expected. It can be seen that
the VSM is cheaper than the BEM in terms of computation time. More-
over, doubling the ’grid size’ leads to computation times increasing by a
factor of around 8 for BEM but only 2.6 for VSM. We anticipate similar
behaviour in three spatial dimensions, making VSM very competitive for
such computations.

Table 1 Computation time.
t BEM VSM
100 200 ratio 100 200 ratio
400 308.2 2640 8.566 | 161.2 420 2.605
800 628.8 5460 8.683 | 328.8 840 2.555
1600 | 1251.2 | 10448 | 8.350 | 656.8 1696 | 2.582
3200 | 2601.6 | 21360 | 8.210 | 1336.2 | 3360 | 2.515

Figure 6 shows the time history of the relative error in total energy for
different numbers of resolution points N, and for two wave amplitudes. It
can be seen that the VSM scheme conserves energy for small amplitudes
better than the large amplitude. However, it can also be concluded that
the scheme conserves energy more effectively by increasing the number
of resolution points.

Note that we used the solution of At/T = 1/400, N. = 15 and N, =
640 as a reference solution in order to test the convergence rate to both
analytical and numerical solutions.

Figure 7 presents, for two different amplitudes, the /,-norm of errors
for the total energy as a function of time for both the reference numerical
solution and the initial potential energy. It can be seen that the conver-
gence rate to the initial potential energy is up to O(1/2) , while the con-
vergence rate to the reference numerical solution is up to the first order
which is more rapid than the convergence to the initial potential energy.

To assess the stability of VSM, we run the simulation for 140 wave
periods. Figures ?? and ?? presents the relative error in total energy and
total volume as functions of time for two different amplitudes and various
time steps. It can be seen that the the scheme is of high stability if we
use more than 50 time steps per wave cycle. The results showed that the
relative error in total volume is small even after a long time of simulation.
However, the volume is slightly increases if we use a relatively large step
of T/25.
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Fig. 6 Time history of total energy relative error for various time
resolution points N,. a = 0.01 (top); a=0.02(bottom).
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CONCLUSIONS

This work discussed the global accuracy of BEM and VSM schemes for
standing wave simulations. We have derived an analytical formulas to
compute the potential energy and volume for the VSM scheme. We
found that the BEM scheme conserves energy and volume more effec-
tively for small amplitudes whilst there are clear variations in total en-
ergy for high amplitudes. The results showed that the VSM is cheaper
than the BEM in terms of computation time. Moreover, the ratio of com-
putation times when we double the number of boundary elements and
resolution points is about 8 in BEM and 2.5 in VSM which makes the
VSM more efficient in high dimensions problems. The VSM has been
found to have excellent conservation of volume as the error is close to
zero even for high amplitudes. In terms of energy conservation, we have
found that the error convergence rate was up to fourth order for both
small and large amplitudes. However, the relative errors in the total en-
ergy seem to be insensitive to the time step so long as the time step is
sufficiently small. This magnitude of errors can be reduced by increasing
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Fig. 10 Time history of total energy relative error for a = 0.01 and
various time resolution points N,.
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Fig. 11 Time history of total energy relative error for a = 0.02 and
various time resolution points N,.

N,. The error convergence rate to the best numerical solution is up to
first order in N,, while it converges to the initial potential energy up to
order O(1/2). It has been found that the energy conservation is affected
if we used a large number of frequency components and that may be due
to the ill conditioning of the system matrix. Future work will include
the development of virtual source method significantly for progressive
waves, wave/structure interactions, and other types of free surface flow
problems.
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