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Real-Time Kalman Filter: Cooling of an Optically Levitated Nanoparticle
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We demonstrate that a Kalman filter applied to estimate the position of an optically levitated
nanoparticle, and operated in real-time within a Field Programmable Gate Array (FPGA), is
sufficient to perform closed-loop parametric feedback cooling of the centre of mass motion to
sub-Kelvin temperatures. The translational centre of mass motion along the optical axis of the
trapped nanoparticle has been cooled by three orders of magnitude, from a temperature of 300K to
a temperature of 162± 15mK.

Introduction.— In order to perform closed-loop
feedback control of a classical or quantum system,
accurate real-time state estimation is crucial. With
recent advances in quantum engineering and technology
comes a need to accurately measure and control quantum
systems. In order to obtain accurate knowledge about the
state of a system from noisy measurements one can use a
process called filtering which combines the knowledge of
the dynamics of the system with noisy measurements of
the system to estimate the true state of the system [1].
A much targeted goal in levitated optomechanics [2]

is cooling and stabilising the centre of mass motion of
an optically levitated nanosphere in a target phonon
number state [3–12]. Nanospheres cooled to low
temperature thermal states and stabilised in phonon
number states have applications such as performing
matter-wave interferometry, allowing investigation of
quantum phenomena which cannot be accessed with
atoms [13], and tests of collapse models which cannot
be performed at smaller mass scales [14–16]; as well as
providing the possibility of much higher force sensitivity
than can be achieved in levitated atom systems [9, 17–
19]. Optically levitated nanoparticles have also been
used as a model system to simulate and investigate
non-equilibrium dynamics [20] and stochastic dynamics
[21] and show promise for use in investigating quantum
gravity [22–24].
The first step in stabilising the centre of mass

motion in such a state using closed-loop feedback
is to accurately estimate the motional state of the
system in real-time. In principle, this can be
accomplished using a quantum filter, known also as the
stochastic master equation (SME), where the estimate
of the state, i.e. the conditional density operator, is
updated continuously by the measurement record [25–
28]. Quantum estimation theory has been discussed in
the context of optomechanics to investigate wavefunction
collapse models [29, 30], to detect and measure gravity
[31, 32] and the Fisher information for parameter
estimation in linear Gaussian quantum systems under
continous measurement has been considered [33].
A quantum filter is a more general approach to

modelling the system than a Kalman-Bucy filter as
it includes the effect of measurement backaction on a
quantum system under continuous weak measurement.
However, as will be shown here, it reduces to the optimal
Quantum Kalman-Bucy filter in the case where the
system is linear and the noise is approximately white
and Gaussian [25, 34–36]. Moreover, as discussed in [37],
we can formally map the Quantum Kalman-Bucy filter
to a (classical) Kalman-Bucy filter [38, 39]. Kalman
filters, the discrete-time counterparts to continuous-time
Kalman-Bucy filters, have been used extensively in many
aerospace and defence applications [40, 41], including
navigation systems for the Apollo Project and the well-
known Global Positioning System (GPS) [42]. FPGA
based Kalman filters have also recently been developed
for applications including antilock braking systems [43],
radar tracking systems [44] and displacement measuring
interferometry [45]. Kalman filtering has also been
applied in various areas within the physical sciences such
as atomic magnetometry [46], tracking dusty plasmas [47]
and noise cancellation in gravitational wave detection
[48].
The second step is to control the state of the system

with feedback [49, 50], e.g. Markovian [51] or Bayesian
feedback [37], the latter of which we will adopt in this
letter (alternatively one could also consider coherent
feedback [52]). However, numerically solving a SME in
real-time requires truncation of the Hilbert space basis
as the computation time scales exponentially with the
size of basis. To circumvent this difficulty different
suboptimal methods have been developed, namely, the
number-phase Wigner particle filter [53], the Volterra
particle filter [54], the quantum extended filter [55] and
the Gaussian approximation of the conditional density
operator [34].
Quantum Kalman filtering has recently been applied to

the field of optomechanics and demonstrated to produce
a minimal least-squares estimation of the mechanical
state of an optical cavity [56]. This was done in
post-processing by using the measurement record from
a homodyne detection as the input to a Quantum
Kalman filter implementing an accurate state-space
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FIG. 1. The 3D position of the particle is detected by
interference of the scattered and divergent field by the photo-
detector. This signal is then passed into an FPGA which is
implementing the Kalman filter that estimates the z position
and amplifies the estimate. This estimated signal is then sent
into a second FPGA which DC shifts it, frequency doubles
it, applies a time delay and multiplies it such as to keep the
amplitude approximately constant. This signal is then fed to
a AOM to modulate the power of the trapping lasers.

model which carefully took into account nontrivial
experimental noise sources. They suggest that ground
state cooling should be readily achievable by utilising
a real-time Quantum Kalman filter of sufficiently high
spatial resolution, dynamic range and latency in the
detection and processing of the signals.

In this letter we demonstrate that a real-time
Quantum Kalman filter with a sampling period of
2.275µs is sufficient to estimate the state such that
one can perform closed-loop parametric feedback cooling
of the translational motion of an optically levitated
nanoparticle to sub-Kelvin temperatures.

The model.— We consider an optically levitated
nanoparticle in free space subject to continuous weak
measurements of its position. Specifically, we consider
the experimental setup described in [57]: an incoming
beam is focused by a paraboloidal mirror to the focal
point, where it creates a harmonic trap. The particle,
which is trapped in this potential scatters photons in
the Rayleigh regime: these are collected by the detector
to obtain the z position with efficiency η (see Fig. 1).
We model the particle dynamics along the optical axis,
namely the z-axis, using the following SME:

dρ̂c =−
i

~
[Ĥ + Ĥfb, ρ̂c]dt

+ (n̄+ 1)ΓD[â]ρ̂cdt+ n̄ΓD[â†]ρ̂cdt

+ 2kD[ẑ]ρ̂cdt+
√

2ηkH[ẑ]ρ̂cdW,

(1)

where ρ̂c is the conditioned state at time t. On the first
line we have Hamiltonian and feedback terms:

Ĥ =
p̂2

2m
+

mω2

2
ẑ2, (2)

Ĥfb = β

(

mω3

2

〈p̂〉〈ẑ〉

〈Ĥ〉

)

ẑ2, (3)

respectively, where β is an adimensional parameter
quantifying the strength of the feedback, 〈 · 〉 = tr[ · ρc],
ẑ and p̂ denote the particle position and momentum
operators, respectively, ω is the trap frequency and m
is the mass of the particle (see supplemental material S1
for more details on the feedback term). The second line
of Eq. (1) describes the interaction with a gas of particles
at temperature T , where n̄ = (exp(~ω/kBT )− 1)−1, kB
is Boltzmann’s constant, â† =

√

mω
2~

(ẑ + i
mω

p̂), D[L] · =

L · L† − 1
2
{L†L, · } [58], L denotes an operator, { · , · }

is the anti-commutator and Γ is the damping rate [59].
The effect of weak continuous z-position measurements
is described by the third line of Eq. (1), where H[ẑ] · =

{ẑ, · }−2Tr[ẑ · ] · , W is a real Wiener process, k = 12π2µ

5λ2 ,

λ is the wavelength of the laser light, µ = σ
πw2

0

P
~ωL

is the

scattering rate, σ is the the Rayleigh cross section, w0

is the beam waist, P is the laser power, ωL = 2πc
λ

and
c is the speed of light. In addition, we assume that the
measurement record is given by [57]:

dQ = 4ηk〈ẑ〉dt+
√

2ηkdW. (4)

We suppose that the initial state ρc is thermal, when
the feedback term starts to cool the system, and thus
the state ρc remains Gaussian under the evolution of the
SME given in Eq. (1). This simplifies the problem to the
analysis of the mean values [34]:

d〈ẑ〉 =
〈p̂〉

m
dt− Γ〈ẑ〉dt+

√

8ηkVzdW, (5)

d〈p̂〉 =−mω2〈ẑ〉

(

1 + β
ω〈p̂〉〈ẑ〉

〈Ĥ〉

)

dt

− Γ〈p̂〉dt+
√

8ηkCdW, (6)

and of the covariances:

dVz =
2

m
C

(

1 + β
ω〈p̂〉〈ẑ〉

〈Ĥ〉

)

dt− 8ηkV 2
z dt

− ΓVzdt+ Γ(2n̄+ 1)
~

2mω
dt− 3Γ〈z〉2dt, (7)

dVp =− 2mω2C

(

1 + β
ω〈p̂〉〈ẑ〉

〈Ĥ〉

)

dt− 8ηkC2dt+ 2k~2dt

− ΓVpdt+ Γ(2n̄+ 1)
mω~

2
dt− 3Γ〈p̂〉2dt, (8)

dC =

(

Vp

m
−mω2Vz

)

(

1 + β
ω〈p̂〉〈ẑ〉

〈Ĥ〉

)

dt− 8ηkCVzdt

− ΓCdt− 3Γ〈p̂〉〈ẑ〉dt, (9)

where Vz = 〈(ẑ − 〈ẑ〉)2〉, Vp = 〈(p̂ − 〈p̂〉)2〉 and C =
1
2
〈{ẑ, p̂}〉 − 〈ẑ〉〈p̂〉.
We can further simplify the filter by neglecting the

small feedback term, i.e. we set β = 0 in Eqs. (5)-
(9). The equations for the variances then form a closed
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set of coupled Riccati equations [60–63] and we can also
formally rewrite Eqs. (5) - (9) as a classical Kalman-Bucy
filter [37]:

dxc = Axcdt+
√

2ηkdξ +
√

2ΓkbTdV , (10)

where xc = (zc, pc)
⊤, A =

[

0 1/m
−mω2 −Γ

]

, dξ = (0, dξ)⊤,

ξ is a real Wiener process, dV = (0, dV )⊤ and V is a real
Wiener process uncorrelated with ξ. In place of Eq. (4)
we consider the classical measurement record:

dQc = 4ηkzcdt+
√

2ηkdζ, (11)

where dζ is a third real Wiener process uncorrelated with
ξ and V . Moreover, we suppose the following relation:

dW =
√

8ηk(zc − E[zc])dt+ dζ, (12)

where E[ · ] =
∫

·Pc(zc, pc)dzcdpc and Pc is the
(classical) conditioned state obtained from the Kushner-
Stratonovich equation corresponding to Eq. (10) [64]. We
can then formally identify E[O ] with 〈Ô〉, where O and
Ô denote the classical and its corresponding quantum
observable, and Qc with Q [65].
Experimental Methods.— The Kalman filter described

in Eq. (10) and further detailed in supplementary (2)
was implemented in VHDL (Very High Speed Hardware
Description Language) using fixed-point arithmetic
and synthesised onto a XilinX Virtex-5 SX50T Field
Programmable Gate Array (FPGA) provided in a
National Instruments (NI) PXIe-7961 and connected to
a NI 5781 baseband transceiver for ADC and DAC
conversion. The fastest sample rate achievable for a
Kalman filter with this FPGA was 439.56kHz, this was
because the fastest synthesisable clock rate for the design
was 3.07MHz and each Kalman filter iteration takes 7
clock cycles, this is equivalent to a sample period of
2.275µs.
Cooling was performed by taking the estimated signal

for the z position from the Kalman filter and using a
leaky integrator to calculate the DC component of the
signal. The DC component was then removed from
the measured signal in order to provide only the AC
component of the signal. This AC signal containing
the estimate of the particle position was squared in
order to produce a signal at double the frequency of the
motion of the particle. The signal then had a constant
phase offset applied to it by introducing a time delay,
in order to compensate for experimental latency, which
was optimised such that maximal cooling was observed
experimentally. In addition, the amplitude of the output
cooling signal was controlled such that it maintained a
set average amplitude in order to keep the cooling rate
approximately constant regardless of fluctuations in the
amplitude of the motion of the particle. This signal was
then applied to modulate the power of the trapping laser
in order to parametrically cool the translational z motion.

A particle was trapped and the power of the trap was
lowered such as to reduce the frequency of oscillation
in the z direction, a frequency of 38kHz was obtained
for the z motion. The VHDL code for a Kalman filter
modelling a simple harmonic oscillator with a frequency
of 38kHz was generated, the Q matrix and R value,
corresponding to Eq. (7) and Eq. (8) in supplementary
2, were tuned by application to simulated data [66] and
then synthesised onto an FPGA. The frequency doubling,
time delay and amplitude control code was synthesised
onto another FPGA. The experimental setup is shown in
figure 1.
A lock-in amplifier was used to cool the other two

directions of motion as described in reference [10]. The
power of the trapping laser was adjusted slightly so that
the z motion, the motion parallel to the propagation
direction of the laser, stayed oscillating at a frequency
of 38kHz regardless of pressure so that the Kalman filter
could continue to optimally track the particle’s z motion.
Results.— The data analysis has been primarily

performed using the open source optoanalysis package
which we have developed [67]. The derivation of the
method of calculating temperature is detailed in reference
[10]. Plots showing the measured, bandpass filtered and
real-time Kalman estimated z motion signal are shown in
figure 2. The Kalman estimate has been shifted forward
in time by one filter cycle (time for one time-step /
iteration of the Kalman filter algorithm which is 2.275µs)
to account for the latency in the estimation.
As described in the Experimental Methods section this

estimated signal was then passed to a second FPGA so
that the signal could be squared, a time delay applied and
a modulation applied to the amplification of the signal
so as to keep the amplitude approximately constant.
This signal was then used to modulate the power of
the laser via an Acousto-Optic Modulator (AOM) as
shown in figure 1. Through this technique cooling of the
translational motion in the propagation direction of the
laser (labelled the z direction) from 300K to 162± 15mK
was achieved, see figure 3 for the PSD (power spectral
density) of the uncooled and cooled signal.
The main limitations on the temperature reached

with this cooling scheme are discretisation noise from
the ADC, stochastic noise on the particle motion from
gas collisions and the sample period with which one
can perform an iteration of the Kalman filter state
estimation.
The discretisation noise is caused because the voltage

signal from the photodetector is read into the FPGA as
a digital value from an ADC. For the ADC used here
the voltage difference between the discrete observable
levels is 122µV, this means that for the signal shown in
figure 2 the FPGA only observed ∼ 5 discrete levels.
The feedback cooling is operating very near the limit
of what motion it can discern and estimate, and this
is likely the predominant limiting factor on the cooling
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FIG. 2. (A) Time trace of unfiltered measured signal from
particle and filtered z signal over 5ms. (B) Time trace of
filtered z signal and Kalman filter estimated z signal over 5ms.
(C) Power spectral density of measured signal from particle
and the Kalman filtered estimate. (D) Same as C but over a
smaller frequency range centred on the z frequency of 38kHz.
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FIG. 3. The PSD of the uncooled particle in equilibrium with
the environment at 300K (at a pressure of 3mbar) and the
cooled particle at a pressure of 5.7 × 10−5 mbar. The lines
represent the Lorentzian functions fitted to the PSD data to
calculate the temperature of the cooled state.

achievable. Using an ADC with higher voltage resolution
or amplifying the signal into the ADC with a sufficiently
low noise amplifier will improve this limit.

The stochastic noise on the motion of the particle
from gas collisions is the other primary limitation on the
temperature reached; performing this cooling at lower

pressures will further reduce the temperature that can be
reached as the stochastic driving of the particle motion
by gas collisions will be further reduced.

At present the hardware implementation can run at a
fastest sample period of 2.275µs, this means that for a
particle oscillating with a frequency of 38kHz one only
estimates the motion ∼ 11.6 times in one period and
results in a higher signal to noise ratio being necessary
for accurate state estimation. Increasing the sample
frequency would mean that the accuracy of the state
estimation at lower signal to noise ratios will improve
and therefore that cooling to lower temperatures should
be achieved. A high sample frequency also means that
higher frequency motion can be estimated and cooled in
this way, leading to a lower mean phonon number for the
same temperature of motion [10, 68].

Discussion and Conclusions.— We have demonstrated
that, for an optically levitated nanoparticle, a Kalman
filter using a very simple harmonic-oscillator model
of the dynamics of the system and which operates
with a relatively high sample period is sufficient to
achieve cooling of translational motion to sub-Kelvin
temperatures of 162± 15mK. Improvements in the speed
of the hardware implementation such that a lower sample
period can be achieved, a more sophisticated model of the
dynamics including the effect of feedback and extending
the modelling to all 3 translational degrees of freedom,
as well as performing the cooling at a lower pressure, will
increase the performance of the cooling performed using
this method and result in cooling to lower temperatures.

Using this form of state estimation in real-time
also opens the way to implementing more complex
feedback schemes [64, 69–71], such as combination with a
Proportional Integral Differential (PID) controller [72] or
a linear quadratic regulator (LQR) [37, 64]. Combining
the Kalman filter, which is a linear quadratic estimator
(LQE), with an LQR constitutes linear quadratic
Gaussian (LQG) feedback control. Coherent-feedback
cooling by LQG Control has been discussed in depth
in [73] and [74] and could be used to significantly improve
the level of control over the motional state of the system
as well as improving the minimum temperature reachable
in this system.
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Supplementary for:

Real-Time Kalman Filter: Cooling of an Optically Levitated Nanoparticle’

In this supplementary we derive the form of the feedback term in the stochastic master equation (SME) in
Eq. (1) in the main text. We also derive the discrete-time state transition matrix for the Kalman-Bucy filter
considered in Eq. (10) in the main text.

S1: THE FEEDBACK TERM

We denote the measured signal by z̄ = Q, where Q is given in Eq. (4) in the main text, and we define the phase of
the signal as:

θt =

{

arctan
(

p̄

mωz̄

)

, if z̄ ≥ 0,

arctan
(

p̄
mωz̄

)

+ π, otherwise,
(13)

where p̄ = m d
dt
z̄. Note that this definition of p̄ assumes a physical noise with a non-white spectrum in place of

the Brownian noise dW
dt

. We apply a sinusoidal modulation of the laser power P at twice the tracked signal phase.
Specifically, we consider the modulation βsin(2θt), where β is the amplitude of the modulation of the laser power P .
We have that the trap frequency squared ω2 is proportional to laser power P (see main text and [57]). Thus when the
modulation is applied we can obtain the feedback term by formally making the replacement ω2 → ω2(1 + βsin(2θt))
in the unmodulated Hamiltonian H . The feedback term is given by:

Hfb =
βmω2

2
sin(2θt)ẑ

2. (14)

Using the definition in Eq. (13) we note that:

sin(2θt) = sin
(

2 arctan
( p̄

mωz̄

))

. (15)

Using Eq. (15) and trigonometric identities we then find from Eq. (14):

Hfb = β

(

mω3

2

p̄z̄

Ē

)

ẑ2, (16)

where Ē = p̄2

2m
+ mω2

2
z̄2. Note that Ē is also time dependent.

It is a non-trivial task to add the feedback term in Eq. (16) to the dynamics in Eq. (1) due to the non-white nature
of the noise. One would need to find the white noise limit of the term in Eq. (16), for example for a Gaussian noise;
add it to the dynamics in the Stratonovich form, and then convert back to the Itô form [51]. However, if one considers
only the non-stochastic contribution, then the feedback term in Eq. (16) reduces to:

Hfb = β

(

mω3

2

〈p̂〉〈ẑ〉

〈Ĥ〉

)

ẑ2. (17)

This term yields, in the equations of motion for 〈p̂〉, the following contribution:

d〈p̂〉 =

(

βmω3

〈Ĥ〉

)

〈ẑ〉2〈p̂〉dt, (18)

If we then replace 〈Ĥ〉 with a constant energy value E we obtain the cooling term considered in [10, 76].

S2: THE DISCRETE-TIME KALMAN FILTER

The discrete-time Kalman filter uses a linear state space model of the form
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Xt = FtXt−1 +wt, (19)

where Xt is the state vector containing the variables that one wishes to estimate (e.g. position, velocity), Ft is
the state transition matrix which describes how the state vector at time step t − 1 transitions to the state vector
at time step t, wt is the vector containing the discrete process noise for each parameter in the state vector. The
process noise is assumed to be drawn from a zero mean multivariate normal distribution with covariance matrix Qt

i.e. wt ∼ N (0,Qt). Measurements of the system take the form

zt = HtXt + vt, (20)

where zt is the vector of measurements, Ht is the measurement transformation matrix which maps the state vector
domain to the measurement domain, vt is the vector containing the measurement noise terms for each observation in
the measurement vector. The measurement noise, similar to the process noise, is assumed to be drawn from a zero
mean normal distribution with covariance Rt, i.e. vt ∼ N (0, Rt).
If one considers the Kalman-Bucy filter given in Eq. (10) of the main text with the state vector Xt = (zt, vt)

T at
time step t, where zt is the position of the particle in the z direction and vt = pt/m is the velocity of the particle in
the z direction, one has the following equation for the system dynamics,

Ẋt = AXt + ω, (21)

where

A =

[

0 1
−ω2 −Γ

]

, ω =

√

2ΓkBT0

m

dξ(t)

dt
+

√

2ηk

m

dV(t)

dt
, (22)

dξ = (0, dξ)⊤ and dV = (0, dV )⊤.
The stochastic terms can is modelled as process noise ω. The damping is time variant as it varies with pressure,

however for the range of pressures explored experimentally Γ << ω2 and therefore the damping value can be
approximated as 0. In this case the dynamics model simplifies to a simple sinusoidal model of the motion ẍ = −ω2x
with the stochastic noise modelled in the process noise. This simple model also allows us to keep the hardware
implementation simple to allow the design to fit inside the FPGA.
As described in references [77–79] we can use the following transformation from linear time invariant system theory

(LTI System theory) in order to calculate the continuous-time state transition matrix F(t) for a time-invariant systems
dynamics matrix A,

F(t) = L−1([sI−A]−1), (23)

where F(t) is the continuous-time form of the Ft matrix in Eq. (19), L−1 is the inverse Laplace transform in terms of
the complex frequency variable s and I is the identity matrix. Performing this transformation and taking continuous
time t to be in discrete steps ∆t, gives us the discrete time state-space model

[

zt
vt

]

=

[

cos (ω∆t) 1
ω
sin (ω∆t)

−ω sin (ω∆t) cos (ω∆t)

] [

zt−1

vt−1

]

, (24)

where ∆t = tn − tn−1.
The values of the process noise covariance matrix Q and the measurement noise covariance value R were tuned such

that when the HDL (Hardware Description Language) implementation of the Kalman filter was run on noisy data
produced by a simulated signal it produced an accurate estimate of the true signal. This simulated signal was produced
by adding Gaussian noise to the simulated position measurements found by solving the classical stochastic differential
equation modelling our system under free evolution using the open source optosim package we have developed [75].


