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Using Artificial Neural Network-Self-Organizing Map for data 

clustering of marine engine condition monitoring applications 

Condition monitoring is the process of monitoring parameters expressing 

machinery condition, interpreting them for the identification of change which 

could be indicative of developing faults. Data pre-processing and post-processing 

is of great importance in a ship condition monitoring software tool, as 

misinterpretation of data can significantly affect the accuracy and performance of 

the predictions made. In this paper, data for key physical performance parameters 

for a PANAMAX container ship main engine cylinder are pre-processed and 

clustered using a two-stage approach. Initially, the data is clustered using the ANN 

(Artificial Neural Network)-Self-Organizing Map (SOM) and then the clusters 

created by the SOM are interclustered using the Euclidean distance metric into 

groups. A custom algorithm using a combination of logical operators and 

conditional statements is used to compare cluster distances and obtain neighbour 

clusters containing similar data. The case study results demonstrate the capability 

of the SOM to monitor the main engine condition by identifying clusters containing 

data which are diverse compared to data representing normal engine operating 

conditions. The results obtained from the clustering process can be further 

expanded for application in diagnostic purposes, identifying faults, their causes and 

effects to the main engine of a ship. 

Keywords: ship condition monitoring; data clustering; ANN; self-organizing 

maps; ship machinery 

1. Introduction 

The increasing complexity of shipboard systems, heightened expectation and competitive 

requirements as to ship availability and efficiency and the influence of the data revolution 

on vessel operations, favour a properly structured Condition Based Maintenance (CBM) 

regime (Tinsley 2016). British Standard (2012), define CBM as the maintenance policy 

carried out in response to a significant deterioration in a machine as indicated by a change 

in a monitored parameter of the machine condition. Jardine et al. (2006) and Kobbacy 

and Murthy (2008) divide CBM into three main steps: data acquisition, data processing 



and maintenance decision making. The heart of CBM is condition monitoring which aims 

at collecting data regarding equipment condition. Condition monitoring data are 

measurements related to the health condition of the system such as vibration signals, 

acoustic signals, temperature, pressure, oil and lubricant measurements amongst other, 

obtained using various sensors or techniques (Pascual 2015). 

Maintenance tasks affect the reliability and availability levels of the shipping 

industry and are important factors in the lifecycle of a ship  while it can minimize down-

time and reduce operating costs which accounts for 20%-30% of a ship’s operational 

expenses (Stopford 2009). According to a recent survey by Stephens (2017), vessel 

operating costs are expected to rise by 2.4% in 2018, with repairs, maintenance and spare 

parts being the cost categories which are projected to increase most significantly. 

Although the maritime industry is responsible for the massive transportation of 

goods worldwide, it is only recently that new approaches investigating the enhancement 

of ship’s reliability, availability and profitability have been considered (Lazakis and Ölçer 

2015). In comparison to other industries, data pooling is not always possible since similar 

equipment in different conditions may have different failure patterns. Additionally, 

another issue is the constant appearance of new equipment, making historical records 

obsolete. Moreover, data is not collected in a standardised way so that it can lead to more 

informed and effective decision making, while technological advances, overburdened 

crew and high cost of ownership have resulted in considerable interest in advanced 

maintenance techniques (INCASS 2015). Moreover, Raza and Liyanage (2009) stated 

that an increasing demand exists for testing and implementing intelligent techniques as a 

subsidiary to existing condition monitoring programs. The question of how much data, 

which data, and how often this should be collected and how has also arisen, as although 

companies adopt CBM schemes, there seems to be an issue in processing, analysing and 



utilising the recorded operational information. Nowadays, data collected by sensors used 

on ship machinery incorporate an enormous amount of measurement instrumentation, 

including temperature, pressure, flow, vibration and current sensors. To explore, extract, 

and generalize inherent patterns in spatiotemporal data sets, clustering algorithms are 

indispensable (Hagenauer and Helbich 2013).  

The goal of clustering is to identify  structure in an unlabelled sample or unordered 

data by objectively organising data into homogeneous groups (Yan 2014). Given a set of 

data objects, the objective of clustering is to partition them into a certain number of 

clusters in order to explore the underlying structure and provide useful insight for further 

analysis. However, there exists no universally agreed-upon and precise definition of the 

term cluster, partially due to the inherent subjectivity of clustering, which precludes an 

absolute judgment as to the relative efficacy of all clustering techniques. Data clustering 

definitions differ among researchers as these are dependent on the desired goal and the 

data properties. In this respect, Xu and Wunsch (2010) offer various interpretations of 

data clustering definitions such as: (1) A cluster is a set of data objects that are similar to 

each other, while data objects in different clusters are different from one another. (2) A 

cluster is a set of data objects such that the distance between an object in a cluster and the 

centroid of the cluster is less than the distance between this object and the centroids of 

any other clusters. (3) A cluster is a set of data objects such that the distance between any 

two objects in the cluster is less than the distance between any object in the cluster and 

any object not in it. (4) A cluster is a continuous region of data objects with a relatively 

high density, which is separated from other such dense regions by low-density regions. 

Thus, it can be observed that cluster analysis is the formal study of methods and 

algorithms for grouping or clustering objects according to measured or perceived intrinsic 

characteristics or similarity. 



In this respect, Artificial Neural Network (ANN)-Self-Organizing Maps are 

employed in order to cluster data by similarity into meaningful classes. A Self-Organizing 

Map (SOM) is a type of ANN, trained through unsupervised learning for transforming an 

incoming signal patter of arbitrary dimension into a one- or two-dimensional discrete 

map, and to perform this transformation adaptively in a topologically ordered fashion. 

The data consists of key physical performance parameters of a ship main engine such as 

cylinder exhaust gas temperature, piston cooling oil outlet temperature and piston cool 

oil inlet pressure. The case study presented in this paper demonstrates the application of 

the SOM for clustering multidimensional monitored data of key performance parameters 

for a main engine cylinder. The present paper is organized as follows: Section 2 explains 

the background of the Self-Organizing Map followed by Section 3 demonstrating the 

methodology developed. Section 4 presents the case study through which the 

methodology is applied alongside the obtained results. Finally, discussion regarding the 

obtained results and concluding remarks are provided in Section 5. 

2. Self-Organizing Maps 

Namratha and Prajwala (2012) provided an overview of clustering techniques and 

compares the disadvantages and advantages of each technique. They concluded that each 

clustering technique depends on the scope of its application and that in order to overcome 

the disadvantages, optimisation techniques can be used for better performance when 

required. One of the most popular and simple clustering algorithms, K-means is still 

widely used today although it was first published over 50 years ago. This illustrates the 

difficulty in designing a general purpose clustering algorithm and the ill-posed problem 

of clustering (Jain 2010). Ultsch et al. (1995) demonstrated the capability of the SOM to 

classify a difficult artificially generated dataset using unsupervised learning, over other 

well-known statistical clustering methods such as k-means algorithm and hierarchical 



clustering requiring previous information on the dataset. Further performance studies 

have demonstrated the advantages of the self-organizing map over other common 

clustering approaches. The SOM is a flexible, unsupervised neural network for data 

analysis and clustering (Hagenauer and Helbich 2013). It maps input data to neurons in 

such a way that the distance relationships between input signals are mostly preserved 

(Kohonen 2013). SOM projects input space on prototypes of a low-dimensional regular 

grid that can be effectively utilised to visualise and explore the properties of the data 

(Vesanto and Alhoniemi 2000). 

Unsupervised learning is a type of machine learning algorithm used to draw 

inferences from datasets consisting of input data without labelled responses. The most 

common unsupervised learning method is cluster analysis, which is used for exploratory 

data analysis to find hidden patterns or grouping in data. In unsupervised learning, there 

are no predetermined classes, thus no labelled data are available and the goal of clustering 

is to separate a finite, unlabelled data set into a finite and discrete set of hidden data 

structures. A direct reason for unsupervised clustering is the need to explore the unknown 

nature of the data that are integrated with little or no prior information (Pascual 2015). 

Self-Organizing Maps are a class of ANN with neurons arranged in a one or two 

dimensional structure and trained by an iterative unsupervised or self-organising 

procedure (Yan 2014). They find clusters in the data by evaluating neighbourhood 

measures and employing competitive strategies. These networks are based on competitive 

learning. The output neurons of the network compete among themselves to be activated 

or fired, with the results that only one output neuron, or one neuron per group is on at any 

one time. An output neuron that wins the competition is called a winner-takes-all neuron 

or winning neuron. Every data item is mapped into one point (node) in the map and the 



distances of the items in the map reflect similarities between the items (Kohonen 1998) . 

Figure 1 shows the basic structure of the SOM. 
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Figure 1 Self-Organizing Map Structure  

 

The SOM consists of a grid of interconnected nodes, where each node is an N-

dimensional vector of weights. In general, given a vector as input to the SOM, the node 

closest to it is found, and then its weights and weights of neighbouring nodes are updated 

so that they can approach that of the input vector. A self-organizing feature map network 

identifies a winning neuron using the same procedure as employed by a competitive layer. 

However, instead of updating only the winning neuron, all neurons within a certain 

neighbourhood of the winning neuron are updated, using the Kohonen rule as described 

further on (Curry and Morgan 2004). During training, the SOM forms an elastic net that 

folds towards the space formed by the input data. Data points lying near each other in the 

input space are mapped onto nearby map units. Thus, the SOM can be interpreted as a 



topology for preserving mapping from input space onto the 2D grid of the map. The SOM 

is trained iteratively until no noticeable changes in the feature map are observed. At each 

training step, a sample vector x is randomly chosen from the input data set. There are 

three basic steps involved in the application of the algorithm after the initialisation stage: 

sampling, similarity matching and updating. These three steps are repeated until 

formation of the feature map has been completed based on the input data set. The 

algorithm is summarized as follows according to Haykin (1998): 

(1) Initialisation: Choose random values for the initial weights wj. 

(2) Sampling: Draw a sample x from the input space with a certain probability; the 

vector x represents the activation pattern that is applied to the lattice.  

(3) Similarity Matching: find the best matching (winning) neuron i(x) at time step n 

by using the minimum distance Euclidean criterion: 

i岫x岻 噺 argmin舗x岫n岻 伐 w棚舗 ,   j=1, 2, …, l    (1) 

(4) Updating: adjust the synaptic weight vectors of all neurons by using the update 

formula: 

w棚岫n 髪 な岻 噺 w棚岫n岻 髪 ß岫n岻h棚┸辿岫淡岻岫n岻岫x岫n岻 伐 w棚岫n岻岻    (2) 

Where ß岫n岻is the learning rate parameter and h棚┸辿岫淡岻岫n岻 is the neighborhoood function 

centered around the winning neuron i(x); both ß岫n岻 and h棚┸辿岫淡岻岫n岻 are varied dynamically 

during learning rate in order to obtain the best results. 

(5) Continuation: Continue step 2 until no noticeable changes in the feature map are 

observed. 

 

SOM main application areas include statistical methods at large, such as 

exploratory data analysis, statistical analysis and organisation of texts. Other application 

areas include industrial analyses, control and telecommunications, biomedical analyses 

and applications at large and financial applications (Kohonen 2013). Section 3, proposes 



the SOM methodology which is a promising application in the maritime industry under 

the contexts of condition monitoring, diagnostics and maintenance. 

3. Methodology 

As in the case with other ANNs, the SOM operates in two modes. The first mode is the 

training phase in which the map is defined and shaped based on the input data, while the 

second phase automatically classifies new inputs into the clusters defined in the training 

stage (mapping). The SOM consists of an input and output layer. Inputs in the SOM are 

the input vector (1-dimensional data) or vectors (multidimensional data) containing data 

measurements of performance parameters. Additionally, the topology of the SOM defines 

the number of neurons (clusters) and a distance function in order to obtain distances 

between the neurons given their positions. The output of the algorithm is the number of 

neurons the input data has been assigned to. As shown in the methodology flow chart for 

the data clustering process in Figure 2, the data clustering stage comprises of a two-stage 

procedure. Initially, the input data is clustered in the SOM to produce the prototype 

clusters. Afterwards, the prototype clusters obtained from the SOM analysis are 

interclustered to separate or distinguish the prototype clusters into meaningful groups. 
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Figure 2 ANN-SOM Clustering Methodology Flow Chart 

 

The neurons in the layer of a SOM are arranged in physical positions originally, 

according to a topology function, arranging the neurons either in a grid, hexagonal or 

random topology. The network is trained using the batch unsupervised weight/bias 

training algorithm. Batch training of a network proceeds by making weight and bias 

changes based on an entire set (batch) of input vectors. Incremental training changes are 

applied to the weights and biases of the network after presentation of each individual 

input vector. 

Clustering strategies generally follow two fundamentally different strategies 

namely hierarchical or agglomerative clustering and point assignment clustering 

respectively. In hierarchical or agglomerative clustering, clusters can be combined based 



on their “closeness”, using a distance measure/metric (Vesanto and Alhoniemi 2000). As 

such, after obtaining the initial clusters from the SOM, the SOM clusters are 

interclustered based on the Euclidean distance metric in order to divide them into groups 

providing useful insight and information regarding the data. The centre of each SOM 

cluster is calculated and based on the hierarchical clustering principle, can be used in a 

Euclidean space for finding similar clusters. A Euclidean space allows the representation 

of a cluster by its centroid or average of the points in the cluster. Interclustering distances 

are defined by calculating the Euclidean distance (square roots of the sums of the squares 

of the differences between the coordinates of the points in each dimension) between the 

SOM clusters and selecting the clusters with the shortest distance. Cluster centres with 

small Euclidean distances between them could possibly contain similar data and could be 

confined under one cluster group. Stopping can be achieved by considering the number 

of clusters that should be in the data or when the best combination of existing clusters 

produces a cluster that is inadequate, pre-defined by the user or when the Euclidean 

distances exceed a threshold (Jung et al. 2003). The Euclidean distance between two 

points p and q is the length of the line segment connecting them. In Cartesian coordinates, 

if p=(p1,p2,…,pn) and q=(q1,q2,…,qn) are two points in Euclidean n-space, then the 

distance d from p to q or vice versa is given by the Pythagorean formula (Pascual 2015): 

Figure 3 demonstrates the Euclidean distance d12 of two points A1 and A2. 

 

穴岫喧┸ 圏岻 噺 穴岫圏┸ 喧岻 噺 紐岫圏怠 伐 喧態岻態 髪 岫圏態 伐 喧態岻態 髪橋髪 岫圏津 伐 喧津岻態 噺 謬デ 岫圏沈 伐 喧沈岻態津珍退怠    

(3) 



 

Figure 3 Euclidean distance d12 of two points A1 & A2  

 

The Euclidean distances of the SOM cluster centres are imported into a custom 

algorithm using a combination of logical operators and conditional statements and 

expressions in order to compare cluster distances and search for the clusters that have the 

shortest distance between them. The algorithm searches for clusters containing similar 

data, starting from cluster centres that have the closest distance towards larger ones. The 

algorithm stops searching for close clusters if the distance is larger than 0.4, as in this 

case the cluster distances are large and in such cases the clusters do not contain similar 

data. Table 1 demonstrates the custom algorithm criteria used for the interclustering 

purposes.  

Table 1 Criteria for obtaining similar clusters 

Cluster Euclidean Distance Metric Criteria 

1st Possible Neighbour Cluster Distance smaller or equal to 0.1 

2nd Possible Neighbour Cluster Distance smaller or equal to 0.2 

3rd Possible Neighbour Cluster Distance smaller or equal to 0.3 

4th Possible Neighbour Cluster Distance smaller or equal to 0.4 

As seen in Table 1, the centres of the prototype clusters created by the SOM are 

used to calculate the Euclidean distance between each cluster. If the distance between two 

clusters in smaller or equal to 0.1, then these clusters are very close to each other, 

compared to clusters with larger distances. Thus, this is the starting point for searching 

A2(x2, y2) 

x 

y 

A1(x1, y1) 

d12 



for similar clusters, starting from the smallest cluster distances towards the largest. If no 

clusters have a Euclidean distance smaller or equal to 0.1, then the algorithm searches for 

clusters with Euclidean distances smaller or equal to 0.2 and forth.  

4. Case Study & Results 

The methodology is applied on a two-stroke marine diesel engine of a 

PANAMAX container ship of which its main particulars are shown in Table 2. 

Specifically, data related to various parameters of a main engine cylinder are used for the 

ANN clustering case study and results. The parameters refer to the exhaust gas 

temperature outlet, piston cooling oil temperature outlet and piston cooling oil inlet 

pressure, which are all key performance parameters for examining the condition of the 

main engine cylinder.  

Table 2 Ship Main Particulars 

Container Ship Main Particulars 

DWT (Summer) 50829 tons 
Length Overall 260.00 m 
Beam 32.00 m 
Depth Moulded 19.30 m 
Draft (Summer) 12.60 m 

Engine Particulars 

Main Engine HSD 8K90MC-C 
Maximum Continuous Rating (MCR) 49680 BHP @ 104 RPM 
Cylinders 8 
Bore 900 mm 
Stroke 2300 mm 

 

Data related to these parameters corresponds to a constant vessel speed of 14 knots as the 

main engine operates at 60 rpm. Specifically, 57 measurements per parameter were used 

as input for the training of the SOM. With the main engine operating at 60 rpm, the 

cylinder exhaust gas temperature ranged from 250 to 260 degrees Celsius, the piston 

cooling oil outlet temperature between 48 and 51 degrees Celsius and the piston cooling 



oil inlet pressure readings were constant at 2.7-2.8 kg/cm2. However, additional artificial 

data is used for the analysis which correspond to unusual measurements of the monitored 

parameters, representing abnormal engine behaviour affecting the performance of the 

main engine. These measurements are compared to those related to the aforementioned 

engine speed and rpm which represent the normal engine operating condition. As an 

additional functionality for the developed SOM, data exceeding alarm threshold levels 

from the Original Equipment Manufacturer (OEM) are also used for the analysis as these 

thresholds fulfil the requirements of the engine manufacturer and ensure the safe 

operation of the main engine. Table 3 displays the thresholds utilised to determine 

abnormal engine operation both for the scenario of the apparently vague parameter 

measurements and measurements exceeding the engine guide recommended thresholds. 

The abnormal state thresholds for the monitored parameters were defined based on 

discussions with experts such as senior and technical marine engineers, two ship operators 

and three Classification Societies.  

Table 3 Alarm thresholds for the main engine monitored parameters 

Measurable Parameter Normal 

Range 

Abnormal 

State 

OEM Alarm 

Cylinder exhaust gas 
temperature outlet oC 

250-260 
Lower than 200, 
Greater than 300 

Greater than 450 

Cylinder piston cooling oil 
temperature outlet oC 

48-51 Greater than 65 Greater than 70 

Piston cooling oil pressure 
inlet kg/cm2 

2.7-2.8 Lower than 1.8 Lower than 1.4 

 

The SOM created for clustering the multidimensional input vectors consists of a 

4-by-4 two-dimensional map of 16 neurons. The SOM topology prior to training the input 

data is shown in Figure 4. 



 

Figure 4 ANN-SOM 4x4 Topology 

 

The SOM is trained for a maximum of 1000 epochs. Prior to training, the collected 

monitored data are normalized in order to standardise the range of independent variables 

of data. Once training is complete, the multidimensional input data vectors have been 

assigned into clusters. The SOM topology after training is shown in Figure 5, in which 

the green dots represent the input data for the cylinder main engine parameters and the 

red dots represent the SOM neurons-clusters assigned to the data points while the blue 

lines connect each node of the map. For example, cluster 15 represents data in which the 

cylinder piston cooling oil outlet temperature operates in an abnormal state while the 

piston cooling oil inlet pressure and exhaust gas temperature are operating normally. 

 



 

 

Figure 5 ANN-SOM Clusters 

 

The data has been clustered into twelve clusters, specifically cluster numbers 1, 

2, 4, 6, 7, 9, 10, 11, 12, 14, 15 and 16 as observed in Table 4. Each cluster the data has 

been assigned to has been labelled to provide informative insight to the user such as the 

ship operator, crew and on-shore operations department, regarding the condition of the 

monitored parameters and the engine. 

 

 

 

 

 



Table 4 Description of clusters 

Cluster  Cluster Description 

12 No faults- Normal operating parameter values 
16 Cylinder exhaust gas temperature outlet abnormal state, lower than 200 oC 
7 Cylinder exhaust gas temperature outlet abnormal state, greater than 300 oC 
4 Cylinder exhaust gas temperature outlet exceeding OEM alarm level 
15 Piston cooling oil outlet temperature abnormal state 
11 & 14 Piston cooling oil outlet temperature exceeding OEM alarm level 
2 Piston cooling oil inlet pressure abnormal state 
1 Piston cooling oil inlet pressure OEM alarm level 
6 & 10 All monitored parameters operating in abnormal state 
9 All monitored parameters exceeding OEM alarm levels 

 

As observed in Table 4, the clusters produced by the SOM have clustered the 

multidimensional data related to the cylinder of the main engine and have been interpreted 

accordingly to provide useful data insight. Specifically, the data have been classified into 

10 categories. Cluster 12 represents no faults, in which the monitored parameters are 

operating under their normal range as defined in Table 3. On the other hand, clusters 16 

and 7 represent abnormal data indicating decreased or increased cylinder exhaust gas 

temperature respectively compared to the normal engine operating values at 60 rpm, 

while the cylinder piston cooling oil outlet temperature and inlet pressure are operating 

normally. Cluster 4 contains data related to the exhaust gas temperature exceeding the 

OEM alarm level. Additionally, data representing all parameters operating 

simultaneously in abnormal state have been clustered into cluster 6 and 10 and have been 

assigned under one group based on the interclustering approach. By identifying the cluster 

centre positions, the Euclidean distance between the clusters can be calculated in order to 

examine if any clusters can be interclustered based on the concept that clusters with the 

shortest distances between them share possible similarities in the data. Table 5 displays 

the Euclidean distances calculated for the sixteen cluster positions. The distance between 

a point and itself is 0. 



Table 5 Cluster no.1-16 Euclidean Distances from their centre  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0.00 0.28 0.58 1.10 0.38 0.57 0.85 0.99 1.02 0.61 1.04 0.83 0.88 1.19 0.95 0.86 

2 0.28 0.00 0.34 0.90 0.38 0.48 0.58 0.77 1.05 0.53 0.83 0.54 0.78 1.01 0.72 0.59 

3 0.58 0.34 0.00 0.59 0.44 0.60 0.32 0.45 0.95 0.47 0.65 0.39 0.62 0.84 0.53 0.55 

4 1.10 0.90 0.59 0.00 0.93 1.16 0.52 0.17 1.09 0.92 0.95 0.71 0.89 1.10 0.85 0.93 

5 0.38 0.38 0.44 0.93 0.00 0.45 0.76 0.84 0.69 0.25 0.79 0.78 0.51 0.91 0.74 0.86 

6 0.57 0.48 0.60 1.16 0.45 0.00 0.80 1.02 1.02 0.39 0.61 0.73 0.63 0.72 0.58 0.69 

7 0.85 0.58 0.32 0.52 0.76 0.80 0.00 0.35 1.21 0.74 0.65 0.19 0.83 0.86 0.50 0.41 

8 0.99 0.77 0.45 0.17 0.84 1.02 0.35 0.00 1.10 0.82 0.82 0.53 0.83 0.99 0.71 0.76 

9 1.02 1.05 0.95 1.09 0.69 1.02 1.21 1.10 0.00 0.65 1.10 1.31 0.55 1.10 1.12 1.44 

10 0.61 0.53 0.47 0.92 0.25 0.39 0.74 0.82 0.65 0.00 0.59 0.76 0.28 0.67 0.58 0.84 

11 1.04 0.83 0.65 0.95 0.79 0.61 0.65 0.82 1.10 0.59 0.00 0.63 0.56 0.22 0.16 0.66 

12 0.83 0.54 0.39 0.71 0.78 0.73 0.19 0.53 1.31 0.76 0.63 0.00 0.89 0.85 0.47 0.23 

13 0.88 0.78 0.62 0.89 0.51 0.63 0.83 0.83 0.55 0.28 0.56 0.89 0.00 0.57 0.60 0.99 

14 1.19 1.01 0.84 1.10 0.91 0.72 0.86 0.99 1.10 0.67 0.22 0.85 0.57 0.00 0.38 0.87 

15 0.95 0.72 0.53 0.85 0.74 0.58 0.50 0.71 1.12 0.58 0.16 0.47 0.60 0.38 0.00 0.51 

16 0.86 0.59 0.55 0.93 0.86 0.69 0.41 0.76 1.44 0.84 0.66 0.23 0.99 0.87 0.51 0.00 

 

In Table 5, it can be observed that for cluster 1, the distance between itself is zero, 

while the Euclidean distance between cluster 1 and cluster 2 is equal to 0.28, 0.58 to 

cluster 3 and so forth. The Euclidean distances are calculated based on the SOM feature 

map cluster centres as exhibited in Figure 5. The SOM clusters Euclidean distances are 

imported into the custom algorithm using a combination of logical operators and 

conditional statements and expressions in order to compare cluster distances and search 

for the clusters that have the shortest distance between them. Table 6 illustrates the results 

obtained from the algorithm for clusters 6 and 10 based on the distance criteria defined 

in Table 1. 

 

Table 6 Similar clusters to cluster 6 and 10 based on Euclidean distance criteria 

Euclidean 

Distance  
<0.1 <0.2 <0.3 <0.4 

Similar Clusters 
to Cluster 6 

No No No 10 

Similar Clusters 
to Cluster 10 

No No 5, 13 6 

 



The results illustrate that the first close neighbouring cluster to cluster 6 is cluster 

10 which also represents as previously mentioned data representing all parameters 

operating simultaneously in abnormal state. Additionally, clusters 5, 6 and 13 have been 

identified as neighbouring clusters related to cluster 10. During the SOM training process 

no data has been assigned to cluster 5 and 13. This is because the data in the training input 

vectors have been assigned to the other clusters, based on the SOM training process. On 

the other hand, cluster 6 is the first neighbouring cluster related to cluster 10 which also 

represents similar data. Therefore, cluster 6 and 10 can be interclustered and labelled 

under one group as they both represent similar data. In a similar manner, clusters 11 and 

14 are assigned under one group. 

After the network training phase, the network is saved to carry out additional 

simulations using new data as input. In order to validate the network performance in 

clustering data successfully, new input data is used to simulate the ANN-SOM model. 

The parameters are normalised for the simulation and the input data and the resulting 

cluster numbers are shown in Table 7. 

 

Table 7 New Input Data and Assigned Clusters 

Parameters Healthy state 
Increased exhaust 
gas temperature 
abnormal state 

All parameters 
abnormal state 

Exhaust Gas 
Temperature 

251 253 255 304 310 312 301 305 310 

Piston Cooling 
Oil Outlet 
Temperature 

49 48.5 50 50 48 49 65 66 67 

Piston Cooling 
Oil Inlet Pressure 

2.7 2.8 2.7 2.7 2.7 2.7 1.8 1.7 1.7 

ANN-SOM 

Cluster 
12 12 12 7 7 7 10 10 10 

 



The results of the clustering process in the table above successfully demonstrate 

the ability of the trained ANN-SOM to cluster the input data. As observed, the first three 

sets of data represent healthy data and are assigned to the ANN-SOM cluster 12 which 

represents healthy data. The next three input vectors represent data for abnormal 

increased exhaust gas outlet temperature and this has been clustered accordingly in cluster 

7. Finally, the last three input data display data in abnormal state compared to the normal 

engine operating condition for all three monitored parameters and the SOM has classified 

this data in cluster 10 effectively. 

  

5. Discussion & Conclusions 

The trained ANN-SOM can cluster new datasets for the cylinder case study and the 

interclustering strategy coupled with the custom algorithm can assist in identifying 

clusters containing similar data, which could be possibly grouped under one category.  

The SOM was trained using 16 clusters in two dimensions with some clusters 

having no data assigned to them as also mentioned previously. This is because the data in 

the input vectors have been assigned to the other clusters, based on the SOM training 

process and similarity patterns contained in the data. Moreover, similar data would be 

assigned in the same cluster and by applying the interclustering technique, neighbour 

clusters can be assigned under one group when sharing data similarities. Furthermore, 

this implies that a SOM with different dimensions and thus number of neurons would also 

cluster the data in a similar manner, demonstrating the flexibility of the SOM for 

clustering applications and addressing the issue of finding the correct number of clusters 

which does not have a finite solution. Therefore, the ANN-SOM offers flexibility in terms 

of assigning the number of clusters to data, as it is an unsupervised learning process and 

can model the underlying structure or distribution in the data. 



The ANN-SOM model monitors the condition of the main engine by clustering 

parameter measurements under normal conditions and conditions representing faults, 

which are characterized by parameter measurements exceeding alarm-threshold limits. 

The practicality of the developed ANN-SOM model can be demonstrated from the fact 

that the model clusters data both based on apparently vague input data described as 

abnormal affecting the engine performance and based on OEM alarm thresholds fulfilling 

the manufacturer requirements and ensuring the safe engine operation. Data are 

considered abnormal compared to the parameter measurements related to the steady 

engine rpm and vessel speed representing normal engine operating conditions. Moreover, 

the abnormal state thresholds for the monitored parameters were defined based on 

discussions with experts. Overall, the main aim is to obtain clusters displaying data which 

are diverse compared to those operating under steady ship speed and constant engine rpm. 

Thus, assuming a certain baseline is provided for the dataset to distinguish between 

healthy and faulty data, the SOM clustering methodology is applicable. The main 

practical advantage of the method is that the clustering technique can identify changes in 

the measurements of parameter while other parameters remain within steady limits. 

As big data and the internet of things is becoming a reality and the shipping industry is 

endeavouring to advance, there is no clear definition of big data and it is still challenging 

to quantify the volume of data required for successful machine learning, data training and 

analysis. This paper presented a novel approach for clustering data containing 

measurements of physical parameters for a ship main engine cylinder using the ANN-

SOM. In a similar manner, the approach can also be applied for the entire main engine of 

a ship. In such a case, it is the authors’ opinion that the number of parameters to be used 

as input depends strongly of the availability of the data. As the number of input 

parameters increases, the SOM dimensions will have to increase also in order to provide 



an adequate number of clusters to properly assign the data. The SOM dimensions and 

thus number of clusters will also depend on the number of distinguished data groups the 

user is trying to achieve in compliance with the ship operator, shipowner, technical 

department requirements. As a demonstrative example, to correctly cluster data for 10 

main engine parameters and their fault states, a SOM of approximately 25 neurons or 

more should be adequate. However, attention should be taken to ensure that the data is 

correctly assigned to appropriate clusters. If the SOM performance is poor, then the SOM 

dimensions should be changed until a satisfactory level of clusters and performance is 

achieved. 

The data was successfully assigned to clusters by the Self-Organizing Map. Future 

steps in this direction include investigating the SOM clustering capabilities with 

additional condition monitoring data of physical performance parameters of the main 

engine, training the SOM with larger data sets and validating the results to similar case 

studies and approaches. Finally, the results obtained from the clustering process can be 

further expanded for application in diagnostic purposes, identifying engine faults, their 

causes and their effects to the system.  
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