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Abstract  

Objective: The objective of the present study was to determine the effects of 

concurrent LPS and cytokine priming, reflective of the in vivo milieu, on macrophage 

production of key periodontitis associated cytokines TNF, IL-1β and IL-6.  

Design: THP-1 cells were pre-treated with combinations of Porphyromonas 

gingivalis and Escherichia coli lipopolysaccharide (LPS), concurrently with polarising 

cytokines IFNγ and IL-4, or PMA as a non-polarised control.  Production of key 

periodontitis associated cytokines in response to subsequent LPS challenge were 

measured by enzyme – linked immunosorbent assay.  

Results: Compared with cells incubated with IFNγ or IL-4 alone in the “polarisation” 

phase, macrophages that were incubated with LPS during the first 24 h displayed a 

down-regulation of TNF and IL-1β production upon secondary LPS treatment in the 

“activation” phase. In all three macrophage populations (M0, M1 and M2), pre-

treatment with P. gingivalis LPS during the polarisation process led to a significant 

decrease in TNF production in response to subsequent activation by LPS (p = 0.007, 

p = 0.002 and p = 0.004, respectively). Pre-treatment with E. coli LPS also led to a 

significant down-regulation in TNF production in all three macrophage populations (p 

< 0.001). Furthermore, the presence of E. coli LPS during polarisation also led to the 

down-regulation of IL-1β in the M1 population (p < 0.001), whereas there was no 

measurable effect on IL-1β production in M0 or M2 macrophages. There was no 

significant effect on IL-6 production. 

Conclusions: Macrophages become refractory to further LPS challenge, whereby 

production of key periodontitis associated cytokines TNF and IL-1β is reduced after 

exposure to LPS during the polarisation phase, even in the presence of inflammatory 

polarising cytokines. This diminished cytokine response may lead to the reduced 

ability to clear infection and transition to chronic inflammation seen in periodontitis. 
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Introduction 

In healthy oral tissues, there is a fine balance in the interplay between host immune 

responses and resident microbes. When a shift occurs in the microbial community, 

or there is a dysfunctional immune response, homeostasis is disrupted and disease 

ensues. Periodontitis is a chronic inflammatory disease characterised by loss of 

periodontal ligament attachment to the tooth surface and irreversible, osteoclast 

driven alveolar bone resorption. The aetiology of periodontal disease is complex and 

incompletely understood. It has been established, however, that the presence of a 

subgingival dental plaque biofilm, concurrent with a susceptible host immune 

response, are required for progression of gingivitis into periodontitis [1]. Several 

“keystone” pathogens have been implicated in the initiation of periodontitis, including 

Porphyromonas gingivalis, among others [1].  

Bacteria in the gingival sulcus are protected from mechanical removal by tooth 

brushing, meaning that tissues of the periodontium are constantly exposed to 

bacteria and their associated antigens. Bacterial stimulation of host tissues is met 

with a retaliatory host inflammatory response. When inflammation is initiated, 

monocytes are recruited from the circulation into the tissues, where they differentiate 

into macrophages [2-4], directed by membrane bound and soluble factors that are 

encountered in their microenvironment. Dependant on these factors, macrophages 

will polarise within a spectrum of functional phenotypes, from pro-inflammatory 

(classically activated or M1) to anti-inflammatory, or regulatory (alternatively 

activated or M2) effector cells [5-8, 9{Murray, 2014 #1313, 10{Murray, 2014 #1313].  

Classically activated macrophages are polarized by granulocyte macrophage-colony 

stimulating factor (GM-CSF) and IFNγ, whilst alternatively activated macrophages 

(M2), can be polarized by M-CSF, IL-4, IL-13, IL-10 and immune complexes [5, 6, 

11, 12].  

Via the production of cytokines and chemokines, macrophages can orchestrate 

innate and adaptive immune responses in an attempt to control infection and repair 

damaged tissue. M1 type macrophages express high levels of pro-inflammatory 

cytokines, including TNF, IL-1β, and IL-6, which are attributed to inflammation and 

tissue destruction seen in periodontal disease [9, 13-15]. M2 type macrophages 

exhibit anti-inflammatory properties and express the regulatory cytokines, IL-10 and 

TGF-β, which negatively regulate M1 activity and contribute to the wound healing 

process. Both M1 and M2 macrophages are likely to be present in periodontal 

lesions [16]. Aberrant macrophage function has been implicated in the breakdown of 

immune tolerance [2, 17] and progression into chronic inflammation. Thus, 

periodontal disease is the manifestation of a dysregulated immune response, which 

fails to clear infection by periodontal pathogenic bacteria: A robust inflammatory 

response is need to clear infection, but is lacking in patients who succumb to 

periodontal disease. Various mechanisms have been proposed for this lack of robust 

response, including endotoxin tolerance. Endotoxin tolerance occurs when 

monocytes or macrophages are repeatedly exposed to bacterial products, such as 



LPS. It has been shown previously that monocytes and macrophages can become 

tolerant to LPS from periodontal pathogen, P. gingivalis.  

P. gingivalis has emerged as a popular periodontal research target because of its 

interesting immunomodulatory properties and implications as a keystone pathogen. 

The bacterium has a unique LPS structure and induces cytokine responses in a 

different way to that of the prototypical LPS from Escherichia coli [18-20], likely due 

to the different lipid A structures between these bacteria [18, 21]. Previous studies 

have examined the ability of periodontal pathogens to induce endotoxin tolerance in 

monocytes (if an infiltrating monocyte encounters LPS before any maturation / 

polarisation factors in an inflammatory lesion), or the effects of endotoxin tolerance 

on already polarised macrophages (encountering LPS after becoming polarised) [22-

26]. However, in vivo, infiltrating monocytes are likely to encounter both LPS and 

polarising cytokines at the same time, rather than encountering first one factor then 

the other in a linear fashion. No studies to date have described what effect this would 

have on the resulting polarised macrophages ability to produce the robust 

inflammatory response required to clear the infection. Thus, the present study aimed 

to examine the effects of concomitant exposure of monocytes to LPS and cytokines 

during the macrophage polarisation process on resulting macrophage production of 

key periodontitis associated cytokines (TNF, IL-1β and IL-6).  

 

Methods 

General cell culture 

THP-1 cells, a human pro-monocytic cell line derived from peripheral blood 

monocytic leaukeamia (ECACC 88081201), were maintained in RPMI 1640 (Lonza, 

Slough, UK) supplemented with 10% foetal bovine serum (LabTech, UK) and 1% L-

glutamine (Lonza, UK) in a humidified incubator at 37°C with 5% CO2. Cells were 

initially seeded at 4 x 105 cells / mL, routinely sub-cultured using 1:4 split ratios and 

maintained for no more than 10 passages. 

Generation of M1- and M2- like THP-1 macrophages  

The methodology was adapted from Tjiu et al [27]. 5 x 105 THP-1 were seeded in 

tissue culture plates and incubated with 5 ng/ml PMA for 6 h. Next, all the culture 

media was removed, including any non-adhered cells and was replaced with fresh 

media containing either (a) 5 ng/ml PMA, (b) 20 ng/ml IFNγ + 5 ng/ml PMA (c) 20 

ng/ml IL-4 + 5 ng/ml PMA for a further 18 h to generate unpolarised, M1-like and M2-

like macrophages, respectively. To measure cytokine responses of polarised THP-1 

cells to stimulation with Ultra-pure P. gingivalis LPS: a penta- acyltated, di-

phosphorylated lipid A isoform [17] (InvivoGen, CA), or E. coli K12 (InvivoGen, CA) 

LPS, cells were polarised according to the aforementioned protocol and stimulated 

with 1μg/mL LPS. Cells incubated in media alone served as negative controls. Upon 



completion of the incubation period, cell free supernatants were harvested and 

stored at -20°C until assay for cytokines by Enzyme Linked Immunosorbent Assay 

(ELISA). 

To measure the effects of LPS present in the polarising conditions, cells were 

cultured in the presence or absence of 1 μg/ml P gingivalis or E. coli LPS, either 

alone or in concert with polarising cytokines. Following polarisation, culture medium 

was removed and cells were washed 3 times in PBS. Fresh media was added 

containing either 1 μg/ml P. gingivalis or E. coli LPS to activate the macrophages.  

Media alone (no LPS) served as a negative control. After 24 h incubation, cell free 

supernatants were harvested and stored at -20ºC until assay for TNF, IL-1β and IL-6 

by ELISA. 

 

Enzyme Linked Immunosorbent Assay (ELISA)  

Paired antibody ELISAs (R&D, UK) were used to determine protein expression levels 

of TNF, IL-1β and IL-6 in cell free supernatants, according to manufacturer 

guidelines.  Absorbance was measured at 450nm in a Versa Max microplate reader 

(Molecular Devices, UK). Standard curve analysis was performed using SoftMax pro 

software and unknown concentrations of cytokines in the samples were calculated 

from the standard curve. 

Quantitative real time PCR 

Total RNA was isolated by acid guanidinium thiocyanate-phenol-chloroform 

extraction (as previously described [28]). RNA quantity was determined using 

NanoVue plus (GE Healthcare) spectrophotometer and purity was estimated using 

the A260/A280 ratio. cDNA was generated by reverse transcription reaction (Veriti, 

Applied Biosystems). Real- time PCR was performed using Power SYBR green PCR 

master-mix (Applied Biosystems). Test genes IL-10 (IL10) and TGF-β (TGFB1) were 

normalised against housekeeping gene, β-actin (ACTB). Primers were designed 

using Applied Biosystems software and purchased from Eurofins MWG Operon (UK) 

as illustrated in Table 1. 

Table 1: Primer sequences.  

Gene Forward Reverse 
IL10 5’-

CAAAACCAAACCACAAGACAGACT 
– 3’ 

R: 3’-
CAGGAGGACCAGGCAACAGA 
– 5’ 

TGFB1 5’- 
AGTTCAAGCAGAGTACACACAGCAT 
-3’ 

3’- 
AGAGCAACACGGGTTCAGGTA 
-5’ 

ACTB 5’- ATTGCCGACAGGATGCAGAA -3’ 3’- 
CTGATCCACATCTGCTGGAA -
5’ 

 



Data was acquired and analysed on the Applied Biosystems StepOne software 

(Applied Biosciences, UK). Human β actin 1 was used as the internal reference gene 

(housekeeping gene), and non-polarised (PMA treated) macrophages were used as 

calibrator samples. Differences in gene expression levels were calculated relative to 

the calibrator sample using the ΔΔ Ct method. 

Statistical analysis 

For comparison between two independent treatment groups, Student’s t-test (if the 

data were parametric) or Mann Whitney U test (if data were non-parametric) were 

used. In experiments where more than two treatment groups tested, a one-way 

analysis of variance (if the data were parametric) with the Holm-Sidak method for all 

pairwise comparison procedure, or the Kruskall-Wallis analysis of variance (if the 

data was non-parametric) were used to test for differences between groups. Results 

were considered significant if the p value was ≤ 0.005. 

 

Results  

M1 and M2 macrophages exhibit differential inflammatory cytokine responses 

to P. gingivalis LPS 

In the present study, THP-1 cells were treated with PMA for 6 h to differentiate them 

from pro-monocytes into adherent macrophage-like cells. M1- and M2- like 

macrophage populations were generated by treating the cells for a further 18 h with 

PMA and IFNγ (M1) or IL-4 (M2), respectively (method adapted from [29]).  

To measure the effects of P. gingivalis LPS on inflammatory cytokine production, 

cells were treated with 1µg/mL P. gingivalis LPS for 24 h. M1- like macrophages 

exhibited significantly higher levels of TNF, IL-1β and IL-6 production than the M2- 

like population (figure 1a), whereas M2 cells expressed higher levels of IL-10 and 

TGF-β mRNA than M1 (figure 1b). Basal levels of both IL-10 and TGF- β mRNA 

however were similar between M1 and M2 macrophages (figure 1b). Cells treated 

with IFN or IL-4 exhibited cytokine profiles typical of M1 and M2 like macrophages, 

respectively. As previously described 197, TNF, IL-1β and IL-6 production was up-

regulated to a greater extent by E. coli LPS than P. gingivalis LPS. This was evident 

in all macrophage polarisation states (figure 1a). 

 

Inflammatory cytokine production by M0, M1 and M2 macrophages is 

modulated by the presence of P. gingivalis during polarisation 

The present study revealed differential inflammatory cytokine production between 

polarised M1- and M2- like macrophages in response to P. gingivalis LPS. To reflect 

in vivo conditions, where naïve monocytes are recruited from bone marrow to the 



site of inflammation, the next experiments set out to see if this pattern of polarisation 

and inflammatory cytokine production could be modulated by exposure to LPS 

before the macrophages had polarised to either subset. To test this, macrophages 

were polarised as above, in the presence or absence of 1μg/mL P. gingivalis LPS. A 

third population of “unpolarised (M0)” macrophages were generated by treatment 

with PMA only, to test whether LPS alone had polarising properties.  Following 

polarisation, culture media were removed and cells were washed 3 x in PBS. To 

stimulate inflammatory cytokine production, the cells were treated again with 1ug/mL 

P. gingivalis LPS for 24 h. Cell free supernatants were collected and assayed for key 

periodontitis and M1 macrophage associated cytokines TNF, IL-1β and IL-6 by 

ELISA. 

In all three macrophage populations (M0, M1 and M2), pre-treatment with P. 

gingivalis LPS during the polarisation process led to a significant decrease in TNF 

production in response to subsequent activation by P. gingivalis LPS (Figure 2. p = 

0.007, p = 0.002 and p = 0.004, respectively). When treated with PMA alone, the 

“M0” macrophages produced 268 pg/mL TNF in response to P. gingivalis LPS 

challenge. However, when treated with PMA + P. gingivalis LPS, TNF production 

was diminished 10-fold to 27 pg/mL. When cells were polarised with IFNγ and P. 

gingivalis LPS, TNF production was also down-regulated (4-fold) in response to 

secondary challenge with P. gingivalis LPS. The same effect was seen in M2 

macrophages (5.5- fold decrease). M1 cells also down regulated their expression of 

Il-1β. There was no significant effect on levels of IL-1β in the M0 and M2 

macrophages. All cell types produced very little IL-6, so any diminishing effect could 

not be detected. 

 

Inflammatory cytokine production by M0, M1 and M2 macrophages is 

modulated by the presence of E. coli LPS during polarisation 

To assess whether the TNF down-regulation described above was specific to P. 

gingivalis, the experiments were repeated, but this time with the addition of E. coli 

LPS instead of P. gingivalis LPS during polarisation. At the end of the polarisation 

phase, culture media were removed and inflammatory cytokine production was 

stimulated by treatment with E. coli LPS. When compared to cells polarised with 

cytokines alone, the addition of E. coli LPS in the polarising media led to a significant 

down-regulation in TNF production in all three macrophage populations (figure 3. p < 

0.001). Furthermore, the presence of E. coli LPS during polarisation also led to the 

down-regulation of IL-1β in the M1 population (p < 0.001), whereas there was no 

measurable effect on IL-1β production in M0 or M2 macrophages. Similarly, to 

polarisation with P gingivalis LPS, the addition of E. coli LPS had no significant effect 

on IL-6 production compared with cytokines alone.  

 



Cross-modulation of inflammatory cytokine production by different LPS 

species 

Data from the experiments above reported that polarisation in the presence of P. 

gingivalis or E. coli LPS led to a down-modulation of TNF (and in the case of M1-

macrophages polarised with E. coli, IL-1β). E. coli LPS is the archetypal TLR4 ligand, 

whilst P. gingivalis LPS is purported to activate macrophages via TLR2. There is 

conflicting evidence in the literature regarding P. gingivalis LPS – TLR2 /4 signalling, 

with the likely explanation relating to the multiple lipid A moieties produced by P. 

gingivalis having different receptor binding properties. The next aim of the present 

study was to see if the two bacterial LPS species with different activating capacities 

were able to cross–modulate macrophage activation by one another.  

To assess this, macrophage populations were polarised in the presence (or 

absence) of either P. gingivalis or E. coli LPS, as above. Following polarisation, 

culture media were removed and macrophages were activated by the other LPS 

species. When M0, M1 and M2 – like macrophages were differentiated with PMA, 

cytokines and P. gingivalis LPS, then subsequently activated by E. coli LPS, TNF 

production was significantly down – regulated in all three macrophage populations 

(Figure 4a. M0: p < 0.001, M1: p = 0.04, M2: p < 0.001). In the M2 population, IL-1β 

production was also down- regulated (p=0.049). Similarly, when macrophages were 

polarised in the presence of E. coli LPS, then cross- activated by P. gingivalis LPS, 

TNF production was also down –regulated (Figure 4b. M0: p=0.03, M1: p=0.006, M2: 

p=0.024). In the M1 population, IL-1β production was also down regulated (p=0.002). 

 

Finally, we set out to test the effects of chronic exposure to low-dose LPS on 

macrophage inflammatory cytokine production. This time, the experiments were 

repeated but using 1 ng / mL of P. gingivalis or E. coli LPS in the polarising media. P. 

gingivalis at a concentration of 1 ng/ mL had no effect on consequent stimulation 

with either P. gingivalis or E. coli LPS; levels of cytokine production remained the 

same regardless of the presence of 1 ng/ mL P. gingivalis LPS in the polarising 

media. In contrast, the presence of E. coli in the polarising media led to the down-

regulation of TNF production in PMA and M2 – like macrophages, but not in M1 – 

like macrophages (Figure 5). There was no significant effect on IL-1β or IL-6 

production in any cell type (data not shown). 

 

Discussion 

In periodontal disease, infiltrating monocytes mature and polarise into macrophages 

with a range of effector phonotypes in response to locally derived factors such as 

IFNγ (generating inflammatory M1 macrophages) or IL-4 / 13 (generating reparatory, 

regulatory M2 macrophages). Given the cocktail of bacterial and host derived factors 



present in the periodontal lesion, it is unlikely that infiltrating monocytes will 

encounter first one factor then the other in a linear fashion, rather, they are likely to 

encounter both simultaneously. To date, no studies have sought to determine what 

effects this would have on the ability of the resulting macrophages to produce a 

robust response, needed to clear the infection. Therefore, we aimed to test what 

effects exposure to bacterial LPS during the polarisation of monocytes into effector 

macrophages would have on the resulting macrophages’ ability to produce the 

inflammatory cytokines needed to clear infection. Furthermore, we sought to 

examine whether the same effect was seen in non-polarised, M1 and M2 

macrophages, which have differing roles in disease progression. 

 

Cells from the human monocyte line, THP-1, were treated with PMA, PMA + IFNγ or 

PMA + IL-4 to generate un-polarised, M1 and M2 like macrophages, respectively. 

Polarised cells were challenged with P. gingivalis or E. coli LPS and assessed for 

protein production of key periodontal disease associated cytokines, TNF, IL1β and 

IL-6. As previously reported, P. gingivalis LPS elicited cytokine responses to a lesser 

extent than E. coli LPS [30]. Pre-treatment with IFNγ resulted in higher levels of 

cytokine production than un-polarised and IL-4 pre-treated cells. Holden et al also 

reported a similar finding, that M2- like macrophages produced TNF and IL-1β in 

response to P. gingivalis LPS, but to a lower level than that of M1- like macrophages 

[22]  

To assess the effects of concomitant exposure to LPS and polarising cytokines on 

macrophage cytokine production, THP-1 cells were given two, 24 hour treatments; 

the first a “polarising” treatment to differentiate the monocytes into macrophages, 

followed by an “activator” treatment to elicit cytokine production. “Un-polarised” 

macrophages were incubated with PMA for 24 h before washing and challenging 

with LPS for a further 24 h. The addition of priming cytokines (IFN and IL-4) into the 

differentiation media during the “polarising” treatment phase, lead to cytokine 

production characteristic of M1 and M2 macrophages in response to LPS added in 

the “activation” treatment phase. Compared to cells incubated with differentiation 

media alone in the “polarisation” phase, macrophages that were incubated with LPS 

during the first 24 h displayed a down-regulation of TNF and IL-1β production upon 

secondary LPS treatment in the “activation” phase. This effect was measured in 

response to both LPS species.  Un-primed macrophages displayed a cytokine profile 

similar to that of M2 macrophages, suggesting that in the absence of the M1-priming 

cytokine IFNγ, macrophages default to a less inflammatory phenotype. This also 

suggests that LPS as a stimulant alone cannot induce full inflammatory M1 

macrophage polarisation.  

A study by Zaric et al (2011) reports that TNF production is down- regulated in 

response to repeated exposure to P. gingivalis and E. coli LPS in THP-1 cells, but 

that IL-8 is down regulated only by repeated exposure to E. coli LPS, thus 



suggesting only partial tolerance is achieved by P. gingivalis LPS [31]. An earlier 

study by Martin et al (2001) reported that endotoxin tolerance induced by E. coli LPS 

in THP-1 led to down- regulation of TNF, IL-1β and IL-6, whereas endotoxin 

tolerance induced by P. gingivalis LPS only resulted in down-regulation of IL-1β 

production[32]. These findings differ from the present study in that TNF production 

was down regulated by prior exposure to P. gingivalis LPS. However, both studies 

agree that IL-1β was down regulated by prior exposure to either LPS species. In 

contrast to the Martin et al (2001) study, and in common with results from the 

present study, Muthukuru et al (2005) reported that TNF and IL-1β were down- 

regulated in response to repeated exposure of PBMCs to P. gingivalis LPS [33]. 

Dobrovolskaia et al (2003) reported that both E. coli LPS and synthetic TLR2 ligand   

PAM3CSK4 induced homotolerence but not heterotolerance in murine macrophages 

[34]. PAM3CSK4 pre-treatment up-regulated TNF production in response to E. coli 

LPS. P. gingivalis LPS also induced homotolerance, but like PAM3CSK, E. coli pre-

treatment up-regulated TNF production in response to secondary stimulus with P. 

gingivalis LPS. In contrast, results from the present study showed that E. coli LPS 

pre-treatment led to a down-regulation of TNF production when subject to a 

secondary stimulation by P. gingivalis LPS. However, the studies are in agreement in 

that as P. gingivalis pre-treatment led to a down-regulation of TNF production when 

subject to a secondary stimulation by E. coli LPS. Differences in responses reported 

in various studies may be attributable to the diverse macrophage differentiation 

protocols and different sources (thus antigenic structures) of LPS. 

In response to polarisation with either LPS species, the present study showed little 

difference in their ability to down- regulate cytokines. Previous studies have shown 

that P. gingivalis LPS is a weaker inducer of endotoxin tolerance than E. coli LPS 

[31, 32], and that this is down to differential use of TLRs and intracellular signalling 

pathways, with E. coli LPS reducing degradation of NFκB inhibitors IκKα and IκKβ 

and TLR4 surface expression upon secondary stimulation, whereas P. gingivalis 

LPS up-regulates TLR2 and CD14 expression and degrades inhibitory IκKβ, thereby 

rendering cells less responsive to tolerance [32]. 

Finally, the addition of E. coli LPS at a concentration of 1ng/mL in the polarising 

media resulted in the down-regulation of TNF in PMA and M2 like macrophages in 

response to a secondary LPS challenge (Figure 5). This yields two potentially 

interesting hypotheses; 1) E. coli LPS has the ability to modulate TNF production at 

low concentrations, whereas P. gingivalis LPS can only modulate TNF production at 

higher concentrations (1 μg/mL). 2) Neither LPS significantly modulated TNF 

production in M1 macrophages. It may be that given their anti-inflammatory nature, 

M2 like macrophages are more readily tolerised at lower concentrations than M1 to 

ensure that there is a robust inflammatory response, even to low concentrations of 

LPS. Translated into the clinical situation, this could mean that if P. gingivalis LPS is 

present in periodontal tissues at very low concentrations, low-level inflammatory 



cytokine production may continue and contribute to the tissue damage and bone 

resorption seen in periodontal disease. 

Conclusion 

Data from the present study demonstrated that macrophages become refractory to 

further LPS challenge after being exposed to LPS during the polarisation phase, 

even in the presence of polarising cytokines. This suggests that if infiltrating 

monocytes entering the infected tissues encounter LPS at the same time as host-

derived cytokines, they become refractory to further LPS challenge. This may be a 

protective mechanism engaged by the macrophages to limit collateral tissue damage 

in periodontal disease, as seen in endotoxin tolerance. It is particularly interesting 

that M1 like macrophages do not reach their full inflammatory potential if they meet 

LPS during their polarising stage, even in the presence of potent polarising agent, 

IFNγ. This may account for the change to chronicity witnessed clinically in 

periodontal diseases; if macrophages cannot reach full inflammatory potential, then 

infection may not be eradicated and inflammation becomes chronic. Further research 

to elucidate the mechanisms of macrophage polarisation and function in disease 

states will lay the groundwork to significantly improve management options for 

periodontitis, and other chronic inflammatory conditions such as peri-implantitis, and 

provide novel therapeutic targets for management options of inflammatory oral 

disorders. 

 

Acknowledgements 

This study was supported by Plymouth University Graduate School. 

 

References 

 

1. Hajishengallis, G., R.P. Darveau, and M.A. Curtis, The keystone-pathogen 
hypothesis. Nat Rev Microbiol, 2012. 10(10): p. 717-25. 

2. Ginhoux, F., et al., New insights into the multidimensional concept of macrophage 
ontogeny, activation and function. Nat Immunol, 2016. 17(1): p. 34-40. 

3. Hume, D.A., Macrophages as APC and the Dendritic Cell Myth. J Immunol, 2008. 
181(9): p. 5829-5835. 

4. Hume, D.A., The mononuclear phagocyte system. Current Opinion in Immunology, 
2006. 18(1): p. 49-53. 

5. Mantovani, A., A. Sica, and M. Locati, Macrophage Polarization Comes of Age. 
Immunity, 2005. 23(4): p. 344-346. 

6. Mantovani, A., et al., The chemokine system in diverse forms of macrophage 
activation and polarization. Trends in Immunology, 2004. 25(12): p. 677-686. 

7. Gordon, S., The macrophage: Past, present and future. European Journal of 
Immunology, 2007. 37(S1): p. S9-S17. 



8. Gordon, S. and P.R. Taylor, Monocyte and macrophage heterogeneity. Nat Rev 
Immunol, 2005. 5(12): p. 953-64. 

9. Murray, P.J., et al., Macrophage activation and polarization: nomenclature and 
experimental guidelines. Immunity, 2014. 41(1): p. 14-20. 

10. Murray, P.J. and T.A. Wynn, Protective and pathogenic functions of macrophage 
subsets. Nat Rev Immunol, 2011. 11(11): p. 723-37. 

11. Mosser, D. and J. Edwards, Exploring the full spectrum of macrophage activation. 
Nature Reviews Immunology, 2008. 8(12): p. 958-969. 

12. Karp, C.L. and P.J. Murray, Non-canonical alternatives: what a macrophage is 4. J 
Exp Med, 2012. 209(3): p. 427-31. 

13. Graves, D.T. and D. Cochran, The Contribution of Interleukin-1 and Tumor Necrosis 
Factor to Periodontal Tissue Destruction. Journal of Periodontology, 2003. 74(3): p. 
391-401. 

14. Irwin, C.R. and T.T. Myrillas, The role of IL-6 in the pathogenesis of periodontal 
disease. Oral Dis, 1998. 4(1): p. 43-7. 

15. Irwin, C.R., et al., The role of soluble interleukin (IL)-6 receptor in mediating the 
effects of IL-6 on matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-
1 expression by gingival fibroblasts. J Periodontol, 2002. 73(7): p. 741-7. 

16. Navarrete, M., et al., Interferon-gamma, interleukins-6 and -4, and factor XIII-A as 
indirect markers of the classical and alternative macrophage activation pathways in 
chronic periodontitis. J Periodontol, 2014. 85(5): p. 751-60. 

17. Zaric, S., et al., Impaired immune tolerance to Porphyromonas gingivalis 
lipopolysaccharide promotes neutrophil migration and decreased apoptosis. Infection 
and Immunity, 2010. 78(10): p. 4151-6. 

18. Herath, T.D., et al., Tetra- and penta-acylated lipid A structures of Porphyromonas 
gingivalis LPS differentially activate TLR4-mediated NF-kappaB signal transduction 
cascade and immuno-inflammatory response in human gingival fibroblasts. PLoS 
One, 2013. 8(3): p. e58496. 

19. Roberts, F.A., G.J. Richardson, and S.M. Michalek, Effects of Porphyromonas 
gingivalis and Escherichia coli lipopolysaccharides on mononuclear phagocytes. 
Infection and Immunity, 1997. 65(8): p. 3248-54. 

20. Zhang, D., et al., Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-
1β, TNF-α and IL-6 production by THP-1 cells in a way different from that of 
Escherichia coli LPS. Innate Immunity, 2008. 14(2): p. 99-107. 

21. Darveau, R.P., et al., Porphyromonas gingivalis Lipopolysaccharide Is Both Agonist 
and Antagonist for p38 Mitogen-Activated Protein Kinase Activation. Infect. Immun., 
2002. 70(4): p. 1867-1873. 

22. Holden, J.A., et al., Porphyromonas gingivalis lipopolysaccharide weakly activates 
M1 and M2 polarized mouse macrophages but induces inflammatory cytokines. 
Infect Immun, 2014. 82(10): p. 4190-203. 

23. Lam, R.S., et al., Unprimed, M1 and M2 Macrophages Differentially Interact with 
<italic>Porphyromonas gingivalis</italic>. PLoS ONE, 2016. 11(7): p. e0158629. 

24. Bodet, C., F. Chandad, and D. Grenier, Modulation of cytokine production by 
Porphyromonas gingivalis in a macrophage and epithelial cell co-culture model. 
Microbes and Infection, 2005. 7(3): p. 448-456. 

25. Papadopoulos, G., et al., Immunologic environment influences macrophage response 
to Porphyromonas gingivalis. Molecular Oral Microbiology, 2016. 

26. Zhou, Q., et al., Cytokine Profiling of Macrophages Exposed to Porphyromonas 
gingivalis, Its Lipopolysaccharide, or Its FimA Protein. Infection and Immunity, 2005. 
73(2): p. 935-943. 

27. Tjiu, J.W., et al., Tumor-associated macrophage-induced invasion and angiogenesis 
of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest 
Dermatol, 2009. 129(4): p. 1016-25. 



28. Chomczynski, P. and N. Sacchi, Single-step method of RNA isolation by acid 
guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 1987. 
162(1): p. 156-159. 

29. Tjiu, J.W., et al., Tumor-associated macrophage-induced invasion and angiogenesis 
of human basal cell carcinoma cells by cyclooxygenase-2 induction. Journal of 
Investigative Dermatology, 2009. 129(4): p. 1016-25. 

30. Diya Zhang, et al., Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces 
IL-1β, TNF-α and IL-6 production by THP-1 cells in a way different from that of 
Escherichia coli LPS. Innate Immunity, 2008. 14(2): p. 99-107. 

31. Zaric, S.S., et al., Altered Toll-like receptor 2-mediated endotoxin tolerance is related 
to diminished interferon beta production. J Biol Chem, 2011. 286(34): p. 29492-500. 

32. Martin, M., et al., Differential Induction of Endotoxin Tolerance by 
Lipopolysaccharides Derived from Porphyromonas gingivalis and Escherichia coli. J 
Immunol, 2001. 167(9): p. 5278-5285. 

33. Muthukuru, M., R. Jotwani, and C.W. Cutler, Oral Mucosal Endotoxin Tolerance 
Induction in Chronic Periodontitis. Infect. Immun., 2005. 73(2): p. 687-694. 

34. Dobrovolskaia, M.A., et al., Induction of In Vitro Reprogramming by Toll-Like 
Receptor (TLR)2 and TLR4 Agonists in Murine Macrophages: Effects of TLR 
"Homotolerance" Versus "Heterotolerance" on NF-{kappa}B Signaling Pathway 
Components. J Immunol, 2003. 170(1): p. 508-519. 

 

 

 

  



Figures 

1a 

 

 

1b 

 

 

Figure 1: (a) TNF, IL-1β and IL-6 production in response to LPS. THP-1 cells were 

incubated with IFNγ (M1) or IL-4 (M2). After 24 h, culture media were removed and 

cells were washed x3 in PBS. 1ug/mL Pg or Ec LPS was added to each cell type and 

incubated for 24 h. Cytokine protein expression was measured by ELISA. Data are 

means of 3 independent experiments +/- standard deviation. (b) Gene expression 

levels of IL-10 and TGF-β were measured in M1 and M2 macrophages stimulated 

with P. gingivalis LPS for 6 h. Unstimulated cells served as negative controls.  
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Figure 2: Expression of inflammatory cytokines following repeated exposure of 

macrophages to P. gingivalis LPS. PMA, M1 and M2 macrophages were polarised in 

the presence or absence of P. gingivalis LPS (. After 24-hour incubation, media was 

removed and cells were washed x3 in PBS. Macrophages were then challenged with 

1μg/ml P. gingivalis LPS for 24 h. Cells incubated for 24 h in normal media (no LPS) 

served as negative controls. Supernatants were assayed for TNF, IL-1β and IL-6 by 

ELISA. Data are expressed as the mean of three independent experiments 

performed in triplicate wells +/- standard deviation. * indicates a statistically 

significant change in cytokine expression levels at p < 0.05. 

3. 

 

Figure 3: Expression of inflammatory cytokines following repeated exposure of 

macrophages to E. coli LPS. PMA, M1 and M2 macrophages were polarised in the 

presence or absence of E. coli LPS. After 24-hour incubation, media was removed 

and cells were washed x3 in PBS. Macrophages were then challenged with 1μg/ml 

E. coli LPS for 24 h. Cells incubated for 24 h in normal media (no LPS) served as 

negative controls. Supernatants were assayed for TNF, IL-1β and IL-6 by ELISA. 

Data are expressed as the mean of three independent experiments performed in 

triplicate wells +/- standard deviation. * indicates a statistically significant change in 

cytokine expression levels at p < 0.05. 
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Figure 4: Expression of inflammatory cytokines following cross-exposure of 

macrophages to P. gingivalis and E. coli LPS. PMA, M1 and M2 macrophages were 

polarised in the presence or absence of P. gingivalis or E. coli LPS. After 24-hour 

incubation, media was removed and cells were washed x3 in PBS. Macrophages 

were then cross - challenged with 1μg/ml E. coli (a) or P. gingivalis LPS (b) for 24 h. 

Cells incubated for 24 h in normal media (no LPS) served as negative controls. 

Supernatants were assayed for TNF, IL-1β and IL-6 by ELISA. Data are expressed 

as the mean of three independent experiments performed in triplicate wells +/- 

standard deviation. * indicates a statistically significant change in cytokine 

expression levels at p < 0.05. 
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Figure 5: Expression of TNF following exposure of macrophages to E. coli LPS. 

PMA, M1 and M2 macrophages were polarised in the presence or absence of P. 

gingivalis or E. coli LPS. After 24-hour incubation, media was removed and cells 

were washed x3 in PBS. Macrophages were then challenged with 1μg/ml E. coli LPS 

for 24 h. Cells incubated for 24 h in normal media (no LPS) served as negative 

controls. Supernatants were assayed for TNF by ELISA. Data are expressed as the 

mean of three independent experiments performed in triplicate wells +/- standard 

deviation. * indicates a statistically significant change in cytokine expression levels at 

p < 0.05. 

 


