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This paper considers the problem of distinguishing between different dynamical models using
continuous weak measurements; that is, whether the evolution is quantum mechanical or given
by a classical stochastic differential equation. We examine the conditions that optimize quantum
hypothesis testing, maximizing one’s ability to discriminate between classical and quantum models.
We set upper limits on the temperature and lower limits on the measurement efficiencies required
to explore these differences, using experiments in levitated optomechanical systems as an example.

PACS numbers: 05.45.Mt, 03.65.Ta, 05.45.Pq
Keywords: levitated optomechanical systems, dynamical model selection, quantum state estimation, classical
state estimation

Introduction.— There are a number of ways in which a
system can be determined to be quantum mechanical.
Typically, the system must be isolated from extraneous
noise and operated at very low temperatures, so that the
system is in a ground state or another low lying energy
state. The system can be subjected to a series of indi-
vidual or joint measurements to build up a picture of the
state (as in interference experiments and state tomog-
raphy [1–6]) or manipulated using an external field to
demonstrate superposition states (such as avoided cross-
ings in the observed energy spectra [7–10]). These ex-
periments provide direct evidence of quantum behavior
but they can be difficult to perform when the system has
several degrees of freedom and large numbers of mea-
surements are required. More efficient alternatives have
been devised with the growth of quantum information
as a subject area. Specific sequences of measurements
can be applied to ascertain whether the system contains
non-classical correlations (entanglement) associated with
quantum behavior [11–13]. Entanglement witnesses do
not necessarily allow an experimentalist to quantify the
degree of entanglement, but they do allow her to say
that entanglement is present and, hence, that the system
is quantum mechanical rather than classical. All of these
methods are intended to provide direct evidence that the
system is manifestly non-classical: discrete energy levels,
interference, superposition states, entanglement, etc..

An alternative approach is to try to determine whether
the system dynamics are quantum rather classical. An
elegant approach to this task is to use the technique of
quantum hypothesis testing [14, 15]. In situations where
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direct experiments are not possible, or are beyond the
reach of current experiments, this method can also be
used to inform future work, explore regions of parame-
ter space, and to focus experimental efforts. This is the
motivation for the current paper.

In this letter, we use a quantum hypothesis testing ap-
proach, often referred to as model selection in classical
Bayesian inference [16], with a continuous measurement
interaction [17–19] to provide limits on two important ex-
perimental parameters: the effective temperature of the
system and the efficiency of the continuous measurement.
These parameters are relevant to a number of systems,
including superconducting circuits [20–23]. However, we
concentrate on experiments with levitated optomechani-
cal systems [24–27]. Quantum behavior has not yet been
established in these systems, and improving the under-
standing of where and when such evidence might be avail-
able is an important open question.

The ability to determine whether a system is quantum
mechanical is important for many practical reasons, in-
cluding applications in quantum information and metrol-
ogy. However, there are important reasons why such
questions have relevance to fundamental physics. Lev-
itated optomechanical systems are a testbed for funda-
mental investigations. A nanoparticle is captured and
held in a trapping potential, isolated from most of the
effects of its environment. The trapped nanoparticle is
extremely small, but orders of magnitude larger than an
atom or a typical molecule. It can be cooled to very low
temperatures and probed using the fields used to form the
trap. A number of interesting experiments have been pro-
posed or performed; including ultra-sensitive force mea-
surements [33], fundamental tests of gravity [34], and
testing the limits of quantum mechanics [28–30].

Experimental framework.— For our purposes, the im-
portant factors are: (i) a levitated nanoparticle is physi-
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cally large (with a radius several hundred to a few thou-
sand times that of an atom); (ii) a nanoparticle has a
high mass (six to eight orders of magnitude larger than
an atom); (iii) the trap can be arranged to separate de-
grees of freedom in terms of frequency, thereby simpli-
fying the system to one translational degree of freedom;
and (iv) the particle is weakly coupled to a thermal envi-
ronment and to a laser field that can be used to provide
a continuous measurement of position. We will take pa-
rameters based on optomechanical spheres described in
[35, 36], made from silica with radii ' 25 − 100nm and
masses m ' 10−18 − 10−19kg. These are good candi-
dates for study because they previously have been used
in experiments to generate thermal squeezed states [35],
measurements have been used to reconstruct (classical)
Wigner functions [36], and they can realize the multiple-
well potentials [37], which are found to maximize the
discrimination between classical and quantum models.

Dynamical models.— In classical mechanics, the abil-
ity to observe a system continuously and control its mo-
tion is taken for granted. In quantum mechanics, mea-
surement cannot be ignored. Conventionally, measure-
ment projects onto an eigenstate of the measured opera-
tor. However, recent experimental advances have shown
that probing a quantum system via its environment can
provide a continuous measurement record and allow the
construction of a quantum trajectory describing its mo-
tion [17–19]. This continuous measurement must be weak
to allow Schrödinger evolution that is perturbed by the
effect of the environment and the backaction of the mea-
surement. Continuous measurement models have been
studied theoretically for over twenty years and form the
basis for incoherent quantum control [17–19], but it is
only recently that the reconstruction of quantum trajec-
tories have been demonstrated in experiments [20–23].
It is these quantum trajectories that are used here and
compared to classical trajectories to extract probabilities
for the two hypotheses (classical or quantum evolution).

A continuous quantum measurement process is usually
modeled with a Stochastic Master Equation (SME) [17–
19], which can be written as

dρc = −i
[
Ĥ, ρc

]
dt

+

m′∑
r=1

{
L̂rρcL̂

†
r −

1

2

(
L̂†rL̂rρc + ρcL̂

†
rL̂r

)}
dt

+

m′∑
r=1

√
ηr

(
L̂rρc + ρcL̂

†
r − Tr(L̂rρc + ρcL̂

†
r)
)
dWr

(1)

where ρc is the density matrix for the state of the sys-
tem conditioned on the measurement record – the state
(possibly mixed), which represents the current knowledge

of the quantum state, Ĥ is the Hamiltonian of the sys-
tem, dt is an infinitesimal time increment, and the op-
erators L̂r represent the effect of the environment and
measurement. The measurement record for each of the

operators L̂r during a time step t → t + dt is given by,
y(t+ dt)− y(t) = dyr(t) =

√
ηjTr(L̂rρc + ρcL̂

†
r)dt+ dWr.

ηr is the measurement efficiency; the ratio of the sig-
nal power due the measurement relative to the power
of other extraneous sources of noise, where ηr = 1 is
an ideal measurement and ηr = 0 is an unprobed en-
vironmental degree of freedom. Moreover, we will as-
sume that dWr are independent real Wiener processes,
i.e. dWrdWr′ = δrr′dt. Physically, this SME represents a
situation where the measurement environment decoheres
sufficiently rapidly that no correlations build up between
the state of the quantum system of interest and the envi-
ronmental degrees of freedom (Markov approximation).

For the case considered here, the SME is given by (1)
with three environmental operators (m′ = 3): one mea-
surement of the position (q) of the nanosphere within

the trap, L̂1 =
√

8kq̂, and two operators representing
an unprobed thermal environment L̂2 =

√
(n̄+ 1)Γâ†

and L̂3 =
√
n̄Γâ [38]; where â† and â are the usual har-

monic oscillator raising and lowering operators, Γ is a
decay rate (Γ � ω), n̄ = (exp(~ω/kBT ) − 1)−1 is the
average thermal occupation number of a linear oscillator
at temperature T , and k is the measurement strength
for the continuous measurement interaction. The mea-
surement efficiencies are η1 = η, and η2,3 = 0 (un-

probed). The measurement record for L̂1 is dy(t) =√
8ηkTr(ρc(t)q̂)dt + dW . For the purposes of this pa-

per, we have selected a Hamiltonian that corresponds to
a double well potential (a Duffing oscillator [39–41]),

Ĥ =
1

2
p̂2 − 1

2
ω2q̂2 +

1

4
µq̂4 + g cos(t)q̂ (2)

where we have taken ~ = 1, the mass is scaled so that
m = 1, p̂ is the momentum operator, ω is the angular
frequency of a linear oscillator (although note that the
sign of the linear term is reversed to create a barrier and
a double well potential), µ is the nonlinear parameter,
and g is the magnitude of an external periodic drive.
This system has been widely studied in relation to chaotic
dynamics in open quantum systems and the quantum-
classical transition [39–45].

For the equivalent classical system, we take a Stochas-
tic Differential Equation (SDE) for the position q and the
momentum p of a classical particle,

dq = pdt

dp = −µq3dt+ ω2qdt− Γpdt+ g cos(t)

+
√

2kdY +
√

2ΓkBTdU (3)

where the measurement record is dyc(t) =
√

8ηkqdt+dW
and we have again set ~ = 1. Like dW , dY and dU are
also real Weiner increments, dY 2 = dU2 = dt, but they
are uncorrelated so that dWdU = dWdY = dY dU = 0,
and there is no backaction from the measurement on the
state of the system in a classical measurement.
Model Selection.— Dynamical model selection requires

that we take a measurement record from an initial point
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t = 0 to the current time t = t′ = n∆t, denoted by
∆y0:t′ , where we now take finite intervals in time. We
then calculate the probability that the underlying dy-
namical model is quantum (Q, the evolution is given by
the SME (1)) or classical (C, the evolution is determined
by the SDE (3)). The probabilities are calculated from an
initial prior probability for each model p0(Q) and p0(C)
assuming that the noise in each measurement increment
is independent of the others,

p(Q|∆y0:t′) ∝ p0(Q)
∏

t=∆t:t′

p(∆yt|Q,∆y0:t−∆t) (4)

p(C|∆y0:t′) ∝ p0(C)
∏

t=∆t:t′

p(∆yt|C,∆y0:t−∆t) (5)

Since we only have two models as possible hypotheses,
the probabilities should sum to one and the normaliza-
tion condition is fixed by p(Q|∆y0:t′) + p(C|∆y0:t′) = 1.
As such, the probabilities being calculated are the rel-
ative probabilities between the two dynamical models,
which does not include the possibility of systematic er-
rors. These limitations are considered in detail by Tsang
in [15], where the different types of systematic errors are
listed and discussed. This limitation does not invalidate
the approach presented here. However, it does mean that
experimental studies need to be careful to calibrate their
systems fully and to verify that systematic errors are not
present.

To calculate the probabilities, one can obtain data from
a real system or, in the absence of an experiment, we can
generate a specific realization of the measurement record
∆ỹ0:t′ using one of the models, (1) or (3). This represents
the measurement record that would be expected from
an experiment. We then use ∆ỹ0:t′ as an input to both
of the dynamic models. In the case of the SME (1),
the state is initialized in a mixed thermal state ρc(0) at
a temperature T . The record is used to construct an
estimate of the Wiener increment

∆W̃ = ∆ỹt −
√

8ηkTr(ρc(t)q̂)∆t (6)

which is then used in (1) to update the conditioned
density matrix, representing the current estimate of the
quantum state given ∆ỹ0:t′ . The probability update,
p(∆yt|Q,∆y0:t−∆t), is calculated using

p(∆ỹt|Q,∆ỹ0:t−∆t) =
exp

(
−(∆W̃ )2/2∆t

)
√

2π∆t
(7)

The classical model requires the evolution of the prob-
ability density function (pdf) to be calculated, which is
computationally expensive. We use an alternative ap-
proach here to solve the approximate problem using a
sequential Monte Carlo method [46–48] known as a par-
ticle filter. The particle filter uses the fact that the evo-
lution of the pdf can be approximated by the evolution
of a finite number of candidate solutions or ‘particles’,

each of which has a weight associated with it, where the
weight evolves in such a way that a quantity averaged
over all weighted particles approximates the expectation
value for the quantity over the pdf. In this case, we take

N particles, initialized with equal weight w
(i)
0 = 1/N .

Each particle has a position q(i) and a momentum p(i),
initially selected from the same thermal distribution as
that given by the thermal state for the quantum model.
The particles then evolve according to the SDE (3) with
independent noise sources. The weights are updated us-
ing

w̃
(i)
t =

exp
(
− (∆ỹt−

√
8ηkq(i)∆t)2

2∆t

)
√

2π∆t
w

(i)
t−∆t (8)

where the w̃(i)’s are unnormalized weights after updat-
ing, and the probability for the classical model is approx-

imated by p(∆ỹt|C,∆ỹ0:t′−∆t) ∝
∑N
i=1 w̃

(i)
t . As the sys-

tem evolves, the values of some of the weights fall to near
zero. The particles and the candidate solutions that they
represent are then resampled using the current weight
distribution as described in [16]. This evolution with pe-
riodic resampling allows the particle filter to be efficient
whilst still retaining a diverse selection of candidate solu-
tions. This makes the particle filter an ideal method for
the estimation of a nonlinear dynamical process and it is
the reason for considering it in a model selection context.
In addition, the particle filter and other sequential Monte
Carlo methods can be augmented to include the simulta-
neous estimation of system parameters [49] and they can
be applied to quantum systems described by SMEs with
uncertain parameters [50].

To ascertain the distinguishably of the two models, we
calculate the confusion matrix for the two hypotheses
[54], each point calculated over 100 individual runs. The
confusion matrix is a standard method to evaluate a clas-
sification process, in that it provides a probability for
getting the right result and for making an error. In our
case, the confusion matrix is given by,

Mc =

(
p(C|C) p(C|Q)
p(Q|C) p(Q|Q)

)
(9)

where p(C|Q) is the probability of a Type II error (false
negative, assuming that the classical hypothesis C is the
default or null hypothesis) and p(Q|C) is the probability
of a Type I error (false positive). More generally, one
can generate a Receiver-Operator Characteristic (ROC)
curve by varying the threshold probability above or below
which each hypothesis is taken to be true [54], but here
we take a uniform prior p0(Q) = p0(C) = 1/2 and fix the
threshold to be one half.
Application to optomechanical systems.— For the case

considered here, a one-dimensional potential with a
trapped nanoparticle, we need to find the conditions
where one can best discriminate between the two dy-
namical models. A number of different conditions were
examined, for single well (linear and non-linear) and dou-
ble well potentials. The optimum condition was found to
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FIG. 1: (color online) Probabilities for correct identification
of the dynamical evolution, p(C|C) and p(Q|Q), for differ-
ent temperatures as a function of the measurement efficiency.
Inserts show approximate regions where the models are dis-
tinguishable (green (light gray) shaded regions), as functions
of temperature and measurement efficiency.

be a double-well potential where the wells were well sep-
arated in position and the barrier between the two wells
was high enough for the classical particle to remain in one
well for a reasonable period of time, before the environ-
mental noise kicked it into the other well. In addition, the
barrier also had to be low enough to prevent the quantum
state for localizing in one or other of the wells. In prac-
tice, these conditions correspond to a symmetric double
well potential where the quantum ground state lies below
the barrier height but the first excited state is above the
barrier. The classical system is always localized, in the
sense that it is a point particle, but the pdf represented
by the particles needs to be largely localized to one of
the wells by the measurements. By contrast, a quantum
state can only be localized to one of the wells if two of
the low lying energy levels are below the barrier. If the
barrier is sufficiently high, the lowest two energy states
are formed from the symmetric and anti-symmetric su-
perposition of localized well states, and a localized well

state can be generated by combining these two energy
levels [51]. If the first excited state lies above the bar-
rier, then a superposition of this with the ground state
will not be localized in one well. For the Duffing Hamil-
tonian (2), these conditions are met if ω = 1, µ = 0.5
and g = 0 (undriven oscillator), and we take Γ = 0.05,
k = 0.025, N = 500. The quantum model uses Rouchon’s
integration method [52, 53] with non-commutative noise
sources and a moving basis [39–41] with 60-100 linear
oscillator states. The models are integrated over 100 cy-
cles of the linear oscillator with 500-2000 time steps per
oscillator cycle. The barrier height in this example is
∆Eb = 0.5~ω, the two wells are separated in position by
∆q = 3

√
~/mω, the lowest two energy levels are sepa-

rated by ∆E01 = 0.396~ω, and the next excited states
are separated by ∆E12 = 0.941~ω and ∆E23 = 1.061~ω.

Figure 1 shows the probabilities contained in the con-
fusion matrix for the correct detection of the dynami-
cal models for different temperatures as a function of
the measurement efficiency. In general, the probabili-
ties for correctly identifying a quantum system, P (Q|Q),
are slightly higher than for the classical system, P (C|C).
At low temperatures kBT < ∆E01 the distinguishabil-
ity is excellent, approaching 100% even for measurement
efficiencies η ' 0.2. This contrasts with a linear trap,
where the probability of correctly distinguishing dynam-
ical models was found to be limited to around 80%,
even for very low temperatures and ideal measurements
η = 1.0. Here, with two wells, both dynamical models
show good distinguishability between quantum and clas-
sical behavior for temperatures T ' 0.5 (kBT ' ∆E01)
and measurement efficiencies η > 0.2, with some abil-
ity to distinguish between the two models for temper-
atures where the thermal energy is well above the first
energy level separation and around the second transition,
kBT ' 1.5~ω ∼ 4∆E01, as long as η > 0.5. It should be
noted that the ability to distinguish the models is de-
pendent on the total time over which the measurement
record is collected and the models integrated. Extend-
ing the integration time will improve the results, but the
trap potential and the measurement interaction would
need to be stable over the integration time, providing
a trade-off between distinguishability and difficulties in
collecting the measurement data.

Typical trapping frequencies in experiments are
around 100kHz and masses of the nanoparticles are a
few × 10−19kg [35, 36]. In this case, ~ω corresponds to
a temperature of 0.77µK, and T = 1.5 ' 1.16µK, with
the two wells separated by 0.2nm, smaller than the ra-
dius of the sphere. However, the accuracy of the mea-
surement in such systems is typically very good, ∼ 1pm
[35, 36]. It should be possible to measure the differences
in position at the required precision to distinguish the
two dynamical models, even at relatively high tempera-
tures, kBT ∼ 4∆E01, as long as η > 0.5. Experiments
with levitated nanoparticles have reported temperatures
around 450µK [55], well above the regime required, but
experimental techniques are improving rapidly and tem-
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peratures equivalent to n̄ ∼ 10 − 20 are anticipated in
the near future. Measurement efficiencies are more diffi-
cult to estimate from previous work since the values are
not critical to the results presented and are not normally
provided. However, for other systems, such as supercon-
ducting circuits [20–23] it is known that measurement
efficiencies of at least η ∼ 0.4 are achievable [21].

Conclusions.— This paper has examined how two dy-
namical models, one classical and one quantum mechani-
cal, can be distinguished using continuous weak measure-
ments. The approach can be used at temperatures above
the minimum energy level separation of the quantum sys-
tem and for systems with inefficient measurements. The
paper has examined the use of dynamical model selection
for experiments on levitated optomechanical systems. In
this application, the problem of determining whether an

object is evolving quantum mechanically is challenging.
However, limits have been provided for two key experi-
mental parameters (temperature and measurement effi-
ciency) for quantum behaviour to be detected reliably.
The upper limit for the temperature dictates that the
thermal energy can be several times the lowest energy
level separation, as long as the measurement efficiency is
greater than 50%.
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