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In a typical electro-spinning process, the steady stretching process of the jet beyond the Taylor cone
has a significant effect on the dimensions of resulting nanofibers. Also, it sets up the conditions for the
onset of the bending instability. The focus of this work is the modeling and simulation of the initial
stable jet phase seen during the electro-spinning process. The perturbation method was applied to solve
hydrodynamic equations, and the electrostatic equation was solved by a boundary integral method.
These equations were coupled with the stress boundary conditions derived appropriate at the fluid-fluid
interface. Perturbation equations were discretized by the second-order finite difference method, and
the Newton method was implemented to solve the discretized nonlinear system. Also, the boundary
element method was utilized to solve the electrostatic equation. In the theoretical study, the fluid is
described as a leaky dielectric with charges only on the jet surface in dielectric air. In this study,
electric charges were modeled as static. Comparison of numerical and experimental results shows
that at low flow rates and high electric field, good agreement was achieved because of the superior
importance of the charge transport by conduction rather than convection and charge concentration.
In addition, the effect of unevenness of the electric field around the nozzle tip was experimentally
studied through plate-plate geometry as well as point-plate geometry. Published by AIP Publishing.
https://doi.org/10.1063/1.5012810

I. INTRODUCTION

Electro-spinning is the most popular strategy for produc-
ing ultrafine fibers by electrically charging a droplet of polymer
liquid. The fiber diameters could be as small as a few nanome-
ters if electro-spinning takes place under appropriate spinning
conditions. The remarkable characteristics of the nanofibers,
such as high surface areas and possibilities for efficient surface
functionalization, make them a promising candidate in techni-
cal areas such as filters, textiles, and nanofiber reinforcement
as well as in medicinal areas such as tissue engineering, wound
healing, and drug delivery.1

In electro-spinning, the tensile force is generated by the
interaction of an applied electric field with the electrical charge
carried by jet. Once a threshold voltage is applied to the
polymer solution of the Newtonian or non-Newtonian fluid,
a critical value is obtained at which the electrostatic forces
overcome the surface tension and a straight jet is formed, as
a consequence of electrical forces, from a conical protrusion,
often called a Taylor cone, on the surface of a pendant drop
of solution. This jet travels for a few centimeters in a straight
line toward the collector, and at the end of this steady stretch-
ing process, the jet follows a bending, whipping, spiraling, and
looping path in three dimensions. The jet in each loop is grown
longer and thinner as the loop diameter and circumference are
increased.2 The steady stretching process is important in that it
not only contributes to the thinning directly but also sets up the

a)Author to whom correspondence should be addressed: apishe@cc.iut.ac.ir

conditions for the onset of the bending instability. However,
bending instabilities in electro-spun jets play the principal role
in elongation and thinning electro-spun jet.

With the renewed interest in nanotechnology in a recent
decade, many studies have been focused on the production
of nanofibers, whilst some theoretical studies have been per-
formed. There are several models that have been proposed
to explain the initial development of electro-spun jets by
Hartman et al.,3 Spivak et al.,4 Hohman et al.,5,6 Shin et al.,7

Feng,2,8 Yan et al.,9 Carroll and Joo10,11 as well as by Reneker
and Yarin12 and Higuera.13–15 Recently, some studies have
been developed to predict nanofiber properties. Some of this
research involved using available models,2,12 and some oth-
ers have statistically predicted nanofiber properties using
experimental data.16–23

In this paper, we considered only the steady stretching
process of the electro-spun jet. We numerically analyzed the
behavior of an incompressible Newtonian jet under the uni-
form external electric field. The fluid was described as a
leaky dielectric with charges only on the jet surface. Electro-
hydrodynamic (EHD) equations were derived using the pertur-
bation method. The electrostatic equation which is the Laplace
equation was solved using the boundary integral technique, as
conducted by Lac and Homsy.24 With a leaky dielectric model,
the low conductivity fluid causes the formation of a thin layer
of electric charges on the interface. The dynamics of elec-
tric charge transport at the fluid-fluid interface is described
by the charge conservation equation (see Ref. 25). The main
essential transport mechanisms in this equation are the charge
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accumulation at the interface due to conduction and the jump in
the conventional charge current in the bulk across the interface;
surface convection of the interfacial charges; effect of stretch-
ing of the interface; and surface conduction. In the present
study, due to low flow rates and high voltages, the charge con-
vection term can be eliminated from the governing equation.
Moreover, by assuming the instantaneous migration of electric
charges toward the interface, concentration change due to the
surface dilation in the transport of electric charges is negligible
and the electric current across the interface will become con-
tinuous. Hence, the surface charge conservation equation is
reduced to a boundary condition at the interface. This model
which was well adapted for the leaky dielectric systems is
called the static model for surface charges.

The geometry of the nozzle plays a major role in the
applied electric field. Hohman et al.6 indicated that the con-
ductivity and the length of the nozzle protrude from the top
capacitor plate cause a fringe field. Near this nozzle, the local
field will be higher than the applied electric field between
the two electrodes. Feng2 stated that the effective parame-
ters on the electric charges at the nozzle have depended on
the nozzle geometry and the applied electric field; however,
these facts have not been considered in the numerical models.
Carroll and Joo10 neglected the fringe fields around the spin-
neret. They believed that the electro-spinning setup which they
used is slightly different from that used by Hohman et al.;6

in their setup, the needle is directly connected to the high
voltage source without using a capacitor plate. Also, applied
electric field intensities were much smaller than those exam-
ined by Hohman et al.6 As well as Higuera14,15 estimated
the geometry of the nozzle as a conic metal tube which log-
arithmically changes the electric voltage between the two
electrodes. The proposed numerical method for solving the
governing electrical equation in this study is capable of mim-
icking the effect of the nozzle in the uniform applied elec-
tric field without considering its geometry; subsequently, the
resulted irregularity around the nozzle will be automatically
compensated.

In addition, the effect of unevenness of the electric field
around the nozzle tip was experimentally studied through
plate-plate geometry as well as point-plate geometry. It was
observed that the connection of the high voltage source to
the nozzle will result in more irregularity in the electric field
around the nozzle. This irregularity causes the deviation of the
central axis of the jet from the straight path and elongates the
jet in a shorter distance from the nozzle at low applied electric
field. Current numerical results were compared to numerical
and experimental results of previous studies for validation.

II. GOVERNING EQUATIONS

The equation of continuity and momentum was applied
to an incompressible Newtonian fluid, as

∇ · u = 0, (1)

ρ

(
∂u
∂t

+ (u · ∇) u
)
= −∇p + ∇ · τ + ρg, (2)

where u is the velocity, ρ is the density, p is the pressure,
τ is the deviatoric stress tensor which is composed of two

hydrodynamic (τH ) and electric (τE) components, and g is
the gravitational acceleration vector. For a leaky dielectric
fluid, the electric force only applies to the fluid-fluid inter-
face. Hence, the electric force will be a boundary term and
the induced current will be formed only by the application of
boundary conditions on the interface.26 Saville25 has expressed
the jump condition of normal and tangential Maxwell electric
stresses at the interface as presented in the following equations:

n · τ
E · n

T =
ε0

2
ε

(
(E · n)2 − (E · t)2

) , (3)

t · τ
E · n

T = qs (E · t). (4)

In these equations, ‖(·)‖ denotes the jump, outside− inside, of
(·) across the interface, ε0ε indicates the electric permittivity
of the fluid, qs is the electric charge surface density, and n
and t are the unit normal and the tangential vectors to the
free surface, respectively. In this study, electric charges were
modeled as static and the electric charge density was obtained
explicitly from the equation qs = ε0‖εE · n‖ .24,25 Across the
jet interface, ‖E · t‖ is continuous, but ‖E · n‖ undergoes a
discontinuity due to the difference in physical properties of
the two fluids.24 In order to consider electric stresses in the
momentum equation, the jump condition was applied across
the interface. Additionally, surface tension results in pressure
discontinuity across the interface. The pressure jump on the
interface is directly proportional to the average of the surface
local curvature and causes a difference in pressure between
the inside and outside of the jet. With considering these two
effects, the jump condition in normal stresses can be calculated
as in the following equation:27



(
n
t

)
· (pI − τ) · nT


=

(
γκ
0

)
, (5)

where γ is the surface tension, κ is the surface curvature, and I
is the unit tensor. The problem dimensionless parameters were
listed in Table I, where U is the velocity of the jet at the nozzle
outlet, a is the radius of the nozzle, R is the jet local radius, X is
the jet axis coordinate, and En,t are the normal and the tangen-
tial electrical components on the interface. The dimensionless
numbers in this study include Weber, Reynolds, Froude, Beta,
electric permittivity ratio, and conductivity ratio as listed in
Table II, where µ is the dynamic viscosity, the magnitude of
the external electric field is E0, and ε0εo is the electric permit-
tivity of the external fluid. In this study, the applied external
electric field is uniform and its magnitude can be obtained
by dividing the potential difference (∆Ψ ) by the spinning
distance (d).

The basis used for solving the governing equations for
an electrified jet is the perturbation theory proposed by Părău
et al.,28 who used this methodology to simulate the behavior

TABLE I. Dimensionless parameters.

ū = u
U R̄ = R

a X̄ = X
a t̄ = tU

a p̄ = p
ρU2 q̄s =

qs

ε0εo
Ēn,t =

En,t
E0

TABLE II. Dimensionless numbers.

We = ρU2a
γ Re = ρUa

µ Fr = U2

ag β =
ε0εoE2

0
ρU2 εio =

εi
εo

σoi =
σo
σi
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of a bent jet in the prilling process. They expand the veloc-
ity components, pressure, radius, and position components
of the jet trajectory in asymptotic series by assuming that
the jet is a long, slender object. They then substitute these
expansions in continuity and momentum equations, as well as
boundary conditions, and after a few manipulations obtained
the governing equations on the jet behavior. Certain assump-
tions have been considered such as a circular cross section for
the jet, and the position of the centerline is not affected by
the small perturbations. Their boundary conditions included
the jump in the pressure magnitude (5) and kinematic bound-
ary condition on the surface. In the present study, only the
stable electro-spinning region has been investigated. Hence,
time-dependent terms could be eliminated and the governing
perturbation equations for the electro-hydrodynamic behav-
ior of the axisymmetric jet would be as follows, with known
electric field components:

ūūx = −p̄x +
1

Re

(
2ūxx +

6R̄xūx

R̄

)
+ β

2 (1 − εioσoi) Ēon Ēt

R̄
+

1
Fr

,

(6)(
ūR̄2

)
x

2R̄
= 0. (7)

In Eq. (6), which is the momentum equation along the jet axis,
oi and io indices represent the quantitative ratio of the exterior
to interior fluid and vice versa, respectively. Equation (7) was
obtained based on the kinematic boundary condition. From this
equation, it has been observed that ūR̄2 is constant and by using
boundary condition R̄ (0) = ū (0) = 1 at the nozzle tip, the axial
velocity will be obtained as ū = 1/R̄2. In Eq. (6), the pressure
which is composed of hydrodynamic and electrostatic pressure
components can be calculated by the following equation:

p̄ =
1

WeR̄
−

ūx

Re
−
β

2

((
1 − εioσ

2
oi

)
Ē2

on
− (1 − εio) Ē2

t

)
. (8)

Electrical phenomena are described by Maxwell’s electromag-
netic equations. However, in the absence of external magnetic
field condition, if the characteristic time scale of magnetic phe-
nomena (tM ) is much smaller than the characteristic time scale
of electric phenomena (tc), magnetic effects can be ignored
completely and the electrostatic equations furnish an accu-
rate approximation.25 Moreover, charges in the leaky dielectric
fluid only accumulate at the interface, which can be considered
as boundary effects and modifies the external electric field.25,26

Therefore, for a leaky dielectric fluid system, the governing
equation is reduced to simple electric current continuity law
and can be represented as follows:

∇ · (σE) = 0, (9)

where σ is the electric conductivity of the fluid. From the
irrotational property of the electric field, it can be considered
as the gradient of an electric potential E = �∇Ψ and we have

∇ · (σ∇Ψ ) = 0. (10)

It is assumed that due to the low electric conductivity of flu-
ids, there is no charge transport at the electrode surfaces and,
therefore, electric charges are only generated at the fluid-fluid
interface and the net electric current is zero. To complete the
description, a charge conservation equation is required at the

interface. By ignoring the charge diffusion mechanism, this
equation can be written as25

tc
tP

∂qs

∂t
+

tc
tF

(
u · ∇sq

s − qsn · (n · ∇) u
)
= ‖−σE · n‖ , (11)

where tc is the electrostatic time scale identified by the ratio of
the dielectric permeability and conductivity, tP is the transport
process time rise from viscose relaxation and diffusion, tF is
the convective flow time which can be defined as the ratio of
the flow length scale to the flow characteristics speed, and ∇s

is the surface gradient. In this equation, the first term on the
left represents charge relaxation, the second describes charge
convection at the interface, and the third denotes changes in
concentration due to dilation of the surface. Also, the term
on the right stands for the charge transport to the surface by
electro-migration. For a steady flow motion and assumption of
instantaneous migration of charges to the interface, tc/tF � 1,
Eq. (11) is reduced to the continuity of the electric current at
the interface and is used as a boundary condition to solve the
equation for the electric current equation.

In this study, the physical and electrical properties of the
fluids are constant. Hence, the potential distribution (10) can be
transformed into the potential Laplace equation which would
be solved by the boundary integral approach as similarly used
by Lac and Homsy.24 They stated that the extent of the elec-
tric field on the surface is the average of interior and exterior
electric fields in the vicinity of the interface. By applying the
boundary condition of electric current continuity across the
interface, i.e., ‖σE · n‖ = 0, as well as applying the external
electric field with the assumption of no free charges on the
surface, the dimensionless boundary integral equation of the
electric field for each of the surface elements can be obtained
using the following equation:(

Ēo + Ēi

2

)
p
=

E∞
E0

+
1 − σoi

4π

∮
(S̄)q

(r̄)pq

(r̄)3
pq

(
Ēon

)
q
d
(
S̄
)

q
, (12)

where p, q, and (r̄)pq are the field point, source point, and dis-
tance between these two points, E∞ is the applied electric field
vector, and S̄ is the fluid-fluid interface, respectively. The first
term on the right side of this equation represents the applied
electric field at each point of the computational domain, and
the second term represents the electric field correction at each
point due to the existence of the potential surface. This equa-
tion includes two variables of Ep, electric field vector at each
point, and

(
Ēon

)
q
, electric field normal to the surface. Lac and

Homsy24 primarily solved this equation for each point of the
surface which was obtained by the dot product of both sides of
this equation by the unit normal vector of the field point (p).
Using this approach, the electric field normal to the surface in
each point can be obtained as in the following equation:

1 + σoi

2

(
Ēon

)
p
=

E∞
E0
· (n)p

+
1 − σoi

4π

∮
(S̄)q

(r̄)pq · (n)p

(r̄)3
pq

(
Ēon

)
q
d
(
S̄
)

q
.

(13)

After the calculation of the normal component of the electric
field and its substitution into Eq. (12), the electric field vector
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will be obtained for surface points. Thereafter, the tangential
component of the electric field can be obtained with a vector
subtraction, as in the following equation:(

Ēt t
)

p
=

(
Ēo + Ēi

2

)
p
−

(
Ēon n

)
p
. (14)

Since the tangential electric field component continues across
the interface, Ēot = Ēit = Ēt .

III. NUMERICAL SOLUTION

In the present study, the interface behavior of the liquid
jet surrounded by air under uniform external electric field is
analyzed. In order to numerically solve the boundary inte-
gral equation (13), the boundary element method was imple-
mented. This numerical method required the initial surface for
performing the calculations. Hence, it was primarily assumed
that the electric field does not exist and the liquid jet leaves the
nozzle with the radius of a with a determined flow rate of
Q = Uπa2 under the gravitational force. In this condition,
the initial surface was obtained; subsequently, applying the
electric field will provide the actual, final jet profile.

Given the axisymmetric geometry of the electrified jet
toward the central axis, the boundary integral equation can be
solved on a line (Γ̄); however, this equation has been obtained
for a 3D surface. Therefore, the integral in Eq. (13), which is
obtained on the fluid-fluid interface, is converting to double
integrals in the azimuthal and axial directions that are given
by Eq. (15). By the assumption of circular cross section for
the jet,

(
R̄
)

q
as well as

(
Ēon

)
q

are constant in the azimuthal

direction of the following equation:∮
(S̄)q

(r̄)pq · (n)p

(r̄)3
pq

(
Ēon

)
q
d
(
S̄
)

q

=

∫
(Γ̄)q

∫ 2π

0

(r̄)pq · (n)p

(r̄)3
pq

(
Ēon

)
q

(
R̄
)

q
d(θ)qd

(
Γ̄
)

q
. (15)

Afterwards, the integrals in the azimuthal and axial directions
can be solved using an analytical method and a numerical
integral of the modified Gaussian point, respectively. The
considered coordinate system for the electric problem is the
right-handed and orthogonal coordinate, with the origin on the
jet axis at the nozzle outlet. Hence, the distance of each point
on the surface of the jet to the origin can be calculated by the
following equation:

r̄ =
(
X̄
)

ei +
(
R̄ cos θ

)
ej +

(
R̄ sin θ

)
ek . (16)

In order to solve the boundary integral equation in the form
of axisymmetric, the azimuthal integral of Eq. (15) should be
solved,

I =
∫ 2π

0

(r̄)pq

(r̄)3
pq

d(θ)q. (17)

The integral of Eq. (17) is a vector integral with three compo-
nents and can be defined as I = Ī/a. Following the analytical
solution of the vector integral, the components of this inte-
gral which are I = IXei + IY ej + IZ ek can be obtained by the

following equation:

IX =
4

(A + B)3/2

(
(X̄)p − (X̄)q

)
Π

(
m2, m

)
,

IY =
4

(A + B)3/2

((
(R̄)p + (R̄)q

(
1 −

2

m2

))
Π

(
m2, m

)
+ (R̄)q

2

m2
K(m)

)
,

IZ = 0, (18)

where Π and K are the first and third kinds of complete elliptic
integrals that can be accurately estimated by convergent series.
The constant value of A and B and the integral module of m
are defined as follows:

A =
(
(X̄)p − (X̄)q

)2
+ (R̄)2

p + (R̄)2
q,

B = 2(R̄)p(R̄)q,

m =

(
4B

A + B

)1/2

.

(19)

In case the source and field points are located on the symmetry
axis, components of vector integral I should be modified as in
the following equation:

IX =
2π

(A + B)3/2

((
X̄
)

p
−

(
X̄
)

q

)
,

IY =
2π

(A + B)3/2

(
R̄
)

p
.

(20)

In this study, the axis of symmetry is aligned with the direction
of E∞ = E∞ei. The initial interface profile is divided into N
equal elements defining N + 1 nodes which are located from
the nozzle tip to the end of the jet where it is assumed trun-
cated; therefore, there are no nodes that lie on the symmetry
axis. The linear element is defined by two nodes at both ends
and a node at the center of an element which is defined as the
calculated node, and Gaussian points are distributed around
this node for estimating the axial integral of Eq. (13). Simi-
lar to all previous studies in electro-spinning, only a certain
length of the jet is analyzed and the end of the jet is truncated.
Hence, the simulated length should be long enough to avoid
the occurrence of any numerical errors. Moreover, increasing
the node number leads to a larger system of equations. Since
the coefficient matrix resulted from the discretization process
through the boundary element method is full, increasing the
grid nodes affects the expense and accuracy of the computa-
tion. Therefore, in order to this problem, a tradeoff should be
accomplished between the optimum number of grid and the
required accuracy. Therefore, the grid size of 0.025 is used for
the simulations.

According to the fluid electrical conductivity range that
is used in the current study, σoi tends to zero and the effect of
this parameter in governing equations (6), (8), and (12) will
be neglected. Therefore, the terms including σoi have been
eliminated from governing equations for the simulations. Since
the second fluid which has surrounded the jet is air, εio = εi in
this study.

After the calculation of normal and tangential compo-
nents of the electric field using the boundary element method,
the nonlinear equation (6) can be solved using the Newton
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method. In this equation, the derivatives are discretized using
the second-order central finite difference and the conditions
of the jet downstream can be obtained by a second order
extrapolation of last internal points of the grid.

IV. RESULTS AND DISCUSSION
A. Validation
1. Simulation and comparison with literature

In this section, the suggested numerical method for the
electro-spinning process will be validated by comparison
between the simulation results and numerical and experimental
results reported by Hohman et al.6 Numerical and experimen-
tal results of Hohman et al.6 for electro-spinning of glycerol
were obtained using the parameters of Table III for different
flow rates and potential differences. Dimensionless numbers
of the present study due to physical parameters of Table III
were represented in Table IV.

As it can be seen in Fig. 1, good agreement exists between
the results of the present study and numerical results of the lit-
erature. Furthermore, there is very good agreement between
our numerical results and experimental results for a flow rate-
potential difference of 1-26, 1-30, and 1.5-30; however, dif-
ferences can be noticed for other cases. In spite of considering
the charge conservation equation consisting of electric charge
convection and conduction terms, Hohman et al.6 attributed the
lack of agreement between their numerical and experimental
results due to the inappropriate model for convection of the
electric charges near the nozzle.

The electric charges entirely transport due to the conduc-
tion near the nozzle where the electric field is very large. In fact,
low flow rates and high electric field justify the ignorance of
charge transport by other mechanisms and the assumption of a
static model for charges in this study. It can be seen from Fig. 1,
with the constant flow rate, increasing the potential difference
enhances the agreement between numerical and experimental
results. In addition, comparing the numerical results indicated
the lower contribution of the convection mechanism in the
transport of electric charges at low flow rates.

TABLE III. Physical parameters of the glycerol fluid used by Hohman et al.6

ρ
( kg

m3

)
ν
(

cm2

s

)
γ
(

mN
m

)
ε σ

(
µS
m

)
a(mm) d(cm)

1261 14.9 64 42.5 1 0.794 6

TABLE IV. Dimensionless numbers used for numerical simulation of an elec-
trified jet in Fig. 1 based on the parameters in Table III, different flow rates
(ml/min), and potential differences (kV).

β

22 (kV) 26 (kV) 30 (kV) We × 103 Re × 103 Fr × 102

1.0
(

ml
min

)
13.3 18.6 24.8 1.1 4.5 0.9

1.5
(

ml
min

)
5.9 8.3 11.0 2.5 6.7 2.1

2.0
(

ml
min

)
3.3 4.7 6.2 4.4 9.0 3.6

Given the diagram of glycerol fluid behavior by Shin
et al.,7 our numerical simulations for a flow rate-potential dif-
ference of 1-22, which lies in the Rayleigh instability region,
cannot predict the jet behavior. The possible reason is the
curvature of the estimated surface for the stable jet which is
inversely proportional to the local radius of the jet, i.e., 1/R̄.
In the numerical model by Refs. 5 and 6, the surface curva-
ture was estimated as a combination of the local jet radius
and its second derivative along the jet axis, i.e., 1/R̄ + 1/R̄xx,
and the second derivative provided the feasibility of predicting
the instabilities. Therefore, in order to predict the jet behav-
ior in the aforementioned flow rate and potential difference,
the surface curvature should be modified. Accordingly, the
surface curvature in the present study was also modified as
follows:

K =
1

R(1 + R2
x )

1/ 2
−

Rxx

(1 + R2
x )

3/ 2
, (21)

which was proposed by Părău et al.28 for predicting the instable
bent jet behavior in the prilling process for evaluating the sug-
gested surface curvature. The simulation result is represented
in Fig. 1 after considering the modifications (i.e., 1-22). Esti-
mation of the surface curvature using Eq. (21) is also capable
for predicting the jet behavior in regions with severe gradients
due to the derivatives of the jet radius along the axis, i.e., R̄x

and R̄xx.

2. Simulation and comparison with experiment

The numerical model of Hohman et al.6 was not primarily
capable of predicting the jet behavior by applying a uniform
external electric field. Moreover, they figured out that the pro-
trusion length of the nozzle through the capacitor plate has
a noticeable effect on non-uniformity of the electric field in
the vicinity of the nozzle. To explain this discrepancy, they
propounded the existence of the fringe field near the nozzle
tip. When they included the effects of the fringe fields near
the nozzle by simulating the experimental nozzle as a per-
fectly conducting solid cylinder and computed the electric field
in the vicinity of the nozzle with the finite element method,
agreement improved markedly between experimental obser-
vation and numerical computation. However, the numerical
results of the present study (Fig. 1) approve that electro-
hydrodynamic equations due to the application of uniform
external electric field can correctly predict the jet behavior and
there is no need to modify the external electric field near the
nozzle tip.

The occurrence of this paradox was adequately persuasive
for us to investigate experimentally the uneven behavior of the
electric field near the nozzle. Accordingly, in the present study,
certain experiments were prepared using the Newtonian fluid
with properties listed in Table V and by different setups to
induce the electric field near the nozzle.

To examine the initial jet development, the electro-spun
jets close to the spinneret were photographed using a Canon
EOS 6D DSLR camera, a 200 mm f /4d Micro Nikkor lens,
and Canon 430 EXII speed light. The flow rate was adjusted
by a TOP 5300 syringe pump through a metallic nozzle, and
the electric field was formed by a high voltage power supply
with a maximum nominal voltage of 30 kV and two aluminum
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FIG. 1. Quantitative comparison of the
numerical results of the present study
(dotted line) with numerical results
(dashed line) and experimental results
(solid line) of Hohman et al.6 for differ-
ent flow rates and potential differences.

electrodes. Additionally, the solution viscosity, electrical con-
ductivity, and surface tension were measured by a DV � II
+ Pro viscometer, an EU 3540 conductivity meter, DCAT11
surface tension, and Libror AEU � 210 balance measurement
devices, respectively.

TABLE V. Properties of the utilized Newtonian fluid in 20◦C.

Collector

ρ
( kg

m3

)
µ (Pa s) γ

(
mN
m

)
ε σ

(
µS
m

)
a (mm) Q

(
ml
min

)
dimensions

(
cm2

)
1273 1.18 63.23 40 0.26 0.35 0.026 8 × 8

The fluid jet leaves the metallic nozzle by applying an
electric field during the electro-spinning process. By directly
connecting one of the high voltage electrodes to the noz-
zle and the other one to the collector plate, the electro-
spinning process will happen at a low potential difference
in a far distance between the nozzle tip and the collector
plate. However, as seen in Fig. 2 for this assembly of elec-
trodes, the fluid jet will rapidly deviate from the straight line
in the stable region. The cause of deviation could be the non-
uniformity of the electric field in the vicinity of the nozzle.
The point-plate assembly of electrodes was used by Carroll
and Joo10 in their numerical and experimental analyses. How-
ever, they did not mention details about how they calculated the
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FIG. 2. Electro-spinning process with the connection of
a high voltage source to the nozzle and demonstrating the
deviation of the jet in the stable region from a straight line
by applying a potential difference of 10 kV in a distance
of 9 cm (a) and 15 cm (b) between the nozzle tip and the
collector.

external electric field and the nature of E∞ in their numerical
simulations.

The protrusion of the metal nozzle from a metallic plate
and connection of the high voltage source to this plate rather
than the nozzle itself is another method to make the fluid jet
leave the nozzle. As can be seen from Fig. 3, empirical studies
show that the deviation of the fluid jet trajectory significantly
reduced from the straight line in the stable region for the plate-
plate configuration. However, it has been observed that by
increasing the applied potential difference between the metal
plate and the collector plate, the dimensions of the metal plate
and the protrusion length of the nozzle are important factors
on the jet deviation and elongation because the irregularity
effects of the electric field near the nozzle were not entirely
eliminated even though with the metal plate such that reducing
the metal plate dimensions [Figs. 3(b) and 3(d)] or increasing
the protrusion length of the nozzle [Figs. 3(a) and 3(f)] causes
the jet deviation from the straight line and different elongation
at a constant applied potential difference between the parallel
plates. This mechanism was used by Hohman et al.6 and Shin
et al.7 Hohman et al.6 concluded that the protrusion length
of the nozzle is an influential parameter in the stability of the
fluid jet, but they did not express the effect of the metal plate
dimensions on jet behavior.

Hartman et al.3 used plate-plate as well as point-plate
configurations for electro-spinning. The agreement between
their numerical and experimental results indicates the validity
of the numerical model in predicting the stable cone-jet mode.
However, they did not explain the difference between these two
mechanisms in electro-spinning, the calculation of the electric
field in the vicinity of the nozzle, and the necessity of the
numerical simulation of the nozzle.

It is obvious that for both methods, unevenness of the elec-
tric field near the nozzle causes the jet elongation as it leaves the
nozzle. In fact, the difference between these two mechanisms
is the relief of the electric field unevenness near the nozzle for

the plate-plate configuration. By comparing Figs. 2 and 3, it
can be concluded that the metal plate attached to the nozzle
has decreased the electric field irregularities as it has reduced
the jet deviation from the straight line. Furthermore, increasing
the stability of the jet is caused by increasing the uniformity
of the electric field created by the plate-plate mechanism.

In our numerical model for electrified jet, we assumed that
the position of the central axis of the jet is not affected by the
small perturbations and the external electric field was uniform
(12). Since it is necessary to provide experimental conditions
in line with the numerical model to correctly compare these
results, the experimental result of Fig. 3 shows that the plate-
plate configuration with the nozzle protruding from a metal
plate is better consistent with assumptions of the present sim-
ulation. Moreover, empirical studies showed that the electric
field generated by a metallic capacitor plate of 8 cm× 8 cm and
a nozzle protrusion length of 4 mm is closer to the numerical
model assumptions [Figs. 3(b) and 3(e)].

In order to validate this proposition, a comparison was
conducted between our numerical model results and exper-
imental results. Figure 4 demonstrates this comparison of
the experimental parameters of Table V and the correspond-
ing dimensionless numbers used in numerical simulations, as
listed in Table VI. As shown in the figure, the good agreement
is achieved for the proposed electrode configuration.

In the numerical simulation, the surface curvature was
defined based on Eq. (21) due to the severe gradients near the
nozzle. Furthermore, a linear non-uniform mesh in which its
mathematical equation follows a geometric progression with
a coefficient of 4 (ratio of the last element grid size to the
first one) was applied. This progression coefficient provides a
dimensionless grid size of 0.025 near the nozzle. The number
of nodes was 700, and the dimensionless length of the jet is
also 35.

As it was previously mentioned in the section of the static
electric charge model (Sec. IV A 1), numerical results of the

FIG. 3. Electro-spinning process with the protrusion of the nozzle from a metal plate and connection of the high voltage source to this plate in a constant distance
of 5 cm between the parallel plates and different conditions of [metal plate dimensions (cm × cm), nozzle protrusion length (mm), applied potential differences
(kV)]; (a) (2 × 2, 4, 20), (b) (8 × 8, 4, 23.5), (c) (8 × 8, 8, 17), (d) (2 × 2, 4, 23.5), (e) (8 × 8, 4, 25.5), (f) (8 × 8, 8, 20).
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FIG. 4. Experimental images of glycerol jets for differ-
ent conditions of (distance between parallel plates [cm],
applied potential difference [kV]) (a): (3, 14); (b): (5,
24.5) and comparison of numerical results (dashed line)
and experimental results (solid line) for different Beta
dimensionless number (β × 10�3) (c): 1.19; (d): 1.31.

TABLE VI. Dimensionless numbers based on the parameters listed in
Table V.

c d

We × 106 Re × 104 Fr β × 10�3

8.93 4.25 0 1.19 1.31

present study are valid at low flow rates due to the low impor-
tance of charge convection and change of charge concentration
due to the surface dilation. Hence, given the flow rates of the
experiments, it is expected that very good agreement exists in
results shown in Fig. 4.

B. Numerical method analysis

Comparing the numerical and experimental results illus-
trated in Figs. 1 and 4 indicates that the present numerical
model is independent of the nozzle protrusion length and metal
plate dimensions in predicting the behavior of the electrified jet
under a uniform external electric field. To investigate how this
geometry independence is feasible, the contour of the elec-
tric field component in the axial direction, i.e., ei, has been

shown in Fig. 5 for dimensionless numbers of Table VI with
β = 1.31 × 103. The concentration of electric field lines near
the nozzle tip indicates the non-uniformity of the electric field
or a fringe field. The term fringe field was first denoted by
Hohman et al.6 which is due to the sharp edge at the end of the
nozzle where electric charges accumulate. As can be seen from
Fig. 5(a), in the present numerical model, given the boundary
element method, the fringe field will automatically appear in
the solutions.

The relaxation time of electric charges in the radial direc-
tion at any cross section of the jet is much faster than that in
the axial direction. This assumption breaks down at the nozzle,
and as a result, the surface charge layer is not formed at the
nozzle tip.6 Therefore, Hohman et al.,6 Feng,2 and Carroll and
Joo10 considered the charges on the nozzle to be zero for the
case of a fluid with low electric conductivity. It can be observed
in Fig. 5(b) that the electric charge maintains a value close to
zero at the nozzle (i.e., X̄ = 0). Moreover, it can be noticed
that the local field will tend to the external electric field (i.e.,
Ēx = 1) at a farther distance from the nozzle.

The other important feature of an electrified jet is
its asymptotic thinning behavior. Kirichenko et al.29 and

FIG. 5. Contour of the electric field
component in the axial direction and
formation of a fringe field near the
nozzle tip using the boundary element
numerical method (a) and changes of the
electric charge and electric field axial
component (b) along the jet.



037102-9 Hashemi et al. Phys. Fluids 30, 037102 (2018)

FIG. 6. The asymptotic behavior of the jet radius profile.

Ganon-Calvo30,31 in their universal theory of electro-spraying
first reported that the jet is thinned as X̄−

1
4 with the dis-

tance from the nozzle in an electric field. Later, Hohman
et al.6 reached to the same conclusion by making a balance
between inertia, electric tangential stress, and gravity terms in
the momentum equation. Since the electric term used in this
study is different from Hohman et al.,6 the proposed relation
for the jet thinning asymptotic behavior should be modified
by omitting the electric current term from the equation. There-
fore, in our case, the jet is thinned only by the gravity force
and we expect that the jet radius profile tends to X̄−

1
4 with

a coefficient proportional to Q
1
2 . According to dimensionless

TABLE VII. Dimensionless numbers used in parameter study.

We × 104 β Re × 103 Fr × 103 σoi × 104 εio

5 40 2 5 1 30

numbers of Table VI with β = 1.31 × 103, in Fig. 6, the jet
radius profile is magnified for the region after the cone shape
and a curve fit by X̄−

1
4 function obtained from the least square

analysis is shown for the comparison.

C. Parameter study

In order to analyze the effects of fluid physical proper-
ties, geometrical parameters, and flow characteristics on the
behavior of the electrified jet, effects of various dimensionless
numbers were studied. Table VII represents the main dimen-
sionless numbers considered within the simulations. The effect
of dimensionless numbers can be investigated by changing
one of the numbers in a specific range while keeping others
constant. The simulation results are illustrated in five distinct
diagrams in Fig. 7 and will be discussed in more detail in the
following.

The Coulomb repulsion between surface electric charges
tends to form a conic geometry, while the surface tension of the
fluid tends to maintain a spherical shape. Hence, by increas-
ing the electric number (β), the Coulomb repulsive force will
overcome surface tension and the jet will be stretched in a
short distance from the nozzle and tends to have a conic form
[Fig. 7(a)]. It is also clear from the figure that a thinner jet
is developed by increasing this number. Figure 7(b) shows
that by increasing the Re number the resistance force against

FIG. 7. Effects of dimensionless numbers β (a), Re (b), Fr (c), σoi (d), and εio (e) on the changes of the electrified jet radius profile.
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deformation decreases and the jet gets thinner, obviously. On
the other hand due to the small flow rate, the bulk forces have a
few effects on the jet behavior. Therefore, by decreasing the Fr
number, there are no considerable changes on the jet profile,
as shown by Fig. 7(c).

Decreasing the electric conductivity ratio means a higher
conductivity of the fluid jet. As a result, the increased density
of electric charges on the surface followed by the increased
Coulomb repulsive force elongates the jet and makes it thinner.
Since increasing fluid conductivity means thatσoi tends to zero
and the effect of this parameter in governing equations (6), (8),
and (12) will be neglected, therefore, higher conductivity does
not affect the radius profile change [Fig. 7(d)]. The electric
permittivity coefficient of a fluid indicates the extent of electric
energy stored in the fluid. In other words, it represents the
ability of the fluid in polarization and creates normal stresses.
By increasing the permittivity, the ability of polarization and
consequently normal stresses to the surface increases which
leads the jet to faster elongation due to the pressure decrease
[Fig. 7(e)].

V. CONCLUSION

In this study, a numerical model was suggested for pre-
dicting the behavior of a Newtonian leaky dielectric fluid in a
uniform external electric field and stable cone-jet mode. The
proposed model is independent of the nozzle geometry due
to the boundary element numerical method applied for solv-
ing the governing electric equation. Electro-hydrodynamic
equations include continuity, momentum, and electric Laplace
equations, and contrary to previous studies, the charge con-
servation equation was not solved with the assumption of
static electric charges which reduces the number of govern-
ing equations from 4 to 3. In order to validate the numerical
model, a comparison was carried out between the numerical
results of the present study and the numerical and exper-
imental results of previous studies. This comparison indi-
cated that in low flow rates and high potential difference,
very good agreement exists between the results. The reason
for the agreement can be attributed to the superior impor-
tance of conduction in electric charges rather than convec-
tion and changes of charge concentration due to surface
dilation.

It is highly essential to consider experimental conditions
in line with numerical formulations in order to conduct a cor-
rect comparison between the numerical and empirical results.
Hence, several experiments were carried out to investigate dif-
ferent electro-spinning mechanisms, including the connection
of the high voltage source to the nozzle or to a metal plate from
which the nozzle is protruded. The difference between these
two mechanisms is the reduction of electric field irregularities
in the vicinity of the nozzle, followed by the deviation of the
jet from a straight line. It was observed that in addition to the
spinning distance (the distance between the nozzle tip or the
attached metal plate to the nozzle and the collector plate), the
dimensions of the metal plate attached to the nozzle and the
protrusion length of the nozzle noticeably affect the electric
field. Moreover, empirical results explain that the mechanism
in line with the numerical formulation of the current study is

the connection of the high voltage source to the metal plate
which is attached to the nozzle.

Analyzing the effect of dimensionless numbers on the jet
behavior indicates that increasing β, Re, and εio numbers result
in the formation of the stable cone-jet in a short distance from
the nozzle. Additionally, increasing the dimensionless num-
bers of Fr and σoi primarily decreases the formation distance
of the stable cone-jet from the nozzle.
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