
CONTRACTIBLE STABILITY SPACES AND FAITHFUL1

BRAID GROUP ACTIONS2

YU QIU AND JON WOOLF3

Abstract. We prove that any ‘finite-type’ component of a stability s-
pace of a triangulated category is contractible. The motivating example
of such a component is the stability space of the Calabi–Yau-N category
D (ΓNQ) associated to an ADE Dynkin quiver. In addition to showing
that this is contractible we prove that the braid group Br (Q) acts freely
upon it by spherical twists, in particular that the spherical twist group
Br (ΓNQ) is isomorphic to Br (Q). This generalises Brav–Thomas’ re-
sult for the N = 2 case. Other classes of triangulated categories with
finite-type components in their stability spaces include locally-finite tri-
angulated categories with finite rank Grothendieck group and discrete
derived categories of finite global dimension.
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1. Introduction12

1.1. Stability conditions. Spaces of stability conditions on a triangulated13

category were introduced in [12], inspired by the work of Michael Douglas on14

stability of D-branes in string theory. The construction associates a space15

Stab(C) of stability conditions to each triangulated category C. A stability16

condition σ ∈ Stab(C) consists of a slicing — for each ϕ ∈ R an abelian17

subcategory Pσ(ϕ) of semistable objects of phase ϕ such that each object of18

C can be expressed as an iterated extension of semistable objects — and a19

central charge Z : KC → C mapping the Grothendieck group KC linearly20

to C. The slicing and charge obey a short list of axioms. The miracle is21

that the space Stab(C) of stability conditions is a complex manifold, locally22

modelled on a linear subspace of Hom(KC,C) [12, Theorem 1.2]. It carries23
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commuting actions of C, acting by rotating phases and rescaling masses,24

and of the automorphism group Aut(C).25

Whilst a number of examples of spaces of stability conditions are known,26

it is in general difficult to compute Stab(C). It is widely believed that spaces27

of stability conditions are contractible, and this has been verified in certain28

examples. We give the first proof of contractibility for certain general classes29

of triangulated categories satisfying (strong) finiteness conditions.30

Our strategy is to identify general conditions under which there are no31

‘complicated’ stability conditions. One measure of the complexity of a sta-32

bility condition σ is the phase distribution, i.e. the set {ϕ ∈ R | Pσ(ϕ) 6= 0}33

of phases for which there is a non-zero semistable object. A good heuristic34

is that a stability condition with a dense phase distribution is complicated,35

whereas one with a discrete phase distribution is much less so — see [21] for36

a precise illustration of this principle.37

Another measure of complexity is provided by the properties of the heart38

of the stability condition σ. This is the full extension-closed subcategory39

Pσ(0, 1] generated by the semistable objects with phases in the interval (0, 1].40

It is the heart of a bounded t-structure on C and so in particular is an abelian41

category. From this perspective the ‘simplest’ stability conditions are those42

whose heart is Artinian and Noetherian with finitely many isomorphism43

class of simple objects; we call these algebraic stability conditions.44

These two measures of complexity are related: if there is at least one45

algebraic stability condition then the union C · Stabalg(C) of orbits of alge-46

braic stability conditions under the C-action is the set of stability conditions47

whose phase distribution is not dense.48

We show that the subset Stabalg(C) is stratified by real submanifolds, each49

consisting of stability conditions for which the heart is fixed and a given50

subset of its simple objects have integral phases. Each of these strata is51

contractible, so the topology of Stabalg(C) is governed by the combinatorics52

of adjacencies of strata. It is well-known that as one moves in Stab(C) the53

associated heart changes by Happel–Reiten–Smalø tilts. The combinatorics54

of tilting is encoded in the poset Tilt(C) of t-structures on C with relation55

D ≤ E ⇐⇒ there is a finite sequence of (left) tilts from D to E . Components56

of this poset are in bijection with components of Stabalg(C). Corollary 3.1357

describes the precise relationship between Tilt(C) and the stratification of58

Stabalg(C). Using this connection we obtain our main theorem:59

Theorem A (Lemma 4.3 and Theorem 4.9). Suppose each algebraic t-60

structure in some component of Tilt(C) has only finitely many tilts, all of61

which are algebraic. Then the corresponding component of Stabalg(C) is ac-62

tually a component of Stab(C), and moreover is contractible.63

We say that a component satisfying the conditions of the theorem has64

finite-type. The phase distribution of any stability condition in a finite-type65

component is discrete. It seems plausible that the converse is true, i.e. that66

any component of Stab(C) consisting entirely of stability conditions with67

discrete phase distribution is a a finite-type component, but we have not68

been able to prove this. There are several interesting classes of examples of69

finite-type components. We show that if C is70
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• a locally-finite triangulated category with finite rank Grothendieck71

group ([35], see Section 4.2), then any component of Stab(C) is of72

finite-type;73

• a discrete derived category of finite global dimension (see Section 4.3),74

then Stab(C) consists of a single finite-type component;75

• the bounded derived category D (ΓNQ) of finite-dimensional repre-76

sentations of the Calabi–Yau-N Ginzburg algebra of a Dynkin quiver77

Q, for any N ≥ 2, then the space of stability conditions has finite-78

type.79

The bounded derived category D(Q) of a Dynkin quiver Q is both locally-80

finite and discrete, and the first two classes can be seen as different ways81

to generalise from these basic examples. Perhaps surprisingly, until now the82

space of stability conditions on D(Q) was only known to be contractible83

for Q of type A1 or A2, although it was known by [43] that it was simply-84

connected.85

Similarly, for discrete derived categories contractibility was known before86

only for the simplest case, which was treated in [52]. The description of87

the stratification of Stab(D) for D a discrete derived category, from which88

contractibility follows, was obtained independently, and simultaneously with89

our results, in [19]. They use an alternative algebraic interpretation of the90

combinatorics of the stratification in terms of silting subcategories and silt-91

ing mutation.92

The third class of examples has been the most intensively studied. The93

space of stability conditions Stab(ΓNQ) has been identified as a complex94

space in various cases, in each of which it is known to be contractible. The95

connectedness of Stab(ΓNQ) is proven by [1] recently for the Dynkin case.96

For N = 2 and Q a quiver of type A it was first studied in [49], where97

the stability space was shown to be the universal cover of a configuration98

space of points in the complex plane. Using different methods [14] identified99

Stab(Γ2Q) for any Dynkin quiver Q as a covering space using a geometric100

description in terms of Kleinian singularities. Later [11], see also [43], showed101

that it was the universal cover in all these cases. When the underlying102

Dynkin diagram of Q is An, [26] shows that Stab(ΓNQ) is the universal cover103

of the space of degree n+1 polynomials pn(z) with simple zeros. The central104

charges are constructed as periods of the quadratic differential pn(z)N−2dz⊗2
105

on P1, using the technique of [16]. The N = 3 case of this result was106

obtained previously in [48]. The A2 case for arbitrary N , including N =107

∞ which corresponds to stability conditions on D(A2), was treated in [15]108

using different methods. Besides, [27] showed that Stab(Γ2Q) is connected,109

and also that the stability space of the affine counterpart is connected and110

simply-connected. Our methods do not apply to this latter case. Finally,111

[42] proved the contractibility of the principal component of Stab(Γ3Q) for112

any affine A type quivers.113

Although there are several interesting classes of examples, the finiteness114

condition required for our theorem is strong. For instance it is not satisfied115

by tame representation type quivers such as the Kronecker quiver. Different116

methods will probably be required in these cases, because the stratification117

of the space of algebraic stability conditions fails to be locally-finite and118
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closure-finite, and so is much harder to understand and utilise. Examples of119

alternative methods for proving the contractibility of the space of stability120

conditions on D(Q) can be found in [38] for the case of the Kronecker quiver,121

and [22] for the case of the acyclic triangular quiver.122

1.2. Representations of braid groups. One can associate a braid group123

Br (Q) to an acyclic quiver Q — it is defined by having a generator for124

each vertex, with a braid relation aba = bab between generators whenever125

the corresponding vertices are connected by an arrow, and a commuting126

relation ab = ba whenever they are not. For example, the braid group of the127

An quiver is the standard braid group on n+ 1 strands.128

This braid group acts on D (ΓNQ) by spherical twists. The image of129

Br (Q) in the group of automorphisms is the Seidel–Thomas braid group130

Br (ΓNQ). Its properties are closely connected to the topology of Stab(ΓNQ),131

in particular Stab(ΓNQ) is simply-connected whenever the Seidel–Thomas132

braid action on it is faithful.133

The Seidel–Thomas braid group originated in the study of Kontsevich’s134

homological mirror symmetry. On the symplectic side, Khovanov–Seidel135

[32] showed that when Q has type A the category D (ΓNQ) can be realised136

as a subcategory of the derived Fukaya category of the Milnor fibre of a137

simple singularity of type A. Here Br (Q) acts as (higher) Dehn twists138

along Lagrangian spheres, and they proved this actions is faithful. On the139

algebraic geometry side, Seidel–Thomas [46] studied the mirror counterpart140

of [32]; here D (ΓNQ) can be realised as a subcategory of the bounded derived141

category of coherent sheaves of the mirror variety.142

The proofs of faithfulness of the braid group action by Khovanov–Seidel–143

Thomas ([32, 46]) depend on the existence of a faithful geometric represen-144

tation of the braid group in the mapping class group of a surface. Such145

faithful actions are known to exist by Birman–Hilden [8] when Q has type146

A, and by Perron–Vannier [40] when Q has type D. Surprisingly, Wajnryb147

[51] showed that there is no such faithful geometric representation of the148

braid group of type E, so this method of proof cannot be generalised to149

all Dynkin quivers. A different approach, relying on the Garside structure150

on the braid group Br (Q), was used by Brav–H.Thomas [11] to prove that151

the braid group action on D (Γ2Q) is faithful for all Dynkin quivers Q. The152

N = 2 case is the simplest because Br (Q) acts transitively on the tilting153

poset Tilt(ΓNQ); this is not so for N ≥ 3. Nevertheless, we are able to154

‘bootstrap’ from the N = 2 case to prove:155

Theorem B (Corollaries 5.1, 6.12, and 6.14). For any Dynkin quiver Q156

and any N ≥ 2 the action of Br (Q) on D (ΓNQ) is faithful, and the induced157

action on Stab(ΓNQ) is free. Moreover, Stab(ΓNQ) is contractible and the158

finite-dimensional complex manifold Stab(ΓNQ) /Br (Q) is a model for the159

classifying space of Br (Q).160
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sztello, and David Ploog were kind enough to share an early version of their163

preprint [19]. They were also very helpful in explaining the translation be-164

tween their approach via silting subcategories and the one in this paper via165
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algebraic t-structures. The second author would also like to thank, sadly166

posthumously, Michael Butler for his interest in this work, and his guidance167

on matters algebraic. He is much missed.168

2. Preliminaries169

Throughout the paper, k is a fixed (not necessarily algebraically-closed)170

field. The Grothendieck group of an abelian, or triangulated, category C is171

denoted by KC.172

The bounded derived category of the path algebra kQ of a quiver Q173

is denoted D(Q) and the bounded derived category of finite-dimensional174

representations of the Calabi–Yau-N Ginzburg algebra of a Dynkin quiverQ,175

for N ≥ 2, is denoted D (ΓNQ). The bounded derived category of coherent176

sheaves on a variety X over k is denoted D(X). The spaces of locally-finite177

stability conditions on these triangulated categories are denoted by Stab(Q),178

by Stab(ΓNQ) and by Stab(X) respectively.179

2.1. Posets. Let P be a poset. We denote the closed interval180

{r ∈ P : p ≤ r ≤ q}

by [p, q], and similarly use the notation (−∞, p] and [p,∞) for bounded181

above and below intervals. A poset is bounded if it has both a minimal182

and a maximal element. A chain of length k in a poset P is a sequence183

p0 < · · · < pk of elements. One says q covers p if p < q and there does not184

exist r ∈ P with p < r < q. A chain p0 < · · · < pk is said to be unrefinable185

if pi covers pi−1 for each i = 2, . . . , k. A maximal chain is an unrefinable186

chain in which pi is a minimal element and pk a maximal one. A poset is187

pure if all maximal chains have the same length; the common length is then188

called the length of the poset.189

A poset determines a simplicial set whose k-simplices are the non-strict190

chains p0 ≤ · · · ≤ pk in P . The classifying space BP of P is the geometric191

realisation of this simplicial set. If we view P as a category with objects192

the elements and a (unique) morphism p → q whenever p ≤ q, the above193

simplicial set is the nerve, and BP is the classifying space of the category194

in the usual sense, see [44, §2].195

Elements p and q are said to be in the same component of P if there is a196

sequence of elements p = p0, p1, . . . , pk = q such that either pi ≤ pi+1 or pi ≥197

pi+1 for each i = 0, . . . , k − 1; equivalently if the 0-simplices corresponding198

to p and q are in the same component of the classifying space BP .199

The classifying space is a rather crude invariant of P . For example, there200

is a homeomorphism BP ∼= BP op, and if each finite set of elements has an201

upper bound (or a lower bound) then the classifying space BP is contractible202

by [44, Corollary 2] since P , considered as a category, is filtered.203

2.2. t-structures. We fix some notation. Let C be an additive category.204

We write c ∈ C to mean c is an object of C. We will use the term subcategory205

to mean strict, full subcategory. When S is a subcategory we write S⊥ for206

the subcategory on the objects207

{c ∈ C : HomC(s, c) = 0 ∀s ∈ S}
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and similarly ⊥S for {c ∈ C : HomC(c, s) = 0 ∀s ∈ S}. When A and B are208

subcategories of C we write A ∩ B for the subcategory on objects which lie209

in both A and B.210

Suppose C is triangulated, with shift functor [1]. Exact triangles in C will211

be denoted either by a→ b→ c→ a[1] or by a diagram212

a b

c

213

where the dotted arrow denotes a map c → a[1]. We will always assume214

that C is essentially small so that isomorphism classes of objects form a set.215

Given sets Ei of objects for i ∈ I let 〈Ei | i ∈ I〉 denote the ext-closed216

subcategory generated by objects isomorphic to an element in some Ei. We217

will use the same notation when the Ei are subcategories of C.218

Definition 2.1. A t-structure on a triangulated category C is an ordered219

pair D = (D≤0,D≥1) of subcategories, satisfying:220

(1) D≤0[1] ⊆ D≤0 and D≥1[−1] ⊆ D≥1;221

(2) HomC(d, d
′) = 0 whenever d ∈ D≤0 and d′ ∈ D≥1;222

(3) for any c ∈ C there is an exact triangle d → c → d′ → d[1] with223

d ∈ D≤0 and d′ ∈ D≥1.224

We write D≤n to denote the shift D≤0[−n], and so on. The subcategory D≤0
225

is called the aisle and D≥0 the co-aisle of the t-structure. The intersection226

D0 = D≥0 ∩ D≤0 of the aisle and co-aisle is an abelian category known as227

the heart of the t-structure — see [6, Théorème 1.3.6] or [28, §10.1].228

The exact triangle d→ c→ d′ → d[1] is unique up to isomorphism. The229

first term determines a right adjoint to the inclusion D≤0 ↪→ C and the last230

term a left adjoint to the inclusion D≥1 ↪→ C.231

A t-structure D is bounded if any object of C lies in D≥−n∩D≤n for some232

n ∈ N.233

Henceforth, we will assume that all t-structures are bounded.234

This has three important consequences. Firstly, a bounded t-structure is235

completely determined by its heart; the aisle is recovered as236

D≤0 = 〈D0,D−1,D−2, . . .〉.
Secondly, the inclusion D0 ↪→ C induces an isomorphism KD0 ∼= KC of237

Grothendieck groups. Thirdly, if D0 ⊆ E0 are hearts of bounded t-structures238

then D = E .239

Under our assumption that C is essentially small, there is a set of t-240

structures on C (because t-structures correspond to aisles, and the latter241

are uniquely specified by certain subsets of the set of isomorphism classes of242

objects). In contrast, [47] shows that t-structures on the derived category of243

all abelian groups (not necessarily finitely-generated) form a proper class.244

Definition 2.2. Let T(C) be the poset of bounded t-structures on C, ordered245

by inclusion of the aisles. Abusing notation writeD ⊆ E to meanD≤0 ⊆ E≤0.246

There is a natural action of Z on T(C) given by shifting: we write D[n] for247

the t-structure (D≤−n,D≥−n+1). Note that D[1] ⊆ D, and not vice versa.248
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2.3. Torsion structures and tilting. The notion of torsion structure, also249

known as a torsion/torsion-free pair, is an abelian analogue of that of t-250

structure; the notions are related by the process of tilting.251

Definition 2.3. A torsion structure on an abelian category A is an ordered252

pair T = (T ≤0, T ≥1) of subcategories satisfying253

(1) HomA(t, t′) = 0 whenever t ∈ T ≤0 and t′ ∈ T ≥1;254

(2) for any a ∈ A there is a short exact sequence 0 → t → a → t′ → 0255

with t ∈ T ≤0 and t′ ∈ T ≥1.256

The subcategory T ≤0 is given by the torsion theory of T , and T ≥1 by the257

torsion-free theory ; the motivating example is the subcategories of torsion258

and torsion-free abelian groups.259

The short exact sequence 0 → t → a → t′ → 0 is unique up to isomor-260

phism. The first term determines a right adjoint to the inclusion T ≤0 ↪→ A261

and the last term a left adjoint to the inclusion T ≥1 ↪→ A. It follows that262

T ≤0 is closed under factors, extensions and coproducts and that T ≥1 is263

closed under subobjects, extensions and products. Torsion structures in A,264

ordered by inclusion of their torsion theories, form a poset. It is bounded,265

with minimal element (0,A) and maximal element (A, 0).266

Proposition 2.4 ([25, Proposition 2.1], [7, Theorem 3.1]). Let D be a t-267

structure on a triangulated category C. Then there is a canonical isomor-268

phism between the poset of torsion structures in the heart D0 and the interval269

[D,D[−1]]⊆ in T(C) consisting of t-structures E with D ⊆ E ⊆ D[−1].270

Let D be a t-structure on a triangulated category C. It follows from271

Proposition 2.4 that a torsion structure T in the heart D0 determines a new272

t-structure273

LT D =
(
〈D≤0, T ≤1〉, 〈T ≥2,D≥2〉

)
called the left tilt of D at T , where by definition T ≤k = T ≤0[−k] and274

similarly T ≥k = T ≥1[1 − k]. The heart of the left tilt is 〈T ≤1, T ≥1〉 and275

D ⊆ LT D ⊆ D[−1]. The shifted t-structure RT D = LT D[1] is called the276

right tilt of D at T . It has heart 〈T ≤0, T ≥0〉 and D[1] ⊆ RT D ⊆ D. Left and277

right tilting are inverse to one another:
(
T ≥1, T ≤1

)
is a torsion structure278

on the heart of LT D, and right tilting with respect to this we recover the279

original t-structure. Similarly,
(
T ≥0, T ≤0

)
is a torsion structure on the heart280

of RT D, and left tilting with respect to this we return to D. Since there281

is a correspondence between bounded t-structures and their hearts we will,282

where convenient, speak of the left or right tilt of a heart.283

Definition 2.5. Let the tilting poset Tilt(C) be the poset of t-structures284

with D ≤ E if and only if there is a finite sequence of left tilts from D to E .285

Remark 2.6. An easy induction shows that if D ≤ E then D ⊆ E ⊆ D[−k]286

for some k ∈ N.287

It follows that the identity on elements is a map of posets Tilt(C)→ T(C).288

By Proposition 2.4, if D ⊆ E ⊆ D[−1] then D ≤ E ⇐⇒ D ⊆ E , so that the289

map induces an isomorphism [D,D[−1]]≤
∼= [D,D[−1]]⊆.290
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Lemma 2.7. Suppose D and E are in the same component of Tilt(C). Then291

F ≤ D, E ≤ G for some F ,G. (We do not claim that F and G are the292

infimum and supremum, simply that lower and upper bounds exist.)293

Proof. If D and E are left tilts of some t-structure H then they are right294

tilts of H[−1], and vice versa. It follows that we can replace an arbitrary295

sequence of left and right tilts connecting D with E by a sequence of left296

tilts followed by a sequence of right tilts, or vice versa. �297

2.4. Algebraic t-structures. We say an abelian category is algebraic if298

it is a length category with finitely many isomorphism classes of simple299

objects. To spell this out, this means it is both Artinian and Noetherian300

so that every object has a finite composition series. By the Jordan-Hölder301

theorem, the graded object associated to such a composition series is unique302

up to isomorphism. For instance, the module category modA of a finite-303

dimensional algebra A is algebraic.304

The classes of the simple objects in an algebraic abelian category form a305

basis for the Grothendieck group, which is isomorphic to Zn, where n is the306

number of such classes. A t-structure D is algebraic if its heart D0 is. If C307

admits an algebraic t-structure then the heart of any other t-structure on C308

which is a length category must also have exactly n isomorphism classes of309

simple objects, and therefore must be algebraic, since the two hearts have310

isomorphic Grothendieck groups.311

Let the algebraic tilting poset Tiltalg(C) be the poset consisting of the312

algebraic t-structures, with D 4 E when E is obtained from D by a finite313

sequence of left tilts, via algebraic t-structures. Clearly314

D 4 E ⇒ D ≤ E ⇒ D ⊆ E ,
and there is an injective map of posets Tiltalg(C)→ Tilt(C).315

Remark 2.8. There is an alternative algebraic description of Tiltalg(C)316

when C = D(A) is the bounded derived category of a finite-dimensional317

algebra A, of finite global dimension, over an algebraically-closed field. By318

[19, Lemma 4.1] the poset P1(C) of silting subcategories in C is the sub-poset319

of T(C)op consisting of the algebraic t-structures, and under this identifica-320

tion silting mutation in P1(C) corresponds to (admissible) tilting in T(C)op.321

Moreover, it follows from [2, §2.6] that the partial order in P1(C) is gener-322

ated by silting mutation, so that D ⊆ E ⇐⇒ D 4 E for algebraic D and E .323

Hence Tiltalg(C) ∼= P1(C)op.324

If A does not have finite global dimension, then a similar result holds but325

we must replace the poset of silting subcategories in C, with the analogous326

poset in the bounded homotopy category of finitely-generated projective327

modules.328

Lemma 2.9. Suppose D and E are t-structures and that E is algebraic.329

Then E ⊆ D[−d] for some d ∈ N.330

Proof. Since D is bounded each simple object s of the heart E0 is in D≤ks331

for some ks ∈ Z. Then E0 ⊆ D≤d for d = maxs{ks} — the maximum332

exists since there are finitely many simple objects in E0 — and this implies333

D ⊆ D[−d]. �334
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Remark 2.10. It follows that BT(C) is contractible whenever C admits an335

algebraic t-structure. To see this let TN (C) for N ∈ N be the sub-poset on336

{D | E [N ] ⊆ D}. Note that BTN (C) is the cone on the vertex corresponding337

to E [N ], hence is contractible. The above lemma implies that BT(C) is the338

colimit of the diagram339

BT0(C) ↪→ BT1(C) ↪→ BT2(C) ↪→ · · ·

of contractible spaces. Hence it is also contractible.340

Lemma 2.11. Suppose D and E are in the same component of Tiltalg(C).341

Then F 4 D, E 4 G for some F ,G in that component.342

Proof. This is proved in exactly the same way as Lemma 2.7; note that all343

t-structures encountered in the construction will be algebraic. �344

It is not clear that the poset T(C) of t-structures is always a lattice — see345

[10] for an example in which the naive meet (i.e. intersection) of t-structures346

is not itself a t-structure, and also [17] — and we do not claim that the347

lower and upper bounds of the previous lemma are infima or suprema. We348

do however have the following weaker result.349

Lemma 2.12. Suppose D is algebraic (in fact it suffices for its heart to be350

a length category). Then for each D ⊆ E ,F ⊆ D[−1] there is a supremum351

E ∨ F and an infimum E ∧ F in T(C).352

Proof. We construct only the supremum E ∨ F , the infimum is constructed353

similarly. We claim that 〈E≤0,F≤0〉 is the aisle of a bounded t-structure; it354

is clear that this t-structure must then be the supremum in T(C).355

Since D ⊆ E ,F ⊆ D[−1] we may work with the corresponding torsion356

structures TE and TF on D0, and show that T ≤0 = 〈T ≤0
E , T ≤0

F 〉 is a torsion357

theory, with associated torsion-free theory T ≥1 = T ≥1
E ∩ T ≥1

F . Certainly358

HomC(t, t
′) = 0 whenever t ∈ T ≤0 and t′ ∈ T ≥1, so it suffices to show that359

any d ∈ D0 sits in a short exact sequence 0→ t→ d→ t′ → 0 with t ∈ T ≤0
360

and t′ ∈ T ≥1. We do this in stages, beginning with the short exact sequence361

0→ e0 → d→ e′0 → 0

with e0 ∈ T ≤0
E and e′0 ∈ T

≥1
E . Combining this with the short exact sequence362

0 → f0 → e′0 → f ′0 → 0 with f0 ∈ T ≤0
F and f ′0 ∈ T

≥1
F we obtain a second363

short exact sequence364

0→ t→ d→ f ′0 → 0

where t is an extension of e0 and f0, and hence is in T ≤0. Repeat this365

process, at each stage using the expression of the third term as an extension366

via alternately the torsion structures TE and TF . This yields successive short367

exact sequences, each with middle term d and first term in T ≤0, and such368

that the third term is a quotient of the third term of the previous sequence.369

Since D0 is a length category this process must stabilise. It does so when the370

third term has no subobject in either T ≤0
E or T ≤0

F , i.e. when the third term371

is in T ≥1
E ∩T

≥1
F = T ≥1. This exhibits the required short exact sequence and372

completes the proof. �373
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In general, this cannot be used inductively to show that the components374

of Tiltalg(C) are lattices, since E ∧ F and E ∨ F might not be algebraic.375

For the remainder of this section we impose an assumption that guarantees376

that they are: let Tilt◦(C) = Tilt◦alg(C) be a component of the tilting poset377

consisting entirely of algebraic t-structures, equivalently a component of378

Tiltalg(C) closed under all tilts.379

Lemma 2.13. The component Tilt◦(C) is a lattice. Infima and suprema in380

Tilt◦(C) are also infima and suprema in T(C).381

Proof. Suppose E ,F ∈ Tilt◦(C). As in Lemma 2.7 we can replace an arbi-382

trary sequence of left and right tilts connecting E with F by one consisting383

of a sequence of left tilts followed by a sequence of right tilts, or vice ver-384

sa, but now using the infima and suprema of Lemma 2.12 at each stage385

of the process. We can do this since Tilt◦(C) consists entirely of algebraic386

t-structures, and therefore these infima and suprema are algebraic. Thus E387

and F have upper and lower bounds in Tilt◦(C).388

We now construct the infimum and supremum. First, convert the se-389

quence of tilts from E to F into one of right followed by left tilts by the390

above process. Then if E ,F ⊆ G the same is true for each t-structure along391

the new sequence. Now convert this new sequence to one of left tilts followed392

by right tilts, again by the above process. Inductively applying Lemma 2.12393

shows that each t-structure in the resulting sequence is still bounded above394

in T(C) by G. In particular the t-structure H reached after the final left395

tilt, and before the first right tilt, satisfies E ,F 4 H ⊆ G. It follows that396

H ∈ Tilt◦(C) is the supremum E ∨ F of E and F in T(C).397

To complete the proof we need to show that E ∨ F 4 G whenever G is in398

Tilt◦(C) and E ,F 4 G. This follows since E ∨ F 4 (E ∨ F) ∨ G = G.399

The argument for the infimum is similar. �400

Lemma 2.14. The following are equivalent:401

(1) Intervals of the form [D,D[−1]]4 in Tilt◦(C) are finite.402

(2) All closed bounded intervals in Tilt◦(C) are finite.403

Proof. Assume that intervals of the form [D,D[−1]]4 in Tiltalg(C) are finite.404

Given D 4 E in Tilt◦(C) recall that E ⊆ D[−d] for some d ∈ N by Lemma 2.9,405

so that406

D 4 E 4 E ∨ D[−d] = D[−d].

Hence it suffices to show that intervals of the form [D,D[−d]]4 are finite.407

We prove this by induction on d. The case d = 1 is true by assumption.408

Suppose it is true for d < k. In diagrams it will be convenient to use the409

notation E  F to mean F is a left tilt of E .410

By definition of Tiltalg(C) any element of the interval [D,D[−k]]4 sits in a411

chain of tilts D = D0  D1  · · · Dr = D[−k] via algebraic t-structures.412

This can be extended to a diagram413

D = D0 D1 D2 · · · Dr−1 Dr = D[−k]

D′1 D′2 · · · D′r−1

414
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of algebraic t-structures and tilts, where D′1 = D[−1], so that D1  D′1 as415

shown, and D′i = Di ∨ D′i−1 is constructed inductively. The only point that416

requires elaboration is the existence of the tilt D′r−1  Dr. First note that417

D′1,D2 4 Dr so that D′2 = D2 ∨ D′1 4 Dr too. By induction D′r−1 4 Dr.418

Since419

Dr[1] 4 Dr−1 4 D′r−1 4 Dr
Dr is a left tilt of D′r−1 by Proposition 2.4.420

The existence of the above diagram shows that each element of the interval421

[D,D[−k]]4 is a right tilt of some element of the interval [D[−1],D[−k]]4.422

By induction the latter has only finitely many elements, and by assumption423

each of these has only finitely many right tilts. This establishes the first424

implication. The converse is obvious. �425

2.5. Simple tilts. Suppose D is an algebraic t-structure. Then each sim-426

ple object s ∈ D0 determines two torsion structures on the heart, namely427

(〈s〉, 〈s〉⊥) and (⊥〈s〉, 〈s〉). These are respectively minimal and maximal non-428

trivial torsion structures in D0. We say the left tilt at the former, and the429

right tilt at the latter, are simple. We use the abbreviated notation LsD430

and RsD respectively for these tilts.431

More generally we have the following notions. A torsion structure T is432

hereditary if t ∈ T ≤0 implies all subobjects of t are in T ≤0. It is co-hereditary433

if t ∈ T ≥1 implies all quotients of t are in T ≥1. It follows that the aisle of a434

hereditary torsion, dually the coaisle of a cohereditary torsion structure, are435

Serre subcategories. When T is a torsion structure on an algebraic abelian436

category then the hereditary torsion structures are those of the form (S, S⊥)437

where the torsion theory S = 〈s1, . . . , sk〉 is generated by a subset of the438

simple objects. Dually, the co-hereditary torsion structures are those of439

the form (⊥S, S). We use the abbreviated notation LSD for the left tilt at440

(S, S⊥) and RSD for the right tilt at (⊥S, S). Note that, in the notation of441

the previous section, LSD ∧ LS′D = LS∩S′D and LSD ∨ LS′D = LS∪S′D.442

In general a tilt, even a simple tilt, of an algebraic t-structure need not443

be algebraic. However, if the heart is rigid, i.e. the simple objects have no444

self-extensions, then [33, Proposition 5.4] shows that the tilted t-structure445

is also algebraic. We will see later in Lemma 4.2 that the same holds if the446

heart has only finitely many isomorphism classes of indecomposable objects.447

2.6. Stability conditions. Let C be a triangulated category and KC be its448

Grothendieck group. A stability condition (Z,P) on C [12, Definition 1.1]449

consists of a group homomorphism Z : KC → C and full additive subcate-450

gories P(ϕ) of C for each ϕ ∈ R satisfying451

(1) if c ∈ P(ϕ) then Z(c) = m(c) exp(iπϕ) where m(c) ∈ R>0;452

(2) P(ϕ+ 1) = P(ϕ)[1] for each ϕ ∈ R;453

(3) if c ∈ P(ϕ) and c′ ∈ P(ϕ′) with ϕ > ϕ′ then Hom(c, c′) = 0;454

(4) for each nonzero object c ∈ C there is a finite collection of triangles455

0 = c0 c1 · · · cn−1 cn = c

b1 bn

456
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with bj ∈ P(ϕj) where ϕ1 > · · · > ϕn.457

The homomorphism Z is known as the central charge and the objects of458

P(ϕ) are said to be semistable of phase ϕ. The objects bj are known as the459

semistable factors of c. We define ϕ+(c) = ϕ1 and ϕ−(c) = ϕn. The mass460

of c is defined to be m(c) =
∑n

i=1m(bi).461

For an interval (a, b) ⊆ R we set P(a, b) = 〈c ∈ C : ϕ(c) ∈ (a, b)〉, and462

similarly for half-open or closed intervals. Each stability condition σ has an463

associated bounded t-structure Dσ = (P(0,∞),P(−∞, 0]) with heart D0
σ =464

P(0, 1]. Conversely, if we are given a bounded t-structure on C together with465

a stability function on the heart with the Harder–Narasimhan property —466

the abelian analogue of property (4) above — then this determines a stability467

condition on C [12, Proposition 5.3].468

A stability condition is locally-finite if we can find ε > 0 such that the
quasi-abelian category P(t− ε, t+ ε), generated by semistable objects with
phases in (t − ε, t + ε), has finite length (see [12, Definition 5.7]). The
set of locally-finite stability conditions can be topologised so that it is a,
possibly infinite-dimensional, complex manifold, which we denote Stab(C)
[12, Theorem 1.2]. The topology arises from the (generalised) metric

d(σ, τ) = sup
06=c∈C

max

(
|ϕ−σ (c)− ϕ−τ (c)|, |ϕ+

σ (c)− ϕ+
τ (c)|,

∣∣∣∣log
mσ(c)

mτ (c)

∣∣∣∣)
which takes values in [0,∞]. It follows that for fixed 0 6= c ∈ C the mass469

mσ(c), and lower and upper phases ϕ−σ (c) and ϕ+
σ (c) are continuous functions470

Stab(C)→ R. The projection471

π : Stab(C)→ Hom(KC,C) : (Z,P) 7→ Z

is a local homeomorphism.472

The group Aut(C) of auto-equivalences acts continuously on the space
Stab(C) of stability conditions with an automorphism α acting by

(Z,P) 7→
(
Z ◦ α−1, α(P)

)
. (1)

There is also a smooth right action of the universal cover G of GL+
2 R. An473

element g ∈ G corresponds to a pair (Tg, θg) where Tg is the projection of474

g to GL+
2 R under the covering map and θg : R → R is an increasing map475

with θg(t + 1) = θg(t) + 1 which induces the same map as Tg on the circle476

R/2Z = R2 − {0}/R>0. The action is given by477

(Z,P) 7→
(
T−1
g ◦ Z,P ◦ θg

)
. (2)

(Here we think of the central charge as valued in R2.) This action preserves478

the semistable objects, and also preserves the Harder–Narasimhan filtra-479

tions of all objects. The subgroup consisting of pairs with T conformal is480

isomorphic to C with λ ∈ C acting via481

(Z,P) 7→ (exp(−iπλ)Z,P(ϕ+ Reλ))

i.e. by rotating the phases and rescaling the masses of semistable objects.482

This action is free and preserves the metric. The action of 1 ∈ C corresponds483

to the action of the shift automorphism [1].484

Lemma 2.15. For any g ∈ G the t-structures Dg·σ and Dσ are related by a485

finite sequence of tilts.486
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Proof. This is simple to verify directly by considering the way in which G487

acts on phases. Alternatively, note that G is connected, so that σ and g · σ488

are in the same component of Stab(C). Hence by [53, Corollary 5.2] the489

t-structures Dσ and Dτ are related by a finite sequence of tilts. �490

2.7. Cellular stratified spaces. A CW-cellular stratified space, in the491

sense of [23], is a generalisation of a CW-complex in which non-compact492

cells are permitted. In §3 we will show that (parts of) stability spaces have493

this structure, and use it to show their contractibility. Here, we recall the494

definitions and results we will require.495

A k-cell structure on a subspace e of a topological space X is a continuous496

map α : D → X where int(Dk) ⊆ D ⊆ Dk is a subset of the k-dimensional497

disk Dk ⊂ Rk containing the interior, such that α(D) = e, the restriction of498

α to int(Dk) is a homeomorphism onto e, and α does not extend to a map499

with these properties defined on any larger subset of Dk. We refer to e as a500

cell and to α as a characteristic map for e.501

Definition 2.16. A cellular stratification of a topological space X consists502

of a filtration503

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xk ⊆ · · ·
by subspaces, with X =

⋃
k∈NXk, such that Xk − Xk−1 =

⊔
λ∈Λk

eλ is a504

disjoint union of k-cells for each k ∈ N. A CW-cellular stratification is a505

cellular stratification satisfying the further conditions that506

(1) the stratification is closure-finite, i.e. the boundary ∂e = e − e of507

any k-cell is contained in a union of finitely many lower-dimensional508

cells;509

(2) X has the weak topology determined by the closures e of the cells510

in the stratification, i.e. a subset A of X is closed if, and only if, its511

intersection with each e is closed.512

When the domain of each characteristic map is the entire disk then a513

CW-cellular stratification is nothing but a CW-complex structure on X.514

Although the collection of cells and characteristic maps is part of the data515

of a cellular stratified space we will suppress it from our notation for ease-of-516

reading. Since we never consider more than one stratification of any given517

topological space there is no possibility for confusion.518

A cellular stratification is said to be regular if each characteristic map is a519

homeomorphism, and normal if the boundary of each cell is a union of lower-520

dimensional cells. A regular, normal cellular stratification induces cellular521

stratifications on the domain of the characteristic map of each of its cells.522

Finally, we say a CW-cellular stratification is regular and totally-normal if523

it is regular, normal, and in addition for each cell eλ with characteristic524

map αλ : Dλ → X the induced cellular stratification of ∂Dλ = Dλ− int(Dk)525

extends to a regular CW-complex structure on ∂Dk. (The definition of526

totally-normal CW-cellular stratification in [23] is more subtle, as it handles527

the non-regular case too, but it reduces to the above for regular stratifica-528

tions. A regular CW-complex is totally-normal, but regularity alone does529

not even entail normality for a CW-cellular stratified space.) Any union530

of strata in a regular, totally-normal CW-cellular stratified space is itself a531

regular, totally-normal CW-cellular stratified space.532
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A normal cellular stratified space X has a poset of strata (or face poset)533

P (X) whose elements are the cells, and where eλ ≤ eµ ⇐⇒ eλ ⊆ eµ. When534

X is a regular CW-complex there is a homeomorphism from the classifying535

space BP (X) to X. More generally,536

Theorem 2.17 ([23, Theorem 2.50]). Suppose X is a regular, totally-normal537

CW-cellular stratified space. Then BP (X) embeds in X as a strong defor-538

mation retract, in particular there is a homotopy equivalence X ' BP (X).539

3. Algebraic stability conditions540

We say a stability condition σ is algebraic if the corresponding t-structure541

Dσ is algebraic. Let Stabalg(C) ⊆ Stab(C) be the subspace of algebraic542

stability conditions.543

Write SD = {σ ∈ Stab(C) : Dσ = D} for the set of stability conditions544

with associated t-structure D. When D is algebraic, a stability condition in545

SD is uniquely determined by a choice of central charge in546

H− = {r exp(iπθ) ∈ C : r > 0 and θ ∈ (0, 1]} (3)

for each simple object in the heart [14, Lemma 5.2]. Hence, in this case, an547

ordering of the simple objects determines an isomorphism SD ∼= (H−)n. In548

particular, if C has an algebraic t-structure then Stabalg(C) 6= ∅.549

The action of Aut(C) on Stab(C) restricts to an action on the subspace550

Stabalg(C). In contrast Stabalg(C) need not be preserved by the action of C551

on Stab(C). The action of iR ⊆ C uniformly rescales the masses of semistable552

objects; this does not change the associated t-structure and so preserves553

Stabalg(C). However, R ⊆ C acts by rotating the phases of semistables. Thus554

the action of λ ∈ R alters the t-structure by a finite sequence of tilts, and can555

result in a non-algebraic t-structure. In fact, the union of orbits C·Stabalg(C)556

consists of those stability conditions σ for which (Pσ(θ,∞),Pσ(−∞, θ]) is an557

algebraic t-structure for some θ ∈ R. The choice of θ = 0 for the associated558

t-structure is purely conventional. If we define559

Stabθalg(C) = {σ ∈ Stab(C) : (Pσ(θ,∞),Pσ(−∞, θ]) is algebraic}

then there is a commutative diagram560

Stabalg(C) Stab(C)

Stabθalg(C) Stab(C)

σ 7→ θ · σ561

in which the vertical maps are homeomorphisms. So Stabθalg(C) is indepen-562

dent up to homeomorphism of the choice of θ ∈ R, but the way in which it563

is embedded in Stab(C) is not.564

Lemma 3.1. Suppose Stabalg(C) 6= ∅. Then the space of algebraic stability565

conditions is contained in the union of full components of Stab(C), i.e. those566

components locally homeomorphic to Hom(KC,C). A stability condition σ567

in a full component of Stab(C) is algebraic if and only if Pσ(0, ε) = ∅ for568

some ε > 0.569
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Proof. The assumption that Stabalg(C) 6= ∅ implies that KC ∼= Zn for some570

n ∈ N. It follows from the description of SD for algebraic D above that any571

component containing an algebraic stability condition is full.572

Suppose D is algebraic. Then for any σ ∈ SD the simple objects are573

semistable. Since there are finitely many simple objects there is one, s say,574

with minimal phase ϕ±σ (s) = ε > 0. It follows that Pσ(0, ε) = ∅.575

Conversely, suppose Pσ(0, ε) = ∅ for some stability condition σ in a full576

component. Then the heart Pσ(0, 1] = Pσ(ε, 1]. Since 1 − ε < 1 we can577

apply [13, Lemma 4.5] to deduce that the heart of σ is an abelian length578

category. It follows that the heart has n simple objects (forming a basis of579

KC), and hence is algebraic. �580

Lemma 3.2. The interior of SD is non-empty precisely when D is algebraic.581

Proof. The explicit description of SD for algebraic D above shows that the582

interior is non-empty in this case. Conversely, suppose D is not algebraic and583

σ ∈ SD. Then by Lemma 3.1 there are σ-semistable objects of arbitrarily584

small strictly positive phase. It follows that the C-orbit through σ contains585

a sequence of stability conditions not in SD with limit σ. Hence σ is not in586

the interior of SD. Since σ was arbitrary the latter must be empty. �587

Corollary 3.3. The subset C ·Stabalg(C) ⊆ Stab(C) is open, and when non-588

empty consists of those stability conditions in full components of Stab(C) for589

which the phases of semistable objects are not dense in R.590

Proof. Suppose Stabalg(C) 6= ∅. Then KC ∼= Zn for some n. A stability591

condition σ ∈ C · Stabalg(C) clearly lies in a component of Stab(C) meeting592

Stabalg(C), and hence in a full component. By Lemma 3.1, if σ is in a full593

component then σ ∈ C · Stabalg(C) if and only if Pσ(t, t + ε) = ∅ for some594

t ∈ R and ε > 0, equivalently if and only if the phases of semistable objects595

are not dense in R.596

To see that C · Stabalg(C) is open note that if σ ∈ C · Stabalg(C) and597

d(σ, τ) < ε/4 then Pσ(t+ε/4, t+3ε/4) = ∅ and so τ ∈ C ·Stabalg(C) too. �598

Example 3.4. Let X be a smooth complex projective algebraic curve with599

genus g(X) > 0. Then the space Stab(X) of stability conditions on the600

bounded derived category of coherent sheaves on X is a single orbit of the G-601

action (2) through the stability condition with associated heart the coherent602

sheaves, and central charge Z(E) = −deg E + i rank E — see [12, Theorem603

9.1] for g(X) = 1 and [37, Theorem 2.7] for g(X) > 1. It follows from the604

fact that there are semistable sheaves of any rational slope when g(X) > 0605

that the phases of semistable objects are dense for every stability condition606

in Stab(X). Hence Stabalg(D(X)) = ∅. In fact this is true quite generally,607

since for ‘most’ varieties the Grothendieck group K(X) = K(D(X)) 6∼= Zn.608

Example 3.5. Let Q be a finite connected quiver, and Stab(Q) the space of609

stability conditions on the bounded derived category of its finite-dimensional610

representations over an algebraically-closed field. When Q has underlying611

graph of ADE Dynkin type, the phases of semistable objects form a discrete612

set [21, Lemma 3.13]; when it has extended ADE Dynkin type, the phases613

either form a discrete set or have accumulation points t+ Z for some t ∈ R614

(all cases occur) [21, Corollary 3.15]; for any other acyclic Q there exists a615
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family of stability conditions for which the phases are dense in some non-616

empty open interval [21, Proposition 3.32]; and for Q with oriented loops617

there exist stability conditions for which the phases of semistable objects are618

dense in R by [21, Remark 3.33]. It follows that Stabalg(Q) = Stab(Q) only619

in the Dynkin case; that C·Stabalg(Q) = Stab(Q) in the Dynkin or extended620

Dynkin cases; and that C ·Stabalg(Q) 6= Stab(Q) when Q has oriented loops.621

For a general acyclic quiver, we do not know whether C · Stabalg(Q) =622

Stab(Q) or not.623

Remark 3.6. The density of the phases of semistable objects for a stability624

condition is an important consideration in other contexts too. [53, Propo-625

sition 4.1] states that if phases for σ are dense in R then the orbit of the626

universal cover G of GL+
2 (R) through σ is free, and the induced metric on627

the quotient G ·σ/C ∼= G/C ∼= H of the orbit is half the standard hyperbolic628

metric.629

Lemma 3.7. Suppose there exists a uniform lower bound on the maximal630

phase gap of algebraic stability conditions, i.e. that there exists δ > 0 such631

that for each σ ∈ Stabalg(C) there exists ϕ ∈ R with Pσ(ϕ − δ, ϕ + δ) = ∅.632

Then C·Stabalg(C) is closed, and hence is a union of components of Stab(C).633

Proof. Suppose σ ∈ C · Stabalg(C)−C·Stabalg(C). Let σn → σ be a sequence634

in C · Stabalg(C) with limit σ. Write ϕ±n for ϕ±σn and so on.635

Fix ε > 0. There exists N ∈ N such that d(σn, σ) < ε for n ≥ N .636

By Corollary 3.3 the phases of semistable objects for σ are dense in R.637

Thus, given ϕ ∈ R, we can find θ with |θ − ϕ| < ε such that Pσ(θ) 6= ∅.638

So by [53, §3] there exists 0 6= c ∈ C such that ϕ±n (c) → θ. Hence c ∈639

PN (θ− ε, θ+ ε) ⊆ PN (ϕ− 2ε, ϕ+ 2ε). In particular the latter is non-empty.640

Since ϕ is arbitrary we obtain a contradiction by choosing ε < δ/2. Hence641

C · Stabalg(C) is closed. �642

Example 3.8. Let Stab(P1) be the space of stability conditions on the643

bounded derived category D(P1) of coherent sheaves on P1. [38, Theorem644

1.1] identifies Stab(P1) ∼= C2. In particular there is a unique component,645

and it is full. The category D(P1) is equivalent to the bounded derived646

category D(Ã1) of finite-dimensional representations of the Kronecker quiver647

Ã1. In particular, Stabalg(P1) is non-empty. The Kronecker quiver has648

extended ADE Dynkin type, so by Example 3.5 the phases of semistable649

objects for any σ ∈ Stab(P1) are either discrete or accumulate at the points650

t + Z for some t ∈ R. The subspace Stab(P1) − Stabalg(P1) consists of651

those stability conditions with phases accumulating at Z ⊆ R. Therefore652

C · Stabalg(P1) = Stab(P1) and Stabalg(P1) is not closed. Neither is it open653

[52, p20]: there are convergent sequences of stability conditions whose phases654

accumulate at Z such that the phase of each semistable object in the limiting655

stability condition is actually in Z.656

An explicit analysis of the semistable objects for each stability condition,657

as in [38], reveals that there is no lower bound on the maximum phase gap658

of algebraic stability conditions, so that whilst this condition is sufficient to659

ensure C · Stabalg(C) = Stab(C) it is not necessary.660
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3.1. The stratification of algebraic stability conditions. In this sec-
tion we define and study a natural stratification of Stabalg(C) with con-
tractible strata. Suppose D is an algebraic t-structure on C. Then SD ∼=
(H−)n where n = rank(KC). For a subset I of the simple objects in the
heart D0 of D we define a subset of Stab(C)

SD,I = {σ : D = Dσ, ϕσ(s) = 1 for simple s ∈ D0 ⇐⇒ s ∈ I}
= {σ : D = Dσ,Pσ(1) = 〈I〉}
= {σ : D = (Pσ(0,∞),Pσ(−∞, 0]) , LID = (Pσ[0,∞),Pσ(−∞, 0))}.

Clearly SD =
⋃
I SD,I and there is a decomposition661

Stabalg(C) =
⋃
D alg

SD =
⋃
D alg

(⋃
I

SD,I

)
. (4)

into strata of the form SD,I . A choice of ordering of the simple objects of D0
662

determines a homeomorphism SD ∼= (H−)n under which the decomposition663

into strata corresponds to the the apparent decomposition of (H−)n with664

SD,I ∼= Hn−#I×R#I
<0 where H is the strict upper half plane in C. In particular665

each stratum SD,I is contractible.666

Consider the closure SD,I of a stratum. For I ⊆ K ⊆ {s1, . . . , sn} let667

∂KSD,I = {σ ∈ SD,I : ImZσ(s) = 0 ⇐⇒ s ∈ K},

so that SD,I =
⊔
K ∂KSD,I (as a set). For example ∂ISD,I = SD,I .668

Lemma 3.9. For any t-structure E, not necessarily algebraic, the intersec-669

tion SE ∩ ∂KSD,I is a union of components of ∂KSD,I , i.e. the heart of the670

stability condition remains constant in each component of ∂KSD,I . Each671

such component which lies in Stabalg(C) is a stratum SE,J for some E and672

subset J of the simple objects in E, with #J = #K.673

Proof. Suppose σn → σ in Stab(C). Then Pσ(0) = 〈0 6= c ∈ C : ϕ±n (c)→ 0〉674

by [53, §3]. If σn ∈ SD for all n then675

Pσ(0) =
〈
{0 6= d ∈ D0 : ϕ+

n (d)→ 0}, {0 6= d ∈ D0 : ϕ−n (d)→ 1}[−1]
〉
.

Furthermore, Dσ is the right tilt of D at the torsion theory676 〈
0 6= d ∈ D0 : ϕ−n (d) 6→ 0

〉
= ⊥

〈
0 6= d ∈ D0 : ϕ+

n (d)→ 0
〉
. (5)

Now suppose σ ∈ ∂KSD,I and (σn) is a sequence in SD,I with limit σ. If677

ϕ+
n (d)→ 0 for some 0 6= d ∈ D0 then Zn(d)→ Zσ(d) ∈ R>0. Hence d ∈ 〈K〉.678

For d ∈ 〈K〉 there are three possibilities:679

(1) ϕ±n (d)→ 0 and d ∈ Pσ(0);680

(2) ϕ±n (d)→ 1 and d ∈ Pσ(1);681

(3) ϕ−n (d)→ 0, ϕ+
n (d)→ 1, and d is not σ-semistable.682

Since the upper and lower phases of d are continuous in Stab(C), and the683

possibilities are distinguished by discrete conditions on the limiting phases,684

we deduce that the torsion theory (5) is constant for σ in a component of685

∂KSD,I . Hence the component is contained in SE for some t-structure E ,686

and SE ∩ ∂KSD,I is a union of components of ∂KSD,I as claimed.687
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Now suppose that σ ∈ SE,J ∩ ∂KSD,I for some algebraic E . On the one688

hand, 〈J〉 = Pσ(1) since σ ∈ SE,J , and therefore the triangulated closure of689

J is Pσ(Z) = 〈Pσ(ϕ) : ϕ ∈ Z〉. On the other hand, σ ∈ ∂KSD,I implies690

that Pσ(Z) is also the triangulated closure of the set K of simple objects.691

The image of the map on Grothendieck groups induced by the inclusion692

Pσ(Z) ↪→ C is therefore 〈 [t] : t ∈ J〉 = 〈 [s] : s ∈ K〉. Since the elements693

of J are simple objects in the heart of E , and those of K are simple objects694

in the heart of D, and both D and E are algebraic by assumption, this is a695

free subgroup of rank #J = #K.696

By a similar argument to that used for the first part of this proof697 〈
0 6= d ∈ D0 : ϕ−n (d)→ 1

〉
is constant for σ in a component of ∂KSD,I . It follows that Pσ(0) is constant698

in a component. By the first part E is fixed by the choice of component.699

As 〈J〉 = Pσ(1) = Pσ(0)[1] the subset J of simple objects in E is also fixed.700

So each component A of Stabalg(C) ∩ ∂KSD,I is contained in some stratum701

SE,J . The fact that we can perturb a stability condition by perturbing the702

charge allows us to deduce that ∂KSD,I is a codimension #K submanifold of703

Stab(C) and that SE,J is a codimension #J submanifold. Since #J = #K704

the component A must be an open subset of SE,J . But directly from the705

definition of ∂KSD,I one sees that the component A is also a closed subset706

and, since SE,J is connected, we deduce that A = SE,J as required. �707

Corollary 3.10. The decomposition (4) of Stabalg(C) satisfies the frontier708

condition, i.e. if SE,J ∩SD,I 6= ∅ then SE,J ⊆ SD,I . In particular, the closure709

of each stratum is a union of lower-dimensional strata. Moreover,710

SE,J ⊆ SD,I ⇒ E ≤ D ≤ LID ≤ LJE .

Proof. The frontier condition follows immediately from Lemma 3.9. Suppose711

that SE,J ⊆ SD,I , and choose σ in SE,J . Let σn → σ where σn ∈ SD,I . Then712

D≤0 = Pn(0,∞), D≤0
I = Pn[0,∞), E≤0 = Pσ(0,∞), and E≤0

J = Pσ[0,∞).713

Since Pn(0,∞) and Pn[0,∞) do not vary with n, and the minimal phase714

ϕ−τ (c) of any 0 6= c ∈ C is continuous in τ ,715

Pσ(0,∞) ⊆ Pn(0,∞) ⊆ Pn[0,∞) ⊆ Pσ[0,∞),

i.e. E ⊆ D ⊆ LID ⊆ LJE . Since all these t-structures are in the interval716

between E and E [−1] Remark 2.6 implies that E ≤ D ≤ LID ≤ LJE . �717

Lemma 3.11. Suppose D and E are algebraic t-structures, and that I and J718

are subsets of simple objects in the respective hearts. If E ≤ D ≤ LID ≤ LJE719

then SE,J ⊆ SD,I .720

Proof. Fix σ ∈ SE,J . Since E ≤ D ≤ LJE we know that D = LT E for some721

torsion structure T on E0, and moreover that T ≤0 ⊆ 〈J〉 = Pσ(1). Any722

simple object of D0 lies either in T ≤0[−1] or in T ≥1. Hence any simple723

object s of D0 lies in Pσ[0, 1], and s ∈ Pσ(0) ⇐⇒ s ∈ T ≤0[−1]. Moreover,724

if s ∈ I then s[−1] ∈ LID≤0 ⊆ LJE≤0 = Pσ[0,∞). Thus s ∈ I ⇒ s ∈ Pσ(1).725

Since the simple objects of D0 form a basis of KC we can perturb σ by per-726

turbing their charges. Given δ > 0 we can always make such a perturbation727

to obtain a stability condition τ with d(σ, τ) < δ for which Zτ (s) ∈ H∪R>0728
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for all simple s in D0, and Zτ (s) ∈ R>0 ⇐⇒ s ∈ Pσ(0). We can then rotate,729

i.e. act by some λ ∈ R, to obtain a stability condition ω with d(τ, ω) < δ730

such that Zτ (s) ∈ H for all simple s in D. We will prove that ω ∈ SD.731

Since the perturbation and rotation can be chosen arbitrarily small it will732

follow that σ ∈ SD. And since s ∈ Pσ(1) whenever s ∈ I we can refine this733

statement to σ ∈ SD,I as claimed.734

It remains to prove ω ∈ SD. For this it suffices to show that each simple735

s in D0 is τ -semistable. For then s is ω-semistable too, and the choice of736

Zω implies that s ∈ Pω(0, 1]. The hearts of distinct (bounded) t-structures737

cannot be nested, so this impliesD = Dω, or equivalently ω ∈ SD as required.738

Since E is algebraic Lemma 3.1 guarantees that there is some δ > 0 such739

that Pσ(0, 2δ] = ∅. Provided d(σ, τ) < δ we have740

Pσ(0, 1] = Pσ(2δ, 1] ⊆ Pτ (δ, 1 + δ] ⊆ Pσ(0, 1 + 2δ] = Pσ(0, 1].

It follows that the Harder–Narasimhan τ -filtration of any e ∈ E0 = Pσ(0, 1]741

is a filtration by subobjects of e in the abelian category Pσ(0, 1].742

Consider a simple s′ in D0 with s′[1] ∈ T ≤0. Since T ≤0 is a torsion743

theory any quotient of s′[1] is also in T ≤0, in particular the final factor in744

the Harder–Narasimhan τ -filtration, t say, is in T ≤0. Hence t[−1] ∈ D0 and745

[t] = −
∑
ms[s] ∈ KC where the sum is over the simple s in D0 and the746

ms ∈ N. Since ImZτ (s) ≥ 0 for each simple s it follows that ImZτ (t) =747

−
∑
ms ImZτ (s) ≤ 0. Combined with the fact that t is τ -semistable with748

phase in (δ, 1+δ] we have ϕ−τ (s′[1]) = ϕτ (t) ≥ 1. Hence s′ ∈ Pτ [1, 1+δ]. But749

s′[1] ∈ T ≤0 so Zτ (s′[1]) ∈ R<0 and therefore s′[1] ∈ Pτ (1), and in particular750

is τ -semistable.751

Now suppose s′ ∈ T ≥1. Since T ≥1 is a torsion-free theory in Pσ(0, 1]752

any subobject of s′ is also in T ≥1. In contrast, s′ cannot have any proper753

quotients in T ≥1: if it did we would obtain a short exact sequence754

0→ f → s→ f ′ → 0

in Pσ(0, 1] with f, f ′ ∈ T ≥1. This would also be short exact in D0, contra-755

dicting the fact that s′ is simple. It follows that any proper quotient of s′756

is in T ≤0. The argument of the previous paragraph then shows that either757

s′ is τ -semistable (with no proper semistable quotient), or s′ ∈ Pτ [1, 1 + δ].758

But ImZτ (s′) > 0 so the latter is impossible, and s′ must be τ -semistable.759

This completes the proof. �760

Definition 3.12. Let Int(C) be the poset whose elements are intervals in761

the poset Tilt(C) of t-structures of the form [D, LID]≤, where D is algebraic762

and I is a subset of the simple objects in the heart of D. We order these763

intervals by inclusion. We do not assume that LID is algebraic.764

Corollary 3.13. There is an isomorphism Int(C)op → P (Stabalg(C)) of765

posets given by the correspondence [D, LID]≤ ←→ SD,I . Components of766

Stabalg(C) correspond to components of Tiltalg(C).767

Proof. The existence of the isomorphism is direct from Corollary 3.10 and768

Lemma 3.11. In particular, components of these posets are in 1-to-1 corre-769

spondence. The second statement follows because components of Stabalg(C)770

correspond to components of P (Stabalg(C)), and components of Int(C) cor-771

respond to components of Tiltalg(C). �772
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Remark 3.14. Following Remark 2.8 we note an alternative description773

of Int(C) when C = D(A) is the bounded derived category of a finite-774

dimensional algebra A over an algebraically-closed field, and has finite global775

dimension. By [19, Lemma 4.1] Int(C)op ∪{0̂} ∼= P2(C) is the poset of silting776

pairs defined in [19, §3], where 0̂ is a formally adjoined minimal element.777

Hence, by the above corollary, P (Stabalg(C)) ∪ {0̂} ∼= P2(C).778

Remark 3.15. If D and E are not both algebraic then D ≤ E ≤ D[−1]779

need not imply SD ∩SE 6= ∅, see [52, p20] for an example. Thus components780

of Stabalg(C) may not correspond to components of Tilt(C). In general we781

have maps782

π0 Stabalg(C) π0 Stab(C)

π0Tiltalg(C) π0Tilt(C) π0T(C).

783

The bottom row is induced from the maps Tiltalg(C)→ Tilt(C)→ T(C), the784

vertical equality holds by the above corollary, and the vertical map exists785

because SD and SE in the same component of Stab(C) implies that D and786

E are related by a finite sequence of tilts [53, Corollary 5.2].787

Lemma 3.16. Suppose that Tiltalg(C) = Tilt(C) = T(C) are non-empty.788

Then Stabalg(C) = Stab(C) has a single component.789

Proof. It is clear that Stab(C) = Stabalg(C) 6= ∅. Let σ, τ ∈ Stab(C). Since790

Tiltalg(C) = Tilt(C) the associated t-structures Dσ and Dτ are algebraic, so791

that Dσ ⊆ Dτ [−j] for some j ∈ N by Lemma 2.9. Since Tiltalg(C) = T(C)792

this implies Dσ 4 Dτ [−j], and thus Dσ and Dτ are in the same component793

of Tiltalg(C). Hence by Corollary 3.13 σ and τ are in the same component794

of Stabalg(C) = Stab(C). �795

Lemma 3.17. Suppose C = D(A) for a finite-dimensional algebra A over796

an algebraically-closed field, with finite global dimension. Then Stabalg(C) is797

connected. Moreover, any component of Stab(C) other than that containing798

Stabalg(C) consists entirely of stability conditions for which the phases of799

semistable objects are dense in R.800

Proof. By Remark 2.8 Tiltalg(C) is the sub-poset of T(C) consisting of the801

algebraic t-structures. The proof that Stabalg(C) is connected is then the802

same as that of the previous result. For the last part note that if σ is a803

stability condition for which the phases of semistable objects are not dense804

then acting on σ by some element of C we obtain an algebraic stability805

condition. Hence σ must be in the unique component of Stab(C) containing806

Stabalg(C). �807

Remark 3.18. To show that Stab(C) is connected when C = D(A) as in808

the previous result it suffices to show that there are no stability conditions809

for which the phases of semistable objects are dense. For example, from810

Example 3.5, and the fact that the path algebra of an acyclic quiver is a811

finite-dimensional algebra of global dimension 1, we conclude that Stab(Q) is812

connected whenever Q is of ADE Dynkin, or extended Dynkin, type. (Later813
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we show that Stab(Q) is contractible in the Dynkin case; it was already814

known to be simply-connected by [43].)815

By Remark 3.6, the universal cover G = G̃L+
2 (R) acts freely on a com-816

ponent consisting of stability conditions for which the phases are dense. In817

contrast, it does not act freely on a component containing algebraic stability818

conditions since any such contains stability conditions for which the central819

charge is real, and these have non-trivial stabiliser. Hence, the G-action also820

distinguishes the component containing Stabalg(C) from the others, and if821

there is no component on which G acts freely Stab(C) must be connected.822

Suppose Stabalg(C) 6= ∅. Let Bases(KC) be the groupoid whose objects823

are pairs consisting of an ordered basis of the free abelian group KC and824

a subset of this basis, and whose morphisms are automorphisms relating825

these bases (so there is precisely one morphism in each direction between826

any two objects; we do not ask that it preserve the subsets). Fix an ordering827

of the simple objects in the heart of each algebraic t-structure. This fixes828

isomorphisms829

SD,I ∼= Hn−#I × R#I
<0 .

Regard the poset Int(C) as a category, and let FC : Int(C) → Bases(KC) be830

the functor taking [D, LID]≤ to the pair consisting of the ordered basis of831

classes of simple objects in D and the subset of classes of I. This uniquely832

specifies FC on morphisms.833

Proposition 3.19. The functor FC determines Stabalg(C) up to homeomor-834

phism as a space over Hom(KC,C).835

Proof. As sets there is a commutative diagram836

Stabalg(C)
∑
D,I Hn−#I × R#I

<0

Hom(KC,C)

β

π ∑
πD,I

837

where the map πD,I is determined from the pair FC

(
[D, LID]≤

)
of basis838

and subset, and β is defined using the bijections SD,I ∼= Hn−#I ×R#I
<0 . The839

subsets840

UE,J =
⋃

E≤D≤LID≤LJE
π−1
D,IU,

where U is open in Hom(KC,C), form a base for a topology. With this841

topology, β is a homeomorphism. To see this note that842

β−1UE,J =

 ⋃
E≤D≤LID≤LJE

SD,I

 ∩ π−1U

is the intersection of an open subset with an upward-closed union of strata,843

hence open. So β is continuous. Moreover, all sufficiently small open neigh-844

bourhoods of a point of Stabalg(C) have this form, so the bijection β is an845

open map, hence a homeomorphism. �846
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A more practical approach is to study the homotopy-type of Stabalg(C).847

In good cases this is encoded in the poset P (Stabalg(C)) ∼= Int(C)op.848

Recall that a stratification is locally-finite if any stratum is contained in849

the closure of only finitely many other strata, and closure-finite if the closure850

of each stratum is a union of finitely many strata.851

Lemma 3.20. The following are equivalent:852

(1) the stratification of Stabalg(C) is locally-finite;853

(2) the stratification of Stabalg(C) is closure-finite;854

(3) each interval [D,D[−1]]4 in Tiltalg(C) is finite.855

Proof. This follows easily from Corollary 3.13 which states that SE,J ⊆856

SD,I ⇐⇒ E ≤ D ≤ LID ≤ LJE . Thus the size of the interval [D,D[−1]]4857

is precisely858

#{E ∈ Tiltalg(C) : SE ∩ SD 6= ∅} = #{E ∈ Tiltalg(C) : SD ∩ SE[1] 6= ∅}.
The result follows because each SD is a finite union of strata, and each859

stratum is in some SD. �860

Proposition 3.21. The space Stabalg(C) of algebraic stability conditions,861

with the decomposition into the strata SD,I , can be given the structure of862

a regular, normal cellular stratified space. It is a regular, totally-normal863

CW-cellular stratified space precisely when Stabalg(C) is locally-finite.864

Proof. First we define a cell structure on SD,I . Denote the projection onto865

the central charge by π : Stab(C) → Hom(KC,C). Choose a basis for KC866

and identify Hom(KC,C) ∼= Cn ∼= R2n with 2n-dimensional Euclidean space.867

Note that868

SD,I ∩ Stabalg(C) ∼= π
(
SD,I ∩ Stabalg(C)

)
⊆ π (SD,I)

and that π (SD,I) is the real convex closed polyhedral cone869

C = {Z : ImZ(s) ≥ 0 for s 6∈ I and ImZ(s) = 0, ReZ(s) ≤ 0 for s ∈ I}
in Hom(KC,C). The projection π identifies the stratum SD,I with the (rel-870

ative) interior of C. By Corollary 3.10 SD,I ∩Stabalg(C) is a union of strata.871

Moreover, the projection of each boundary stratum872

SE,J ⊆ SD,I ∩ Stabalg(C)
is cut out by a finite set of (real) linear equalities and inequalities. Therefore873

we can subdivide C into a union of real convex polyhedral sub-cones in such874

a way that each stratum is identified with the (relative) interior of one of875

these sub-cones.876

Let A(1, 2) be the open annulus in Hom(KC,C) consisting of points of877

distance in the range (1, 2) from the origin, and A[1, 2] its closure. Then we878

have a continuous map879

SD,I ∩ Stabalg(C) π−→ C − {0} ∼= C ∩A(1, 2) ↪→ C ∩A[1, 2]

where C − {0} is identified with C ∩ A(1, 2) via a radial contraction. The880

subdivision of C into cones induces the structure of a compact curvilinear881

polyhedron on the intersection C∩A[1, 2]. A choice of homeomorphism from882

C∩A[1, 2] to a closed cell yields a map from SD,I∩Stabalg(C) to a closed cell883
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which is a homeomorphism onto its image. The inverse from this image is884

a characteristic map for the stratum SD,I , and the collection of these gives885

Stabalg(C) the structure of a regular, normal cellular stratified space.886

When the stratification of Stabalg(C) is locally-finite the cellular stratifica-887

tion is closure-finite by Lemma 3.20, and any point is contained in the inte-888

rior of a closed union of finitely many cells. This guarantees that Stabalg(C)889

has the weak topology arising from the cellular stratification, which is there-890

fore a CW-cellular stratification. We can also choose the above subdivision891

of C to have finitely many sub-cones. In this case the curvilinear polyhe-892

dron C ∩ A[1, 2] has finitely many faces, and therefore has a CW-structure893

for which the strata of SD,I ∩ Stabalg(C) are identified with certain open894

cells. It follows that the cellular stratification is totally-normal. Converse-895

ly, if the stratification is CW-cellular then it is closure-finite, and hence by896

Lemma 3.20 it is locally-finite. �897

Corollary 3.22. Suppose the stratification of Stabalg(C) is locally-finite and898

let n = rank(KC). Then we have the following:899

(1) There is a homotopy equivalence Stabalg(C) ' BP (Stabalg(C)).900

(2) BP (Stabalg(C)) is a CW-complex of dimension ≤ n901

(3) The integral homology groups Hi (Stabalg(C)) = 0 for i > n.902

Proof. The first claim is direct from Proposition 3.21 and Theorem 2.17.903

By Corollary 3.22 Stabalg(C) ' BP (Stabalg(C)). A chain in the poset904

P (Stabalg(C)) consists of a sequence of strata of Stabalg(C) of decreasing905

codimension, each in the closure of the next. Since the maximum codimen-906

sion of any stratum is n, the length of any chain is less than or equal to907

n. Hence BP (Stabalg(C)) is a CW-complex of dimension ≤ n, and the last908

claim also follows. �909

Remark 3.23. If Stabalg(C) is locally-finite then any union U of strata of910

Stabalg(C) is a regular, totally-normal CW-cellular stratified space. Hence911

there is a homotopy equivalence U ' BP (U) and Hi(U) = 0 for i > n =912

rank(KC).913

Example 3.24. We continue Example 3.8. The ‘Kronecker heart’914

〈O,O(−1)[1]〉
of D(P1) is algebraic. There are infinitely many torsion structures on this915

heart such that the tilt is a t-structure with heart isomorphic to the Kro-916

necker heart [52, §3.2]. It quickly follows from Corollary 3.13 that the strat-917

ification of Stabalg(P1) is neither closure-finite nor locally-finite — see [52,918

Figure 5] for a diagram of the codimension 2 strata in the closure of the919

stratum corresponding to the Kronecker heart.920

3.2. More on the poset of strata. Corollary 3.22 shows that if Stabalg(C)921

is closure-finite and locally-finite, then its homotopy-theoretic properties are922

encoded in the poset P (Stabalg(C)). In the remainder of this section we923

elucidate some of the latter’s good properties.924

The assumptions that Stabalg(C) is locally-finite and closure-finite are925

respectively equivalent to the statements that the unbounded closed intervals926

[S,∞) and (−∞, S] are finite for each S ∈ P (Stabalg(C)). It follows of927
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course that closed bounded intervals are also finite, but in fact the latter928

holds without these assumptions.929

Lemma 3.25. Suppose SE,J ⊆ SD,I . Then the closed interval [SE,J , SD,I ]930

in P (Stabalg(C)) is isomorphic to a sub-poset of [I,K]op. Here the subset K931

is uniquely determined by the requirement that SE,J ⊆ ∂KSD,I , and subsets932

of the simple objects in D0 are ordered by inclusion.933

Proof. Suppose SE,J ⊆ ∂KSD,I and fix σ ∈ SE,J . Using the fact that Stab(C)934

is locally isomorphic to Hom(KC,C) we can choose an open neighbourhood935

U of σ in Stab(C) so that U ∩ ∂LSD,I is non-empty and connected for any936

subset I ⊆ L ⊆ K, and empty when L 6⊆ K. It follows that U meets a937

unique component of ∂LSD,I for each I ⊆ L ⊆ K. The strata in [SE,J , SD,I ]938

correspond to those components for which the heart is algebraic. Since939

∂LSD,I ⊆ ∂L′SD,I ⇐⇒ L′ ⊆ L the result follows. �940

We have seen that Stabalg(C) need be neither open nor closed as a subset941

of Stab(C). The next two results show that whether or not it is locally942

closed is closely related to the structure of the bounded closed intervals in943

P (Stabalg(C)).944

Lemma 3.26. The first of the statements below implies the second and945

third, which are equivalent. When Stabalg(C) is locally-finite all three are946

equivalent.947

(1) The subset Stabalg(C) is locally closed as a subspace of Stab(C).948

(2) The inclusion Stabalg(C) ∩ SD ↪→ SD is open for each algebraic D.949

(3) For each pair of strata SE,J ⊆ SD,I there is an isomorphism950

[SE,J , SD,I ] ∼= [I,K]op,

where K is uniquely determined by the requirement that SE,J ⊆951

∂KSD,I .952

Proof. Suppose Stabalg(C) is locally closed. Let σ ∈ Stabalg(C) ∩ SD where953

D is algebraic. Then there is a neighbourhood U of σ in Stab(C) such that954

U ∩ Stabalg(C) is closed in U . Then U ∩ SD ⊆ U ∩ Stabalg(C) so955

U ∩ SD ⊆ U ∩ Stabalg(C)
and Stabalg(C) ∩ SD is open in SD.956

Now suppose Stabalg(C)∩SD is open in SD. Then we can choose a neigh-957

bourhood U of σ so that U ∩ ∂LSD,I is non-empty and connected for each958

I ⊆ L ⊆ K and, moreover, U ∩ SD ⊆ Stabalg(C). It follows, as in the proof959

of Lemma 3.25, that [SE,J , SD,I ] ∼= [I,K]op.960

Conversely, if [SE,J , SD,I ] ∼= [I,K]op then given a neighbourhood U with961

U ∩ ∂LSD,I non-empty and connected for each I ⊆ L ⊆ K we see that962

it meets only components of the ∂LSD,I which are in Stabalg(C). Hence963

Stabalg(C) ∩ SD is open in SD.964

Finally, assume the stratification of Stabalg(C) is locally-finite and that965

Stabalg(C) ∩ SD ↪→ SD is open for each algebraic D. Fix σ ∈ Stabalg(C).966

There are finitely many algebraic D with σ ∈ SD. There is an open neigh-967

bourhood U of σ in Stab(C) such that968

U ∩ SD ⊆ SD ∩ Stabalg(C)
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for any algebraic D (the left-hand side is empty for all but finitely many969

such). Hence970

U ∩Stabalg(C) = U ∩
⋃
D alg

SD ⊆ U ∩
⋃
D alg

SD =
⋃
D alg

U ∩SD ⊆ U ∩Stabalg(C)

and so U ∩Stabalg(C) =
⋃
D alg U ∩SD. The latter is a finite union of closed971

subsets of U , hence closed in U . Therefore each σ ∈ Stabalg(C) has an open972

neighbourhood U 3 σ such that U ∩ Stabalg(C) is closed in U . It follows973

that Stabalg(C) is locally closed. �974

Corollary 3.27. Suppose Stabalg(C) is locally closed as a subspace of Stab(C).975

Then P (Stabalg(C)) is pure of length n = rank(KC).976

Proof. The stratum SD,I contains SD,{s1,...,sn} in its closure, and is in the977

closure of SD,∅. It follows that any maximal chain in P (Stabalg(C)) is in a978

closed interval of the form [SD,{s1,...,sn}, SE,∅]. As Stab(C) is locally closed979

this is isomorphic to the poset of subsets of an n-element set by Lemma 3.26.980

This implies P (Stabalg(C)) is pure of length n. �981

Example 3.28. Recall Examples 3.8 and 3.24. The subspace Stabalg(P1) is982

not locally closed: if it were then Stab(P1)− Stabalg(P1) = A ∪ U for some983

closed A and open U . This subset consists of those stability conditions984

for which the phases of semistable objects accumulate at Z ⊆ R, and this985

has empty interior. Hence the only possibility is that U = ∅, in which986

case Stabalg(P1) would be open. This is not the case, so Stabalg(P1) cannot987

be locally closed. Nevertheless, from the explicit description of stability988

conditions in [38] one can see that the poset of strata is pure (of rank 2),989

and that the second two conditions of Lemma 3.26 are satisfied.990

4. Finite-type components991

4.1. The main theorem. We say a t-structure is of finite tilting type if992

it is algebraic and has only finitely many torsion-structures in its heart.993

A t-structure has finite tilting type if and only if it is algebraic and the994

interval [D,D[−1]]≤ in Tilt(C) is finite. We say a component Tilt◦(C) is of995

finite tilting type if each t-structure in it has finite tilting type. It follows996

from Lemmas 2.13 and 2.14 that a finite tilting type component Tilt◦(C) is997

a lattice, and that closed bounded intervals in it are finite.998

Lemma 4.1. Suppose that the set S of t-structures obtained from some D999

by finite sequences of simple tilts consists entirely of t-structures of finite1000

tilting type. Then S is (the underlying set of) a finite tilting type component1001

of Tilt(C). Moreover, every finite tilting type component arises in this way.1002

Proof. If D has finite tilting type then any tilt of D can be decomposed into1003

a finite sequence of simple tilts. It follows that S is a component of Tilt(C)1004

as claimed. It is clearly of finite tilting type. Conversely if Tilt◦(C) is a finite1005

tilting type component, and D ∈ Tilt◦(C), then every t-structure obtained1006

from D by a finite sequence of simple tilts is algebraic, and has finite tilting1007

type. Hence D contains the set S, and by the first part S = Tilt◦(C). �1008
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If the heart of a t-structure contains only finitely many isomorphism class-1009

es of indecomposable objects, then it is of finite tilting type (because a1010

torsion theory is determined by the indecomposable objects it contains).1011

Therefore, whilst we do not use it in this paper, the following result may be1012

useful in detecting finite tilting type components, particularly if up to au-1013

tomorphism there are only finitely many t-structures which can be reached1014

from D by finite sequences of simple tilts. In very good cases — for in-1015

stance when tilting at a 2-spherical simple object s with the property that1016

Homi
C(s, s

′) = 0 for i 6= 1 for any other simple object s′ — the tilted t-1017

structure itself is obtained by applying an automorphism of C and hence1018

inherits the property of being algebraic of finite tilting type. A similar sit-1019

uation arises if D is an algebraic t-structure in which all simple objects are1020

rigid, i.e. have no self extensions. In this case [33, Proposition 5.4] states1021

that all simple tilts of D are also algebraic.1022

Lemma 4.2. Suppose that D is a t-structure on a triangulated category C1023

whose heart is a length category with only finitely many isomorphism classes1024

of indecomposable objects. Then any simple tilt of D is algebraic.1025

Proof. It suffices to prove that the claim holds for any simple right tilt, since1026

the simple left tilts are shifts of these. Since there are only finitely many1027

indecomposable objects in D0 there are in particular only finitely many1028

simple objects. Let these be s1, . . . , sn and consider the right tilt at s1. Let1029

σ ∈ SD be the unique stability condition with Zσ(s1) = i and Zσ(sj) = −11030

for j = 2, . . . , n. Let τ be obtained by acting on σ by −1/2 ∈ C. Then Dτ1031

is the right tilt of Dσ at s1. As there are only finitely many indecomposable1032

objects in D0 the set of ϕ ∈ R such that Pσ(ϕ) 6= ∅ is discrete. The same1033

is therefore true for τ . It follows that Pτ (0, ε) = ∅ for some ε > 0. The1034

component of Stab(C) containing σ and τ is full since σ is algebraic. Hence1035

by Lemma 3.1 the stability condition τ is algebraic too. �1036

Lemma 4.3. Let Tilt◦(C) be a finite tilting type component of Tilt(C). Then1037

Stab◦(C) =
⋃

D∈Tilt◦(C)

SD (6)

is a component of Stab(C).1038

Proof. Clearly Tilt◦(C) is also a component of Tiltalg(C). By Corollary 3.131039

there is a corresponding component Stab◦alg(C) of Stabalg(C) given by the1040

RHS of (6). Let Stab◦(C) be the unique component of Stab(C) containing1041

Stab◦alg(C). Recall from [53, Corollary 5.2] that the t-structures associated to1042

stability conditions in a component of Stab(C) are related by finite sequences1043

of tilts. Thus, each stability condition in Stab◦(C) has associated t-structure1044

in Tilt◦(C). In particular, the t-structure is algebraic and Stab◦alg(C) =1045

Stab◦(C) is actually a component of Stab(C). �1046

A finite-type component Stab◦(C) of Stab(C) is one which arises in this1047

way from a finite tilting type component Tilt◦(C) of Tilt(C).1048

Lemma 4.4. Suppose Stab◦(C) is a finite-type component. The stratifica-1049

tion of Stab◦(C) is locally-finite and closure-finite.1050
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Proof. This is immediate from Lemma 3.20 and the obvious fact that the in-1051

terval [Dσ,Dσ[−1]]4 of algebraic tilts is finite when the interval [Dσ,Dσ[−1]]≤1052

of all tilts is finite. �1053

Corollary 4.5. Suppose Stab◦(C) is a finite-type component. There is a1054

homotopy equivalence Stab◦(C) ' BP (Stab◦(C)), in particular Stab◦(C) has1055

the homotopy-type of a CW-complex of dimension dimC Stab◦(C).1056

Proof. This is immediate from Lemma 4.4 and Corollary 3.22. �1057

We now prove that finite-type components are contractible. Our approach1058

is modelled on the proof of the simply-connectedness of the stability spaces1059

of representations of Dynkin quivers [43, Theorem 4.7]. The key is to show1060

that certain ‘conical unions of strata’ are contractible.1061

The open star S∗D,I of a stratum SD,I is the union of all strata contain-1062

ing SD,I in their closure. An open star is contractible: S∗D,I ' BP (S∗D,I)1063

by Remark 3.23, and, since P (S∗D,I) is a poset with lower bound SD,I , its1064

classifying space is contractible.1065

Definition 4.6. For a finite set F of t-structures in Tilt◦(C) let the cone1066

C(F ) = {(E , J) : F 4 E 4 LJE 4 supF for some F ∈ F}.

Let V (F ) =
⋃

(E,J)∈C(F ) SE,J be the union of the corresponding strata; we1067

call such a subspace conical. For example, V ({D}) = SD,∅. More generally,1068

if F = {D, LsD : s ∈ I} then supF = LID and V (F ) = S∗D,I .1069

Remark 4.7. If (E , J) ∈ C(F ) then inf F 4 E 4 supF . Since [inf F , supF ]41070

is finite, and there are only finitely many possible J for each E , it follows1071

that C(F ) is a finite set. Let c(F ) = #C(F ) be the number of elements,1072

which is also the number of strata in V (F ).1073

Note that V (F ) is an open subset of Stab◦(C) since SD,I ⊆ V (F ) and1074

SD,I ⊆ SE,J implies1075

F 4 D 4 E 4 LJE 4 LID 4 supF

for some F ∈ F so that SE,J ⊆ V (F ) too. In particular SD,I ⊆ V (F ) implies1076

S∗D,I ⊆ V (F ). It is also non-empty since it contains SsupF,∅.1077

Proposition 4.8. The conical subspace V (F ) is contractible for any finite1078

set F ⊆ Tilt◦(C).1079

Proof. Let C = C(F ), c = c(F ), and V = V (F ). We prove this result by1080

induction on the number of strata c. When c = 1 we have C = {(supF, ∅)}1081

so that V = SsupF,∅ is contractible as claimed. Suppose the result holds for1082

all conical subspaces with strictly fewer than c strata.1083

Recall from Remark 3.23 that V ' BP (V ) so that V has the homotopy-1084

type of a CW-complex. Hence it suffices, by the Hurewicz and Whitehead1085

Theorems, to show that V is simply-connected and that the integral homol-1086

ogy groups Hi(V ) = 0 for i > 0. Choose (D, I) ∈ C such that1087

(1) @ (E , J) ∈ C with E ≺ D;1088

(2) (D, I ′) ∈ C ⇐⇒ I ′ ⊆ I.1089
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It is possible to choose such a D since C is finite; note that D is necessarily1090

in F . It is then possible to choose such an I because if SD,I′ , SD,I′′ ⊆ V1091

then LI′D, LI′′D 4 supF which implies LI′∪I′′D = LI′D ∨ LI′′D 4 supF .1092

The conical subset V has an open cover V = S∗D,I∪(V −SD). We remarked1093

above that S∗D,I is contractible. In addition, by the choice of D, the subspace1094

V − SD = V (F ′) is also conical, with1095

F ′ = F ∪ {LsD : s ∈ D◦ simple, LsD 4 supF} − {D}.
Since V (F ′) has fewer strata than V it is contractible by the inductive1096

hypothesis. Finally, the intersection S∗D,I ∩ (V − SD) = S∗D,I − SD is the1097

conical subspace1098 ⋃
D≺E4LJE4LID

SE,J = V ({LsD : s ∈ I}) ,

which has fewer strata than V . Hence this too is contractible by the induc-1099

tive hypothesis. It follows that V is simply-connected by the van Kampen1100

Theorem, and that Hi(V ) = 0 for i > 0 by the Mayer–Vietoris sequence for1101

the open cover by S∗D,I and V −SD. Hence V is contractible by the Hurewicz1102

and Whitehead Theorems. This completes the inductive step. �1103

Theorem 4.9. Suppose Stab◦(C) is a finite-type component. Then Stab◦(C)1104

is contractible.1105

Proof. By Lemma 4.4 Stab◦(C) is a locally-finite stratified space. Thus a1106

singular integral i-cycle in Stab◦(C) has support meeting only finitely many1107

strata, say the support is contained in {SF : F ∈ F}. Therefore the cy-1108

cle has support in V (F ), and so is null-homologous whenever i > 0 by1109

Proposition 4.8. This shows that Hi(Stab◦(C)) = 0 for i > 0. An anal-1110

ogous argument shows that Stab◦(C) is simply-connected. Since Stab◦(C)1111

has the homotopy type of a CW-complex it follows from the Hurewicz and1112

Whitehead Theorems that Stab◦(C) is contractible. �1113

We discuss two classes of examples of triangulated categories in which each1114

component of the stability space is of finite-type, and hence is contractible.1115

Each class contains the bounded derived category of finite-dimensional rep-1116

resentations of ADE Dynkin quivers, so these can be seen as two ways to1117

generalise from these.1118

4.2. Locally-finite triangulated categories. We recall the definition of1119

locally-finite triangulated category from [35]. Let C be a triangulated cat-1120

egory. The abelianisation Ab(C) of C is the full subcategory of functors1121

F : Cop → Ab fitting into an exact sequence1122

HomC(−, c)→ HomC
(
−, c′

)
→ F → 0

for some c, c′ ∈ C. The Yoneda embedding C → Ab(C) is the universal1123

cohomological functor on C, in the sense that any cohomological functor to1124

an abelian category factors, essentially uniquely, as the Yoneda embedding1125

followed by an exact functor. A triangulated category1 C is locally-finite if1126

idempotents split and its abelianisation Ab(C) is a length category. The1127

following ‘internal’ characterisation is due to Auslander [5, Theorem 2.12].1128

1Our default assumption that all categories are essentially small is necessary here.
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Proposition 4.10. A triangulated category C in which idempotents are split1129

is locally-finite if and only if for each c ∈ C1130

(1) there are only finitely many isomorphism classes of indecomposable1131

objects c′ ∈ C with HomC(c
′, c) 6= 0;1132

(2) for each indecomposable c′ ∈ C, the EndC(c
′)-module HomC(c

′, c) has1133

finite length.1134

The category C is locally-finite if and only if Cop is locally-finite so that1135

the above properties are equivalent to the dual ones.1136

Locally-finite triangulated categories have many good properties: they1137

have a Serre functor, equivalently by [45] they have Auslander–Reiten tri-1138

angles, the inclusion of any thick subcategory has both left and right ad-1139

joints, any thick subcategory, or quotient thereby, is also locally-finite. See1140

[35, 3, 54] for further details.1141

Lemma 4.11 (cf. [18, Proposition 6.1]). Suppose that C is a locally-finite1142

triangulated category C with rankKC < ∞. Then any t-structure on C is1143

algebraic, with only finitely many isomorphism classes of indecomposable1144

objects in its heart.1145

Proof. Let d be an object in the heart of a t-structure, and suppose it has1146

infinitely many pairwise non-isomorphic subobjects. Write each of these1147

as a direct sum of the indecomposable objects with non-zero morphisms to1148

d. Since there are only finitely many isomorphism classes of such indecom-1149

posable objects, there must be one of them, c say, such that c⊕k appears in1150

these decompositions for each k = 1, 2, . . .. Hence c⊕k ↪→ d for each k, which1151

contradicts the fact that HomC(c, d) has finite length as an EndC(c)-module1152

(because it has a filtration by {α : c→ d : α factors through c⊕k → d} for1153

k ∈ N). We conclude that any object in the heart has only finitely many1154

pairwise non-isomorphic subobjects. It follows that the heart is a length1155

category. Since rankKC <∞ it has finitely many simple objects, and so is1156

algebraic.1157

To see that there are only finitely many indecomposable objects (up to1158

isomorphism) note that any indecomposable object in the heart has a simple1159

quotient. There are only finitely many such simple objects, and each of these1160

admits non-zero morphisms from only finitely many isomorphism classes of1161

indecomposable objects. �1162

Remark 4.12. Since a torsion theory is determined by its indecomposable1163

objects it follows that a t-structure on C as above has only finitely many1164

torsion structures on its heart, i.e. it has finite tilting type.1165

Corollary 4.13. Suppose C is a locally-finite triangulated category and that1166

rankKC <∞. Then the stability space is a (possibly empty) disjoint union1167

of finite-type components, each of which is contractible.1168

Proof. Combining Lemma 4.11 with Lemma 4.1 shows that each compo-1169

nent of the tilting poset is of finite tilting type. The result follows from1170

Theorem 4.9. �1171

Example 4.14. Let Q be a quiver whose underlying graph is an ADE1172

Dynkin diagram, and suppose the field k is algebraically-closed. Then D(Q)1173
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is a locally-finite triangulated category [30, §2]. The space Stab(Q) of sta-1174

bility conditions is non-empty and connected (by Remark 3.18 or the results1175

of [31]), and hence by Corollary 4.13 is contractible. This affirms the first1176

part of [43, Conjecture 5.8]. Previously Stab(Q) was known to be simply-1177

connected [43, Theorem 4.7].1178

Example 4.15. For m ≥ 1 the cluster category Cm(Q) = D(Q)/Σm is1179

the quotient of D(Q) by the automorphism Σm = τ−1[m − 1], where τ is1180

the Auslander–Reiten translation. Each Cm(Q) is locally-finite [35, §2], but1181

Stab(Cm(Q)) = ∅ because there are no t-structures on Cm(Q).1182

Remark 5.6 of [43] proposes that Stab(ΓNQ) /Br (ΓNQ) should be consid-1183

ered as an appropriate substitute for the stability space of CN−1(Q). Our1184

results show that the former is homotopy equivalent to the classifying space1185

of the braid group Br (ΓNQ), which might be considered as further support1186

for this point of view.1187

4.3. Discrete derived categories. This class of triangulated categories1188

was introduced and classified by Vossieck [50]; we use the more explicit1189

classification in [9]. The contractibility of the stability space, Corollary 4.171190

below, follows from the results of this paper combined with the detailed1191

analysis of t-structures on these categories in [18]. [19, Theorem 7.1] provides1192

an independent proof of the contractibility of BInt(C) for a discrete derived1193

category C, using the interpretation of Int(C) in terms of the poset P2(C) of1194

silting pairs (Remark 3.14). Combining this with Corollary 3.22 one obtains1195

an alternative proof [19, Theorem 8.10] of the contractibility of the stability1196

space.1197

Let A be a finite-dimensional associative algebra over an algebraically-1198

closed field. Let D(A) be the bounded derived category of finite-dimensional1199

right A-modules.1200

Definition 4.16. The derived category D(A) is discrete if for each map (of1201

sets) µ : Z→ K (D(A)) there are only finitely many isomorphism classes of1202

objects d ∈ D(A) with [H id] = µ(i) for all i ∈ Z.1203

The derived category D(Q) of a quiver whose underlying graph is an1204

ADE Dynkin diagram is discrete. [9, Theorem A] states that if D(A) is1205

discrete but not of this type then it is equivalent as a triangulated category1206

to D (Λ(r, n,m)) for some n ≥ r ≥ 1 and m ≥ 0 where Λ(r, n,m) is the1207

path algebra of the bound quiver in Figure 1. Indeed, D(A) is discrete if1208

and only if A is tilting-cotilting equivalent either to the path algebra of an1209

ADE Dynkin quiver or to one of the Λ(r, n,m).1210

Discrete derived categories form an interesting class of examples as they1211

are intermediate between the locally-finite case considered in the previous1212

section and derived categories of tame representation type algebras. More1213

precisely, the distinctions are captured by the Krull–Gabriel dimension of1214

the abelianisation, which measures how far the latter is from being a length1215

category. In particular, KGdim (Ab(C)) ≤ 0 if and only if C is locally-finite1216

[36]. Krause conjectures [36, Conjecture 4.8] that KGdim (Ab (D(A))) = 01217

or 1 if and only if D(A) is discrete. As evidence he shows that for the full1218

subcategory proj k[ε] of finitely generated projective modules over the al-1219

gebra k[ε] of dual numbers, KGdim (Ab (Db(proj k[ε]))) = 1. The bounded1220



CONTRACTIBLE STABILITY SPACES AND FAITHFUL BRAID GROUP ACTIONS 31

β1 βm

γ1

γ2

γn−1

γn

Figure 1. The algebra Λ(r, n,m) is the path algebra of the
quiver Q(r, n,m) above with relations γn−r+1γn−r+2 = · · · =
γnγ1 = 0.

derived category D(proj k[ε]) is discrete — there are infinitely many inde-1221

composable objects, even up to shift, but no continuous families — but1222

not locally-finite. Finally, by [24, Theorem 4.3] KGdim (D(A)) = 2 when1223

A is a tame hereditary Artin algebra, for example the path algebra of the1224

Kronecker quiver Ã1.1225

Since the Dynkin case was covered in the previous section we restrict to1226

the categories D (Λ(r, n,m)). These have finite global dimension if and only1227

if r < n, and we further restrict to this situation.1228

Corollary 4.17 (cf. [19, Theorem 8.10]). Suppose C = D (Λ(r, n,m)), where1229

n > r ≥ 1 and m ≥ 0. Then the stability space Stab(C) is contractible.1230

Proof. By [18, Proposition 6.1] any t-structure on C is algebraic with only1231

finitely many isomorphism classes of indecomposable objects in its heart.1232

Lemma 4.1 then shows that each component of the tilting poset has finite-1233

type. By Theorem 4.9 Stab(C) = Stabalg(C), and is a union of contractible1234

components. By Lemma 3.17 Stabalg(C) is connected. Hence Stab(C) is1235

contractible. �1236

Example 4.18. The space of stability conditions in the simplest case,1237

(n, r,m) = (2, 1, 0), was computed in [52] and shown to be C2. (The catego-1238

ry was described geometrically in [52], as the constructible derived category1239

of P1 stratified by a point and its complement, but it is known that in this1240

case the constructible derived category is equivalent to the derived category1241

of the perverse sheaves, and these have a nearby and vanishing-cycle de-1242

scription as representations of the quiver Q(2, 1, 0) with relation γ2γ1 = 0.)1243

5. The Calabi-Yau-N-category of a Dynkin quiver1244

5.1. The category. In this section we consider in detail another important1245

example of a finite-type component, associated to the Ginzburg algebra of an1246

ADE Dynkin quiver. We also address the related question of the faithfulness1247

of the braid group action on the associated derived category.1248

Let Q be a quiver whose underlying unoriented graph is an ADE Dynkin1249

diagram. Fix N ≥ 2 and let ΓNQ be the associated Ginzburg algebra of de-1250

gree N , let D (ΓNQ) be the bounded derived category of finite-dimensional1251

representations of ΓNQ over an algebraically-closed field k, and let Stab(ΓNQ)1252

be the space of stability conditions on D (ΓNQ). See [30, §7] for the details1253

of the construction of the differential-graded algebra ΓNQ and its derived1254
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category, and for a proof that D (ΓNQ) is a Calabi–Yau-N category. (Recall1255

that a k-linear triangulated category C is Calabi–Yau-N if, for any objects1256

c, c′ in C we have a natural isomorphism1257

S : Hom•C
(
c, c′
) ∼−→ Hom•C

(
c′, c
)∨

[N ]. (7)

Here the graded dual of a graded vector space V = ⊕i∈ZVi[i] is defined by1258

V ∨ = ⊕i∈ZV ∗i [−i].) By [1], Tilt(ΓNQ) and Stab(ΓNQ) are connected.1259

Corollary 5.1. The stability space Stab(ΓNQ) is of finite-type, and hence1260

is contractible.1261

Proof. By [33, Corollary 8.4] each t-structure obtained from the standard1262

one, whose heart is the representations of ΓNQ, by a finite sequence of1263

simple tilts is algebraic. [43, Lemma 5.1 and Proposition 5.2] show that1264

each of these t-structures is of finite tilting type. Hence by Lemma 4.11265

Tilt(ΓNQ) has finite tilting type, and therefore by Theorem 4.9 Stab(ΓNQ)1266

is contractible. �1267

This affirms the second part of [43, Conjecture 5.8].1268

5.2. The braid group. An object s of a k-linear triangulated category is1269

N -spherical if Hom•C(s, s)
∼= k⊕ k[−N ] and (7) holds functorially for c = s1270

and any c′ in C. The twist functor ϕs of a spherical object s was defined in1271

[46] to be1272

ϕs(c) = Cone (s⊗Hom•(s, c)→ c) (8)

with inverse ϕ−1
s (c) = Cone

(
c→ s⊗Hom•(s, c)∨

)
[−1]. Denote by DΓQ the1273

canonical heart in D (ΓNQ), which is equivalent to the module category of Q.1274

Each simple object in DΓQ is N -spherical cf. [33, § 7.1]. The braid group or1275

spherical twist group Br (ΓNQ) of D (ΓNQ) is the subgroup of AutD (ΓNQ)1276

generated by {ϕs : s is simple in DΓQ}. The lemma below follows directly1277

from the definition of spherical twists.1278

Lemma 5.2. Let C be a k-linear triangulated category, ϕs a spherical twist,1279

and F any auto-equivalence. Then F ◦ ϕs = ϕF (s) ◦ F .1280

An important consequence is that two twists ϕs and ϕt by simple objects1281

s and t satisfy the1282

• braid relation ϕsϕtϕs = ϕtϕsϕt if and only if Hom•(s, t) ∼= k[−j] for1283

some j ∈ Z;1284

• commutativion relation ϕsϕt = ϕtϕs if and only if Hom•(s, t) = 0;1285

It follows that there is a surjection1286

ΦN : Br (Q)� Br (ΓNQ) . (9)

from the braid group Br (Q) of the underlying Dynkin diagram, which has1287

a generator bi for each vertex i and relations bibjbi = bjbibj when there is1288

an edge between vertices i and j, and bibj = bjbi otherwise. We will show1289

that ΦN is an isomorphism for any N ≥ 2. We deal with the cases when1290

N = 2, and when Q has type A (for any N ≥ 2) below; these are already1291

known but we obtain new proofs.1292

Let g be the finite-dimensional complex simple Lie algebra associated1293

to the underlying Dynkin diagram of Q. Let h ⊆ g denote the Cartan1294
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subalgebra and let hreg ⊆ h be the complement of the root hyperplanes in1295

h, i.e.1296

hreg = {θ ∈ h : θ(α) 6= 0 for all α ∈ Λ},
where Λ is a set of simple roots, i.e. a basis of h such that each root can1297

be written as an integral linear combination of basis vectors with either all1298

non-negative or all non-positive coefficients. The Weyl group W is generated1299

by reflections in the root hyperplanes and acts freely on hreg.1300

Theorem 5.3 ([14, Theorem 1.1]). Let Q be an ADE Dynkin quiver. Then1301

Stab(Γ2Q) is a covering space of hreg/W and Br(Γ2Q) preserves this com-1302

ponent and acts as the group of deck transformations.1303

It is well-known that the fundamental group of hreg/W is the braid group1304

Br (Q) associated to the quiver Q. We therefore obtain new proofs for the1305

following two theorems, by combining Theorem 5.3 and Corollary 5.1.1306

Theorem 5.4 ([11, Theorem 1.1]). Let Q be an ADE Dynkin quiver. Then1307

Φ2 : Br (Q)→ Br(Γ2Q) is an isomorphism.1308

Theorem 5.5 ([20]). The universal cover of hreg/W is contractible.1309

Ikeda has extended Bridgeland–Smith’s work relating stability conditions1310

with quadratic differentials to obtain the following result.1311

Theorem 5.6 ([26, Theorem 1.1]). Let Q be a Dynkin quiver of type A.1312

Then there is an isomorphism Stab(ΓNQ) /Br (ΓNQ) ∼= hreg/W of complex1313

manifolds.1314

Combining this with Corollary 5.1, we obtain a new proof of1315

Theorem 5.7 ([46]). Let Q be a quiver of type A. Then ΦN : Br (Q) →1316

Br (ΓNQ) is an isomorphism.1317

Unfortunately we do not yet know enough about the geometry of the1318

stability spaces for the Calabi–Yau-N categories constructed from Dynkin1319

quivers of other types to deduce the analogous faithfulness of the braid group1320

in those cases. In §6 we give an alternative proof of faithfulness which works1321

for all Dynkin quivers (Corollary 6.14), which also provides a new proof of1322

Theorem 5.5.1323

Although not phrased in these terms, the above proof is equivalent to1324

showing that the action of Br (Q) on the combinatorial model Int◦(D (ΓNQ))1325

of Stab(ΓNQ) is free. The alternative proof in §6 proceeds by showing instead1326

that the action of Br (Q) on Tilt(ΓNQ) is free.1327

6. The braid action is free1328

In this section we show that the action of the braid group on Tilt(ΓNQ)1329

via the surjection ΦN : Br (Q) → Br (ΓNQ) is free. Our strategy uses the1330

isomorphism Φ2 : Br (Q) → Br (Γ2Q) from Theorem 5.6 as a key step, i.e.1331

we bootstrap from the N = 2 case. Therefore we assume N ≥ 3 unless1332

otherwise specified.1333

For ease of reading we will usually omit ΦN from our notation when1334

discussing the action, writing simply b · D for ΦN (b)D where b ∈ Br (Q) and1335

D ∈ Tilt(ΓNQ).1336
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6.1. Local Structure of Tilt(ΓNQ). We describe the intervals from D to1337

L〈si,sj〉D where si and sj are distinct simple objects of the heart of some D.1338

It will be convenient to consider Tilt(ΓNQ) as a category, with objects the1339

elements of the poset and with a unique morphism D → E whenever D ≤ E .1340

The following lemma is the analogue for D (ΓNQ) of [43, Lemma 4.3].1341

Lemma 6.1. Suppose si and sj are distinct simple objects of the heart of
a t-structure D ∈ Tilt(ΓNQ). Then there is either a square or pentagonal
commutative diagram of the form

LsiD

&&
D

;;

##

L〈si,sj〉D

LsjD

88

LsiD // D′

��

D

;;

##
LsjD // L〈si,sj〉D

(10)

in Tilt(ΓNQ), where we may need to exchange i and j to get the precise1342

diagram in the pentagonal case, and the t-structure D′ is uniquely specified1343

by the diagram. The square occurs when Hom1(si, sj) = 0 = Hom1(sj , si)1344

and the pentagon occurs when Hom1(si, sj) = 0 and Hom1(sj , si) ∼= k.1345

Proof. First, we claim that either Hom1(si, sj) = 0 = Hom1(sj , si) or that
Hom1(si, sj) = 0 and Hom1(sj , si) ∼= k. Let the set of simple objects in the
heart of D be {s1, . . . , sn}. By [33, Corollary 8.4 and Proposition 7.4], there
is a t-structure E in D(Q) such that the Ext-quiver of the heart of D is the
Calabi–Yau-N double of the Ext-quiver of the heart of E . In other words,
one can label the simple objects in the latter as {t1, . . . , tn} in such a way
that

dim Homd(sk, sl) = dim Homd(tk, tl) + dim HomN−d(tl, tk) (11)

for any 1 ≤ k, l ≤ n. Moreover, by [43, Lemma 4.2], we have1346

dim Hom•(tk, tl) + dim Hom•(tl, tk) ≤ 1,

for any 1 ≤ k, l ≤ n. So we may assume, without loss of generality, that
Hom•(ti, tj) = 0 and Hom•(tj , ti) is either zero or is one-dimensional and
concentrated in degree d for some d ∈ Z. Therefore, as N ≥ 3,

dim Hom1(si, sj) + dim Hom1(sj , si) =

dim HomN−1(tj , ti) + dim Hom1(tj , ti) ≤ 1

and the claim follows. Since the simple objects {s1, . . . , sn} are N -spherical,1347

and N ≥ 3, we also note that Hom1(si, si) = 0 = Hom1(sj , sj) so that1348

neither si nor sj has any self-extensions.1349

The required diagrams arise from the poset of torsion theories in the1350

heart of D which are contained in the extension-closure 〈si, sj〉. This is1351

the same as the poset of torsion theories in the full subcategory 〈si, sj〉.1352

When Hom1(si, sj) = 0 = Hom1(sj , si) this subcategory is equivalent to1353

representations of the quiver with two vertices and no arrows, and when1354

Hom1(sj , si) = 0 and Hom1(si, sj) ∼= k it is equivalent to representations1355

of the A2 quiver. Identifying torsion theories with the set of non-zero inde-1356

composable objects contained within them we have four in the first case —1357
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∅, {sj}, {si}, and {sj , si} — and five in the second — ∅, {sj}, {si}, {e, si},1358

and {sj , si} where e is the indecomposable extension 0→ sj → e→ si → 0.1359

These clearly give rise to the square and pentagonal diagrams above. More-1360

over, note that D′ = L〈si,e〉D is uniquely specified as claimed. �1361

Remark 6.2. Recall from Lemma 2.13 that Tilt(ΓNQ) is a lattice. It follows1362

that the above lemma allows us to give a presentation for the category1363

Tilt(ΓNQ) in terms of generating morphisms and relations. The generators1364

are the simple left tilts. The relations are provided by the squares and1365

pentagons of the above lemma.1366

6.2. Associating generating sets. By [33, Corollary 8.4] the simple ob-1367

jects of the heart of any t-structure in Tilt(ΓNQ) are N -spherical, and the1368

associated spherical twists form a generating set for Br (ΓNQ). Moreover,1369

we can explicitly describe how the generating set changes as we perform a1370

simple tilt. Let s1, . . . , sn be the simple objects of the heart of D. By [33,1371

Proposition 5.4 and Remark 7.1], the simple objects of the heart of LsiD1372

are1373

{si[−1]} ∪ {sk : Hom1(si, sk) = 0, k 6= i} ∪ {ϕsi(sj) : Hom1(si, sj) 6= 0}.
(12)

As ϕϕsi (sj) = ϕsiϕsjϕ
−1
si by Lemma 5.2,1374

{ϕsi} ∪ {ϕsk : Hom1(si, sk) = 0} ∪ {ϕsiϕsjϕ−1
si : Hom1(si, sj) 6= 0} (13)

is the new generating set for Br (ΓNQ). In this section we lift the above1375

generating sets, in certain cases, along the surjection ΦN to generating sets1376

for Br (Q).1377

Let DΓQ be the standard t-structure in D (ΓNQ). By [33, Theorem 8.6]
there is a canonical bijection

IΓNQ
1−1−−→ Tilt(ΓNQ) /Br (ΓNQ) , (14)

where IΓNQ is the full subcategory of Tilt(ΓNQ) consisting of t-structures
between DΓQ and DΓQ[2−N ]. Let DQ be the standard t-structure in D(Q)
and let IQ be the full subcategory of Tilt◦(Q) consisting of t-structures
between DQ and DQ[2−N ]. Recall from [33, Definition 7.3, §8] that there

is a strong Lagrangian immersion LN : D(Q)→ D (ΓNQ), i.e. a triangulated
functor with the additional property that for any x, y ∈ D(Q),

Homd
(
LN (x),LN (y)

) ∼= Homd(x, y)⊕HomN−d(y, x)∗ . (15)

In this case, by [33, Theorem 8.6], the Lagrangian immersion induces an
isomorphism

LN∗ : IQ → IΓNQ, (16)

sending DQ to DΓQ. Moreover, for E ∈ IQ the simple objects of the heart of1378

LN∗ (E) ∈ IΓNQ are the images under LN of the simple objects of the heart1379

of E .1380

Denote by Ind C the set of indecomposable objects in an additive category1381

C. For any acyclic quiver Q, it is known that IndD(Q) =
⋃
l∈Z IndDQ[l]1382
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where DQ is the standard heart. By Theorem 5.4 there is an isomorphism1383

Φ−1
2 : Br (Γ2Q)→ Br (Q). We define a map1384

b : IndD(Q)→ Br (Q) : x 7→ Φ−1
2 (ϕL2(x)).

To spell it out, we first send x to L2(x), which is a 2-spherical object in1385

D (Γ2Q) (see the lemma below), and then take the image of its spherical1386

twist in Br (Q) under the isomorphism Φ−1
2 . Note that b is invariant under1387

shifts.1388

Lemma 6.3. Let x, y ∈ IndD(Q). Then1389

(1) L2(x) is a 2-spherical object for any x ∈ IndD(Q);1390

(2) if Hom•(x, y) = Hom•(y, x) = 0, then b(x)b(y) = b(y)b(x);1391

(3) if there is a triangle y → z → x → y[1] in IndD(Q) for some some1392

z ∈ IndD(Q), then b(z) = b(x)b(y)b(x)−1 and1393

b(x)b(y)b(x) = b(y)b(x)b(y),

i.e. b(x) and b(y) satisfy the braid relation.1394

Proof. Let x be an indecomposable in D(Q). Then, by [43, Lemma 2.4], x1395

induces a section P (x) of the Auslander–Reiten quiver of D(Q), and hence1396

a t-structure Dx = [P (x),∞). For a Dynkin quiver, all such t-structures1397

are known to be related to the standard t-structure by tilting, so Dx ∈1398

Tilt◦(Q). Moreover, again by [43, Lemma 2.4], the heart of Dx is isomorphic1399

to the category of kQ′ modules for some quiver Q′ with the same underlying1400

diagram as Q. It follows that the section P (x) is isomorphic to (Q′)op and1401

consists of the projective representations of kQ′. By definition x is a source1402

of the section, so is the projective corresponding to a sink in Q′, and is1403

therefore a simple object of the heart. By [33, Corollary 8.4] the image of1404

any such simple object is 2-spherical. Hence (1) follows.1405

For ease of reading, denote by x̃, ỹ and z̃ the images of x, y and z respec-1406

tively under L2. When x and y are orthogonal (15) implies1407

Hom•(x̃, ỹ) = Hom•(ỹ, x̃) = 0,

and so the associated twists commute.1408

To prove (3) note that the triangle y → z → x→ y[1] induces a non-trivial1409

triangle in D (Γ2Q) via L2. By [43, Lemma 4.2]1410

Hom•(x, y) ∼= k[−1] and Hom•(y, x) = 0.

Thus (15) yields Hom•(x̃, ỹ) ∼= k[−1] and Homỹ
•(x̃,
∼=) k[−1], and we deduce1411

that z̃ = ϕx̃(ỹ) = ϕ−1
ỹ (x̃). Therefore1412

ϕx̃ ◦ ϕỹ ◦ ϕ−1
x̃ = ϕz̃ = ϕ−1

ỹ ◦ ϕx̃ ◦ ϕỹ,
as required. �1413

Construction 6.4. We associate to any t-structure in Tilt◦(Q) the gener-1414

ating set {b(t1), . . . , b(tn)} of Br(Q) where {t1, . . . , tn} are the simple objects1415

of the heart. The generating set associated to DQ is the standard one.1416

The following proposition gives an alternative inductive construction of1417

these generating sets which we use in the sequel.1418

Proposition 6.5. Suppose D is a t-structure in IQ ⊆ Tilt◦(Q). Then1419
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(i) if x and y are two simple objects in the heart of D one has1420 {
b(x)b(y) = b(y)b(x), if Hom•(x, y) = Hom•(y, x) = 0,

b(x)b(y)b(x) = b(y)b(x)b(y), otherwise.

(ii) if {ti} is the set of simple objects in the heart of D, the simple objects1421

of the heart of LtiD are1422

{ti[−1]}∪{tk : Hom1(ti, tk) = 0, k 6= i}∪{ϕti(tj) : Hom1(ti, tj) 6= 0} (17)

and the corresponding associated generating set of Br(Q) is1423

{bi} ∪ {bk : Hom1(ti, tk) = 0, k 6= i} ∪ {bibjb−1
i : Hom1(ti, tj) 6= 0}, (18)

where {bi := b(ti)} is the generating set associated to D.1424

In particular, any such associated set is indeed a generating set of Br(Q).1425

Here in (17) we use the notation ϕa(b) := Cone (a⊗Hom•(a, b)→ a) even1426

when a is not a spherical object.1427

Proof. First we note that (17) in (ii) is a special case of [33, Proposition 5.4].1428

The necessary conditions to apply this proposition follow from [33, Theorem1429

5.9 and Proposition 6.4].1430

For (i), if x and y are mutually orthogonal then the commutative relations1431

follow from (2) of Lemma 6.3. Otherwise, by [43, Lemma 4.2],1432

Hom•(x, y) ∼= k[−d] and Hom•(y, x) = 0.

for some strictly positive integer d. By (17), after tilting D with respect to1433

the simple object x (and its shifts) d times we reach a heart with a simple1434

object z = ϕx(y). In particular, there is a triangle z → x[−d] → y → z[1]1435

in D(Q) where z ∈ IndD(Q). The braid relation then follows from (3) of1436

Lemma 6.3.1437

Finally, (18) in (ii) follows from a direct calculation. �1438

We can use this construction to associate generating sets to t-structures in1439

IΓNQ ⊆ Tilt(ΓNQ). Let E be such a t-structure, and {si} the set of simple1440

objects of its heart. Then (LN )−1si is well-defined, and we associate the1441

generating set {bsi := b
(
(LN )−1si

)
} of Br(Q) to E .1442

Remark 6.6. This construction only works for E ∈ IΓNQ because the simple1443

objects of the hearts of other t-structures need not be in the image of the1444

Lagrangian immersion. This is the same reason that the isomorphism (16)1445

cannot be extended to the whole of Tilt◦(Q).1446

The next result follows immediately from Proposition 6.5.1447

Corollary 6.7. Let E ∈ IΓNQ, and let {si} be the set of simple objects in1448

its heart, with corresponding generating set {bsi}. Then1449 {
bsibsj = bsjbsi , if Hom•(si, sj) = 0,

bsibsjbsi = bsjbsibsj , otherwise.

Moreover, the simple objects of the heart of LsiE are1450

{si[−1]} ∪ {sk : Hom1(si, sk) = 0, k 6= i} ∪ {ϕsi(sj) : Hom1(si, sj) 6= 0}
(19)
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and the corresponding associated generating set is1451

{bsi} ∪ {bsk : Hom1(si, sk) = 0, k 6= i} ∪ {bsibsjb−1
si : Hom1(si, sj) 6= 0}.

(20)

Lemma 6.8. Let s be a simple object in the heart of E ∈ IΓNQ. Then either1452

LsE ∈ IΓNQ or ϕ−1
s LsE ∈ IΓNQ. The first case occurs if and only if, in1453

addition, s ∈ DΓQ[3−N ].1454

Proof. By [33, Corollary 8.4] the spherical twist ϕs takes E to the t-structure1455

obtained from it by tilting N − 1 times ‘in the direction of s’, i.e. by tilting1456

at s, s[−1], s[−2], . . . , s[3 − N ] and finally s[2 − N ]. The first statement1457

then follows from the isomorphism IQ ∼= IΓNQ of [33, Theorem 8.1 and1458

Proposition 5.13]. For the second statement note that if LsE ∈ IΓNQ then1459

s[−1] ∈ DΓQ[2 −N ], so s ∈ DΓQ[3 −N ], and conversely if s 6∈ DΓQ[3 −N ]1460

then s[−1] 6∈ DΓQ[2−N ] which implies LsE 6∈ IΓNQ. �1461

The above lemma justifies the following definition.1462

Definition 6.9. Let P be the poset whose underlying set is1463

Br (Q)× IΓNQ,

and whose relation is generated by (b, E) ≤ (b′, E ′) if either b = b′ and E ≤ E ′1464

in IΓNQ, or b′ = b · bs and E ′ = ϕ−1
s LsE where s is a simple object of the1465

heart of E with the property that LsE 6∈ IΓNQ, equivalently, by Lemma 6.8,1466

s 6∈ DΓQ[3−N ].1467

Lemma 6.10. There is a map of posets1468

α : P → Tilt(ΓNQ) : (b, E) 7→ b · E := ΦN (b)E ,

which is surjective on objects and on morphisms. Moreover, P is connected1469

and α is equivariant with respect to the canonical free left Br (Q)-action on1470

P.1471

Proof. To check that α is a map of posets we need only check that the1472

generating relations for P map to relations in Tilt(ΓNQ). This is clear since1473

(in either case) b′ · E ′ = b · LsE = Lb·s (b · E). It is surjective on objects by1474

[33, Proposition 8.3]. To see that it is surjective on morphisms it suffices1475

to check that each morphism F ≤ LtF , where t is a simple object of the1476

heart of F , lifts to P. For this, suppose F = b · E where E ∈ IΓNQ, and1477

that t = b · s for simple s in the heart of E . Then either LsE ∈ IΓNQ and1478

(b, E) ≤ (b, LsE) is the required lift, or LsE 6∈ IΓNQ and1479

(b, E) ≤ (b · bs, ϕ−1
s LsE)

is the required lift.1480

The connectivity of P follows from the facts that (b, E) ≤ (b ·bs, E) for any1481

simple object s of the heart of E ∈ IΓNQ and that IΓNQ is connected. Finally,1482

the equivariance with respect to the left Br (Q)-action b′ · (b, E) = (b′b, E) is1483

clear. �1484

Proposition 6.11. The morphism α : P → Tilt(ΓNQ) is a covering.1485
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Proof. By Lemma 6.10 we know α is surjective on objects and on morphisms,1486

so all we need to show is that each morphism lifts uniquely to P once the1487

source is given. By Remark 6.2 it suffices to show that the squares and1488

pentagons (10) of Lemma 6.1 lift to P. Using the Br (Q)-action on P it1489

suffices to show that the diagrams with source D lift to diagrams with source1490

(1,D). We treat only the case of the pentagon, since the square is similar1491

but simpler. We use the notation of Lemma 6.1: si and sj are simple objects1492

in the heart of D ∈ IΓNQ with Hom1(si, sj) ∼= k and Hom1(sj , si) ∼= 0, and1493

e is the extension sitting in the non-trivial triangle sj → e→ si → sj [1].1494

There are four cases depending on whether or not LsiD and LsjD are in1495

IΓNQ or not.1496

Case A: If LsiD, LsjD ∈ IΓNQ then L〈si,sj〉D = LsiD ∨ LsjD ∈ IΓNQ too.1497

Hence there is obviously a lifted diagram in 1× IΓNQ.1498

Case B: If LsiD 6∈ IΓNQ but LsjD ∈ IΓNQ then we claim that1499

(bsi , ϕ
−1
si LsiD)

ϕ−1
si
e
// (bsi , ϕ

−1
si D

′)

ϕ−1
si
sj

��

(1,D)

si 66

sj ((
(1, LsjD) si

// (bsi , ϕ
−1
si L〈si,sj〉D)

is the required lift. (Here, and in the sequel, we label the morphisms1500

by the associated simple object.) To confirm this we note that by1501

Lemma 6.8 si 6∈ DΓQ[3−N ], from which it follows that the bottom1502

morphism is in P, and that similarly ϕ−1
si e = sj ∈ DΓQ[3−N ] so that1503

the top morphism is in P. It follows that the right hand morphism1504

is in P too, because ϕ−1
si L〈si,sj〉D ∈ IΓNQ.1505

Case C: If LsiD ∈ IΓNQ but LsjD 6∈ IΓNQ then one can verify that1506

(1, LsiD)
e // (1,D′)

sj

��

(1,D)

si 66

sj ((
(bsj , ϕ

−1
sj LsjD)

ϕ−1
sj
si

// (bsj , ϕ
−1
sj L〈si,sj〉D)

is the required lift when ϕ−1
sj si = e ∈ DΓQ[3−N ]. If e 6∈ DΓQ[3−N ]1507

then1508

(1, LsiD)
e // (be, ϕ

−1
e D′)

ϕ−1
e sj

��

(1,D)

si 66

sj ((
(bsj , ϕ

−1
sj LsjD)

ϕ−1
sj
si

// (bsjbe, ϕ
−1
e ϕ−1

sj L〈si,sj〉D)

is the required lift. We need only check that the right-hand morphis-1509

m is in P. For this note that ϕ−1
e sj = si[−1] so that bϕ−1

e sj
= bsi , and1510

that applying (3) of Lemma 6.3 to the triangle si[−1]→ sj → e→ si1511
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we have bsj = bebsib
−1
e , or equivalently bsjbe = bebϕ−1

e sj
. Moreover,1512

since1513

ϕ−1

ϕ−1
e sj

Lϕ−1
e sj

ϕ−1
e D′ = ϕ−1

ϕ−1
e sj

ϕ−1
e LsjD′ = ϕ−1

e ϕ−1
sj L〈si,sj〉D,

and we already know the latter is in IΓNQ, we see that the right-hand1514

morphism is indeed in P.1515

Case D: If LsiD, LsjD 6∈ IΓNQ then the lifted pentagon is1516

(bsi , ϕ
−1
si LsiD)

ϕ−1
si
e
// (bsibsj , ϕ

−1
sj ϕ

−1
si D

′)

ϕ−1
sj
ϕ−1
si
sj

��

(1,D)

si 66

sj ((
(bsj , ϕ

−1
sj LsjD)

ϕ−1
sj
si

// (bsjbe, ϕ
−1
e ϕ−1

sj L〈si,sj〉D)

The top morphism is in P because ϕ−1
si e = sj 6∈ DΓQ[3 − N ]. The1517

bottom morphism is in P because ϕ−1
sj si = e 6∈ DΓQ[3−N ], for if it1518

were then si would be in DΓQ[3−N ], which is false by assumption.1519

It remains to check that the right-hand morphism is in P. Note that1520

Lϕ−1
sj
ϕ−1
si
sj
ϕ−1
sj ϕ

−1
si D

′ = ϕ−1
sj ϕ

−1
si LsjD

′ = ϕ−1
sj ϕ

−1
si L〈si,sj〉D.

Therefore, since we already know that ϕ−1
e ϕ−1

sj L〈si,sj〉D ∈ IΓNQ,1521

it suffices to show that bsibsj = bsjbe, since it then follows that1522

ϕ−1
sj ϕ

−1
si = ϕ−1

e ϕ−1
sj . The required equation is obtained by applying1523

(3) of Lemma 6.3 to the triangle e→ si → sj [1]→ e[1], and recalling1524

that b is invariant under shifts. �1525

Corollary 6.12. For N ≥ 2, the map α : P → Tilt(ΓNQ) is a Br (Q)-1526

equivariant isomorphism, and in particular Br (Q) acts freely on Tilt(ΓNQ).1527

The map ΦN : Br (Q)→ Br (ΓNQ) is an isomorphism.1528

Proof. This follows immediately from the fact that Tilt(ΓNQ) is contractible,1529

i.e. has contractible classifying space, and that α : P → Tilt(ΓNQ) is a1530

connected Br (Q)-equivariant cover on which Br (Q) acts freely.1531

Recall that Br (Q) acts on Tilt(ΓNQ) via the surjective homomorphism1532

ΦN . Since the action is free ΦN must also be injective, and therefore is an1533

isomorphism. �1534

Remark 6.13. When Q is of type A, Corollary 6.12 provides a third proof1535

of Theorem 5.7. When Q is of type E, it shows that there is a faithful sym-1536

plectic representation of the braid group, because D (ΓNQ) is a subcategory1537

of a derived Fukaya category, while the spherical twists are the higher ver-1538

sion of Dehn twists. This is contrary to the result in [51] in the surface case,1539

which says that there is no faithful geometric representation of the braid1540

group of type E.1541

Corollary 6.14. For N ≥ 2, the induced action of Br (Q) on Stab(ΓNQ) is1542

free.1543

Proof. If an element of Br (Q) fixes σ ∈ Stab(ΓNQ) then it must fix the1544

associated t-structure in Tilt(ΓNQ). �1545
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Note that we recover the well-known fact that Br (Q) is torsion-free from1546

this last corollary because Stab(ΓNQ) is contractible and Br (Q) acts freely1547

so Stab(ΓNQ) /Br (Q) is a finite-dimensional classifying space for Br (Q).1548

The classifying space of any group with torsion must be infinite-dimensional.1549

6.3. Higher cluster theory. The quotient Tilt(ΓNQ) /Br (Q) has a nat-1550

ural description in terms of higher cluster theory. We recall the relevant1551

notions from [33, Secion 4]. As previously, D(Q) is the bounded derived1552

category of the quiver Q.1553

Definition 6.15. For any integer m ≥ 2, the m-cluster shift is the auto-1554

equivalence of D(Q) given by Σm = τ−1 ◦ [m−1], where τ is the Auslander–1555

Reiten translation. The m-cluster category Cm (Q) = D(Q)/Σm is the orbit1556

category, which is Calabi–Yau-m. When it is clear from the context we will1557

omit the index m from the notation.1558

An m-cluster tilting set {pj}nj=1 in Cm (Q) is an Ext-configuration, i.e. a1559

maximal collection of non-isomorphic indecomposable objects such that1560

ExtkCm(Q)(pi, pj) = 0, for 1 ≤ k ≤ m− 1.

Any m-cluster tilting set consists of n = rankKD(Q) objects.1561

New cluster tilting sets can be obtained by mutations. The forward muta-1562

tion µ]piP of an m-cluster tilting set P = {pj}nj=1 at the object pi is obtained1563

by replacing pi by1564

p]i = Cone(pi →
⊕
j 6=i

Irr(pi, pj)
∗ ⊗ pj).

Here Irr(pi, pj) is the space of irreducible maps from pi to pj in the full1565

additive subcategory Add (
⊕n

i=1 pi) of Cm (Q) generated by the objects of1566

the original cluster tilting set. Similarly, the backward mutation µ[piP is1567

obtained by replacing pi by1568

p[i = Cone(
⊕
j 6=i

Irr(pj , pi)⊗ pj → pi)[−1].

As the names suggest, forward and backward mutation are inverse processes.1569

Cluster tilting sets in CN−1 (Q) and their mutations are closely related1570

to t-structures in D (ΓNQ) and tilting between them. To be more precise,1571

[33, Theorem 8.6], based on the construction of [4, §2], states that (N − 1)-1572

cluster tilting sets are in bijection with the Br (Q)-orbits in Tilt(ΓNQ), and1573

that a cluster tilting set P ′ is obtained from P by a backward mutation if1574

and only if each t-structure in the orbit corresponding to P ′ is obtained by1575

a simple left tilt from one in the orbit corresponding to P . This motivates1576

the following definition.1577

Definition 6.16. The cluster mutation category CMN−1 (Q) is the category
whose objects are the (N − 1)-cluster tilting sets, and whose morphisms are
generated by backward mutations subject to the relations that for distinct
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pi, pj ∈ P the diagrams

µ[piP

%%
P

<<

!!

µ[pjµ
[
piP

µ[pjP

99

µ[piP
// µ[piµ

[
pjP

��

P

<<

""
µ[pjP

// µ[pjµ
[
piP

(21)

commute whenever there is a corresponding lifted diagram of simple left tilts1578

in Tilt(ΓNQ). Note that, possibly after switching the indices i and j in the1579

pentagonal case, there is always a diagram of one of the above two types.1580

Proposition 6.17. There is an isomorphism of categories1581

Tilt(ΓNQ) /Br (Q) ∼= CMN−1 (Q) .

The classifying space of CMN−1 (Q) is a K(Br (Q) , 1).1582

Proof. The first statement is a rephrasing of [33, Theorem 8.6], using Re-1583

mark 6.2 and the definition of CMN−1 (Q). The second statement follows1584

from the first and the fact that Tilt(ΓNQ) is contractible, and the Br (Q)-1585

action on it free. �1586

6.4. Garside groupoid structures. In [34, §1] a Garside groupoid is de-1587

fined as a group G acting freely on the left of a lattice L in such a way1588

that1589

• the orbit set G\L is finite;1590

• there is an automorphism ψ of L which commutes with the G-action;1591

• for any l ∈ L the interval [l, lψ] is finite;1592

• the relation on L is generated by l ≤ l′ whenever l′ ∈ [l, lψ].1593

The action of Br (Q) on Tilt(ΓNQ) provides an example for any N ≥ 3, in1594

fact a whole family of examples. By Corollary 6.12 the action is free, and1595

by (14) the orbit set is finite. From § 4 we know that Tilt(ΓNQ) is a lattice,1596

and that closed bounded intervals within it are finite. It remains to specify1597

an automorphism ψ; we choose ψ = [−d] for any integer d ≥ 1. It is then1598

clear that the last condition is satisfied since each simple left tilt from D is1599

in the interval between D and D[−d].1600

In fact the preferred definition of Garside groupoid in [34] is that given1601

in §3, not §1, of that paper. There a Garside groupoid G is defined to be1602

the groupoid associated to a category G+ with a special type of presentation1603

— called a complemented presentation — together with an automorphism1604

ϕ : G → G (arising from an automorphism of the presentation) and a natural1605

transformation ∆: 1→ ϕ such that1606

• the category G+ is atomic, i.e. for each morphism γ there is some1607

k ∈ N such that γ cannot be written as a product of more than k1608

non-identity morphisms;1609

• the presentation of G satisfies the cube condition, see [34, §3] for the1610

definition;1611

• for each g ∈ G+ the natural morphism ∆g : g → ϕ(g) factorises1612

through each generator with source g.1613
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The naturality of ∆ is equivalent to the statement that for any generator1614

γ : g → g′ we have ∆g′ ◦ γ = ϕ(γ) ◦∆g. The collection of data of a comple-1615

mented presentation, an automorphism, and a natural transformation sat-1616

isfying the above properties is called a Garside tuple. See [34, Theorem 3.2]1617

for a list of the good properties of a Garside tuple.1618

Briefly, the translation from the second to the first form of the definition1619

is as follows. Fix an object g ∈ G+. Let L = HomG(g,−) with the order1620

γ ≤ γ′ ⇐⇒ γ−1γ′ ∈ G+. Let G = HomG(g, g) acting on L via pre-1621

composition. Let the automorphism ψ be given by taking γ : g → g′ to1622

ϕ(γ) ◦∆g : g → ϕ(g)→ ϕ(g′). Note that with these definitions the interval1623

[γ, γψ] in the lattice consists of the initial factors of the morphism ∆g′ in1624

the category G+.1625

Below, we verify that cluster mutation category CMN−1 (Q) forms part1626

of a Garside tuple.1627

Proposition 6.18. Let the category G+ be CMN−1 (Q), where N ≥ 2,1628

presented as in Definition 6.16. Let the automorphism ϕ = [−d] for an1629

integer d ≥ 1. Let the natural transformation ∆P : P → P [−d] be given by1630

the image under the isomorphism Tilt(ΓNQ) /Br (Q) ∼= CMN−1 (Q) of the1631

unique morphism in Tilt(ΓNQ) from an object to its shift by [−d]. Then1632

(G+, ϕ,∆) is a Garside tuple.1633

Proof. It is easy to check that the presentation in Definition 6.16 is com-1634

plemented — see [34, §3] for the definition. The atomicity of CMN−1 (Q)1635

follows from the fact that closed bounded intervals in the cover Tilt(ΓNQ)1636

are finite, since this implies that any morphism has only finitely many fac-1637

torisations into non-identity morphisms. The factorisation property follows1638

from the inequalities1639

D ≤ LsD ≤ D[−d]

for any simple object s of the heart of any t-structure D. Finally the cube1640

condition follows from the fact that the cover Tilt(ΓNQ) is a lattice. �1641

Remark 6.19. In the case N = 3 and d = 1 the natural morphism ∆P is a1642

maximal green mutation sequence, in the sense of Keller (cf. [29] and [41]).1643

For N > 3 and d = N − 2, the natural transformation ∆ should be thought1644

as the generalised, or higher, green mutation (for Buan–Thomas’s coloured1645

quivers, cf. [33, §6]).1646

Finally we explain the relationship of the above Garside structure to that1647

on the braid group Br (Q) as described in, for example, [11]. Suppose the1648

automorphism ϕ fixes some object g ∈ G. Let G = HomG(g, g), and de-1649

fine the monoid G+ analogously. Then we claim G+ is a Garside monoid,1650

and G the associated Garside group — the properties of a complemented1651

presentation ensure that G+ is finitely generated by those generators of G+
1652

with source and target g, and also that it is a cancellative monoid; moreover1653

G+ is atomic since G+ is; the cube condition ensures that the partial order1654

relation defined by divisibility in G+ is a lattice; and finally the natural1655

transformation ∆ yields a central element ∆g ∈ Z(G), which plays the rôle1656

of Garside element.1657

As a particular example note that the automorphism ϕ = [k(2 − N)],1658

where k ∈ N, fixes the standard cluster tilting set in CMN−1 (Q). By1659
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Proposition 6.17 the group of automorphisms is Br (Q), and thus we obtain1660

a Garside group structure on Br (Q). For a suitable choice of k this agrees1661

with that described in [11].1662
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