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Abstract—The minimum duration of idle/busy periods in a
primary channel is an important parameter in Cognitive Radio
(CR) systems since it determines the minimum amount of time the
primary channel will be available for opportunistic transmission
(in the case of idle periods) or the minimum amount of time the
CR system will have to wait before a busy primary channel can
become available again for opportunistic transmission (in the
case of busy periods). Recent research has demonstrated that
the value of the minimum period plays a critical role in the
estimation of primary channel activity statistics, which can be
estimated accurately only if the minimum period duration is
accurately known. Given the importance of this parameter, this
work analyses the problem of estimating the minimum (idle/busy)
period in a primary channel based on periodic spectrum sensing
observations and proposes novel methods to enable an accurate
estimation. The obtained simulation results demonstrate that the
proposed methods can provide an accurate estimation of the
minimum period regardless of the employed sensing period (i.e.,
the main aspect that constrains the available time resolution).

I. INTRODUCTION

Given the opportunistic nature of the Dynamic Spectrum

Access/Cognitive Radio (DSA/CR) paradigm [1], the be-

haviour and performance of DSA/CR systems depends on

the spectrum occupancy pattern of primary systems. DSA/CR

systems therefore need to gain an accurate knowledge of the

activity patterns of primary systems to exploit the available

spectrum opportunities more efficiently. Statistical informa-

tion, such as the duration of idle/busy periods of the channel

and the underlying distribution, can be exploited by DSA/CR

systems in the prediction of future spectrum occupancy trends

[2], selection of the most convenient licensed frequency band

and radio channel [3], as well as spectrum and radio resource

management decisions to minimise interference, optimise sys-

tem performance and improve spectrum efficiency [4].

DSA/CR systems can estimate the activity statistics of a

primary channel (such as the distribution of idle/busy periods)

based on spectrum sensing decisions. While the main purpose

of spectrum sensing is to detect transmission opportunities,

the sequence of binary on/off sensing decisions can also be

used to estimate the durations of individual idle/busy periods

resulting from primary transmissions. Once a sufficiently large

number of individual idle/busy periods have been observed, the

DSA/CR system can estimate relevant activity statistics. One

of the most commonly sought types of statistical information

is the distribution of the durations of idle/busy periods as

this provides a complete characterisation of their statistical

properties. However, recent research [5] has demonstrated that

an accurate estimation of the primary activity statistics, in

particular the distribution of idle/busy periods, is possible only

if the minimum idle/busy period is know very accurately.

The estimated statistical distribution resulting from spectrum

sensing observations is in general highly inaccurate (to the

point that it could be useless) unless the minimum period

duration is accurately known (the reader is referred to [5] for

a detailed analysis and discussion on this topic).

The minimum period can be easily estimated from spectrum

sensing observations but such estimation is in general inaccu-

rate because the periodicity of spectrum sensing observations

(i.e., the sensing period) imposes a fundamental limit on the

time resolution to which individual idle/busy periods (includ-

ing the minimum period) can be observed. This limitation

could obviously be overcome by reducing the sensing period,

however this may not be possible in practice since the sensing

period is typically selected to achieve a certain signal detection

performance under specified hardware constraints rather than

an accurate estimation of the primary activity statistics. To

overcome this limitation, it is necessary to devise methods that

can provide an accurate estimation of the minimum primary

idle/busy period regardless of the spectrum sensing periodicity.

This apparently trivial problem has however important practi-

cal implications in the context of DSA/CR systems and, to the

best of the authors’ knowledge, has not received a rigorous and

formal treatment in the literature. To fill this gap, this work

proposes several methods to enable and accurate estimation

of the minimum activity/inactivity times of a primary channel

based on periodic spectrum sensing observations.

The rest of this work is organised as follows. First, Section II

provides a formal description of the problem under study and

introduces a suitable system model. The methods proposed

for the estimation of the minimum period are presented in

Section III and their sample size requirements are analytically

studied in Section IV. Section V assesses the performance of

the proposed methods with numerical and simulation results.

Finally, Section VI summarises and concludes the work.
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II. PROBLEM FORMULATION AND SYSTEM MODEL

Fig. 1 illustrates the estimation of the duration of an idle

period based on spectrum sensing (the same principle applies

to the estimation of busy periods). The DSA/CR system senses

the primary channel periodically with a sensing period of Ts

time units (t.u.). Based on the sequence of idle (H0) and busy

(H1) decisions provided by the employed spectrum sensing

method, the DSA/CR system can make an estimation T̂i of

the true idle/busy periods Ti (i = 0 for idle periods, i = 1
for busy periods). Note that the estimated periods are integer

multiples of the employed sensing period (i.e., T̂i = kTs,

k ∈ N
+) and as a result the estimated periods will differ

from the true periods, which can in general be assumed to

have a continuous domain (i.e., Ti ∈ R
+). Consequently, the

minimum estimated period, denoted as µ̂i = min(T̂i), will

in general differ from the true minimum period, denoted as

µi = min(Ti). An obvious solution to this problem would

be to reduce the sensing period Ts, which would improve the

time resolution to which the periods can be observed, until

a sufficiently low sensing period is set such that µ̂i ≈ µi.

However, as discussed in Section I, this solution may not be

feasible in most practical cases. In this context, the problem

addressed in this paper is how to obtain an accurate estimation

of the true minimum value of the idle/busy periods (i.e., µi)

regardless of the employed sensing period Ts.

To analyse the proposed methods it will be useful first to

introduce a model for the estimated periods, T̂i, as a function

of the true periods, Ti, and the employed sensing period, Ts.

The periods estimated as shown in Fig. 1 can be expressed as:

T̂i =

(⌊
Ti

Ts

⌋
+ ξ

)
Ts (1)

where ⌊·⌋ denotes the floor operator and ξ ∈ {0, 1} is a

Bernoulli random variable introduced to model the fact that

the same original period Ti can lead to two possible estimated

periods, either T̂i = ⌊Ti/Ts⌋Ts or T̂i = ⌈Ti/Ts⌉Ts =
(⌊Ti/Ts⌋ + 1)Ts (where ⌈·⌉ denotes the ceil operator), de-

pending on the relative (random) position of the sensing

events with respect to the original period Ti. Notice that the

true value of the original period Ti is within the interval

[⌊Ti/Ts⌋Ts, ⌈Ti/Ts⌉Ts], and the estimation T̂i = ⌊Ti/Ts⌋Ts

(i.e., ξ = 0) will be more likely when Ti is closer to the lower

extreme of the interval, while the estimation T̂i = ⌈Ti/Ts⌉Ts

(i.e., ξ = 1) will be more likely when Ti is closer to the upper

extreme of the interval. Taking this into account, the Bernoulli

probabilities of the model in (1) can be calculated:

P (ξ = 0) = P

(
T̂i =

⌊
Ti

Ts

⌋
Ts

)
=

⌈
Ti

Ts

⌉
− Ti

Ts

(2a)

P (ξ = 1) = P

(
T̂i =

⌈
Ti

Ts

⌉
Ts

)
=

Ti

Ts

−
⌊
Ti

Ts

⌋
(2b)

Notice that the maximum absolute estimation error will

occur when Ti is close to one of the extremes of the interval
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Fig. 1. Estimation of the duration of an idle period based on spectrum sensing.

[⌊Ti/Ts⌋Ts, ⌈Ti/Ts⌉Ts] and T̂i is the other extreme, hence:

max(|Ti − T̂i|) =
∣∣∣∣
⌊
Ti

Ts

⌋
Ts −

⌈
Ti

Ts

⌉
Ts

∣∣∣∣ = Ts (3)

which shows that the error can be reduced by reducing Ts.

III. PROPOSED ESTIMATION METHODS

Let {T̂i,n}Nn=1 be a set of N observed periods T̂i of type i
(i = 0 for idle periods, i = 1 for busy periods) estimated as

shown in Fig. 1. The DSA/CR system can calculate primary

activity statistics based on such set. This section proposes and

discusses three different methods to estimate the minimum

period from the above mentioned set of observed periods.

A. Direct Estimation Method (DEM)

This method provides an estimation of the minimum period

by selecting the minimum value of the set of observed periods:

µ̂DEM
i = min

n

(
{T̂i,n}Nn=1

)
(4)

The relation between the minimum period estimated this way

and the true minimum period as a function of the employed

sensing period can be obtained from (1) by noting that

min(Ti) = µi and min(ξ) = 0:

µ̂DEM
i = min(T̂i) = min

[(⌊
Ti

Ts

⌋
+ ξ

)
Ts

]
=

⌊
µi

Ts

⌋
Ts (5)

As it can be noted from (5), the estimated minimum is accu-

rate if the employed sensing period is an integer submultiple

of the true minimum (i.e., µ̂DEM
i = µi if Ts = µi/k with

k ∈ N
+). However, the estimation provided by this method

can in general differ significantly from the true minimum µi.

The maximum absolute error in (3) for individual periods is

also applicable to the DEM-estimated minimum in (5).

It also is worth noting from (5) that the true minimum could

be found by means of an exhaustive search. Since µ̂DEM
i = µi

when Ts = µi/k (k ∈ N
+) and µ̂DEM

i < µi otherwise, the true

minimum period µi could be found by increasing/decreasing

progressively the employed Ts and observing the resulting

µ̂DEM
i until a local maximum is found by trial-and-error;

such maximum would be an accurate estimation of the true

minimum µi. While this method would eventually find the

sought value, it would require testing a large number of values

for Ts, which would not be practical in real DSA/CR systems.

Therefore, this approach is not further considered here.



B. Curve-Fitting Method (CFM)

Since the floor function is not invertible, the value of the true

minimum µi cannot be uniquely identified based on a single

pair of employed (known) Ts and observed µ̂DEM
i . However,

by testing a set {Ts,l}Ll=1 of L values of the sensing period

and noting the set {µ̂DEM
i,l }Ll=1 of minimum periods observed

for each sensing period (i.e., µ̂DEM
i,l = ⌊µi/Ts,l⌋Ts,l), curve-

fitting can be used to find the value of µi that provides the

best fit of (5) to the observed sets {Ts,l}Ll=1 and {µ̂DEM
i,l }Ll=1.

Since curve-fitting methods are typically based on gradients,

the discontinuities of the floor function in (5) can be problem-

atic. This can be solved by replacing the floor function in (5)

with its equivalent (continuous) Fourier series [6, eq. (2.1.7)]:

µ̂DEM
i = µi −

Ts

2
+ Ts

∞∑

m=1

sin
(

2πmµi

Ts

)

πm
(6)

The expression in (6) can be easily fitted to the observed

sets {Ts,l}Ll=1 and {µ̂DEM
i,l }Ll=1 using conventional curve-fitting

methods. The value of µi in (6) that provides the best fit

represents the CFM-estimated minimum, denoted as µ̂CFM
i .

While this method requires testing several values of the

sensing period, this does not necessarily require the DSA/CR

system to actually modify the employed sensing period, which

in some cases might not be practical. Different sensing peri-

ods can be emulated by selectively discarding some sensing

decisions (e.g., discarding every other sensing decision would

be equivalent to employing a sensing period 2Ts).

C. Method of Moments (MoM)

The DEM and CFM approaches do not make any assump-

tions on the distribution of the true periods Ti. If a certain

distribution model is assumed, then the minimum period can

be estimated based on the sample estimates of the distribution

moments. This section illustrates this approach assuming that

the primary activity periods Ti are exponentially distributed,

which is a common assumption in DSA/CR (the method can

be easily adapted to any other distributions).

The Probability Density Function (PDF), fTi
(T ), and the

Cumulative Distribution Function (CDF), FTi
(T ), of exponen-

tially distributed periods Ti are respectively given by:

fTi
(T ) =

{
0, T < µi

λie
−λi(T−µi), T ≥ µi

(7)

FTi
(T ) =

{
0, T < µi

1− e−λi(T−µi), T ≥ µi

(8)

where µi > 0 (the minimum period) is the distribution location

parameter and λi > 0 is the distribution scale parameter.

The mean E(Ti) and variance V(Ti) of the distribution are:

E(Ti) = µi + 1/λi (9)

V(Ti) = 1/λ2
i (10)

and the minimum period can therefore be expressed as:

µi = E(Ti)−
√
V(Ti) (11)

The mean and variance can be estimated based on the

sample mean m̃i and (unbiased) sample variance ṽi of the

set of observed periods {T̂i,n}Nn=1 as follows1:

m̃i =
1

N

N∑

n=1

T̂i,n (12)

ṽi =
1

N − 1

N∑

n=1

(
T̂i,n − m̃i

)2

− T 2
s

6
(13)

and the minimum period can thus be estimated as:

µ̂MoM
i = m̃i −

√
ṽi (14)

which represents the MoM-estimated minimum period.

IV. SAMPLE SIZE ANALYSIS

An important aspect of the proposed methods is how many

periods need to be observed (the required sample size N ) to

provide an estimation of the minimum period. This determines

how fast each method can provide an estimation as well as

the associated computational cost. This section analyses the

sample size requirements for each of the proposed methods.

A. DEM Sample Size

The DEM approach needs at least one instance of µ̂DEM
i =

⌊µi/Ts⌋Ts to be present in the N observed periods. A period

with duration T̂i = ⌊µi/Ts⌋Ts is observed whenever Ti ∈
[⌊µi/Ts⌋Ts, ⌈µi/Ts⌉Ts] and ξ = 0, hence:

P
(
T̂i= µ̂DEM

i

)
=P

(⌊
µi

Ts

⌋
Ts≤Ti≤

⌈
µi

Ts

⌉
Ts

)
E (P (ξ=0))

= P

(
µi ≤ Ti ≤

⌈
µi

Ts

⌉
Ts

)
E (P (ξ = 0))χ

0

= FTi

(⌈
µi

Ts

⌉
Ts

)
E (P (ξ = 0))χ

0
(15)

where FTi
(·) is the CDF of the true periods Ti,

E (P (ξ = 0)) =

∫

T

P (ξ = 0) fTi
(T ) dT

=
∞∑

m=0

(m+ 1) [FTi
((m+ 1)Ts)− FTi

(mTs)]− E(Ti)
Ts

(16)

and χ
0

is a correction factor for P (ξ = 0) given by:

χ
0
=

⌈
µi

Ts

⌉
Ts − µi

Ts

=

⌈
µi

Ts

⌉
− µi

Ts

(17)

Notice that for any arbitrary period Ti the width of the interval

[⌊Ti/Ts⌋Ts, ⌈Ti/Ts⌉Ts] is Ts. However, around the minimum

period µi it holds that Ti ∈ [µi, ⌈µi/Ts⌉Ts] (since Ti ≥ µi ≥
⌊µi/Ts⌋Ts) and the width of such interval is ⌈µi/Ts⌉Ts − µi

instead of Ts. Therefore, the probability P (ξ = 0) needs to

be scaled accordingly as shown in (17).

1The term −T 2
s
/6 in (13) is needed to correct the effect of the employed

sensing period on the sample variance (see [5] for details).



The probability to have at least one instance of µ̂DEM
i in

the N observed periods can be obtained from the binomial

distribution and is given by:

P
µ̂DEM
i

obs = 1−
[
1− P

(
T̂i = µ̂DEM

i

)]N
(18)

Given a specified P
µ̂DEM
i

obs , the required DEM sample size is:

NDEM ≥
log

(
1− P

µ̂DEM
i

obs

)

log
(
1− P

(
T̂i = µ̂DEM

i

)) (19)

Notice that increasing the sample size will not improve the

accuracy itself of the DEM-estimated minimum µ̂DEM
i but the

probability that a period µ̂DEM
i is observed (otherwise a longer

period T̂i > µ̂DEM
i might be selected as the minimum period,

thus potentially leading to a more inaccurate estimation).

B. CFM Sample Size

Based on (19), the CFM sample size can be expressed as:

NCFM =

L∑

l=1

NDEM,l ≥
L∑

l=1

log
(
1− P

µ̂DEM
i

obs

)

log
(
1− P

(
T̂i = µ̂DEM

i,l

)) (20)

where NDEM,l is the sample size required for the l-th element

of the set {µ̂DEM
i,l }Ll=1. If the required sample size is similar for

each of the L tested sensing periods, then NCFM ≈ L ·NDEM.

C. MoM Sample Size

As opposed to DEM and CFM, the accuracy of the MoM-

estimated minimum can be improved by increasing the sample

size as a larger N will lead to more accurate sample moments

and consequently more accurately estimated minimum period.

A confidence interval of κ standard deviations around the

expected value of the estimator µ̂MoM
i in (14) can be defined

such that the estimated values are within that interval with

a minimum probability ρ (confidence level), i.e., P (|µ̂MoM
i −

E(µ̂MoM
i )|≤κ

√
V(µ̂MoM

i )) ≥ ρ. Hence, the maximum absolute

error of the (unbiased) estimator can be expressed as:

ε
µ̂MoM
i

abs = max
(∣∣µ̂MoM

i − E(µ̂MoM
i )

∣∣) = max
(∣∣µ̂MoM

i − µi

∣∣)

= κ
√

V
(
µ̂MoM
i

)
(21)

The expression for κ in (21) can be determined by noting

that µ̂MoM
i relies on the sample estimators (12) and (13), which

are both unbiased since E(m̃i) = E(Ti) and E(ṽi) = V(Ti),
and can be both assumed to be normally distributed by the

central limit theorem. Assuming that µ̂MoM
i is also normally

distributed, then the expression κ =
√
2 erf−1(ρ) is obtained.

The expression for V(µ̂MoM
i ) in (21) can be obtained by

computing first the variances of the sample estimators (12) and

(13), which are obtained by introducing V(T̂i) = V(Ti)+T 2
s /6

[5, eq. (6)] in [7, eqs. VI.(8) and VI.(10)]:

V(m̃i) =
1
N

(
V(Ti) +

T 2

s

6

)
(22a)

V(ṽi) =
1
N

(
M4(Ti)− N−3

N−1 [V(Ti)]
2 +

+ 2N
3(N−1)T

2
sV(Ti) +

7N+3
180(N−1)T

4
s

)
(22b)

where M4(Ti) = 9/λ4
i is the fourth central moment of Ti, and

then propagating the errors in (22) through (14):

V
(
µ̂MoM
i

)
=

(
∂µ̂MoM

i

∂m̃i

)2

V(m̃i) +
(

∂µ̂MoM
i

∂ṽi

)2

V(ṽi) +

+ 2
(

∂µ̂MoM
i

∂m̃i

)(
∂µ̂MoM

i

∂ṽi

)
C(m̃i, ṽi)

= V(m̃i) +
V(ṽi)

4V(Ti)
− 1

N

M3(Ti)√
V(Ti)

(23)

where the covariance is given by C(m̃i, ṽi) = M3(Ti)/N [8]

and M3(Ti) = 2/λ3
i is the third central moment of Ti.

Introducing (23) and κ =
√
2 erf−1(ρ) in (21) yields:

ε
µ̂MoM
i

abs = erf−1(ρ)
[

2
N

(
3N−1
4(N−1)V(Ti) +

M4(Ti)
4V(Ti)

+

+ 7N+3
720(N−1)

T 4

s

V(Ti)
− M3(Ti)√

V(Ti)
+ 2N−1

N−1
T 2

s

6

)] 1

2

(24)

For large N (N ≫ 1) the terms inside the parenthesis of

(24) can be simplified and a solution for N can be obtained:

NMoM ≥ 2

(
erf−1(ρ)

ε
µ̂MoM
i

abs

)2

·

·
(

3
4V(Ti)+

M4(Ti)
4V(Ti)

+
7T 4

s

720V(Ti)
− M3(Ti)√

V(Ti)
+

T 2

s

3

)
(25)

Replacing the moments of the exponential distribution in (25):

NMoM ≥ 2

(
erf−1(ρ)

ε
µ̂MoM
i

abs

)2 (
1

λ2
i

+
7λ2

iT
4
s

720
+

T 2
s

3

)
(26)

NMoM in (26) is the minimum sample size that guarantees a

maximum absolute error ε
µ̂MoM
i

abs with a minimum probability ρ.

Interestingly, it depends on λi and Ts, but not on µi itself.

V. NUMERICAL AND SIMULATION RESULTS

This section validates the analytical results developed in this

work by means of simulations and evaluates the performance

of the three proposed methods. The estimation accuracies are

first assessed assuming a sufficiently large sample size (i.e., N
large enough to provide the best attainable accuracy). Sample

size requirements are analysed afterwards.

Simulations are performed in Matlab by generating a se-

quence of exponentially distributed random periods Ti with

known pre-defined statistics (µi = 10 t.u., λi = 0.05), sensing

the sequence of periods Ti with a given sensing period Ts in

order to calculate the corresponding sequence of estimated

periods T̂i that would be observed by a DSA/CR system, and

finally applying each of the proposed methods to provide an

estimation of the minimum period (similar approach as in [9]).

Fig. 2 compares the expression in (5) for the DEM-estimated

minimum with simulation results as a function of the sensing

period. It can be appreciated, as pointed out in Section III-A,

that the provided estimation is accurate (µ̂DEM
i = µi) when the

sensing period is an integer submultiple of the true minimum

(i.e., Ts = 10/1, 10/2, 10/3, . . .) but in general the DEM-

estimated minimum period can differ significantly from the

true value. A detailed inspection of Fig. 2 also shows that the

maximum absolute error is Ts as indicated by (3).
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Fig. 2. DEM-estimated minimum as a function of the sensing period.

Fig. 3 shows the CFM-estimated minimum as a function

of the number of terms considered in the sum of (6). These

results are obtained by fitting (6) to four different pairs of sets

{Ts,l}Ll=1 and {µ̂DEM
i,l }Ll=1. For each pair of sets, the legend

shows the set of tested sensing periods {Ts,l}Ll=1 and two

additional values in the format [A/B], where A is the best

DEM-estimation provided individually by any of the tested

sensing periods in the set {Ts,l}Ll=1 and B is the best estimation

obtained by means of a non-linear least squares fit (using

Matlab’s lsqcurvefit) of (6) to {Ts,l}Ll=1 and {µ̂DEM
i,l }Ll=1.

It is worth noting that the best CFM estimation is typically

obtained, as observed in Fig. 3, when only one term (m = 1)

is considered in (6). This is because for large m, (6) can repro-

duce more accurately the discontinuities of the floor function

in (5), which leads to a degraded performance of curve-fitting

methods (based on gradients). It is also interesting to note that

the CFM approach typically achieves better accuracy when the

initial value of µi for the curve-fitting algorithm is the highest

value observed in the sample set {µ̂DEM
i,l }Ll=1. As it can be

appreciated, the proposed CFM approach can provide accurate

estimations of the true minimum period. In Case 1, CFM can

reduce the relative error of the DEM-estimated minimum from

(10 − 8)/10 = 20% to (10 − 9.55)/10 = 4.5%, while in the

other three cases the relative error is reduced from 10% to

1.6% (Case 2), 2.6% (Case 3), and 4.0% (Case 4). Note that

these accurate estimations can be obtained by testing just a

few sensing periods, which can be as few as L = 3 (cases

1 and 2) or L = 2 (case 3) and, in some cases, only L = 1
(case 4). This represents a significant reduction compared to

the exhaustive search approach discussed in Section III-A.

Fig. 4 shows the MoM-estimated minimum as a function

of the sensing period. The results are shown both when the

sample variance is corrected as shown in (13) and when it is

not corrected (i.e., the term −T 2
s /6 is removed from (13)).

As it can be appreciated, when the sample moments are com-

puted based on unbiased estimators (12)–(13) and adequately

corrected, the MoM approach can provide an accurate (nearly
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Fig. 3. CFM-estimated minimum as a function of the number of terms.
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Fig. 4. MoM-estimated minimum as a function of the sensing period.

perfect) estimation of the minimum regardless of the employed

sensing period. The comparison of Figs. 2, 3 and 4 indicates

that MoM is the only method that can provide a very accurate

estimation of the minimum period for any sensing period.

Fig. 5 shows the DEM sample size as a function of the

sensing period. As it can be appreciated, the required sample

size increases with the probability P
µ̂DEM
i

obs . Interestingly, local

minima are observed for Ts values that are integer submulti-

ples of the true minimum (Ts = µi/k with k ∈ N
+). However

for slightly higher values the required sample size tends to

infinity, since χ
0
≈ 0 and P

(
T̂i = µ̂DEM

i

)
≈ 0. In general, the

sample size required with DEM suffers significant variations

depending on the employed sensing period.

Fig. 6 shows the sample size required by CFM for the same

four cases shown in Fig. 3. These sample sizes are obtained by

adding the individual DEM sample size requirements for each

of the tested sensing periods in the set {Ts,l}Ll=1 as indicated in

(20). As observed, the sample size required by CFM is highly
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Fig. 5. DEM sample size as a function of the sensing period.
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Fig. 6. CFM sample size for each considered case.

variable (one-two orders of magnitude among the considered

cases) as it depends on the number L of tested sensing periods

as well as the individual sample size required for each of them,

which in turn is also highly variable as shown in Fig. 5.

Finally, Fig. 7 shows that the MoM sample size requirement

is more stable, although it increases slightly with Ts and more

significantly with the desired probability ρ. Comparing Figs.

5, 6 and 7 it can be seen that the better accuracy attained by

MoM comes at the expense of larger sample size requirements.

VI. CONCLUSIONS

Recent research has demonstrated that an accurate estima-

tion of the minimum primary activity (idle/busy) times plays

an important role in the ability to accurately estimate the

primary activity statistics from spectrum sensing observations.

In this context, this work has proposed and evaluated, both

analytically and with simulations, the performance of three

estimation methods based on direct estimation (DEM), curve-
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Fig. 7. MoM sample size as a function of the sensing period.

fitting (CFM) and sample moments (MoM). In general, DEM

provides a poor accuracy (except for a few specific cases),

which makes of this method an unsuitable option in general.

CFM and MoM can provide accurate estimations but establish

a tradeoff between provided accuracy and required sample

size. In particular, MoM can provide slightly more accurate

(nearly perfect) estimations of the true minimum period com-

pared to CFM at the expense of higher sample sizes. In any

case, the obtained results have shown that both methods, CFM

and MoM, can provide a very accurate estimation of the true

minimum period regardless of the employed sensing period.
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