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A B S T R A C T

We introduce a probabilistic (Bayesian) framework and associated software toolbox for mapping population
receptive fields (pRFs) based on fMRI data. This generic approach is intended to work with stimuli of any
dimension and is demonstrated and validated in the context of 2D retinotopic mapping. The framework enables
the experimenter to specify generative (encoding) models of fMRI timeseries, in which experimental stimuli enter
a pRF model of neural activity, which in turns drives a nonlinear model of neurovascular coupling and Blood
Oxygenation Level Dependent (BOLD) response. The neuronal and haemodynamic parameters are estimated
together on a voxel-by-voxel or region-of-interest basis using a Bayesian estimation algorithm (variational Lap-
lace). This offers several novel contributions to receptive field modelling. The variance/covariance of parameters
are estimated, enabling receptive fields to be plotted while properly representing uncertainty about pRF size and
location. Variability in the haemodynamic response across the brain is accounted for. Furthermore, the framework
introduces formal hypothesis testing to pRF analysis, enabling competing models to be evaluated based on their
log model evidence (approximated by the variational free energy), which represents the optimal tradeoff between
accuracy and complexity. Using simulations and empirical data, we found that parameters typically used to
represent pRF size and neuronal scaling are strongly correlated, which is taken into account by the Bayesian
methods we describe when making inferences. We used the framework to compare the evidence for six variants of
pRF model using 7 T functional MRI data and we found a circular Difference of Gaussians (DoG) model to be the
best explanation for our data overall. We hope this framework will prove useful for mapping stimulus spaces with
any number of dimensions onto the anatomy of the brain.
1. Introduction

There are many examples of neuronal populations which represent
stimulus spaces. In the auditory cortex, the 1-dimensional space of sound
frequencies is mapped onto the surface of the brain (Merzenich and
Brugge, 1973; Moerel et al., 2012). In the visual system, retinotopic
mapping has revealed that the 2-dimensional plane of the retina is
mapped multiple times onto the surface of visual cortex (e.g. Holmes,
1945). Place cells in the bat hippocampus respondmaximally to a specific
location in 3-dimensional space (Palacci et al., 2013) and conceptual
knowledgemay be represented neuronally in spaces of two dimensions or
more (Constantinescu et al., 2016). Populations of neurons can be
characterised by their receptive fields – the area(s) of N-dimensional
space to which they maximally respond. In this paper, we introduce a
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generic framework for mapping stimulus spaces onto the brain and for
performing hypothesis testing. We illustrate this approach in the context
of visual population receptive field (pRF) mapping.

To enable pRF mapping, model parameters are required which cap-
ture the response of neuronal populations to experimental stimuli. The
spatial distribution of these parameters across the brain can reveal large-
scale topographic features, such as the presence of retinotopic maps. pRF
mapping depends upon building generative models of imaging timeseries
- we seek to understand how stimuli cause a change in spatially extended
patterns of neuronal activity, which in turns cause the timeseries we
measure using medical imaging devices. For functional MRI (fMRI), this
involves modelling neuro-vascular coupling and the BOLD response
(Kumar and Penny, 2014), which is an inherently nonlinear mapping. For
instance, the BOLD response has a refractory period which depends on
7
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the interstimulus interval (Friston et al., 1998). Furthermore, brain re-
gions differ in the extent of their vascularization, giving rise to regional
differences in BOLD response. Typically, pRF mapping experiments use a
canonical haemodynamic response function, which may be determined
on a per-subject basis. Here, to obtain the best possible estimators of
neural activity for constructing pRF maps, we specified and estimated a
non-linear model for each voxel's fMRI timeseries which included a
biologically motivated differential equation model of neurovascular
coupling and the BOLD response (Buxton et al., 2004; Stephan
et al., 2007).

The objective of modelling (and of science more generally) is to test
hypotheses. In the context of pRF mapping, hypotheses may be specified
explicitly or implicitly. For instance, He et al. (2015) tested the explicit
hypothesis that pRF position is modulated by perceived 3D space. Other
pRF studies have been exploratory, for instance examining the reorgan-
isation of visual field maps after lesions or disease (e.g. Levin et al.,
2010). In studies such as this, there is an implicit hypothesis that pRF
parameters will deviate from their normal range in specific areas of
cortex. Despite the popularity of pRF mapping, a framework for formal
hypothesis testing is currently lacking.

Here we introduce a set of tools for probabilistic (Bayesian) model
fitting and inference in the context of pRF mapping, which could offer
several benefits to experimenters. The optimal method for testing hy-
potheses is to compare the likelihood of the data under one model (or
hypothesis) against the likelihood of the data under another model
(Neyman and Pearson, 1933). For instance, an experimenter may wish to
test whether certain brain regions have receptive fields with an excit-
atory centre and inhibitory surround, as identified by Hubel and Wiesel
(1959) with single unit recordings. Such receptive fields may be
modelled using a Difference of Gaussians (DoG) function (Rodieck,
1965), which can also capture the neuronal response at the level of voxels
in fMRI data (Zuiderbaan et al., 2012). Alternatively, if the evidence for
an inhibitory surround is lacking, a simple excitatory receptive field may
be the better model (as applied to fMRI data by Dumoulin and Wandell,
2008). This kind of question, regarding which of several models is the
best explanation of the available imaging data, may be addressed by
comparing the evidence for the fMRI data under competing models at
each point in the brain.

Models, including pRF models, cannot simply be compared based on
the percentage variance they explain (their accuracy). Such a comparison
ignores complexity – any model with more (independent) parameters
will explain more of the variance, with the added risk of overfitting the
noise and failing to generalise. One solution is to use cross-validation
across datasets (e.g. Zuiderbaan et al., 2012) to approximate the model
evidence, which offers control for over-fitting (i.e. assesses general-
isability). However, this does not facilitate model comparison within a
single dataset. In the framework proposed here, an approximation of the
log model evidence is used known as the negative variational free energy
(Friston et al., 2007; Penny, 2012). This quantity, estimated for each pRF
model, is the accuracy of the model minus its complexity. By comparing
models based on their free energy, the experimenter can select the
simplest model that explains the most variance. Furthermore, by taking
into account the covariance between parameters, the free energy is a
more sensitive approximation to the log model evidence than other ap-
proximations such as the AIC or BIC.

As well as enabling competing models to be compared, the framework
we propose has advantages for parameter-level inference, which may be
of particular relevance for exploratory pRF studies. Here, parameters
such as the pRF's size are each represented as a (normal) probability
distribution, with both an expected value and variance/covariance (un-
certainty). Thus, the uncertainty of parameter estimates may be
expressed when visualising the pRF and when making comparisons
within and between subjects. Uncertainty about the parameter estimates
may arise frommultiple sources – observation noise, subjects' movement,
as well as any covariance among parameters. Also, it may not always be
2

possible to confidently assign variance in the measured signal to either
neuronal or haemodynamic causes. By estimating the full covariance
among neuronal and haemodynamic parameters, we ensure that any
uncertainty induced by ambiguity between these parameters is accoun-
ted for when visualising the pRF or testing hypotheses.

Here, we generalise an approach previously introduced in the context
of tonotopic mapping (Kumar and Penny, 2014), making several novel
contributions. We extend the method to stimuli of any dimension, and
demonstrate its application in the context of visual (retinotopic) pRF
mapping (Section 3.1, 3.2). We evaluate the face validity and robustness
to noise of the method using simulated data (Section 3.3), and evaluate
test-retest reliability across scanning runs using empirical data (Section
3.4). Finally, we demonstrate the use of this method for hypothesis
testing (Section 3.5), by comparing the evidence for two established
forms of pRF model: a Gaussian response function (Dumoulin and
Wandell, 2008) and a Difference of Gaussians (centre-surround) response
function (Zuiderbaan et al., 2012). Within each category of model we
also compared the evidence for circular, elliptical and angled (rotated)
receptive fields. We do not suggest drawing any firm conclusions about
these models from the results we present here, which only uses data from
a single subject. Instead, our aim is to demonstrate the statistical appa-
ratus for comparing models, which we hope will prove useful for larger
empirical studies. All of the methods described and evaluated here are
made available to experimenters via a freely available software toolbox
(Appendix A).

2. Material and methods

2.1. Participants

Empirical data were acquired as part of a previously reported study
(Silson et al., 2015). Data from one participant is included here. All
participants in the previous study had normal or corrected-to-normal
vision and gave written informed consent. The National Institutes of
Health Institutional Review Board approved the consent and protocol
(93-M-0170, NCT00001360).
2.2. Data acquisition

Data were acquired using a Siemens 7 T Magnetom scanner in the
Clinical Research Centre on the National Institutes of Health campus
(Bethesda, MD). Partial EPI volumes of the occipital and temporal
cortices were acquired using a 32-channel head coil (42 slices;
1.2 � 1.2 � 1.2 mm; 10% interslice gap; TR, 2 s; TE, 27 ms; matrix size,
170 � 170; FOV, 192 mm). Anatomical T1 weighted volumes were ac-
quired before the experimental runs. Standard MPRAGE (Magnetization-
Prepared Rapid-Acquisition Gradient Echo) and corresponding GE-PD
(Gradient Echo–Proton Density) images were collected and the
MPRAGE images were then normalized by the GE-PD images, for use as
high-resolution anatomical data for the fMRI data analysis.
2.3. Task and procedure

Naturalistic scene images were presented through a bar aperture that
gradually traversed the visual field (Fig. 1). During each 36 s sweep, the
aperture took 18 evenly spaced steps (each 2s or 1TR) to traverse the
entire screen (Dumoulin and Wandell, 2008). Eight of these sweeps
formed one run, in the following order: L-R, BR-TL, T-B, BL-TR, R-L,
TL-BR, B-T, and TR-BL. There were 16 identical runs per participant. The
scene stimuli, which covered a circular area (21� diameter) changed
every 400 ms (5 per aperture position). During runs, participants per-
formed a colour-detection task at fixation, indicating via button press
when the white fixation dot changed to red. Colour fixation changes
occurred semi-randomly, with ~2 colour changes per sweep.



Fig. 1. Example stimulus frames used for pRF mapping. Scene images covering a circular
(21� diameter) area of the display were presented through a bar aperture that moved
gradually through the visual field. A single sweep across the visual field took 36 s and
consisted of 18 equally timed (2 s) steps of equal width. In each run, the aperture
completed eight sweeps (2 orientations, 4 directions). Participants were required to
maintain fixation and indicate the detection of a colour change at fixation, via a button
press. Adapted from Silson et al., (2015) (license CC BY 4.0).
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2.4. Pre-processing

As reported in Silson et al. (2015), functional data were initially
motion-corrected using the Analysis of Functional NeuroImages (ANFI)
software package (http://afni.nimh.nih.gov/afni), following removal of
eight “dummy” volumes to allow stabilisation of the magnetic field.
Subsequent analyses were conducted using SPM (Statistical Parametric
Mapping) version 12 (http://www.fil.ion.ucl.ac.uk/spm/).
2.5. Timeseries extraction

pRF modelling was performed on a per-voxel basis. To enable this, we
first specified a General Linear Model (GLM) using SPM, which included
6 motion regressors per session, in addition to regressors modelling the
mean of each session. The software toolbox we introduce here (BayesPrf)
expects a binary image mask (i.e. a three-dimensional image in NIFTI
format) to define the voxels to include in the analysis. For each hemi-
sphere, we created a mask which identified voxels in occipital cortex
which were also on the cortical surface (half way through the cortical
depth). To select the occipital cortex, we created a binary mask of all
voxels in the SPM analysis, from the back of the brain towards the corpus
callosum (6mm posterior to the back of the splenium). Next, we created
masks of the voxels on the cortical surface. We used the standard pro-
cessing pipeline in the Freesurfer toolbox (version 5.3, https://surfer.
nmr.mgh.harvard.edu/) to extract the cortical surface, and we imple-
mented software functions in Matlab to import the surfaces as Matlab
structures and NIFTI images. We then took the intersection of the pos-
terior brain mask and the cortical surface images to provide masks for the
left and right hemispheres, confined to the back of the brain.

All voxels from within the combined masks (the intersection of oc-
cipital cortex and cortical surface) were extracted. They were high-pass
filtered (with cut-off 128 s) to remove low frequency scanner drift,
whitened to remove auto-correlation over time, and the motion con-
founds and session means were regressed out using the GLM described
above. This procedure was repeated for each scanning run and the
resulting timeseries were averaged over runs. Data from the 8 odd-
3

numbered runs were used for the main analysis and the 8 even-
numbered runs were kept aside to evaluate test-retest reliability (Sec-
tion 3.4).

2.6. Model specification

We specified a generative model which predicted BOLD timeseries
given visual stimuli. The model (based on Kumar and Penny, 2014)
consisted of two parts – a neuronal model describing the brain's response
to the stimuli, and an observation model describing the change in neu-
rovascular coupling and BOLD response caused by the neuronal activity.

2.6.1. Stimulus specification
At each time step t, a set of points Ut was illuminated on the screen,

where each point was defined by an x- and y-coordinate:

Ut ¼ fp1;…; png

pi ¼ ðx 2 ℝ; y 2 ℝÞ (1)

The on-screen coordinates were discretised to give a reduced stimulus
resolution of 41 � 41 pixels and expressed in units of degrees of vi-
sual angle.

2.6.2. Neuronal model
The neuronal activity zðtÞ was modelled as a multivariate normal

probability density function N:

zðtÞ ¼ β
X
pi2Ut

Nðpijμ;ΣÞ

Nðpijμ;ΣÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞkjΣj

q e�
1
2ðpi�μÞTΣ�1ðpi�μÞ (2)

This function is commonly used in pRF mapping (since Dumoulin and
Wandell, 2008), although we used a normalized rather than the unnor-
malised densityN. The response was summed over each illuminated pixel
on the screen pi and scaled by parameter β. The model was parameterised
by k-dimensional vector μ, which specified the position of the pRF in
k-dimensional stimulus space, and k-dimensional covariance matrix Σ
which specified the width and rotation of the receptive field. Here we
used stimuli of dimension k ¼ 2, specified by their Cartesian coordinates
ðx; yÞ in visual space.

The neuronal parameters (μ; β and the elements of matrix Σ) needed
certain constraints to be placed on their values. For instance, β needed to
be positive whereas μ was constrained within the stimulated area of the
visual field. However, the optimisation algorithm we employed (varia-
tional Laplace) expected normally distributed prior distributions for each
parameter, constrained only by their variance. To overcome this, we
substituted each parameter for a latent variable, which could be freely
adjusted by the optimisation algorithm. Within the pRF model, these
latent variables were transformed to be within the desired range of
values, before being used to calculate the neuronal response in Equation
(2). Next, we detail these transformations for each parameter.

pRF centre parameters. We constrained the centre of the pRF to fall within
the circular area of the screen that was illuminated during scanning.
While the pRF approach can model the influence of stimulation from
beyond the stimulated area, estimating the parameters for such a model
is a particularly ill-posed problem (any number of parameter combina-
tions could give rise to the same observations). To constrain the pRF
location we introduced latent variables lρ and lθ, which controlled the
distance and angle (polar coordinates) of the pRF location relative to the
centre of the visual field. These variables were freely adjusted by the
optimisation algorithm during model fitting, and were transformed to
polar coordinates ðρ; θÞ within the model as follows:
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ρ ¼ r*NCDF lρ; 0; 1

� �

θ ¼ 2π*NCDFðlθ; 0; 1Þ � π (3)

where NCDF is the cumulative density function for the univariate normal
distribution. These transforms ensured that the distance ρ of the pRF
from the centre of the visual field was constrained between 0 and r ¼
10:5� and the polar angle θ was constrained between –π and π radians. A
second transform then converted from polar to Cartesian coordinates:

μx ¼ ρ*cosðθÞ

μy ¼ ρ*sinðθÞ

μ ¼ �
μx; μy

�
(4)

Which then entered the model as μ in Equation (2). We could there-
fore guarantee that whatever values were selected for latent variables lρ
and lθ by the optimisation algorithm, the pRF location ðμx; μyÞ would fall
within the circular stimulated area.

pRF width parameter. The width of the pRF was parameterised by its
standard deviation σ: To constrain the width to be in the range ½r0 r�, we
introduced a latent variable lσ . This latent variable could be freely
adjusted by the optimisation algorithm and was transformed within the
model to give the pRF width:

σ ¼ ðr � r0Þ*NCDFðlσ ; 0; 1Þ þ r0 (5)

We set r0, the smallest allowed pRF width, to 0:5�. The pRF model
which forms the first part of the results (Section 3.1–3.4) had a receptive
field which was circular in shape (isotropic). This was modelled by
setting the covariance matrix Σ in Equation (2) as follows:

Σ ¼
�
σ2 0
0 σ2

�
(6)

Scaling parameter. Parameter β scaled the neuronal response (see Equa-
tion (2)). It was constrained to be positive by substituting it for latent
variable lβ :

β ¼ exp
�
lβ
�

(7)

Priors. To complete the specification of the neuronal model, each latent
variable ðlρ; lθ; lβÞ was assigned a prior (normal) distribution, represent-
ing our beliefs before model fitting. The latent variables representing the
pRF location lρ and lθ had priors Nð0; 1Þ. The transformation to constrain
these (Equation (3)) converted these normal prior distributions to
bounded flat distributions over ρ and θ, with all values in the allowed
ranges equally likely (this is known as the probability integral transform).
The second transformation, from polar to Cartesian coordinates (Equa-
tion (4)), changed this to a peaked distribution around the origin, with a
95% confidence interval of [-8.6� 8.6�], a 99% confidence interval of
[-9.8� 9.8�] and 100% confidence interval of the maximum pRF size,
[-10.5� 10.5�]. We considered this a reasonable prior given the over-
representation of the fovea in cortex (e.g. Azzopardi and Cowey, 1993).

We set the prior on the latent variable representing the pRFwidth lσ to
Nð0;1Þ. Because of the CDF transformation (Equation (5)), this gave an
equal prior probability of all widths in the allowed range. We set lβ to
have prior distribution Nð�2;5Þ, which translated to an expected β
parameter of 0.14 with 95% confidence interval [0.003 5.35]. This large
variance reflected our uncertainty about this parameter. We found that
having a small positive prior value for this parameter provided a
reasonable starting point for the optimisation algorithm.

In summary, we implemented priors that would not impose strong
4

hypotheses on the parameters, but would keep them within reasonable
ranges. The prior on the pRF size parameter was a (bounded) flat prior
and so acted as a simple constraint. The priors on the pRF centre co-
ordinates were sufficiently permissive to enable any location within the
stimulated field to be represented, with an expectation that pRFs are less
likely to be centered in the periphery (>8.5�) than towards the fovea.
This will be an important matter for construct validation (the comparison
of this method against extant tools which don't make distributional as-
sumptions), which we return to in the discussion. Another direction for
future development may be to replace these fixed priors with empirical
priors, either based on published studies or based on the group of subjects
(a class of approaches referred to as Parametric Empirical Bayes).

2.6.3. Haemodynamic model
The predicted neuronal activity from the pRF model was fed into the

extended Balloon model (Buxton et al., 2004; Stephan et al., 2007),
which is a series of differential equations describing how neuronal ac-
tivity causes a change in blood flow, and how blood flow causes the BOLD
response. Most parameters of this model are fixed, based on previous
empirical measurements, however three parameters are estimated on a
voxel-wise basis: the transit time τ, the rate of signal decay κ, and the
ratio of intra-to extra-vascular signal ε. Certain parameters in this model
are field-strength specific, which we adjusted for our 7 T data according
to recommendations by Heinzle et al. (2016). We set r0, the intravascular
relaxation rate, to 340, the frequency offset at the outer surface of
magnetized vessels to 197.86 Hz and the prior distribution on logε to the
normal distribution with mean �3.99 and variance 0.83. The 3 free
neurovascular/haemodynamic parameters were concatenated with the
parameters of the neuronal model and estimated simultaneously.

The model was completed by setting prior expectations on the
observation noise, which was assumed to be I.I.D. and normally distrib-
uted with mean zero. We set the prior log precision of the noise to 6 with
variance (uncertainty) 1/55, which are the default values used with
Dynamic Causal Modelling (Friston et al., 2003), a modelling framework
within SPM which uses similar model specification and estimation pro-
cedures as are applied here.

2.7. Model estimation

For each voxel separately, the model was fitted to the data using the
variational Laplace algorithm (Friston et al., 2007), implemented in the
Matlab function spm_nlsi_gn.m, which is included with the SPM software
package. This Bayesian estimation procedure provides two important
estimates. The first is an approximation of the log model evidence, which
is the log probability of observing the data y given the model m,
log pðyjmÞ. The approximation, known as the negative variational free
energy (henceforth ‘free energy’), may be expressed as follows:

log pðyjmÞ ¼ FðmÞ þ KL½qðθjmÞ jj pðθjy;mÞ� (8)

here, F is the free energy approximation of the model evidence, which we
estimate. The second term is a distance measure (the Kullback-Leibler
divergence, KL) between two distributions: the estimated parameters
qðθjmÞ and the true parameters pðθjy;mÞ. We cannot compute this, as we
do not know the true parameters. However, because the log model evi-
dence log pðyjmÞ is fixed, we know that by maximising the free energy
FðmÞ, we minimise the second term and get the closest approximation of
the model evidence. The free energy is defined in full elsewhere (see
Appendix B of Penny, 2012), however it is important to recapitulate that
it may be decomposed into two parts (Beal and Ghahramani, 2003):

FðmÞ ¼ accuracyðmÞ � complexityðmÞ (9)

The accuracy is the fit of the model to the data. The complexity is the
difference (the KL divergence) between the prior distribution of the pa-
rameters and the estimated (posterior) distribution of the parameters.
This definition of complexity gives the free energy advantages over other



P. Zeidman et al. NeuroImage xxx (2017) 1–15
approximations such as the AIC and BIC (Penny, 2012). Rather than
simply counting the number of parameters in the model, the KL diver-
gence takes into account the full covariance among parameters, meaning
that parameters which are estimated to be independent contribute more
to the complexity term than those which co-vary. Using the free energy,
we compared pRF models to find the most accurate and least complex
explanation for our data.

The algorithm also provides the estimated parameters qðθjmÞ which
maximise the free energy. These are computed under the Laplace
assumption, which means that all parameters – prior and posterior – are
normally distributed. Thus for each parameter, whether neuronal or
haemodynamic, we have an expected value (mean) and uncertainty
(variance), as well as the covariance among parameters. We report these
parameters and their uncertainty in various forms throughout the paper.

We performed model estimation separately for timeseries from each
voxel. To improve performance, we initialized the VL model fitting al-
gorithm with pRF parameters identified using a grid search (Dumoulin
and Wandell, 2008) with a canonical haemodynamic response function.
To further reduce the total estimation time, we developed software
functions to divide the voxels across a parallel computer cluster and
combine the results following estimation, which are included in the
software implementation (Appendix A). Here we divided the estimation
across a 192-core cluster computer (running CentOS 6.3 with a clock
speed ranging from 2.1 Ghz to 2.5 Ghz). On each core of this cluster,
estimation took an average of 116 s per voxel to complete. In total there
were 21,230 voxels, taking around 3 h 34 min for the whole analysis.

2.8. Inference

2.8.1. Parameter map generation
Having estimated the pRF models in each voxel, we generated maps

of the estimated pRF parameters across the brain, projected onto the
cortical surface (Section 3.1). We thresholded these parametric maps to
only include voxels where the pRF parameters had moved away from
their priors (or had becomemore precise than the priors). To perform this
thresholding, we compared the evidence (approximated by the free en-
ergy) for each estimated pRF model against a nested model, in which the
pRF parameters were fixed at their prior means. If the evidence for these
two models was similar, it meant that our knowledge about the pRF
parameters did not improve as a result of seeing the data. On the other
hand, if the evidence for the full model was stronger than the evidence
for the nested model, it would mean that we can be more confident about
these parameters after seeing the data.

To compute this model comparison, for each voxel's pRF model we
specified a nested model mN , in which the prior variance of the pRF
location and width parameters ðμx; μy ; σÞ were fixed at zero. We then
computed the ratio of the evidence of the full model mF against this
nested model mN . This ratio is called the Bayes factor, and the log of this
ratio is approximately equal to the difference in the free energy of
each model:

ln BF ¼ ln
pðyjmNÞ
pðyjmFÞ ffi FN � FF (10)

To compute the free energy of the nested models, FN , we did not need
to separately estimate them using the estimation algorithm. Instead, we
derived the nested models’ evidence and parameters analytically using
Bayesian Model Reduction (Friston and Penny, 2011), which is a
generalisation of the Savage-Dickey ratio used in classical statistics. This
calculation was performed on the order of milliseconds for each voxel.
Having computed the log Bayes factor for each voxel, we then computed
the posterior probability of the full model mF :

pðmN jyÞ ¼ 1
1þ expð�log BFÞ
5

pðmF jyÞ ¼ 1� pðmN jyÞ (11)
We thresholded the parametric maps to only include voxels where the
posterior probability of the full model was at least 0.95. These surviving
voxels were used to generate the maps in Fig. 2.

2.8.2. Plotting haemodynamic response
To illustrate the estimated variability in BOLD response across the

brain, we computed the impulse response function of each pRF model
(those with at least 0.95 probability, above) and averaged these re-
sponses across voxels (Section 3.1). The response functions were
computed using Volterra kernels, as described by Friston et al. (1998).
We also identified voxels where having freely varying haemodynamic
parameters increased the free energy, relative to having fixed HRF pa-
rameters (i.e. a canonical HRF). We used the same Bayesian Model
Reduction procedure above to compare each full pRF model against the
nested model with the prior variance on the haemodynamic parameters
set to zero. We plot the results as a posterior probability map, thresholded
at p > 0.95 (Fig. 3, right).

2.8.3. Plotting pRFs
We plotted the receptive field of an example pRF model before and

after fitting it to the data (Fig. 4). The prior receptive field was computed
by taking 1000 samples from model's prior multivariate distribution over
the parameters, and for each sample, computing the response of the
neuronal function (Equation (2)) at evenly spaced locations in the visual
field (Fig. 4A). These responses were then averaged. This is referred to as
the prior predictive density (PD) q for each point in space ðx; yÞ:

qðx; yÞ ¼ ∫ gðx; y; θÞpðθÞdθ (12)

where gðx; y; θÞ is the response of the neuronal (pRF) function to a single
point in space with parameters θ. By using this approach, we were able to
plot the pRF while accounting for uncertainty over its location and size.
The posterior response was similarly computed using the estimated pa-
rameters following model fitting.

2.8.4. Bayesian Parameter Averaging
In order to summarise pRF models’ expected values and covariance

across voxels, we computed the Bayesian Parameter Average (BPA). The
BPA is the average of the parameters across voxels, weighted by the
precision of each estimate. The data entering BPA was the vector of
estimated pRF parameters μv for each voxel v, together with the precision
matrix Λv (inverse of the covariance matrix). The BPA provides a prob-
ability distribution over the parameters, with vector of means М and
covariance matrix C:

Λ ¼
XN
v¼1

Λv

C ¼ Λ�1

М ¼ Λ�1
XN
v¼1

μvΛv

pðМi > 0Þ ¼ 1� NCDFð0; ��Мi

��; Ci;iÞ

(13)

The final line of equation (13) is the probability that any given
parameter i, averaged across voxels, is different to zero. NCDFðx; a; bÞ is
the normal cumulative distribution function with mean a and variance b.
In this formulation, wemade the simplifying assumption that each voxel's
data were independent.

2.8.5. Computing correlations and entropy maps
To compute the correlation between parameters we converted the

covariance matrix C from the BPA (described above) to a correlation
matrix in the normal way. To visualise the spatial distribution of
parameter uncertainty, we created maps of the negative entropy, defined



Fig. 2. Parameter maps after estimating the basic pRF model. Left: Polar angle of the pRF, with colours corresponding to the colour wheel (inset). Middle: Distance of the pRF centre from
the fovea (eccentricity), with colours indicating degrees of visual angle. Right: Width parameter (standard deviation), with the colour bar indicating degrees of visual angle - smaller pRFs
are in blue, larger in red. Maps are thresholded at model posterior probability >0.95 (see methods Section 2.8.1) and projected onto a spherical projection of the cortical surface.

Fig. 3. Analysis of haemodynamic parameters in the pRF model. Left: The variability of the estimated BOLD impulse response function across voxels, in response to a stimulus at time 0 of
duration 0. The solid line is the mean across voxels and the shaded area is mean ±1 standard deviation across voxels. Right: The probability of pRF models with free haemodynamic
parameters, relative to models with a fixed (canonical) HRF. Shown for left hemisphere only. Thresholded at P > 0.95.
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for each voxel v as:
hv ¼ �lnjΣvj (14)
where j…j is the determinant and Σv is the estimated covariancematrix of
the model for voxel v. The negative entropy hv of a multivariate Gaussian
has units of nats, where more positive values indicate greater certainty in
the parameters.

2.8.6. Simulation
To evaluate the face validity of the approach, we performed simula-

tions. First, we estimated the empirical signal-to-noise ratio (SNR) of our
data. We did this by randomly selecting an estimated pRF model, which
had been fitted to the timeseries from a voxel in left hemisphere near the
midline (within V1, the delineation of which is described in section
6

2.8.8). We integrated this model over time to give the predicted BOLD
timeseries y and computed the residual timeseries r. We calculated the
SNR based on the standard deviation:

SNR ¼ σy
σr

¼ 1:06 (15)

Next we chose a random 1000 voxels from our empirical data (which
had survived the test for significance described in section 2.8.1), and we
used the estimated pRFs from these voxels to generate 1000 simulated
BOLD timeseries. We then added five levels of observation noise to each
timeseries: from a level noisier than our example voxel (SNR 0.5) to less
noisy (SNR 1.5). We fitted pRF models to these simulated timeseries and
correlated the estimated parameters against the ‘true’ parameters that
generated the data. Note that for all validation analyses, we converted



Fig. 4. Estimated pRF and fitted timeseries for an example voxel in left V1 (voxel 2334).
A. The response of the model to each position in visual space prior to Bayesian model
fitting. This is the prior Predictive Density (PD), which uses sampling to take into account
uncertainty over the parameters. The prior model parameters were sampled 1000 times
and the predicted responses generated and averaged. The units of the axes are degrees of
visual angle. B. The posterior PD, which is the estimated pRF response after Bayesian
estimation. C. The modelled timeseries (red) and observed timeseries (grey).
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from latent variables (e.g. lρ and lθÞ to the underlying parameters which
entered the model (e.g. ρ and θ), as these are the quantities of interest to
experimenters.

2.8.7. Alternative models
We compared the evidence for different pRF models to address two

questions. The first was whether a single Gaussian or a Difference-of-
Gaussians (DoG) response function would be a better explanation for
the data. The DoG function has an excitatory centre and inhibitory sur-
round. Our second question was what shape of receptive field would best
explain the data (circular, elliptical or elliptical with rotation). Thus, we
formed a 2 � 3 factorial model space to address these questions. Here we
describe the modifications made to the basic circular (isotropic) model to
form these alternative models.

Elliptical models. We specified models which replaced the pRF width
(standard deviation) parameter σ with separate parameters representing
horizontal width σx and vertical width σy . This enabled the pRF to take on
an elliptical shape. This was implemented by changing the covariance
matrix Σ (see Equation (2)) to include two separate parameters:

Σ ¼
�
σ2x 0
0 σ2y

�
(16)

Latent variables were introduced for each of the two width parame-
ters, as for the single width parameter in the basic model, with the
same priors.

Elliptical models with rotation. Enabling the pRF to rotate required the
introduction of a parameter Р representing the correlation coefficient:

σP ¼ Р�σx*σy

Σ ¼
�
σ2x σP

σP σ2y

�
(17)

Parameter Рwas constrained within the range�1 to 1 by substituting
it for a latent variable lР . The latent variable was transformed within the
model as follows:

Р ¼ 2*NCDFðlР; 0; 1Þ � 1 (18)
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Difference of Gaussians. We created versions of the circular, elliptical and
elliptical þ rotation models which used a DoG response function
(Rodieck, 1965; Zuiderbaan et al., 2012). The Gaussian distribution was
complemented by a second distribution, which had certain constraints to
ensure that it would act as an inhibitory surround. For the basic case of a
circular receptive field, the modified response function was as follows:

zðtÞ ¼ βc
X
pi2Ut

Nðpijμ;ΣcÞ � βs
X
pi2Ut

Nðpijμ;ΣsÞ

Σc ¼
�
σ2 0
0 σ2

�

Σs ¼
� �

σ2 þ σ2d
�

0
0

�
σ2 þ σ2d

�
�

βs ¼ maxðβc � βd ; 0Þ

ðβc; βd; σdÞ>0 (19)

here, the neuronal response z was the difference of two normal distri-
butions. The first represented the excitatory response of the centre of the
pRF. It was parameterised by scaling parameter βc, centre location μ and
covariance matrix Σc. The second normal distribution represented the
inhibitory surround of the pRF. It has the same location as the excitatory
centre μ, but different scaling βs and covariance Σs. The difference in
scaling between the two pRFs was controlled by parameter βd and the
difference in the pRFs' widths was controlled by the parameter σd. Pos-
itivity constraints were enforced on the β scaling parameters and σd. This
formulation, which introduced 2 new free parameters compared to the
previous model ðβd; σdÞ, ensured that the response of the centre was
positive and the response of the surround was negative.

Using a latent variable, we constrained parameter σd to fall into the
range ½0 r� with a flat prior. The difference in scaling of the surround
relative to the centre of the pRF, βs, was constrained to be positive using a
log parameter. This translated to a prior expectation for βs of 0.05 with
95% confidence interval ½0:001 1:97�.

2.8.8. Bayesian model comparison
We compared the evidence for our data under 6 different pRF models,

using the free energy, described above. For each voxel we had 6 numbers
- the free energy of each competing model - which we collated into a
[voxels x 6] matrix. We submitted this matrix for analysis using a random
effects (RFX) model (Stephan et al., 2009). Typically, this approach is
used in the context of studying groups of subjects. One assumes that each
subject's data were generated by one of the models in the comparison,
and the RFX model estimates the probability that any randomly selected
subject's data were generated by each model. These are known as the
expected probabilities of each model. Additionally, it gives the proba-
bility that any one model is better than all the others in the comparison –

these are the protected exceedance probabilities. (The word ‘protected’
refers to a statistical correction to account for the possibility that all
models are equally likely (Rigoux et al., 2014).) Here, we simply used
multiple voxels instead of multiple subjects, and the RFX model identi-
fied which pRF best explained the data in spatially extended regions of
the brain.

After performing model comparison at the level of all included voxels,
we next performed comparisons on a region of interest (ROI) basis. We
manually delineated the visual fields V1, V2d, V2v, V3d, V3v, V3a and V4
(where d ¼ dorsal, v ¼ ventral). This was performed by exporting the
parameter maps described above to the Delineation Tool in the SamSrf
Toolbox (https://doi.org/10.6084/m9.figshare.1344765.v23). The
manually defined ROIs were then imported from Freesurfer format (as
used by the Delineation Tool) back into NIFTI format. Simple software

https://doi.org/10.6084/m9.figshare.1344765.v23


Fig. 5. Correlation among model parameters (latent variables), averaged over voxels.
There were 4 neuronal (pRF) parameters ðρ; θ; σ; βÞ and 3 neuro-vascular/haemodynamic
parameters ðτ; κ; εÞ. For clarity, only values above the diagonal are shown and entries
with an absolute value greater than 0.10 are labelled.
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tools for this export/import procedure are supplied with the toolbox
described here, and we made further use of the Delineation Tool to
overlay our parameter maps with the ROI boundaries (Figs. 2, 3, 6 and 8).

Strictly, the RFX procedure described above assumes that the sources
of data (the voxels) are independent. This assumption was violated here
due to the spatial smoothness of the fMRI data, but nonetheless this
method allowed us to provide summary measures for each ROI (see
section 3.5.2). For completeness, we repeated the pRF analyses and
model comparison while removing the issue of spatial smoothness as-
sumptions, by using the mean timeseries for each ROI rather than each
individual voxel. The results of this analysis are illustrated in Supple-
mentary Fig. 4 and are summarised in Section 3.5.2 of the results.

3. Results

3.1. Parameter estimates

After estimating a pRFmodel for each voxel, we produced maps of the
parameters (Fig. 2). These confirmed that the parameters were in keeping
with the established retinotopic arrangement of occipital cortex, with
clearly defined boundaries between the visual fields (Fig. 2, left).

The remaining parameters controlled the scaling of the neuronal
response ðβÞ, the transit time (τ), the rate of decay ðκÞ and ratio of intra-to
extra-vascular signal ðεÞ, all of which were estimated on a voxel-wise
basis together with the pRF parameters. To investigate the variability
in neurovascular/haemodynamic response across voxels, we calculated
the estimated BOLD impulse response function for each voxel and sum-
marised these responses by their mean and standard deviation (Fig. 3,
left). The BOLD responses varied across voxels, in terms of the height of
the response and the undershoot which follows, but there was limited
variability in the latency of the peak. The consistency of BOLD responses
across voxels may have been increased by selecting voxels from a
consistent depth from the cortical surface – a consideration whichmay be
interesting to revisit when modelling laminar-specific fMRI responses
(Heinzle et al., 2016).

We then quantitatively investigated whether there was benefit in
estimating the haemodynamic parameters in a voxel-wise manner. To
address this, we first identified the voxels where the neural parameters
had moved away from their priors (posterior model probability > 0.95).
Then for each of these voxels we performed a Bayesian model compari-
son, of the full pRF model against a reduced model where the haemo-
dynamic parameters were fixed at their prior expectations (i.e. their prior
variance was set to zero). This effectively produced alternative models
with a canonical or fixed HRF. Out of 9762 voxels, there were 1791
voxels (18%) with strong evidence (p > 0.95) for the model with free
haemodynamic parameters over the fixed model. There were no voxels
with strong evidence for the fixed model. The voxels which benefited
from having free haemodynamic parameters were distributed across
occipital cortex, rather than being localised to any particular region of
interest (Fig. 3, right). Therefore, we may conclude that the added
complexity cost of having three free HRF parameters per voxel is out-
weighed by the increased accuracy which they provide, across occipi-
tal cortex.

The prior pRF response, posterior pRF response and fitted timeseries
for an example voxel are shown in Fig. 4. In Fig. 4A, the response of the
pRF model is shown for each point in retinotopic space, with the model's
parameters set to their prior means and variances. To account for un-
certainty, we sampled from the parameters according to their prior
probability distributions, then generated the pRF response based on the
sampled parameters. Repeating this 1000 times and averaging the re-
sponses gave the prior Predictive Density (PD) shown. Fig. 4B shows the
response of the model with parameters estimated from the data (the
posterior parameters), demonstrating a punctate pRF estimate in the
right visual field. This plot again similarly takes into account uncertainty
over the parameters through sampling (the posterior PD). Strikingly, the
uncertainty visible as the diffuse pattern in the prior PD has been
8

explained away after seeing the data. This close fit to the data can be also
be seen qualitatively in the modelled timeseries (Fig. 4C). It is also
noticeable that the post-stimulus undershoot in the BOLD response was
not well captured, which is a known limitation of the haemodynamic
model we are applying (Havlicek et al., 2015). We return to this issue in
the discussion.
3.2. Correlation and entropy

A key advantage of the Bayesian approach is that the uncertainty of
each parameter (the variance) is estimated, as well as the covariance
among parameters. The covariance is important because parameters
which strongly co-vary cannot be precisely estimated, and this uncer-
tainty should be taken into account when making inferences. To inves-
tigate the covariance among parameters, we averaged models over voxels
using Bayesian Parameter Averaging (see methods Section 2.8.4) and
then transformed the averaged covariance matrix to give a correlation
matrix. This is shown in Fig. 5, where the upper left quadrant shows the
correlations among neuronal (pRF) parameters, the bottom right quad-
rant shows correlations among haemodynamic parameters and the top
right quadrant shows the correlation between neuronal and haemody-
namic parameters.

Reassuringly, the parameters representing the location of the pRF in
visual space ðlρ; lθÞ had only weak correlation with other parameters.
However, the pRF width parameter σ was strongly correlated with the
scaling parameter lβ (Pearson's correlation 0.63). In practice, this means
that one could increase the pRF width or increase the scaling parameter
and, to some extent, get the same change in the predicted timeseries. This
phenomenon is not specific to the Bayesian approach proposed here, and
may be of concern for any pRF estimation method, despite this correla-
tion not generally being quantified. (The same issue also pertains to the
Difference of Gaussian model – for completeness we provide correlation
matrices for all models we examined, in Supplementary Fig. 1.) The
correlation matrix also revealed statistical dependencies among the
haemodynamic parameters, as well as between the scaling parameter lβ
and the haemodynamic parameters. In practice, correlations among the
haemodynamic parameters are unlikely to be a problem, as experi-
menters rarely need to make inferences about these parameters
individually.



Fig. 6. Negative entropy maps showing certainty over the pRF location (left) and certainty over the pRF width (right) after estimation of the models. More positive values (red) indicate
greater certainty. Colours indicate negative entropy in units of nats. Images are thresholded to only display voxels at p > 0.95 (see section 2.8.1).
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Having covariance among parameters induces uncertainty in the
parameter estimates, in addition to any uncertainty induced by obser-
vation noise. Next, we mapped this uncertainty by computing the nega-
tive entropy for each pRF model, where more positive values indicate
greater certainty about the parameter estimates. We computed separate
negative entropy maps for the pRF location ðlρ; lθÞ and width ðlσÞ pa-
rameters. The map for pRF location (Fig. 6, left) showed that we could be
confident about the position of the pRF in the majority of voxels in the
early visual fields (V1, V2), but fewer voxels show high certainty in the
higher visual fields (V3a, V4). There was less confidence overall for pRF
width than for pRF location – the maximum negative entropy was 6.70
nats for pRF width compared to 20.40 nats for pRF location (higher is
more confident). Surprisingly, in early visual cortex - where we would
expected to have been most certain about pRF width - we were in fact
least certain (Fig. 6, right). This could be because smaller pRFs, which
typify early visual cortex, require higher resolution stimuli in order to
gain confident estimates about their size. Additionally, uncertainty over
pRF width may have been induced by covariance with the scaling
parameter lβ, identified above.
Fig. 7. Accuracy of parameter estimates assessed by simulation. Left: Pearson's correlations betw
data. The vertical axis lists 5 levels of observation noise, quantified as the signal-to-noise ratio
percentage of voxels where the estimated 95% (posterior) confidence interval contained the p
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3.3. Face validity

We next performed two forms of validation: we used simulations to
establish the face validity of the approach and we used empirical data to
evaluate test-retest reliability across runs.

We fitted pRF models to 1000 simulated timeseries where the ‘true’
parameters which generated the data were known, under varying levels
of observation noise. The expected values of the pRF position closely
matched the true parameters (Fig. 7, left), while the accuracy of the
width parameter was slightly lower and dropped more markedly with
SNR. While all correlations were highly significant (all p < 1.3e-11), the
neurovascular/haemodynamic parameters ðτ; κ; εÞ were estimated less
accurately and were more sensitive to the SNR than the pRF parameters.
This may have been due to the covariance among the haemodynamic
parameters, reducing their identifiability. The accuracy of the θ polar
angle parameter was slightly lower than we had expected at lower SNRs
(correlation 0.94 at SNR 1 and correlation 0.83 at SNR 0.5). We found
this was an artefact of the use of polar coordinates. There were pRFs with
parameter θ close to –π radians in the test set and close to þπ radians in
een the parameters used to simulate data and parameters estimated from those simulated
(SNR). Darker colours indicate lower correlations. Parameters are as for Fig. 5. Right: The
arameter which generated the data.



Table 1
Correlations between parameters estimated from alter-
nating runs.

Pearson's correlation

μx 0.89
μy 0.91
σ 0.50
β 0.70
τ 0.83
κ 0.77
ε 0.75
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the validation set, or vice versa. Despite being adjacent in visual space,
the difference in sign reduced the test-reliability. When we corrected for
this by converting from polar to Cartesian coordinates, accuracy of the θ
parameter was near ceiling (correlation > 0.99) at SNR 1.5, SNR 1.25 and
SNR 1, reducing to correlation 0.98 at SNR 0.75 and correlation 0.96 at
SNR 0.5.

We also investigated the accuracy of the estimated uncertainty of the
parameters (Bayesian confidence intervals). We anticipated that the
posterior 95% confidence interval of each parameter would include the
“true” parameter which generated the simulated data, approximately
95% of the time. For each level of SNR and for each parameter, we
computed the fraction of the 1000 voxels which included the ‘true’
parameter in their estimated 95% confidence interval (Fig. 7, right). Near
the SNR of our example voxel (SNR 1.06), the confidence intervals
behaved as expected for the pRF location, with slightly lower perfor-
mance than expected for the pRF width. With reducing SNR, the accuracy
of the confidence intervals decayed slowly (in particular the width
parameter), perhaps due to the appearance of local optima in the
parameter space, coupled with the correlation between the width and
beta parameters. However, overall, these results demonstrate that our
estimates of uncertainty were robust to noise, even for the haemody-
namic parameters which had the least accurate expected values.
3.4. Test-retest reliability

Next we tested the consistency of the parameter estimates across
scanning runs on empirical data. The main analysis, above, used only the
8 odd-numbered runs. Here we used the 8 even-numbered runs as a
validation set, and the resulting parameter map of polar angle (which is
generally the most informative map for delineating visual fields) is
shown in Fig. 8, with the remaining parameter maps shown in Supple-
mentary Fig. 2. Here, the white lines are the borders of the visual fields
from the main dataset, and by overlaying these on the validation dataset
(Fig. 8, right), it can be seen that the maps are highly consistent. To
quantify this we correlated the expected values of the parameters from
each half of the data on a voxel-wise basis. We limited this to within the
area of the visual field regions of interest and excluded voxels where the
pRF parameters failed to deviate from their priors (p > 0.95). Note that
this correlation analysis made a strong assumption about the success of
coregistration – it assumed that the voxels in all runs were perfectly
aligned. Nevertheless, the correlation between pRF location parameters
(transformed to Cartesian coordinates) was high (Table 1). The width
parameter was much less consistent, which speaks to the difficulty of
Fig. 8. Test-retest reliability. Polar angle maps are shown for left hemisphere from the main data
on the main dataset in both images.
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recovering this parameter in pRF models. That said, the parameter map
of width still showed striking consistency across datasets (Supplemen-
tary Fig. 2).

3.5. Model comparison

Having validated the modelling framework, we next used it to
demonstrate testing hypotheses. We asked two questions. First, whether
the neuronal population within each voxel had only an excitatory
response to stimuli within their receptive fields, or whether they also
exhibited an inhibitory response at the periphery of their receptive fields.
We represented these two alternatives using models with a single
Gaussian response function, and models with a Difference of Gaussians
(DoG) response function with an excitatory centre and inhibitory sur-
round, as has previously been introduced (Zuiderbaan et al., 2012). We
also asked which of three shapes of receptive field would offer the best
explanation for our data – circular (Model 1), elliptical (Model 2), or
elliptical with rotation (Model 3). We formally addressed these questions
by comparing the evidence for the data under competing models
(Bayesian model comparison). The model that wins in such a comparison
is the model that strikes the optimal balance between accuracy and
complexity.

We formed a model space akin to a 2 � 3 factorial design. The first
factor was the response function: models either had a single Gaussian or a
DoG response function. The second factor was the shape of the receptive
field (x3). We specified each of these 6 models and estimated the free
energy (log model evidence) within each voxel. Thus, we had six free
energies per voxel, representing the relative evidence for each model,
which we pooled across voxels using a random effects analysis (see
methods section 2.8.8 for details).
set (left) and the validation dataset (right). White lines show delineation of the visual fields



Fig. 9. Comparison of 6 pRF models across all included voxels. Models either had a single Gaussian or Difference of Gaussians (DoG) receptive field (rows) and were circular (Model 1),
elliptical (Model 2) or elliptical with rotation (Model 3), shown in the columns. A. The expected probability of each model. B. The protected exceedance probability (PXP) of each model,
which is the probability that each model is better than the all the others in the comparison. C. An example timeseries for the winning model (DoG Model 1), fitted to data from the same
voxel as shown in Fig. 4.

Fig. 10. Results of comparing 6 different pRF models (black grids in the left 2 columns) in 7 regions of interest. Left columns: Each grid shows a 2 � 3 factorial model space. The models
either employed a 2D Gaussian distribution or a Difference of Gaussians (DoG). For each type there were three variants: Circular (Model 1), Elliptical (Model 2) or Elliptical with Rotation
(Model 3). The shades of grey/white and labels indicate the Protected Exceedance Probability (PXP), which is the probability that a model is better than all the others being tested. Right
columns: The summed pRFs of the winning model within each region (see text for details). Colours are scaled within each plot individually, representing arbitrary units of neuronal
activity. Region identities are detailed in Section 2.8.8 and illustrated in Fig. 2.
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3.5.1. Whole volume analysis
Fig. 9A shows the expected probability of each model. If a voxel were

picked at random, these are the probabilities of each model having
generated that data. The model with the strongest probability was the
DoG Model 1 – that is, a model with circular receptive field and excit-
atory/inhibitory dynamics (p ¼ 0.42). This means that, if choosing a
voxel at random, there would be a 42% chance that DoG model 1 would
be the best model. The next best model was the single Gaussian Model 1
with probability 0.30 and the third best was the elliptical and rotated
DoG Model 3 with probability 0.18. The remaining models all had much
weaker probability. Fig. 9B shows the Protected Exceedance Probability
(PXP), which is the probability that any one model is better than all other
models in the comparison. With probability approaching certainty, DoG
Model 1 was the winning model, and therefore the best explanation for
any randomly chosen voxel's data. An example timeseries fitted by DoG
Model 1 is shown in Fig. 8C. We also took the opportunity to test whether
the single Gaussian model and DoG model gave similar estimates of the
pRF location. We correlated the expected values of the Gaussian and DoG
models' location parameters, converted to Cartesian coordinates. They
were highly consistent, with a Pearson's correlation of 0.96 in the x-co-
ordinate and 0.97 for the y-coordinate (Supplementary Fig. 3). In sum-
mary, this comparison demonstrates that the circular DoG model
provides a better explanation for the data than the single Gaussianmodel,
and that having elliptical and angled pRFs does not, at the level of the
whole visual cortex, contribute enough to the model evidence to
outweigh the added complexity they induce.

3.5.2. Regions of interest analysis
We next investigated whether the 6 competing pRF models had

different explanatory power in different brain regions. We repeated the
model comparison within each of 7 regions of interest, using manually
delineated visual field maps.

Our first question was whether there was evidence for an excitatory-
inhibitory receptive field, captured by the DoG models. While DoG
models were the best explanation for the data overall (see above) we
found variability among the visual fields (Fig. 10, black grids). In V1 and
V2d, a circular DoG model best explained the data, whereas single
Gaussian models were preferred in right V2v, left V3v, left V3a and
bilateral V4. The results in left V2v, bilateral V3d, right V3v and right V3a
were not conclusive with no clear winning model, which may indicate
heterogeneous populations of responses in these regions. We conclude
from this analysis that the DoG models had the most consistent evidence
at the lowest level of the visual hierarchy (V1), whereas the evidence was
mixed in V2, and higher visual regions (V3,V4) generally preferred a
simpler Gaussian model.

Our second question regarded the shape of the receptive field. In most
regions (V1, V2d, V2v, V3d, left V3a, V4), the model with a simple cir-
cular receptive field (Model 1) was the clear winner. Therefore, model-
ling an elliptical shape and rotation did not improve the model fit
sufficiently to outweigh the added complexity. The clear exception was
right V3a, where the two strongest models were angled DoG model
(p ¼ 0.39) and the angled Gaussian model (p ¼ 0.16). In right V3v, the
evidence was divided between the simple Gaussian model and the angled
DoG model (p ¼ 0.26).

Having identified the best model in each region, we next visualised
the area of the visual field covered by these models’ receptive fields. For
each ROI, we summed the (posterior) receptive field of the overall win-
ning model across voxels, to form coverage maps (Fig. 10, right columns).
This confirmed that each pRF responded primarily to the contralateral
side of retinotopic space, with dorsal regions responding to the lower
visual field and ventral regions responding to the upper visual field.
Regions V3a and V4 spanned the contralateral upper and lower visual
fields. To quantify the angle estimates in right V3a, we averaged the
parameters across voxels from the best model (DoG with rotation) using
Bayesian Parameter Averaging. This gave a probability distribution
representing the average correlation coefficient (rotation parameter),
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with an expected value of �0.10 and probability of being non-zero
p ¼ 1.00. This represents a slight rotation towards the fovea.

Finally, we performed an analysis to investigate whether similar re-
sults would be found by fitting pRFmodels to themean timeseries of each
region, rather than fitting a pRF model to every voxel independently
(Supplementary Fig. 4). We did not have strong hypotheses about the
model comparison result, as the model which best explains the average
response for an extended region is not necessarily the best model for
explaining individual voxels' timeseries. On the one hand, we may expect
a simpler model to win, as less data is involved and any nuances of the
individual timeseries are lost through averaging. On the one hand, the
signal should have a much higher SNR, with observation noise all but
eliminated through central limit theorem. Therefore, we might expect
the data to support more complex models. We found that every region,
with the exception of left V3d, favoured a DoG response function rather
than a simple Gaussian. Whereas individual voxels’ receptive fields were
best described with a circular model, the averaged timeseries in most
regions were best explained with an angled and rotated receptive field
(DoG Model 3). Despite these differences, the pRF response functions in
most regions were remarkably similar to the summed voxel-level
response functions, although generally covering a slightly larger area
(compare Fig. 10 and Supplementary Fig. 4).

4. Discussion

In this paper we introduced a Bayesian framework for specifying,
estimating and comparing pRF models. The framework is generic and so
can be applied to stimulus spaces of any dimension; here we evaluated it
for mapping 2D visual receptive fields. Having validated the method
using simulations and evaluated its test-retest reliability, we demon-
strated how it may be used to test hypotheses about neuronal response
functions, at the level of individual voxels and within predefined regions
of interest.

A key advantage of this approach is that the uncertainty of each
parameter is quantified by computing the full parameter covariance
matrix. This gave rise to a striking observation – there was a strong
correlation between the neuronal scaling parameter lβ and the pRF width
parameter lσ . In other words, increasing either parameter would, to a
certain extent, give the same change in the modelled BOLD response,
which limits the precision with which either parameter can be estimated.
An appropriate way of dealing with this is to take account of the un-
certainty caused by these correlations when making inferences. Here, we
did this by plotting the pRF's posterior predictive density (PD) to visualise
the receptive field, which accounts for the uncertainty in the pRF position
and width. This made clear that with the relatively high SNR data we
used, which had been scanned at 7 T and averaged over 8 runs, the
receptive field was estimated with high precision despite the covariance
between parameters. It will be interesting to see how the precision of the
parameters vary when acquiring empirical data at lower field strengths.
As suggested by our simulations, with reduced SNR, taking account of
uncertainty becomes increasingly important.

In the generative model implemented here, we included an estab-
lished model of neurovascular coupling and BOLD response. Whereas
most pRF studies use a canonical haemodynamic response function,
which may be tailored on a subject-by-subject basis, we estimated pa-
rameters of the haemodynamic model simultaneously with the pRF pa-
rameters, on a voxel-wise basis. (Readers familiar with Dynamic Causal
Modelling will note that we were effectively estimating a single region
DCM for every voxel.) This comes with a computational cost – estimation
takes longer than standard approaches to pRF estimation. However, our
results demonstrate the utility of this voxel-wise model. There was
variability in the peak and the undershoot of the BOLD response across
voxels (Fig. 3), which would not be modelled using a fixed BOLD
response across voxels. A model comparison demonstrated that the ac-
curacy gained by estimating the haemodynamic parameters outweighed
their complexity cost. Reassuringly, the parameters of the
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haemodynamic model were only weakly correlated with the parameters
representing the pRF location and width (Fig. 5), meaning that neuronal
and haemodynamic contributions to the BOLD timeseries could be
separated with high confidence.

We demonstrated testing hypotheses about pRF response function or
shape by embodying each hypothesis as a model and comparing the
evidence for each. It has previously been stated that “pRF models … are
not centered on statistical hypothesis testing … Rather, the strategy
follows the constructivist philosophy of creating models to account for an
increasingly large range of stimuli in many visual areas.” (Wandell and
Winawer, 2015, p. 350). Developing pRF models that are as general as
possible requires identifying those which offer the best trade-off between
accuracy and complexity. A penalty for complexity (also called an Occam
factor) is required when comparing models, otherwise the most complex
model will always be considered the best (explain the most variance), at
the risk of overfitting the noise and failing to generalise. Finding the best
of several models in terms of balancing accuracy and complexity is
achieved by identifying the model with the highest model evidence, a
procedure referred to as Bayesian model comparison. Here we used an
approximation of the log model evidence, the free energy, to score
models. Unlike other approximations such as the AIC and BIC, the free
energy takes into account the full covariance among parameters (Penny,
2012), meaning that independent parameters add more to the model's
complexity than parameters which are correlated.

By comparing the free energy of different models (Bayesian model
comparison), we asked whether the response in each voxel was best
described as a single multivariate normal distribution, or as a Difference
of Gaussians (DoG) model with excitatory centre and inhibitory surround
(Rodieck, 1965; Zuiderbaan et al., 2012). The DoG model had previously
been found to explain more variance in V1, V2 and V3, but offered little
or no improvement in higher level regions V3a, hV4 and LO1 (Zuider-
baan et al., 2012). Similarly, we found DoG models to be better than
single Gaussian models in V1 and V2. In several higher level regions
(V3v, left V3a, V4), we found strong evidence for the simpler single
Gaussian model. The fact that Zuiderbaan et al. (2012) found little or no
difference in explained variance in these higher regions speaks to the
notion that the model evidence will favour the simpler model unless
there are sufficient gains in accuracy to outweigh the added complexity.

We found that the single Gaussian pRF model, coupled with the
Balloon model of BOLD response, failed to capture the majority of the
post-stimulus undershoot in the BOLD response (Fig. 4C). These parts of
the timeseries appear to have fitted slightly better using a DoG model,
and may coincide with the inhibitory activity in centre-surround dy-
namics (Fig. 9C), although a noticeable post-stimulus undershoot re-
mains unmodelled suggesting this is not a sufficient explanation for the
data. A recently proposed upgrade to the BOLD response model we used
here offers a more physiologically plausible representation of the post-
stimulus undershoot (Havlicek et al., 2015), which could be included
in our framework. Model comparisons could then be performed to ensure
that there is still strong evidence for a DoG neuronal response function, in
the context of a haemodynamic model which better explains the BOLD
undershoot.

Our second question regarded the shape of the receptive field. We
compared three receptive field shapes – circular, elliptical and elliptical
with rotation – and tested the evidence for models with these specifica-
tions in sub-regions of the brain. In most regions, a simple circular model
was the winner - meaning the data could not support a more complex
explanation involving an elliptical shape or rotation. We would not,
however, wish to draw strong conclusions from these region-of-interest
analyses, as we were only using data from a single subject and we only
selected these particular models to demonstrate the model comparison
framework. With the analyses presented here we hope to have demon-
strated that pRF models can be formerly compared based on their model
evidence, to address interesting hypotheses. Of the models we tested, we
found the most parsimonious (simplest) model that explained the most
data was a Difference of Gaussians model with a circular (isotropic)
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receptive field (Fig. 9).
A potential drawback of the model fitting approach used here is that it

involves approximations. With variational Bayes, the true multivariate
probability density over the parameters is approximated using simpler
distributions – here, the multivariate normal distribution. This is referred
to as variational Bayes under the Laplace approximation. (The proba-
bility density of the parameters should not be confused with the spatial
distribution of the parameters’ expected values across the brain – we
used a mass-univariate approach which makes no assumptions about
spatial distribution). Sampling methods have been used to validate the
Laplace approximation in the context of linear models (Friston et al.,
2007) as well as with Dynamic Causal Modelling (DCM) for fMRI
(Chumbley et al., 2007), which is a connectivity modelling framework
that shares the same basic structure, haemodynamic Balloon model and
model estimation methods as we have used here. Based on this previous
validation work, we had some confidence that the Laplace approximation
was appropriate here, further evidenced by the pRF parameter maps
recapitulating the expected features of the visual fields (Fig. 2). None-
theless, a quantitative evaluation of the Laplace assumption in the
context of pRF mapping would be ideal, which would usually be
addressed through the use of sampling methods.

Our validation plan follows the typical development of methods in
SPM. With this first paper, we have established face validity (using
simulations) and predictive validity (using delineation of known visual
fields with empirical data). The next step will be to establish construct
validity, by comparing our results to extant pRF modelling tools. A recent
study (Quax et al., 2016) demonstrated successful estimation of pRF
parameters in a Bayesian setting using sampling methods (slice sampling
MCMC), and applying both approaches to the same data would provide
construct validation of the variational approximations. Furthermore,
recent developments in gradient-based sampling, intended for use with
models which have large numbers of parameters, may offer improved
performance and stability over established sampling approaches (Sen-
gupta et al., 2016, 2014). These sampling methods could also be used to
validate the assumptions of the framework described here.

A more general limitation of pRF models is that they are phenome-
nological. They are very effective at describing the summed receptive
field of a voxel or a brain region, but they give no insight into how this
receptive field arises from the underlying neuronal circuitry. De-
velopments in modelling neuronal circuitry using functional imaging
data, Dynamic Causal Modelling (Friston, 2003), have come about by
iteratively developing models which afford greater model evidence and
biological plausibility than their predecessors. By providing a framework
for evaluating models, we hope to facilitate the development of biolog-
ically plausible generative models for pRFs. These are likely to be
spatiotemporal models which explain how lateral connections between
neuronal populations give rise to the distributed pattern of activity across
the cortical sheet. Neural field models (Pinotsis et al., 2012) have been
successfully used to explain contrast dependent gain control in visual
cortex (Pinotsis et al., 2014) and could in principle be extended from
electrophysiological modelling to fMRI.

Future work will be in several directions. Estimation speed of the pRF
models was generally over 100 s per voxel (see Section 2.7). As such, we
expect this framework to be primarily used in a voxel-wise manner for
small regions of interest, or alternatively on summary timeseries (the
mean or first principal component) from regions of interest, although the
latter is not guaranteed to give identical results (Supplementary Fig. 1).
However, there may be opportunities for software optimisation, for
instancing removing the overhead of converting between polar and
Cartesian coordinates. In the meantime, we have addressed the perfor-
mance issue by providing software tools for distributed model estimation
over parallel processors (Appendix A), and in future this could be
extended to take advantage of massively parallel GPU computing, which
has already been demonstrated in the context of Dynamic Causal
Modelling (Aponte et al., 2016). In terms of applications, the main focus
of our ongoing efforts will be to model higher dimensional spaces. The
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generality of the approach makes it ideally suited to mapping high
dimensional or abstract stimulus spaces onto the brain, with any number
of model parameters. We hope that the tools we have implemented
(Appendix A) will be useful to researchers in a variety of fields.
14
Funding sources

The Wellcome Trust Centre for Neuroimaging is supported by core
funding from the Wellcome Trust 091593/Z/10/Z.
Appendix A. Software implementation

We have developed a suite of software tools for specifying, estimating and comparing pRF models. These are Matlab functions which depend on the
open-source SPM software package (http://www.fil.ion.ucl.ac.uk/spm/), and use the same underlying algorithms as Dynamic Causal Modelling
(Friston, 2003). This toolbox forms the reference implementation of the Bayesian framework we have described, although we hope to have given
sufficient detail in the manuscript that it could be re-implemented in other software packages. The BayespRF toolbox is available from https://github.
com/pzeidman/BayespRF.

The toolbox is structured around a series of operators which act upon pRFmodels. A pRFmodel, together with one or more timeseries, is represented
as a Matlab structure and is stored in a file with the format PRF_<name>.mat. A typical workflow proceeds as follows. One creates a 3D image mask
indicating which voxels to include. These could be all voxels in a brain structure, or all voxels on the cortical surface, or be based on the results of an
initial analysis using a general linear model (GLM). Timeseries are then extracted using the VOI extraction function in SPM, which also performs all the
necessary pre-processing. The resulting file (VOI_<name>.mat) contains both a summary timeseries of all included voxels, and individual timeseries for
each voxel. Next, one specifies a pRF model using spm_prf_analyse(‘specify’,…), which provides options for whether to use a summary timeseries or
individual voxels' timeseries. If averaging over runs is required, this will be performed at this stage. The model evidence and parameters may then be
estimated using spm_prf_analyse(‘estimate’,…). The results of the estimation are reviewed and projected onto 3D orthogonal projections of the brain
using the GUI spm_prf_review(…), which will create parameter maps (as shown in Fig. 3) if they do not already exist.

If there are a large number of voxels to be estimated, it may be more tractable to use parallel computing and estimate pRF models for multiple voxels
simultaneously. The toolbox provides two methods for this. The estimation function has an option ‘useparfor’, which will take advantage of the
Mathworks Parallel Computing Toolbox, if available. Alternatively, a function is provided to take a multi-voxel pRF file and split it into multiple pRF
files: spm_prf_analyse(‘split’,…). These individual pRF files can be estimated on separate machines, for instance on separate nodes of a cluster
computer, and then merged once estimation is complete using spm_prf_analyse(‘merge’,…). The results of the merged pRF file may then be reviewed.

Within the pRF model file are stored the priors, posteriors, timeseries data and model configuration. A summary of the most important fields is given
in Table A1. Users wishing to design new pRF models, or modify the current ones, may wish to take advantage of the spm_prf_editor tool, which
provides a GUI for manipulating the parameters of a model.

Table A1
Key fields within the Matlab structure representing a pRF model

Field Description
M.pE
 Prior mean (expectation) of each parameter

M.pC
 Prior covariance of the parameters

M.IS
 Name of the pRF model function to use

Y.y
 Matrix of timeseries data against which to estimate the model

xY.XYZmm
 Coordinates (mm) of each timeseries in the brain

U
 [1 x T] structure representing the T stimuli displayed during scanning, including onsets, durations and coordinates of stimulated pixels

Ep
 Estimated parameters for each voxel

Cp
 Estimated covariance of the parameters for each voxel

Eh
 Estimated log precision of the noise

F
 Variational free energy (approximate evidence) of the model for each voxel
Appendix B. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.neuroimage.2017.09.008.
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