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Abstract: We study the nonlinear dynamics of solitary and optically injected two-element 
laser arrays with a range of waveguide structures. The analysis is performed with a detailed 
direct numerical simulation, where high-resolution dynamic maps are generated to identify 
regions of dynamic instability in the parameter space of interest. Our combined one- and two-
parameter bifurcation analysis uncovers globally diverse dynamical regimes (steady-state, 
oscillation, and chaos) in the solitary laser arrays, which are greatly influenced by static 
design waveguiding structures, the amplitude-phase coupling factor of the electric field, i.e. 
the linewidth-enhancement factor, as well as the control parameter, e.g. the pump rate. When 
external optical injection is introduced to one element of the arrays, we show that the whole 
system can be either injection-locked simultaneously or display rich, different dynamics 
outside the locking region. The effect of optical injection is to significantly modify the nature 
and the regions of nonlinear dynamics from those found in the solitary case. We also show 
similarities and differences (asymmetry) between the oscillation amplitude of the two 
elements of the array in specific well-defined regions, which hold for all the waveguiding 
structures considered. Our findings pave the way to a better understanding of dynamic 
instability in large arrays of lasers. 
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1. Introduction

Considerable progress has been made over the past few years in understanding the dynamic 
properties of arrays of semiconductor lasers that are coupled by the overlap of their 
evanescent fields (see, for example [1], and references therein). Coupled mode theory [2] has 
served as a standard analysis tool for many decades, with further refinements being made to 
account for specific situations, e.g. partially coherent arrays [3] and non-Hermitian 
waveguides [4]. The method variously termed as supermode [5], normal-mode [6], or 
composite cavity [7] model is also well-established. More complex numerical models that 
include spatial and temporal effects can also be applied to specific laser arrays where the 
parameters are well-defined [8]. Nevertheless in the weak coupling regime, coupled mode 
theory, as the simplest modeling approach, has been demonstrated to be sufficiently accurate 
[9,10] and therefore this modeling method will be utilized in this work. 

Studies of laterally-coupled semiconductor lasers based on a range of structures have 
found that these devices are intrinsically unstable under certain conditions and can even 
develop complicated chaotic oscillations [8–17]. These studies have motivated research on 
novel physical phenomena, e.g. resonance frequency enhancement [18,19], gain tuning and 
parity-time symmetry breaking [20], turbulent chimeras [21], and phase-locked state 
asymmetry related to gain and loss in the two lasers [22]. While studies have addressed in 
some detail separately the steady-state operation or dynamic instability in these devices, much 
less work has been devoted to drawing a more complete picture of the dynamics evolution of 
the system in the parameter space. 

A global view of the temporal dynamics of laser systems can be presented in terms of 
two-dimensional maps delineating different dynamical regions. Methods for identifying these 
regions include the use of largest Lyapunov exponent (or spectrum) [23], correlation 
dimension [24], permutation entropy [25], the maxima of intensity time series [26], and 
optical (radio frequency) spectra [27]. Additionally the use of bifurcation analysis [28] which 
can be based on either a numerical path continuation method or a direct numerical simulation 
has proved very effective. Bifurcation diagrams (BDs) of various bifurcation curves (saddle-
node, Pitchfork, Hopf, Torus, period-doubling, saddle-node of limit cycle and so on) can be 
revealed with the help of standard continuation package (such as AUTO [29]) although some 
care is needed when interpreting results. Alternatively high-resolution BDs obtained through 
measuring the number of extrema of intensity time series in a direct numerical simulation 
have proved to be the single most effective way to illustrate different dynamical regions 
[30,31]. Such an approach provides an in-depth understanding of various dynamic regions 
and the underlying mechanism of the transition between the boundaries. This is crucial for 
rapidly finding the appropriate working point for diverse environments that require the 
generation of optical chaos [32–36], or by contrast that target stable microwave oscillations 
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[37], or even stable steady-state operation. Thus in this paper we focus on the use of 
bifurcation analysis of direct simulations to identify dynamical regions. 

In a recent theoretical and analytical investigation of a laterally-coupled two-element laser 
array we have studied the existence and stability of the phase-locked solutions, confined by 
the principal bifurcation curves, i.e., saddle-node and Hopf, in the plane of detuning versus 
coupling rate for four representative laser waveguide structures, ranging from those with 
purely real guidance to a combination of index antiguiding and gain-guiding [38]. By doing 
so, we have revealed a periodicity of behavior with laser separation that was overlooked in 
the literature. More recently we extended this work in a study of optical injection into one 
element of the laser array where we focused on a detailed and comprehensive analysis of 
locking conditions [39]. However, the basic nature of the dynamical properties in solitary and 
optically injected laterally-coupled laser arrays outside the narrow locking regions have not 
been examined. Thus here we present a more complete theoretical investigation of dynamics 
in laterally-coupled pairs of lasers, with and without injection for different waveguide 
structures. We use one- and two-dimensional BDs to identify different dynamical regions 
including steady-state, periodicity, and chaos. We highlight the influence of system 
parameters including the waveguiding structures, linewidth-enhancement factor and the pump 
rate. Finally we examine the symmetry in the output of the two-laser array in the presence of 
optical injection into one element. 

2. Theoretical model

We follow the configuration illustrated schematically in Fig. 1 of [38], and consider two 
identical laser waveguides, A and B, each of width 2a , with an edge-to-edge separation 
of 2d , mutually coupled through the evanescent tails of their fields. An additional degree of 
freedom is introduced whereby laser A is subject to continuous-wave optical injection from a 
master laser whose frequency can be detuned relative to those of the two-element laser array 
[39]. 

The system of dimensionless coupled-mode equations can be written as (please refer to 
[39] for the mathematical details of the derivation of the rate equations)

1
( 1) ( sin cos ) cos ,

2
injA

A A B r i A
p N

KdY
M Y Y

dt
η φ η φ φ

τ τ
= − + − + (1)

1
( 1) ( sin cos ),
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B B A r i
p
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M Y Y

dt
η φ η φ
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= − − + (2)
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 = − +  (5)

where the subscript A, B stands for laser A, B, ,A BY are the normalized field amplitudes, ,A Bφ
are the corresponding phases, ,A BM  are the normalized carrier densities, φ  ( B Aφ φ= − ) is the

phase difference, and B AΔΩ = Ω − Ω  is the built-in frequency offset between the cavity 
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resonances of the two coupled lasers in the absence of injection. The dimensionless variables 

,A BM and ,A BQ are defined as follows 

( ), , ,1 ,A B diff p A B A Bth
g

c
M a N N

n
τ= + Γ − (6)

( ), , ,1 .A B diff p A B N A Bth
g

c
Q a P N

n
τ τ= + Γ − (7)

In these equations, rη and iη are the real and the imaginary parts of the complex coupling 

rateη ; in Eq. (14) of [38] this rate is expressed in terms of parameters Cη , Cθ  (found from 

numerical integration) and rW , iW  which are the real and imaginary parts of the transverse 

propagation constant in the regions outside the cores of waveguides A and B. Other 
parameters are the speed of light c , the group index gn , the optical confinement factor Γ , the 

differential gain diffa , the linewidth-enhancement factor Hα , the pumping rate ,A BP , the photon

lifetime pτ , the carrier lifetime Nτ , the threshold gain thg , and the threshold carrier

concentration thN  ( 0 g diff pN n ca τ= + Γ  where 0N is the transparency carrier concentration). 

Here we define injω ω ωΔ = − , with injω as the injected angular frequency and ω  as the free-

running angular frequency of the total electric field of the system in the absence of injection. 

injK  represents the dimensionless injection level and is mathematically defined as 

,diff N
inj inj inj N

ca
K k E

n

τ
τ= (8)

where n  is the refractive index and injk  is the coupling rate for the injected signal injE . For a 

solitary pair of the laterally-coupled semiconductor lasers, i.e., in the absence of injection, 
0inj injK k= = and 0ωΔ = . 

Table 1. Values of key parameters for modelling, using material parameter values given 
in [38]. 

rnΔ thg  (cm−1) inΔ rW iW QC Cη  (ns−1) Cθ  (rad)

0.00097 87.7 0 1.26 0 11.4 83.6 0
0.0005 90.6 0.000937 1.09 0.896 11.0 90.2 0.233 
0 99.3 0.00103 0.795 1.22 10.1 91.9 0.294 
−0.0005 108 0.00112 0.604 1.61 9.26 96.3 0.183 

In the direct numerical simulations, a fourth-order Runge-Kutta algorithm has been used 
to solve Eqs. (1)-(5). The following set of parameter values is considered [38,39]: 4 μma = , 

15 21 10 cmdiffa −= × , 18 -3
0 1 10 cmN = × , 1.0 nsNτ = , 1.53 pspτ = , and 3.4n = . These values 

are fixed throughout the current study as they are typical for laterally-coupled semiconductor 
lasers. We restrict attention to the case of equal pumping in each laser, so that A BP P P≡ = . 

The pump rate, expressed in terms of the ratio of its threshold value thP P , and the linewidth-

enhancement Hα are varied for the purpose of clarifying their effects. We consider 1.1 thP P=
and 2Hα = , unless otherwise specified. Moreover, for consistency we study the influence of

waveguiding structures based on the cases analyzed in [38,39], summarized below in Table 1. 
The first is purely real index guiding, the second positive index guiding with gain-guiding, the 
third pure gain guiding (no built-in index guiding) and the last index antiguiding with gain-
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guiding . Although we assume the two lasers are nominally identical, we do allow for a static 
difference in lasing frequency ( 2 )πΔΩ  between them which might occur in practice either 

unintentionally as a result of small fabrication variations or by design. We refer to this as the 
‘offset frequency’, or simply as the ‘offset’. 

3. Solitary case

3.1 One-parameter bifurcation diagrams 

In this section, dynamics and some bifurcation scenarios of a solitary laser array consisting of 
two laterally-coupled semiconductor lasers are briefly introduced. It is known that two 
laterally-coupled lasers support steady-state solutions under appropriate conditions 
[12,16,38]. To start with, we consider the case of the real index guide specified in the first 
line of Table 1, where the two lasers have identical parameters. There exist stable steady-state 
solutions with identical laser output for sufficiently large laser separation (weak coupling). As 
the laser separation decreases, they lose stability and give rise to a stable limit cycle because 
of a supercritical Hopf bifurcation, and even undergo other further bifurcations leading to 
complex oscillatory dynamics. It is worth noting that these steady-state solutions can also 
disappear through a collision in a saddle-node bifurcation when a frequency offset between 
the two lasers is taken into account [38,40]. Figure 1 presents some examples of intensity 
time series of the two laterally-coupled lasers in the sequence of increasing laser separation 
ratio. It is clearly seen that this laser system yields rich dynamics, including Fig. 1(a) chaos, 
1(b) quasiperiodicity, 1(c) periodicity and 1(d) steady state, as the control parameter (i.e. d a  

in Fig. 1) is varied. 

Fig. 1. Intensity time series of a solitary two-element laser array where the laser separation 

ratio varies from (a) 1.0d a = , (b) 1.3, (c) 1.6 to (d) 2.5. Other parameters are 1.1
th

P P= , 

offset 2 0 GHzπΔΩ = , and 2
H

α = . Solid red lines represent laser A, and broken blue lines

stand for laser B. 

Interestingly, the symmetry breaking in periodic solutions occurs for certain large values 
of d a in our system, as shown in Fig. 1(c), where both lasers output period-one oscillation at 

a frequency close to the relaxation resonance frequency (ROF) but with different amplitudes 
( 4.5 GHzROFf =  at 1.1 thP P= for this waveguide). This symmetry-breaking phenomenon has 

been observed in mutually coupled laser diodes regardless of whether the coupling is 
instantaneous or not [41, 42]; however, the oscillation frequency in the case of time-delayed 
coupling was closely related to the inverse of the time of flight between the lasers. Intuitively, 

Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 4756 



the appearance of symmetry breaking originates from the coexistence of several attractors 
(multistability), so the opposite case of Fig. 1(c) could occur depending upon the initial 
conditions chosen. In other words, whilst we see here that laser B has a larger amplitude than 
that of laser A, one can expect that laser A has a larger amplitude than that of laser B for the 
same parameters but another choice of initial conditions. 

In Fig. 1 one can also notice that in most cases the two elements of the laser array do not 
necessarily oscillate precisely in phase or antiphase. Instead, they operate in an intermediate 
oscillatory regime characterized by a relative phase difference in the interval (0°, 180°) [see 
Figs. 1(b) and 1(c)], thereby consistent with results reported for two mutually coupled 
semiconductor lasers in the limit of instantaneous coupling [40]. In contrast, we show in Fig. 
2 that by appropriately choosing the control parameters and waveguding structure, 
simulations produce stable antiphase and in-phase periodic solutions with the same frequency 
and amplitude. 

Fig. 2. Examples of antiphase and in-phase solutions in the solitary two-element laser array. (a) 

structure of first line in Table 1 with offset 2 0 GHzπΔΩ = and d a  = 1.85; (b) structure of 

second line in Table 1 with 2 5 GHzπΔΩ = − and d a  = 1.85. Other parameters are 

1.1
th

P P= and 2
H

α = . 

For the results considered so far the control parameter, i.e., the laser separation ratio d a

in our case, was kept constant. We next examine the system behavior as the laser separation is 
varied. Figures 3(a1)-3(d1) show the BDs as a function of the laser separation ratio d a  for 

the four cases listed in Table 1, other parameters of 1.1 thP P= , 2Hα =  and zero offset are

kept constant. In these BDs a single dot indicates steady-state operation (locking), two or 
more distinct dots mean periodic oscillations, while many closely spaced dots stand for 
complex dynamics. Clear variations on the behavior can be seen, and typical examples of 
intensity time series can be seen in Figs. 1 and 2. Here in all cases shown in Figs. 3(a1)-3(d1), 
the system becomes unstable via a Hopf bifurcation and undergoes quasiperiodic routes to 
chaos. For the interval of d a  considered in this figure, one can see different windows of 

steady state and complex dynamics, especially in the cases of pure gain-guiding ( 0.0nΔ = ) 
[Fig. 3(c1)] and real index antiguide with 0.0005nΔ = −  and gain-guiding [Fig. 3(d1)]. This 
bifurcation cascade between apparently stable and unstable regions can be predicted using the 
stability diagram consisting of saddle-node and Hopf bifurcations [38] and was reported also 
in an external-cavity semiconductor laser [43] and mutually delay-coupled semiconductor 
lasers [31], where the dynamics change occurs between several different adjacent cavity 

Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 4757 



modes. In contrast, in our case this cascade motion is attributed to the switching between in-
phase and antiphase solutions and their dynamic evolution [38]. In Figs. 3(a2)-3(d2), BDs are 
shown for a larger value of pump ratio 2 thP P= . As can be seen, the intervals of d a  for 

sustained complex dynamics become much smaller and even disappears for the cases of 
purely real index guide with 0.000971nΔ = [Fig. 3(a2)] and real index guide with 

0.0005nΔ =  and gain-guiding [Fig. 3(b2)]. 

Fig. 3. One-parameter BDs as a function of laser separation d a , calculated from laser A for 

offset 2 0 GHzπΔΩ = and 2
H

α =  in the solitary two-element laser array. Those for laser B

are similar. (a1-d1) 1.1
th

P P= ; (a2-d2) 2
th

P P= . 

Fig. 4. One-parameter BDs as a function of laser separation d a , calculated from laser A for 

different frequency offsets in the structure in the last line of Table 1. (a) 2 5 GHzπΔΩ = − , 

(b) 2 3 GHzπΔΩ = − , (c) 2 1 GHzπΔΩ = − , and (d) 2 0 GHzπΔΩ = . Those for laser B 

are similar. Other parameters are 1.1
th

P P= and 2
H

α = . 
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We have shown that the laser separation and waveguiding structures have significant 
effects on the system dynamics. Next we consider the impact of a static offset in frequency 
between laser A and B. As an example, we show in Fig. 4 several BDs as a function of d a  

in the case of real index antiguide with 0.0005nΔ = −  and gain-guiding for different values of 
frequency offset. For comparison purposes, the result in Fig. 3(d1) for the case of zero offset 
is repeated in Fig. 4(d). As shown in Fig. 4, the windows of phase-locked solutions and 
chaotic regions become fewer when the frequency difference between the two lasers becomes 
larger. For sufficiently large offset, phase-locked solutions no longer exist for the considered 
interval of d a  since no supercritical saddle-node bifurcation can be encountered; see Fig. 

4(a). These results indicate that, given a waveguiding structure, the frequency offset also has 
a significant influence on the dynamics of the two-laser array in the absence of injection. 

Fig. 5. Two-parameter BDs in the ( , 2 )d a πΔΩ plane in the solitary two-element laser 

array, where 
H

α  = 2. From top to bottom: cases described in sequence of lines from top to

bottom of Table 1. From left to right: 1.1
th

P P= , 2
th

P  and 5
th

P . The color code marks the 

number of extremal values (maxima and minima) of the intensity time series in laser A. The 
white indicates phase-locked solutions, dark blue shows period-one oscillation, light blue 
marks period-two oscillation, and other colors represent complex dynamics. 

3.2 Two-parameter bifurcation diagrams 

To provide a more complete picture of the parameter dependence of the laser dynamics, two-
parameter BDs as a function of the laser separation ratio d a  and laser frequency offset 

2πΔΩ are calculated in this section. The BDs obtained by direct integration are summarized 

in Fig. 5, for the four waveguiding structures and with constant Hα  = 2. To visualize the 
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impact of the pump level on the resulting BDs, three values of normalized pump levels are 
considered; 1.1 thP  (left column), 2 thP  (middle column) and 5 thP  (right column). In these 

maps, the different dynamical regimes are identified from the extrema of the intensity time 
series, in which steady-state (white), period-one (dark blue), period-two (light blue), and 
complex dynamics (other colors) are identified as a constant intensity, two intensity extrema, 
four intensity extrema, and even more extrema, respectively [30]. Since the results for laser A 
and B are quite similar, only those for laser A are shown in the maps. However, it is worth 
noting that two-parameter BDs obtained from laser A show certain asymmetry about the 
frequency offset 2πΔΩ  = 0 GHz, whilst those for laser B should exhibit mirror/opposite 

asymmetry about this offset, which can be expected from the rate equations. 
The BDs reveal importance of the waveguide structures in determining the overall 

behavior, and several interesting features can be deduced in the ( d a , 2πΔΩ ) plane. First, 

there is a single uninterrupted locking region in the cases of real index guide with 
0.000971nΔ =  and real index guide with 0.0005nΔ = and gain-guiding, while two 

uninterrupted locking regions are seen in the case of pure gain-guiding ( 0.0nΔ = ) and three 
uninterrupted locking regions are visible in the case of real index antiguide with 

0.0005nΔ = −  and gain-guiding. These regions are bounded by the saddle-node or Hopf 
bifurcations predicted in [38], which agree well with the boundaries of steady-state operation 
shown in these two-parameter BDs. Second, such visualization uncovers regions of complex 
dynamics which are important for modern applications of lasers that may require chaos rather 
than steady-state emission. Several distinct regions of these dynamics are found for the cases 
of pure gain-guiding ( 0.0nΔ = ) and real index antiguide with 0.0005nΔ = −  and gain-
guiding. Third, both locking and complex dynamics regions are concentrated around small 
frequency offsets and are almost symmetric with respect to frequency offset 2πΔΩ  = 0 

GHz. Note here that one may observe a certain degree of asymmetry in these BDs. This can 
be explained by the multistability in our laser system as well as the imperfection of our 
automated computational protocol for distinguishing different dynamical regions (for 
example, in the case of extremely small but non-negligible amplitude oscillations). However, 
this has no significant influence on the conclusion we can draw from the two-parameter BDs. 
Finally, as the pump is increased, the locking region expands, while the regions of complex 
dynamics shrink in size and even disappear. 

It should be pointed out that the fact that the regions of complex dynamics are suppressed 
as the pump rate increases is opposite to the evolution of the laser dynamics observed in 
semiconductor lasers subjected to conventional optical feedback, where instabilities of the 
laser persist and never disappear for the increase of the pump rate [44]. However, one can 
also find features similar to our case in other laser systems [44], such as a polarization-rotated 
feedback configuration and an optical injection system, despite originating from different 
mechanisms. In the two-laser array studied, with increasing the pump rate, the basic 
bifurcations, i.e., saddle-node and Hopf, expand, resulting in larger regions allowing the 
existence of phase-locked solutions, and beyond that, the web of further bifurcations (such as 
Torus, period-doubling, and saddle-node of limit cycle) becomes simpler. All these 
boundaries of various dynamics can be exactly matched with those bifurcations obtained from 
the continuation technique (not shown here; however, some examples of the basic 
bifurcations are discussed in [38]). Thus, one can expect more limited complex dynamics in 
the laser array for the considered coupling parameters and larger values of the pump rate. 

Optical chaos from a laser has many potential applications, for example, it can be used as 
the broadband carrier in secure communication [32]. Therefore, it is of vital importance to 
identify the regions with chaotic dynamics in the maps. In Fig. 5, the number of intensity 
extrema was used to distinguish different dynamic regions; however, a large value of this 
measure does not necessarily indicate chaotic emission. For this reason, we employ the 0-1 
test for chaos to separate chaotic emission from nonchaotic emission [45]. This calculation is 
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fast and easy to implement and interpret, giving a result of 1 for chaos and 0 for other 
dynamics. For illustrative purpose, we present the two-parameter BDs for 1.1 thP P=  and a 

large linewidth enhancement parameter, Hα  = 6, in the cases of real index guide with 

0.0005nΔ = and gain-guiding and real index antiguide with 0.0005nΔ = −  and gain-guiding, 
as shown in Figs. 6(a) and 6(b), respectively. The corresponding results for the 0-1 test for 
chaos are displayed side by side, as shown in Figs. 6(c) and 6(d). A comparison between 
these two types of maps shows that our BDs provide a surprisingly accurate prediction of 
chaos and the two-laser array allows for chaos generation in wide regions of the parameter 
space. In addition, as compared to Figs. 5(b1) and 5(d1) for Hα  = 2, there is no noticeable 

difference in the appearance of the overall structure of all the dynamical regions. However, a 
large value of Hα  enlarges the proportion of complex dynamics in the parameter space, 

which is a common feature observed in all semiconductor laser systems. 

Fig. 6. Comparison between the (a, b) bifurcation diagrams and (c, d) maps obtained by 0-1 

test for chaos in the ( , 2 )d a πΔΩ plane. (a,c) case of second line in Table 1; (b,d) case of 

last line in Table 1. Other parameters are 
H

α  = 6, 1.1
th

P P= . On the left panel: the white 

indicates phase-locked solutions, dark blue shows period-one oscillation, light blue marks 
period-two oscillation, and other colors represent complex dynamics; on the right panel: red 
stands for chaos and others nonchaotic. 

Sustained periodic oscillation is another interesting feature observed in laser arrays, and 
some examples are shown in Fig. 1(c) and Fig. 2. In the two-parameter BDs, such period-one 
oscillation, marked with darker blue color, occupies a large proportion in the parameter space, 
as shown in Figs. 5 and 6. The oscillation frequency in this area is of interest and discussed in 
[12,15], where it is associated with the relaxation oscillation resonance for weak coupling 
(large laser separation) in the case of zero laser frequency offset. In contrast for the non-zero 
case, we have found that the oscillation frequency is dominated by frequency offset between 
laser A and B, particularly if the separation between the two lasers is sufficiently large. For 
smaller separation the oscillation frequency is increasingly influenced by the complex 
coupling coefficient shown in Fig. 2 of [38]. Two examples of the frequency variation versus 
d a  are shown in Figs. 7(a) and 7(b), which correspond to the cases of real index guide with 

0.0005nΔ =  and gain-guiding and real index antiguide with 0.0005nΔ = −  and gain-guiding, 
respectively. It is clear that the results in Fig. 7 just confirm that the oscillation frequency 

Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 4761 



tends towards the offset frequency( 4.5 GHzROFf = and 4.1 GHzROFf =  at 1.1 thP P= for 

these two waveguides, respectively), in contrast to the case considered in [12,15] for zero 
offset. 

Fig. 7. Oscillation frequency as a function of d/a; (a) case described in the second line of Table 

1, 2 6 GHzπΔΩ = ; (b) case described in the last line of Table 1: 2 20 GHzπΔΩ = . Other 

parameters are 1.1
th

P P=  
H

α  = 2. 

Figure 8 shows the oscillation frequency and peak-to-peak amplitude in the ( d a , 

2πΔΩ ) plane, where the results for the case of gain-guiding and real index antiguide with 

0.0005nΔ = −  are taken as an example. In Fig. 8(a), only the frequency of period-one 
oscillation is displayed, and interestingly, in almost all cases with finite offsets (with a slight 
exception for those close to zero offset), the calculated frequency is close to that of the offset. 
Nevertheless, one can see some variation of the frequency for relatively closer laser 
separation (see the range for 2d a < ). In addition, we show the peak-to-peak normalized 

amplitude calculated for all the dynamical regimes in Fig. 8(b). As expected, regions with 
complex dynamics exhibit large-amplitude oscillations, and the amplitude of the period-one 
oscillation of interest here decreases as the laser separation increases. 

Fig. 8. (a) Oscillation frequency (GHz) and (b) normalized amplitude in the 

( , 2 )d a πΔΩ plane for the case described in the last line of Table 1. Parameters are 

1.1
th

P P= , 
H

α  = 2. On the left panel: white color means the non-period one region. 
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4. The influence of optical injection

The studies so far have been focused on a solitary pair of laterally-coupled semiconductor 
lasers. The two lasers show similar behaviors due to the symmetrical properties of the whole 
system. In this section, we investigate the two elements of the laser array under asymmetrical 
operation conditions, that is, one of the two lasers (laser A) is subjected to an additional 
optical injection from a third laser. As discussed in [16], external optical injection has been 
employed to stabilize the phase-locking in two-laser arrays, and in [39] we have carried out a 
comprehensive analytical and numerical study on the injection locking conditions and 
bandwidth. Here the rich dynamical regions outside the locking region in two laterally-
coupled semiconductor lasers in the presence of optical injection are investigated. 

In common with other optically injected systems [24,26–28,46], two important 
controllable parameters are; the injection strength K  defined as inj ASK Y , where injK  is 

defined in Eq. (8) and ASY  is the mean steady-state value of AY , and the frequency detuning 

inj inj Aω ωΔ = − Ω  between the injected light and that of laser A in the absence of injection.

We are interested in dynamics of both laser A and laser B in the parameter plane spanned by 
the injection parameters K  and injωΔ , so that two-parameter BDs in the ( K , 2injω πΔ ) 

plane are calculated by directly integrating the rate equations. 

Fig. 9. Two-parameter BDs in the ( , 2 )
inj

K ω πΔ plane, with case described in the second row 

of Table 2. (a) 
H

α  = 2; (b)
H

α  = 3. Other parameters are 1.1
th

P P= , 2 6 GHzπΔΩ = − , 

1.2d a = . (a,c) results for laser A and (b,d) laser B. 

Figures 9(a) and 9(b) display typical examples of BDs in the ( K , 2injω πΔ ) plane for 

laser A (left) and laser B (right) in the optically injected two-element laser array, where 
1.1 thP P= , Hα  = 2, and d a  = 1.2. For this case we select the waveguide with real index 

guide with 0.0005nΔ =  and gain-guiding and an offset of 2 6πΔΩ = − GHz between laser A 

and laser B. Outside the locking region, optical injection destabilizes the phase-locked 
solutions and the system undergoes various bifurcation scenarios, giving rise to more 
complex dynamics, such as multiperiodic, quasiperiodic and chaotic oscillations. Moreover, 
the two lasers may yield different dynamics for the same set of parameters; for example, laser 
A operates in period-two oscillation while laser B is in period-one oscillation and vice versa. 

Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 4763 



We attribute this to the combined effect of weak coupling between the two lasers and the 
asymmetric operation condition, where only laser A is subject to external optical injection. 
Behavior of this type is never found in the solitary laser array. 

In the case of a solitary two-element laser array, large values of linewidth-enhancement 
factor have been found to enlarge the regions of complicated dynamics. Here, in the presence 
of injection, we show the effect of an increase in Hα to 3, as shown in Figs. 9(c) and 9(d). It is 

clearly seen that both lasers can still be injection-locked in a well-defined region, but the 
extent of complex dynamics is greatly increased compared to the former case of Hα  = 2. In 

the maps shown in Fig. 9, we have presented results for a frequency offset between the two 
lasers of −6 GHz. This is tunable, and, as indicated in our previous work [39], one can always 
observe an injection-locking region close to the chosen offset. However, in Fig. 9 we see that 
outside the locking region are extensive regions of complex dynamics, and we observe this 
general behaviour for all values of offset and with all of the waveguiding structures listed in 
Table 1. Such regions are comparatively insensitive to injection strength and frequency 
detuning, thus making them relatively easy to excite. 

Lastly, we emphasize that the existence of asymmetry in the oscillation amplitude of the 
laser array where only one element is subjected to optical injection can be observed in all the 
waveguiding structures. Controllable asymmetric phase-locked states of the fundamental 
active photonic dimer consisting of two mutually-coupled semiconductor lasers have been 
reported [22]. However, in that paper, the studies were focused on the steady-state solutions 
and the use of inhomogeneous pumping. In contrast, we concentrate on the dynamic regimes 
in two laterally-coupled semiconductor lasers homogeneously pumped and in the presence of 
optical injection (another kind of asymmetric condition). To quantify the similarity and 
difference between the oscillation amplitudes of the two lasers, we introduce the contrast ratio 
as ( ) ( )A B A BC = Π − Π Π + Π , where ,A BΠ are peak-to-peak amplitudes of laser A and laser

B, positive values of C  mean that laser A oscillates with a larger amplitude than laser B, 
while negative values represent the opposite. For perfectly equal amplitudes, the contrast ratio 
becomes 0C = , while the larger the value of C  the bigger the difference in amplitudes. 

Fig. 10. Amplitude comparison in terms of the contrast ratio C between the two lasers in the 

( , 2 )
inj

K ω πΔ plane; (a) Case of line 1 of Table 1, d a  = 1.2; (b) Case of line 2 of Table 1, 

d a  = 1.5; (c) Case of line 3 of Table 1, d a  = 2.2; (d) Case of line 4 of Table 1, d a  = 

3.2. Other parameters are 1.1
th

P P=  and 
H

α  = 2. Hopf and saddle-node bifurcation curves for 

a single laser subjected to injection are shown. 
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Figure 10 is computed for the four cases of waveguiding structures listed in Table 1, and 
displays a representative example of the calculated contrast ratio C  in the ( K , 2injω πΔ ) 

plane, where d a  is chosen to ensure weak coupling in each case. In these maps, the steady-

state injection locked region is depicted in white, where C is not calculated. As seen in this 
figure, there is an interesting phenomenon: in a well-defined region ( C < 0), laser B oscillates 
with a much stronger amplitude than laser A, while in the remaining regions, the oscillation 
amplitude of laser A can be larger than or comparable with that of laser B. It is worth noting 
that the former (blue color) region almost coincides with the injection-locking region in the 
case of a single slave laser subjected to optical injection; see the region confined by the 
saddle-node and Hopf bifurcation curves indicated in the figure. In this region laser A is 
injection-locked by the external light (continuous wave) in the absence of laser B. This means 
that laser A tends to yield continuous wave because of injection locking from external light. 
Even though laser B starts to interact with laser A, weak coupling between them is not 
enough to compensate for the locking effect and a weaker amplitude is thus expected for laser 
A. The above results show interesting similarities and differences (asymmetry) between the
oscillation amplitude of the laser array in the presence of optical injection.

5. Conclusion

In summary, we have numerically investigated the nonlinear dynamics in two laterally-
coupled semiconductor lasers in the absence and presence of external injection. We focus on 
the case weak coupling where coupled-mode theory is sufficiently accurate, and utilize direct 
integration of rate equations to model the system. For the solitary pair of coupled lasers both 
one-parameter and two-parameter BDs have been used to visualize the dynamic variation in 
the parameter space, where phase-locked, periodic, and chaotic regions are of interest and 
revealed in some detail. Our results highlight the importance of static waveguide design on 
these dynamic states, and the engineering possibilities for such a coupled system. Parameters 
such as the laser spacing, frequency offset and linewidth enhancement factor are shown to 
have strong effects. Our analysis has been restricted to the case of equal pumping of each 
laser; the effects of asymmetric pumping have yet to be explored. 

In addition we examined the effect on the dynamic behavior of introducing optical 
injection into one of the lasers. Two-parameter BDs were employed to map out the dynamic 
regimes outside the injection-locked region. The external injection is seen to have a major 
impact on the system, significantly altering the nature and regions of dynamics. In 
conjunction with static waveguide design, controlling both the injected power and frequency 
detuning could be used to either make or break the symmetry between the coupled lasers and 
alter their outputs. Chaotic regions in particular could be significantly enlarged, thus offering 
a large operational parameter space, attractive for practical use. Moreover the output of the 
two lasers could be varied both in terms of their relative intensity and their dynamics, offering 
switching behavior via the external input. If these results could be extended to larger arrays 
then this would open up the possibility of using such a system for spatial signal distribution or 
processing. Moreover the ability to control the nature of the dynamics could find applications 
in random number generation, chaotic communication or spatial pattern generation. 
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