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Abstract 

Depersonalisation (DP) is a psychological condition marked by feelings of 

disembodiment. In everyday life, it is frequently associated with concentration 

problems. The present study used visual event-related potentials (ERPs) in a 

Posner-type spatial cueing task with valid, invalid and spatially neutral cues to 

delineate the potential neurophysiological correlates of these concentration 

problems. Altered attentional functioning at early, sensory stages was found in 

DP patients but not in anxiety- and depression-matched psychosomatic patients 

without DP. Specifically, DP was associated with decreased suppression of 

stimuli at unattended locations, shown as absent processing costs for invalidly 

versus neutrally cued stimuli over P1 (135-150 ms). Attentional benefits at N1, 

and all attentional effects at later, cognitive processing stages (P2-N2, P3) were 

similar in both groups. We propose that this insufficient early suppression of 

unattended stimuli may result from atypical sensory gain control in DP. 

Key words: Depersonalisation, EEG, ERPs, visual attention, Posner task, spatial 

cueing 

  



 

 

1. Introduction 

Depersonalisation and derealisation are aspects of a psychological condition that 

is characterised by feelings of detachment from one’s own self and body and / or 

from one’s surroundings (e.g., Michal et al., 2007; Simeon, 2004). For example, 

one might have the experience of being an outside observer to one’s own 

thoughts, feelings, sensations and body (depersonalisation) or experience other 

people or objects as unreal, dreamlike, lifeless or as if through a fog 

(derealisation). In depersonalisation (DP) reality testing remains intact (e.g., 

Simeon, 2004). 

Experiences like these can occur in healthy adults under conditions of stress or 

fatigue (Simeon, 2004; Trueman, 1984) or as a symptom of a mental disorder 

(e.g. panic disorder, post-traumatic stress disorder). When symptoms of DP are 

persistent, they may indicate the presence of depersonalisation-derealisation 

disorder, which causes clinically significant distress or impairments (Spiegel et 

al., 2011; American Psychiatric Association, 2013). The prevalence of DP in the 

general population is around 1-2% with both genders equally affected (Hunter et 

al., 2004; Lee et al., 2012; Simeon, 2004). The onset of the disorder is usually 

before age 25, and the symptoms often become chronic (Baker et al., 2003; 

Simeon et al., 2003).  

One of the most frequent complaints in patients with DP is difficulties with 

concentration (Lambert et al., 2001; Hunter et al., 2003; American Psychiatric 



 

 

Association, 2013). Indeed, standard neuropsychological tests suggest that DP is 

marked by broad alterations of the attentional and perceptual systems (Guralnik 

et al., 2000; 2007). Specifically, DP was associated with slower processing 

speed, impaired perceptual organisation, vulnerability to distracting stimuli, and 

impairments in immediate recall of verbal or visual information. A more recent 

study provided further evidence for reduced capacity to suppress stress-related 

physiological arousal (Lemche, Sierra‐Siegert, David, Phillips, Gasston, Williams, 

& Giampietro, 2016). 

Selective attention is a higher cortical function necessary to deal with the 

constant stream of information arising from our body and the physical world 

around us, in line with the current needs of our organism and the pressures that 

the external world places on us. Because of its limited processing resources, the 

brain has to focus on behaviourally relevant information, while ignoring the rest; a 

process referred to as selective attention (e.g., Posner, 1980; Hillyard et al., 

1998). 

A common and well established method to investigate selective attentional 

mechanisms is the spatial cueing paradigm (Posner and Cohen, 1984). In a 

recent study (Adler, Beutel, Knebel, Berti, Unterrainer, & Michal, 2014), we used 

this paradigm to investigate the behavioural mechanisms of spatial-selective 

attention in DP. We manipulated attentional demand by asking DP patients and 

healthy controls to perform an easy detection task and a more difficult 



 

 

discrimination task. In both tasks, targets (Gabor patches) were presented in the 

left or right hemifield, and participants were asked to respond to all of them 

(detection task) or only certain ones (discrimination task). We measured covert 

attentional selection by comparing response times to validly predicted targets 

(targets at the location indicated by a preceding central cue) with response times 

to invalidly predicted targets (targets at the non-indicated location). This overall 

attention-directing effect was smaller for DP patients than for healthy controls in 

the more difficult discrimination task only. The inclusion of neutrally predicted 

targets (targets preceded by non-informative cues) in this study allowed us to 

measure the contribution of costs (differences between invalidly and neutrally 

cued trials) and benefits (differences between validly and neutrally cued trials) to 

the overall attention-directing effect. We found that, in the discrimination task, the 

DP group experienced fewer attentional costs (i.e., less slowing of response 

times in invalid compared to neutral trials) but the same benefits as healthy 

controls. These findings show that DP is associated with altered mechanisms of 

spatial attention, and particularly with a weaker suppression of events at 

unexpected locations under conditions of increased attentional demand. This 

may lead to increased distractibility, which may be the source of the 

concentration difficulties reported by DP patients in daily life. As we compared 

DP patients with healthy controls, it remains unclear, however, to what extent the 

attentional effect is specific to DP rather than explained by mental illness itself. 



 

 

To this end, the present study used a control group of psychosomatic patients 

without clinically significant DP symptoms, but similar average levels of anxiety 

and depression. We employed a variant of the discrimination task and spatial 

cueing paradigm used by Adler et al. (2014), and investigated the underlying 

neural mechanisms of selective attention in DP with electroencephalography 

(EEG). Visual stimuli evoke cortical event-related potentials (ERPs), which 

consist of typical components (P1, N1, P2, N2, P3). The sequence of these ERP 

components reflects the sequence of neural processes triggered by the stimulus 

(Luck et al., 2000). Early sensory processes (P1, N1) are followed by later 

cognitive stages (P2, N2, P3), which research has related to processes of 

decision making and response selection.  

We hypothesised that DP patients would demonstrate fewer attentional costs 

than controls, both in response times and in ERPs. The central question of the 

present study was whether these effects occur on a cognitive level of information 

processing (mirrored in the P2, N2, and P3 components of the ERP) or are 

already observable at the level of sensory processing (i.e., at earlier stages of 

neuronal processing as mirrored in the P1 and N1 components). The latter might 

be expected because previous ERPs studies of DP symptoms (disembodiment 

and emotional numbing) observed effects at earlier rather than later processing 

stages (Quaedflieg, Giesbrecht, Meijer, Merckelbach, de Jong, Thorsteinsson et 

al., 2013; Adler, Schabinger, Michal, Beutel, & Gillmeister, 2016). For early, 



 

 

sensory ERPs, previous studies have also shown that attentional costs are 

reflected over P1, while attentional benefits are reflected over N1 (e.g., Hillyard & 

Anllo-Vento, 1998; Luck & Hillyard, 1995; Rüsseler & Münte, 2005). We therefore 

expected to see reduced attentional suppression over P1 in DP compared to 

control patients. 

 

2. Materials and Methods 

2.1 Participants 

The total sample consisted of 28 psychosomatic patients, recruited from the 

Department of Psychosomatic Medicine and Psychotherapy of the University 

Medical Center Mainz. Psychosomatic patients presented with a variety of 

psychological conditions (e.g., depression, anxiety, somatoform disorders). All 

participants completed the German versions of the Cambridge Depersonalization 

Scale (CDS; Sierra & Berrios, 2000; German version CDS-d: Michal et al., 2004), 

the Beck Depression Inventory-II (BDI-II; Beck, Steer, & Brown, 1996; German 

version: Hautzinger, Keller, & Kühner, 2006) and the State and Trait Anxiety 

Inventory (STAI; Laux, Glanzmann, Schaffner, & Spielberger, 1981). Excluded 

from this study were patients with an emotionally unstable personality disorder, a 

lifetime history of any psychotic disorder, current substance abuse or 

neurological disease. With regard to the individual extent of DP symptoms as 



 

 

measured by the CDS-d, the participants were assigned to one of two groups. 

One group (N = 14) encompassed patients with a CDS-d score ≥ 65, i.e. with 

clinically relevant DP symptoms (Michal et al., 2004). On average, the reported 

age of onset of DP was 17.21 ± 4.58 years (range: 12-25 years); these 

participants constituted the DP patient group. The second group (N = 14) did not 

have clinically relevant DP symptoms (CDS-d score < 65); these patients 

constituted the Control patient group. Both groups were balanced for symptoms 

of depression and anxiety (see Table 1).   

 

Table 1. Sample characteristics with results of t-tests for continuous variables, chi-square tests 

for categorical variables and Mann-Whitney-U test for ordinal variables. 

 

DP patients  

(n = 14) 

Mean (SE) 

Control patients  

(n = 14) 

Mean (SE) 

 

Statistical comparison 

Gender (male) 10 (71.4%) 10 (71.4%)  

Age (years) 26.07 (1.62) 26.93 (1.28) p = .681 

Level of education 2.29 (0.19) 2.79 (0.11) p = .085 

DP score (CDS-d) 162.07 (12.84) 13.00 (2.18) p < .001 

Depression score (BDI-II) 22.36 (2.03) 21.64 (2.62) p = .831 

Anxiety score (STAI-Trait) 53.50 (2.18) 58.21 (1.75) p = .103 

Notes: Level of education = mean highest level achieved, where 1 = lower secondary education 

(Hauptschule), 2 = intermediate secondary education (Realschule), and 3 = higher secondary 

education (Abitur); CDS-d = Cambridge Depersonalisation Scale, BDI-II = Beck Depression 

Inventory-II, STAI-Trait = State-Trait-Anxiety-Inventory (Trait). 

 



 

 

In addition, all patients were receiving psychotherapeutic treatment at the time of 

participation in this study. Seven DP patients were additionally being treated with 

antidepressants (in one case supplemented by an anticonvulsive drug). Within 

the Control patients group, six patients were being treated with antidepressants 

(in one case supplemented by an anticonvulsive drug). 

All patients had normal or corrected-to-normal vision. The study was approved by 

the ethics committee of the Statutory Medical Board of the State of Rhineland-

Palatinate (Germany) and was conducted in accordance with the Declaration of 

Helsinki. Each participant gave written informed consent prior to the study and 

received a honorarium of 45 € for their participation. 

 

2.2 Stimuli and materials 

For stimulation we used Presentation (Neurobehavioral Systems, Berkeley, 

USA). The experiment was presented visually on a computer screen (EIZO 

ColorEdge CG223W, display size 22”) with a visual angle of α = 33.07° (viewing 

distance: 80 cm). All stimuli were presented in white colour on a black 

background. Both the fixation cross and the spatial cue were depicted centrally, 

and were both less than 1° of horizontal and vertical visual angle. Cues were 

defined as arrows, which pointed to the left (<), to the right (>) or in both 

directions (<>). Event stimuli emerged 6.44° left or right of the fixation cross 



 

 

(measured from the fixation cross to the centre of the event stimulus).Targets 

were white ellipses (1.4° horizontal x 1° vertical visual angle) while non-targets 

were white circles (1.4° horizontal x 1.4° vertical visual angle). 

 

2.3 Design and procedure 

During the experiment participants sat inside a dimly lit, sound-attenuated and 

electromagnetically shielded EEG booth. A variant of the spatial cueing paradigm 

(Posner & Cohen, 1984) was used for the investigation of selective spatial 

attention. In each trial participants were asked to fixate on a fixation cross and to 

respond to targets (ellipses) while non-targets (circles) had to be ignored. Both 

targets and non-targets were presented in the left or right hemifield. A centrally 

presented spatial cue (arrow) preceded each stimulus event (target or non-

target) indicating the likely location of the upcoming target. When observing a 

target, participants were asked to press the spacebar with their dominant hand 

as fast as possible within 1200 ms. Figure 1 shows the schematics of the trial 

sequence.  

------------------------------------------------ 

Figure 1 about here 

------------------------------------------------ 



 

 

 

The experiment consisted of 10 blocks with 78 trials each. After every other 

block, the participants received feedback concerning reaction times and error 

rates. A practice block (78 trials) preceded the experimental blocks. Thirty targets 

and 48 non-targets were presented in each block. However, the proportion of 

valid, neutral and invalid cueing conditions differed between target and non-

target trials. As only non-target trials were included in ERP analyses, cue validity 

was counterbalanced for non-target trials (per block: 16 valid, 16 neutral, 16 

invalid trials). In target trials with a directional cue (i.e., an arrow pointing left or 

right) the cue prediction was valid in 80% of the trials (per block: 16 valid trials, 4 

invalid trials). Furthermore, some target trials included non-directional cues (i.e., 

arrows pointing both left and right; per block: 10 neutral trials). In all of the trials, 

the presentation side of the stimulus event (left vs. right) was equiprobable.  

 

2.4 Response time (RT) and accuracy analyses 

Only button presses occurring between 200 and 1000 ms after the onset of the 

100-ms stimulus were used for RT analysis (Adler et al., 2014). For each 

participant, accuracy and RT data were calculated separately for the valid, 

neutral and invalid conditions.  



 

 

Regarding accuracy data, hits were defined as (correct) button presses in 

response to targets. Correct rejections were correctly ignored non-targets and 

‘false alarms’ were button presses in response to non-targets. Accuracy was 

calculated as the percentage of correct responses (i.e. hits and correct 

rejections) in relation to the total number of trials. Repeated-measures ANOVAs 

with the between-subjects factor group (DP patient group vs. Control patient 

group) and the within-subjects factor validity (valid vs. neutral. vs. invalid) were 

conducted separately for hits and false alarms.  

Regarding correct RTs, a repeated-measures analysis of variance (ANOVA) with 

the between-subjects factor group and the within-subjects factor validity was 

conducted.  

Where a significant effect of validity was found, pairwise post-hoc comparisons 

(Bonferroni adjusted) for all three levels of validity were calculated to clarify 

whether there were differences between each pairing of these conditions (i.e., 

attentional costs, benefits and total attention directing effect). 

 

2.5 EEG Recording and ERP analysis 

64 actiCAP scalp electrodes coupled with a BrainVision actiCHamp system 

(BrainProducts GmbH, Gilching, Germany) were used to record brain electrical 



 

 

activity, which was amplified and sampled with a digitization rate of 500 Hz. The 

online band pass filter was 0.01-100 Hz while a digital low pass filter of 50 Hz 

and a notch filter of 50 Hz were applied offline. EEG was re-referenced offline to 

the average of the mastoids (TP9/TP10) and epoched from 100ms before to 

500ms after target/non-target onset. Segments with artefacts (e.g. blinks) were 

removed after visual inspection.  

ERPs were analysed only for non-target trials in order to prevent any motor 

signal confounds. First, epochs were averaged for each of the three attentional 

conditions (valid, neutral, invalid) for each participant. 140 segments (range 

across participants: 99-159) contributed to the average of the valid condition, 143 

(range: 105-159) to the neutral average, and 142 (range: 105-160) to the invalid 

average. Then, mean amplitudes were computed for each of these conditions 

separately for both groups within several measurement windows. Each time 

window was centered around the peak of the respective ERP component. Visual 

components P1 (135-150 ms) and N1 (180-205 ms) as well as fronto-central P2-

N2-complex (230-295 ms) and P3 (390-460 ms) were included in the analyses. 

Electrodes situated over the primary visual cortex contralateral to the stimulated 

side (PO3/4c, POZ, OZ, O1/2c) were clustered for statistical analyses of P1 and 

N1  (see e.g. Heinze et al., 1990; Kasai & Takeya, 2012), and fronto-central 

electrodes were clustered for analysis of P2-N2 and P3 (P2-N2: FC1, FC2, Cz, 



 

 

FCz, Fz; P3: F1, F2, FC1, FC2; see e.g., Brydges, Fox, Reid, & Anderson, 2014; 

Smart, Segalowitz, Mulligan, & MacDonald, 2014).  

Separately for each time window, a repeated-measures ANOVA was calculated 

for the between-subjects factor group (DP patient group vs. Control patient 

group) and the within-subjects factor validity (valid vs. neutral vs. invalid). In case 

of a significant two-way interaction between group and validity, repeated-

measures ANOVAs with the factor validity were calculated for the DP and the 

Control patient groups separately. Pairwise post-hoc comparisons between the 

three attentional conditions clarified whether there were amplitude differences 

between each pairing of these conditions (i.e., attentional costs, benefits, and 

total attention directing effects).  

For all analyses, a significance level of  α = .05 was applied. Partial eta squares 

(η²) are reported as a measure of effect size. Greenhouse-Geisser adjustment for 

non-sphericity were applied whenever appropriate. For brevity, statistically non-

significant findings are only reported in full where relevant or informative.  

 

3. Results 

3.1 Behavioural Data 



 

 

Overall response accuracy was 98% for DP patients and 98% for Control 

patients. Separate analyses of hits and false alarms showed that there were no 

main effects of group or of validity, nor interactions between them. 

Mean RTs in correct trials are shown in Table 2. Statistical analysis of RTs 

revealed a significant main effect of validity, F(2,52)=34.66, p<.001, partial 

η²=.57. RTs differed as a function of the attentional condition (valid vs. neutral vs. 

invalid) with shortest RTs in response to validly cued targets, intermediate RTs 

for neutrally cued targets and longest RTs for invalidly cued targets. No main 

effect of group or interaction between group and validity were found. Pairwise 

post-hoc comparisons of the estimated marginal means for the three attentional 

conditions (valid, invalid, neutral) showed significant costs (invalid > neutral, 

p<.001), benefits (valid < neutral, p<.001) and a total attention directing effect 

(invalid > valid, p<.001). 

 

Table 2. Mean RTs (and SEs) in ms across attentional conditions and groups. 

 DP patients Control patients 

 Mean SE Mean SE 

Overall RT 448.34 15.20 452.68 16.46 

Valid RT 428.68 13.69 437.23 15.50 



 

 

Neutral RT 446.21 16.64 447.41 15.88 

Invalid RT 470.13 17.31 473.41 18.41 

 

3.2 ERP amplitudes  

Figure 2 depicts the ERPs elicited by validly, neutrally and invalidly cued non-

targets separately for DP and Control patients. In both groups a typical sequence 

of visual event-related components can be seen (P1, N1, P2-N2, P3). 

Differences between DP and Control patients are observable on P1, where  a 

significant interaction between group and validity was found, F(2,25)=3.52, 

p=.045, partial η²=.22. When analysing both groups separately, a main effect of 

validity was only observable in Control patients, F(2,12)=11.84, p<.001, partial 

η²=.66, but not in DP patients (F(2,12)=1.45, p=.27, partial η²=.19). For Control 

patients, pairwise post-hoc comparisons of the three attentional conditions (valid, 

invalid, neutral) showed a total attention directing effect (valid > invalid; p=.033) 

and attentional costs (invalid < neutral; p=.003), reflected in smaller P1 

components for invalidly versus validly or neutrally cued stimuli. No benefits of 

spatial cueing were found (valid > neutral, p=1.0). Since it is known that 

attentional function is related to education, we needed to exclude the possibility 

that differing levels of education in our two patient groups could explain the 

differing P1 costs (see Table 1; level of education differed by p=.085). To this 



 

 

end, we conducted a Pearson product moment correlation between P1 costs and 

level of education, which found that there was no relationship between these 

variables (r=-.23, p=.233). In other words, the slightly lower education of our DP 

patients could not account for the absence of attentional costs over P1. 

 

For N1, no significant interaction between group and validity (F(2,25)<1, p=.803, 

partial η²<.02) and no significant main effect of group were found. There was a 

significant overall main effect of validity (F(2,25)=19.20, p<.001, partial η²=.61). 

Pairwise post-hoc comparisons revealed a total attention directing effect (valid > 

invalid1; p<.001) that was reflected in greater N1 amplitudes resulting from validly 

versus invalidly cued stimuli. Additionally, benefits of spatial cueing were present 

(valid > neutral1, p=.028), while costs just missed significance (invalid < neutral1, 

p=.051).  

 

For the subsequent components (P2-N2 and P3), no significant interactions 

between group and validity (F(2,25)<1, p≥.478, partial η²≤.03) and no significant 

main effects of group were found. For both P2-N2 and P3, we found a main 

effect of validity (P2-N2: F(2,25)=64.63, p<.001, partial η²=.84; P3: 

                                                 
1 Size of ERP amplitude is meant here; but note that the N1 and N2 are negative deflections, 

such that larger amplitudes are indicated by lower voltages. 



 

 

F(2,25)=10.53, p=.001, partial η²=.29). Pairwise post-hoc comparisons revealed 

significant total attention directing effects in both components (valid > invalid1; 

p≤.024). While for P2-N2 this effect consisted of costs of spatial cueing (invalid < 

neutral1, p<.001), over P3 benefits of spatial cueing were observed (valid > 

neutral1, p=.001). 

------------------------------------------------ 

Figure 2 about here 

------------------------------------------------ 

 

4. Discussion 

Using event-related-potentials within a spatial cueing paradigm we investigated 

potential effects of depersonalisation on the mechanisms of spatial selective 

attention. To this end, we compared a DP patient group with psychosomatic 

patients who had comparable levels of anxiety and depression but no DP 

symptoms. In line with Adler et al (2014), DP patients demonstrated reduced 

attentional costs. Our Control patients allows us to conclude that these 

attentional alterations are specific to DP rather than a consequence of mental 

illness per se (cf. Adler et al., 2014, who compared with healthy controls). More 

importantly, we show that reduced attentional costs in DP patients were confined 



 

 

to the visual ERP component P1 (135-150 ms post stimulus onset). This 

suggests that DP affects early, sensory stages of selective information 

processing.  

More specifically, Control patients had lower P1 amplitudes for invalid compared 

to neutral stimuli, which is a typical finding within the attentional literature (e.g., 

Hillyard & Anllo-Vento, 1998; Luck & Hillyard, 1995; Rüsseler & Münte, 2005). 

Patients with DP, however, showed no such attenuation of processing stimuli at 

invalidly cued locations over P1. No group differences were found for attentional 

effects at any of the subsequent ERP components (N1, P2-N2, P3). Both groups 

showed enhanced N1 and P3 for validly cued relative to neutral stimuli, 

demonstrating intact attentional benefits from spatial cueing (Hillyard & Anllo-

Vento, 1998; Luck & Hillyard, 1995; Hillyard & Kutas, 1983; Luck, Hillyard, 

Mouloua, Woldorff, Clark, & Hawkins, 1994; Pérez-Edgar, Fox, Cohn, & Kovacs, 

2006). Both groups also showed intact attentional costs over P2-N2, that is, an 

attenuation of processing for invalidly cued relative to neutrally cued stimuli. This 

“processing negativity” is thought to be associated with stimulus identification and 

feature classification (Eimer, 2014; Pérez-Edgar et al., 2006).  

In the following we will discuss attentional mechanisms as reflected by visual 

ERPs in order to shed light on which aspects of cortical attentional functioning 

may be altered, and which may be preserved, in DP. This will be followed by a 

discussion of the clinical relevance of these findings. 



 

 

Typically, P1 is the earliest visual component found to be affected by 

endogenous processes, including spatial and non-spatial selective attention (e.g., 

Mangun, 1995; Talsma et al., 2007; Taylor, 2002; for reviews see Gazzaley & 

Nobre, 2012; Eimer, 2014). It has been localised to neural generators in early 

visual extrastriatal cortex in middle occipital and fusiform gyrus (V3, V4; e.g., Di 

Russo & Pitzalis, 2013; Di Russo et al., 2002, 2003). The lack of P1 attentional 

attenuation in DP patients might indicate a reduced suppression of stimuli at to-

be-ignored locations. A similar conclusion was drawn from our earlier behavioral 

findings (Adler et al., 2014). However, the present results extend this by 

indicating that reduced suppression takes place at the early, sensory stages of 

cortical processing. We propose that altered attentional functioning in DP 

encompasses the sensory gain control mechanism operating at this stage. 

Sensory gain control is described as attention-induced changes in the signal-to-

noise-ratio of stimuli (Hillyard, Vogel, & Luck, 1998). The augmented signal-to-

noise-ratio is thought to be a consequence of both a suppression of noise at 

unattended locations and an enhancement of stimuli at attended locations. 

Suppression, reflected in attentional costs, was found to be associated with 

changes over the P1 component (Hopfinger et al., 2004; Hillyard et al., 1998), 

whereas enhancement, reflected in attentional benefits, has been linked to 

changes over the subsequent N1 component (Luck et al., 1994; Talsma, 

Mulckhuyse, Slagter, & Theeuwes, 2007). To the best of our knowledge, this is 



 

 

the first study to show that individuals with DP do not show suppression of stimuli 

at unattended locations at early (P1) stages of cortical processing. 

Depersonalisation does not seem to affect signal enhancement aspects of 

sensory gain control (N1), or attentional mechanisms at later processing stages 

(P2-N2, P3). Over N1, both groups of patients showed benefits of attentional 

engagement, which reflect intact attentional orienting as well as an intact 

enhancement of stimuli at attended locations for both groups in our study (see 

Luck et al., 1994; Talsma et al., 2007; for similar findings in non-patients). This 

suggests that depersonalisation is not associated with weakened attentional 

orienting through the universal disregarding of spatial cues. 

The total attention-directing effect found over N1 carried through to the P2-N2 

complex for both groups, which is also in line with results from healthy controls 

(Eimer, 2014; Eimer & Forster, 2003; Eimer & Schröger, 1998; Karayanidis & 

Michie, 1996; Teder, Alho, Reinikainen, & Näätänen, 1993). In addition, we found 

that over the P2-N2 complex, attentional effects primarily reflected attentional 

costs. This suggests that the suppression of distracting input might be more 

relevant than the enhancement of an attended stimulus during post-perceptual 

processing stages, such as stimulus identification and feature classification 

(Eimer, 2014; Pérez-Edgar et al., 2006). These N1 enhancement and later 

suppression processes were clearly intact in both our patient groups. 



 

 

The same was true for attentional effects over P3, which is thought to reflect the 

comparison of sensory information with memorised representations (e.g., target 

representations) (e.g., Kok, 2001; Linden, 2005; Polich, 2007). Our results for P3 

indicate that memory comparison is accompanied by an enhancement of the 

stimulus at the attended location, rather than by suppression of irrelevant 

information, for both groups of patients (see Eimer & Schröger, 1995; Müller & 

Hillyard, 2000; for similar findings in non-patients). Stimulus enhancement may 

be beneficial for selecting the correct behavioral response (button press vs. no 

button press).  

 

In summary, data from our control group conforms to the typical patterns of ERP 

effects related to the performance of visual spatial attention tasks in healthy 

people. In contrast, DP patients showed distinct attentional alterations over the 

P1 component, which can be interpreted as diminished early-stage suppression 

of sensory input from irrelevant locations. As a consequence, stimuli outside the 

current attentional focus may be more likely to attract attention in people with DP. 

At the same time, such stimuli are not more likely to attract further stimulus 

processing (e.g., for stimulus classification) as they did not affect later, cognitive 

or post-perceptual processing mechanisms, reflected by similar attentional costs 

over P2-N2 in patients with and without DP. 



 

 

 

Adaptive and coherent behaviour strongly depends on a functional balance 

between top-down and bottom-up driven attention (Corbetta & Shulman, 2002; 

Berti & Schröger, 2003; Spalek, Falcon, & di Lollo, 2006; Adler, Giabbiconi, & 

Mueller, 2009), and our results show that DP may be associated with an 

imbalance in favour of bottom-up modes. It can be expected that within the 

present paradigm the spatially informative cue guides attention to the predicted 

location in a top-down manner. An invalidly cued event, however, induces a 

bottom-up, sensory-driving capturing of attention to the opposite side. Therefore, 

smaller attentional costs (invalid vs neutral cued events), as observed in DP 

compared to control patients, suggest a stronger impact of the bottom-up mode 

of attention. This relative imbalance is supported by neural abnormalities in these 

pathways in DP patients (Corbetta & Shulman, 2002; Natale, Marzi, & Macaluso, 

2010; Simeon, Guralnik, Hazlett, Spiegel-Cohen, Hollander, & Buchsbaum, 

2000), and may be responsible for a stronger responsiveness to sudden events. 

Decreased suppression over P1 may thus be a precursor for the increased 

distractibility of DP patients (Guralnik et al., 2000, 2007; Lemche et al., 2016), 

and their reported difficulties with concentration.   

Future studies could now directly investigate bottom-up driven attentional 

processes in depersonalisation, for example through the use of an exogenous 

cueing paradigm (e.g., Posner et al., 1984), or a direct examination of the 



 

 

functional integrity of sensory gating. For example, studies could investigate 

auditory P50, an early evoked neural response to paired auditory stimuli that is 

maximal over the vertex and is suppressed by stimulus repetition. This inhibitory 

gating at P50 has been shown to be reduced in schizophrenia, which is also 

marked by alterations in other measures of sensory function (including visual P1; 

for a review see Javitt & Freedman, 2014). 

 

In the present study, attentional alterations from DP affected P1 but did not have 

a (negative) impact on response times, which were comparable across groups. 

Rather than concluding that DP is unrelated to greater distractibility, we suggest 

that such impairments occur only when the underlying neurophysiological 

changes exceed a certain threshold. Discrepancies between ERPs and 

behaviour like this are typically attributed to the greater sensitivity of ERP 

measures compared to behavioural responses (Bar-Haim, Lamy, & Glickman, 

2005; Quaedflieg et al., 2013; see also Javitt & Freedman, 2014; Richards, 2000; 

Xu, Li, Diao, Fan, & Yang, 2016). Quaedflieg et al. (2013) showed ERP effects 

related to early emotional processing differed between low and high DP groups, 

while the corresponding behavioural measure (emotion-induced blindness, EIB) 

did not. The authors argued that this might be due to the use of a traditional EIB 

paradigm with stimuli that were possibly not emotionally intensive enough to 

bring out behavioural differences. Similarly, our attentional paradigm used stimuli 



 

 

that induced DP-related changes at the electrophysiological level, but were 

possibly not distracting enough to induce further changes in behaviour. In line 

with this, we previously found that differences between DP and control groups 

were present only under conditions of high attentional demand (Adler et al., 

2014). It is therefore likely, that the observed underlying cortical effects lead to 

concentration problems only in specific conditions, such as when the surrounding 

environment is more attentionally demanding (e.g., contains more complex 

stimuli in multiple sensory modalities). This is the case in every-day life. In an 

experimental task with increased attentional demands, one would expect that 

attentional suppression over P1 increases in the Control group, but not in the DP 

group. This interpretation is also in line with the fact that DP is not associated 

with general intellectual impairment but with deficits in very specific functions 

(Guralnik et al. 2000; Guralnik et al. 2007; Lemche et al., 2016). 

  

Our findings raise several interesting questions. What causes the association 

between DP and decreased attentional suppression of irrelevant stimuli, and to 

what extent can it be claimed that the potentially ensuing greater distractibility 

may be driven by purely bottom-up attentional mechanisms? 

It may be proposed that stimuli in irrelevant locations attract atypical sensory gain 

from the bottom up. However, it is likely that pure stimulus characteristics are 



 

 

less important for this process than the circumstances in which these stimuli 

appear. Previous studies have shown that DP patients experience their 

symptoms more strongly in certain situations (e.g., in noisy environments, and in 

social or emotionally taxing situations) (Simeon et al., 1997). As such situations 

may be seen as more stressful, patients with DP may perceive the same stimuli 

as more threatening in these, relative to other, situations. For example, our 

experimental task may have induced performance pressures that led patients 

with DP to attach greater relevance to stimuli in irrelevant locations as they may 

be perceived as potentially threatening. In line with this idea, P1 responses to 

simple geometric stimuli can be enhanced following the presentation of emotional 

faces in observers with high levels of fear of negative evaluation (a core 

symptom of social anxiety) (Rossignol et al., 2013; for similar findings see also 

Kolassa, Kolassa, Bergmann, Lauche, Dilger, Miltner, & Musial, 2009; Peschard, 

Philippot, Joassin, & Rossignol, 2013).  From this and the present results we 

hypothesise that the greater distractibility experienced in DP is not a purely 

sensory-perceptual process but determined by the way in which a situation is 

experienced by the patient. In other words, top-down effects like this may add to 

modulated attentional processing in DP. It is worth noting that top-down effects 

on sensory distraction are well documented in healthy participants (see, for 

instance, Berti & Schröger, 2003). 



 

 

Further studies could also investigate the interaction between attentional and 

situational or emotional processes, as well as their potential relationship with the 

bodily self in depersonalisation. There are indications that such interactions may 

play a role in mediating DP symptomatology. For example, yoga or meditation 

can help some patients with DP, while others benefit from physical exercise 

(Simeon et al., 2004). All these activities are body-related, but also contain 

important attentional components. The increased focus on one’s own bodily 

states may alleviate symptoms of disembodiment or self-estrangement, and may 

even alleviate other DP symptoms, such as the attentional distractibility found in 

our study. Future studies may want to probe the likely complexities of these 

relationships, as well as the neural correlates with which they are associated. 

 

4.1. Limitations 

The present study is not without limitations. For example, a larger sample of DP 

patients (N > 14) would allow us to generalise our findings of DP-related 

attentional differences to all DP patients more confidently. While attentional 

effects, where present, were clearly significant (p ≤ .001) within a group as well 

as overall, the critical difference in DP patients was a lack of attentional 

suppression (a null effect). To assist the generalisation of our findings more 

broadly, it would also have been useful to include a healthy control group, as in 



 

 

our previous behavioural study (Adler et al., 2014). The comparison with patients 

who differed only in DP symptomatology, and not in other factors such as anxiety 

or depression, was critical to exclude the possibility that differences between 

groups could be due to reduced mental health rather than to DP in particular. The 

inclusion of healthy controls might have helped to measure whether both DP and 

non-DP patients differ from healthy controls in attentional processing over certain 

ERP components, which our behavioural study was not able to show. While we 

think it is unlikely to have uncovered qualitative differences, since all patients 

showed ERP effects of attention comparable to those reported in the literature on 

healthy adults (with the exception of P1 suppression in the DP patient group), 

comparisons with healthy controls could have delineated interesting quantitative 

differences in attentional effects. 
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Figure legends 

Figure 1. Trial sequence showing two different trial types (target preceded by 

valid cue, non-target preceded by neutral cue) and the timing of events. 

Figure 2. ERPs for DP patients (A and C) and Control patients (B and D) group 

in response to non-target stimuli in valid (thick line), invalid (thin line) and neutral 

(dotted line) trials. For components P1 and N1 the ERPs at O1/2c are shown (A 

and B) representing the analysed cluster of electrodes located over visual cortex 

(PO3/4c, POZ, OZ, O1/2c). For components P2-N2 and P3 the ERPs at FC2 are 

shown (C and D) representing the analysed fronto-central electrode cluster (P2-

N2: FC1, FC2, Cz, FCz, Fz; P3: F1, F2, FC1, FC2). 

  



 

 



 

 

 

 


