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Abstract Frailty models allow us to take into account the non-observable inhomo-
geneity of individual hazard functions. Althoughmodels with time-independent frailty
have been intensively studied over the last decades and a wide range of applications in
survival analysis have been found, the studies based on themodelswith time-dependent
frailty are relatively rare. In this paper, we formulate and prove two propositions related
to the identifiability of the bivariate survival models with frailty given by a nonneg-
ative bivariate Lévy process. We discuss parametric and semiparametric procedures
for estimating unknown parameters and baseline hazard functions. Numerical exper-
iments with simulated and real data illustrate these procedures. The statements of the
propositions can be easily extended to the multivariate case.

Keywords Frailty · Lévy process · Bivariate survival function · Identifiability

1 Introduction

In survival analysis, frailty is usually defined as a non-observable momentan risk of
failure and is included in survival models in the form of an unknown nonnegative
random variable or random process characterizing non-homogeneity of population
with respect to hazard function. Usually, frailty enters the model multiplicatively to
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the hazard function and allows us to take into account the correlations between failure
times. Observed covariates can also be included in the multivariate survival models in
the form of Cox-like regression. Identifiability and other properties of the univariate
and multivariate survival models with time-independent frailty have been studied in
some depth, and these models now are popular and widely used in survival studies
and in the search for genes influencing longevity. Several models with time-dependent
frailty have also been suggested.Woodbury andManton (1997) introduced a stochastic
process model of human mortality and ageing. They considered hazard as a quadratic
function of stochastically changingunobserved frailty. Themodelwas further extended
by Yashin and Manton (1997) to consider a partially observed frailty process. Modi-
fications of this model were successfully applied to the analyses of longitudinal data
with informative censoring. Ideas on further development and applications of these
results to studying ageing and longevity are summarized byYashin et al. (2012). Gjess-
ing et al. (2003) considered an approach based on the proportional hazard model with
time-dependent frailty given by the formula

Z(t) =
∫ t

0
a(u, t − u)dX (R(u)).

Here, X (t) is a nonnegative Lévy process (subordinator) with Laplace exponent�(c),
R(t) = ∫ t

0 r(u)du defines the time transformation of subordinator for a nonnegative
rate function r(t), and the nonnegative weight function a(u, s) determines the extent
to which the previous behavior of transformed subordinator influences the hazard
function at time t . The authors derived the expressions for the population survival and
hazard functions in a general case:

S(t) = exp

(
−

∫ t

0
�(b(u, t))r(u)du

)
,

μ(t) = λ(t)
∫ t

0
�′(b(u, t))a(u, t − u)r(u)du,

whereλ(t) is the baseline hazard function and b(u, t) = ∫ t
u λ(s)a(u, s−u)ds. Gjessing

et al. (2003) showed also that under some conditions, quasi-stationary distributions of
survivors can arise. This implies the constant limiting population hazard rate, in spite
of the increase of the baseline hazard function. Ata and Özel (2012) considered the
proportional hazardmodelwith time-dependent frailty given by the discrete compound
Poisson process and applied this model to the earthquake data and to traffic accidents
data from Turkey.

The aim of this paper is to study the problem of identifiability for bivariate survival
models with/without observed covariates and with time-dependent frailty when this
frailty is given by a Lévy process (or Lévy processes). In addition, we demonstrate
how these models can be used for longevity datasets based on simulated data.

In Sect. 2, we give the definitions of the univariate survival model under mixed
proportional hazard specification and the bivariate correlated frailty model. We then
discuss the definitions of the uni- and bivariate survival model with time-dependent
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frailty given by the nonnegative Lévy processes. At the end of this section, we discuss
known findings related to the identifiability of survival models with time-independent
frailty, formulate two new propositions about the identifiability of the bivariate sur-
vival models with time-dependent frailties, and give the EM algorithm for estimating
unknown baseline hazard functions and parameters for the correlated bivariate model
with time-dependent frailty. In Sect. 3, we discuss the results of estimations of the
baseline hazard functions and unknown parameters (including the Cox-regression
coefficients and parameters characterizing the frailty process) in experiments with
simulated and real data for parametric and semiparametric approaches. The real-world
example was based on the data from the Danish Twin Registry. Conclusions and out-
look are presented in Sect. 4.

2 Survival analysis under a frailty setting

Under mixed proportional hazard specification (Abbring and van den Berg 2003), the
hazard rates of the failure times for two related individuals depend multiplicatively
on the respective baseline hazards λ j (t), regressor functions χ j (u j ) with observed
vector of covariates u j , and unobserved nonnegative random variable (frailty) Z j ,
characterizing the heterogeneity in the population with respect to hazard λ j

μ j (t j |Z j , u j ) = Z jχ j (u j )λ j (t j ), j = 1, 2. (1)

The function χ j (u j ) is frequently specified as χ j (u j ) = exp(β∗
j u j ) (the Cox-

regression term) for some transposed vector parameter β∗
j , j = 1, 2. The univariate

population survivals S j (t |χ j (u j )) = P(Tj > t j ) for random times of death Tj are

S j (t |χ j (u j )) = Ee−Z jχ j (u j )� j (t j ) = L(χ j (u j )� j (t j )), j = 1, 2, (2)

with cumulative hazard function � j (t) = ∫ t
0 λ j (τ )dτ and Laplace transform L(c) =

Ee−cZ .
In the bivariate correlated frailty model proposed by Yashin et al. (1995), individual

frailties (Z1, Z2) were constructed under assumptions

Z1 = m0

m1
Y0 + Y1,

Z2 = m0

m2
Y0 + Y2 (3)

for independent nonnegative random variables Y0, Y1 and Y2 and some nonnegative
constants m0, m1 and m2. Given frailties (Z1, Z2), life spans for both individuals
were assumed to be conditionally independent. Since the scale factor common to all
subjects in the population can be absorbed into the baseline hazard functions λ j (.),
j = 1, 2, we can put EZ1 = EZ2 = 1. The heterogeneity in the population can be
characterized by the variance of frailties VarZ1 = σ 2

1 , VarZ2 = σ 2
2 . The correlation

between frailties Corr(Z1, Z2) we will denote by ρ.
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If Y j are gamma-distributed random variables, Y j ∼ G(k j ,m j ), j = 0, 1, 2, with
k0 = ρ/σ1σ2, k j = 1/σ 2

j − k0, m j = 1/σ 2
j , j = 1, 2; 0 � ρ � min(σ1/σ2, σ2/σ1),

then the non-conditional bivariate survival function is given by the formula

S(t1, t2|χ1(u1), χ2(u2)) = Ee−Z1χ1(u1)�1(t1)e−Z2χ2(u2)�2(t2)

=
(
1 + σ 2

1 χ1(u1)�1(t1)
)−k1 (

1 + σ 2
2 χ2(u2)�2(t2)

)−k2

(
1 + σ 2

1 χ1(u1)�1(t1) + σ 2
2 χ2(u2)�2(t2)

)k0
(4)

(Wienke 2010). Note that without loss of generality, we can put m0 = m1. If left
truncation is present at ages (t01, t02), we calculate the conditional survival function
by dividing the bivariate survival function by S(t01, t02|χ(u1), χ(u2)). To take into
account information about censoring, we shall put δ j = 0, 1, where δ j = 0 indicates
right censoring, j = 0, 1.

The assumption that the individual frailty is determined at birth and does not change
with age seems to be too strong and unrealistic. To make the approach more flexible,
we can weaken this assumption and suppose that the frailty is a random process.

Similarly to Gjessing et al. (2003), we shall consider the frailty process Z =
Z(t) : t � 0 defined by a nonnegative Lévy process. In accordance with Lévy-
Khinchin formula, such a process can be characterized by its Laplace transform

L(c; t) = Ee−cZ(t) = e−t�(c)

with Laplace exponent �(c), while c is the argument of Laplace transform. Note that

EZ(t) = t�′(0),
VarZ(t) = −t�′′(0).

Examples of Lévy processes include the standard compound Poisson process, the
compound Poisson process with general jump distribution, gamma processes, stable
processes, and PVF (power variance function) processes (Gjessing et al. 2003). In
this paper, we shall consider the nonnegative Lévy processes (subordinators) with the
Laplace exponent given by

�(c) = dc +
∫ ∞

0
(1 − e−cx )ν(dx), (5)

nonnegative drift d and the jump measure ν with support (0,∞) satisfying∫ ∞
0 min(1, x)ν(dx) < ∞. The Laplace exponent is an increasing and concave func-
tion. The Laplace exponent and the jump measure for the gamma process are given
by the formulas

�G(c) = h[ln(γ + c) − ln γ ] = h ln(1 + γ −1c),

ν(dx) = he−γ x x−1dx (6)
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with the shape ht and the scale parameter γ for the gamma-distributed randomvariable
Z(t). This corresponds to the values of htγ −1 and htγ −2 for mean and variance of
Z(t), respectively. To avoid non-identifiability of the model, we shall standardize the
frailty distribution and put h = γ . In this case, EZ(t) = t , VarZ(t) = tγ −1 for
t � 0. In “Appendix 1,” we can find the formulas for calculating univariate population
survivals in this case for a constant and an exponential (Gompertz) baseline hazard
functions. We will denote the Laplace exponent for the univariate frailty processes
Z j (t), j = 1, 2 by � j (.).

Let (Z1(t), Z2(t)) be a bivariate Lévy process with nonnegative components and
the Laplace exponent given by

�biv(c) = < d, c > +
∫
R2+

(1 − e−<c,x>)ν(dx), (7)

where d, c ∈ R
2+, < x, y > denotes the dot product of vectors x, y ∈ R

2, the Lévy
measure ν(A) for any Borel set A ∈ R

2+ is the expected number of jumps on the time
interval [0,1], whose sizes belong to A, and the following integrability conditions for
Lévy measure are satisfied:

∫
R2+

min(1, x)ν(dx) < ∞,

∫
R2+

min(1, x2)ν(dx) < ∞.

Note that �biv(c1, 0) = �1(c1) and �biv(0, c2) = �2(c2) for marginal Lévy pro-
cesses.

The bivariate survival function under mixed proportional hazard specification with
conditionally independent life spans and time-dependent frailties given by correlated
Lévy processes is

S(t1, t2|χ1(u1), χ2(u2)) = Ee−χ1(u1)
∫ t1
0 Z1(τ )λ1(τ )dτ e−χ2(u2)

∫ t2
0 Z2(τ )λ2(τ )dτ

= exp

(
−

∫ t−

0
�biv(χ1(u1)�1(τ, t1), χ2(u2)�2(τ, t2))dτ

)

× exp

(
−

∫ t+

t−
�+

uni(χ+(u1, u2)�+(τ, t+))dτ

)
,

where t− = min(t1, t2), t+ = max(t1, t2), �biv(., .) is the Laplace exponent for the
bivariate frailty process (Z1, Z2),

�+
uni(.) =

{
�2(.), if t2 > t1,

�1(.), otherwise,

� j (τ, t) =
∫ t

τ

λ j (s)ds, j = 1, 2,
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χ+(u1, u2) =
{

χ2(u2), if t2 > t1,

χ1(u1), otherwise,

and

�+(τ, t) =
{∫ t

τ
λ2(s)ds, if t2 > t1,∫ t

τ
λ1(s)ds, otherwise.

Similar to the model with time-independent frailties given by (3), we can construct the
bivariate survival function for time-dependent frailties given by the correlated Lévy
processes Z1(t) and Z2(t)with parameters EZ1(1) = EZ2(1) = 1, VarZ1(1) = γ −1

1 ,
VarZ2(1) = γ −1

2 , and Corr(Z1(t), Z2(t)) = , t > 0. The formula for calculat-
ing bivariate population survival function for time-dependent frailties is given in
“Appendix 2.”

2.1 Model identifiability

The identifiability of the univariate model with unspecified functional form of frailty
distribution and baseline hazard has been studied by Elbers and Ridder (1982). This
model is identifiable given information on T for finite EZ and is not identifiable when
frailty has an infinitemean. Identifiability of the correlated frailtymodels using data on
the pair (T1, T2)was proved by Honoré (1993) under the assumption of finite means of
Z1 and Z2. Yashin and Iachine (1999) proved the identifiability of the correlated frailty
model without observed covariates assuming that Z1 and Z2 are gamma distributed.
Abbring and van den Berg (2003) studied the identifiability of the mixed proportional
hazards competing risks model. We adopt this method to investigate the identifiability
of the mixed bivariate survival model for time-dependent correlated frailties.

Proposition 1 Let the following assumptions be satisfied.

Assumption 1. Regressor functions χi : Ui → R+ are continuous with supports Ui ,
Ui ⊂ R

n, i = 1, 2, and χ1(u∗
1) = χ2(u∗

2) = 1 for some u∗
1 ∈ U1,

u∗
2 ∈ U2. Set ϒ = {(χ1(u1), χ2(u2))|u1 ∈ U1, u2 ∈ U2} contains a

non-empty open set ϒ0 ⊂ R
2+.

Assumption 2. Baseline hazard functions λ j (.) are integrable on [0, t] with � j (t) =∫ t
0 λ j (τ )dτ < ∞ for all t ∈ R+, and �1(t∗) = �2(t∗) = 1 for some
t∗ > 0, j = 1, 2.

Assumption 3. Let μ be a probability measure corresponding to the bivariate frailty
variable (Z1(1), Z2(1)) ∈ R

2+. Then,
∫ ∞

0

∫ ∞

0
eb(x1+x2)dμ < ∞ (8)

for some real number b > 0.

Then, the mixed bivariate survival model for time-dependent correlated frailties is
identified from the bivariate distribution of the failure times (T1, T2|u1, u2).
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Proof Identification of the regressor functions.
From Assumption 3 and Theorem 2.1 in Brychkov et al. (1992), it follows that the

Laplace exponent �biv(p1, p2) is an analytic function on Hb = {(p1, p2|Re(p1) >

−b,Re(p2) > −b)} and therefore is a real analytic function on ReHb =
{(x1, x2)|x1 > −b, x2 > −b}. Note that �1(p) = �biv(p, 0) and �2(p) =
�biv(0, p). Since EZ(1) = �′

1(0), EZ(2) = �′
2(0) and the functions �1(x) and

�2(x) are analytic in 0, it holds that EZ1(1) < ∞ and EZ2(1) < ∞. Gjessing et al.
(2003) (Theorem 1) have shown that

S j (t |χ j (u j )) = ES j (t |Z j , χ j (u j )) = exp

(
−

∫ t

0
� j (� j (τ, t;χ j (u j )))dτ

)
,

where

� j (τ, t;χ j (u j )) =
∫ t

τ

χ j (uj)λ j (s)ds = χ j (uj)� j (τ, t), j = 1, 2.

As any subordinator frailty processes, Z j have increasing and concave Laplace expo-
nents and their derivatives �′

j (.) are decreasing. Moreover,

dS j (t |χ j (u j ))/dt = −χ j (u j )λ j (t)
∫ t

0
�′

j (� j (τ, t;χ j (u j )))dτ

× exp

(
−

∫ t

0
� j (� j (τ, t;χ j (u j )))dτ

)

and

(tλ j (t))
−1dS j (t |χ j (u j ))/dt → −χ j (uj)EZ j (1) as t ↓ 0.

From here and Assumption 1, it follows that

dS j (t |χ j (u j ))/dt

dS j (t |χ j (u∗
j ))/dt

→ χ j (uj) as t ↓ 0, j = 1, 2.

This formula identifies χ j (.) in Uj , since marginal survival functions S j (t |χ j (u j ))

are observed for t � 0 and uj are arbitrary for j = 1, 2.
Identification of the hazard functions.

For 0 � τ � t � T < ∞, it holds that � j (τ, t) � C < ∞, j =
1, 2. Therefore, there exists a real b(T ) > 0 such that the bivariate function
�biv(χ1�1(τ, t), χ2�2(τ, t)) and the univariate functions � j (χ j� j (τ, t)) are real
analytic functions on the set ϒT = {(χ1, χ2)|χ1 > −b(T ), χ2 > −b(T )} containing
the point (0,0) for fixed (τ, t), 0 � τ � t � T < ∞ and j = 1, 2. Moreover, the
univariate survival functions S j (t j |χ j ), their derivatives S′

j (t j |χ j ) in t j , j = 1, 2,
and the bivariate survival function S(t1, t2|χ1, χ2) are real analytic functions uniquely
defined on ϒT for {(t1, t2)|0 � t1, t2 � T < ∞}.
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Differentiating S j (t |χ j ) in t , dividing then by χ j , and setting formally χ j → 0,
we get the following equations:

− lim
χ j (u j )↓0

S′
j (t |χ j )

χ j S j (t |χ j )
= �′

j (0)λ j (t) = EZ j (1)λ j (t), j = 1, 2. (9)

Since the expression on the right hand of (9) is observed, we find the hazard function
in the form

λ j (t) = −�′
j (0)

−1 lim
χ j↓0

S′
j (t |χ j )

χ j (u j )S j (t |χ j )
), j = 1, 2.

The constant�′
j (0) can be found from the equation� j (t∗) = 1, j = 1, 2 (Assumption

2).
Identification of the Laplace exponent.

Since S(0, 0|χ1, χ2) = 1 and the bivariate Laplace exponent is regular in the point
(0,0), the following formula holds in some neighborhood O ⊂ R

1+ of the point t = 0

− ln S(t∗∗, t∗∗|χ1, χ2) =
∞∑

n1=1

∞∑
n2=1

χ
n1
1

n1!
χ
n2
2

n2!
∂n1+n2�biv(c1, c2)

∂cn11 ∂cn22
|c1=0,c2=0

×
∫ t∗∗

0
(�1(t

∗∗) − �1(τ ))n1(�2(t
∗∗) − �2(τ ))n2dτ .

(10)

Mixed partial derivatives in (10) can be calculated using the finite difference method
as the distance between spaced nodes tends to zero. Note that

∫ t∗∗
0 (�1(t∗∗) −

�1(τ ))n1(�2(t∗∗)−�2(τ ))n2dτ > 0 for all n1 ∈ N and n2 ∈ N if t∗∗ > t∗. Themixed
partial derivatives ∂n1+n2�biv(c1, c2)/∂c

n1
1 ∂cn22 at the point (0, 0) are uniquely defined

from (10), and therefore, �biv(c1, c2) can be uniquely defined in some open neigh-
borhood of the point (0,0). That is, the real analytic function �biv(., .) is uniquely
defined in some open set containing R

2+. Similarly, it can be shown that the real
analytic functions � j , j = 1, 2, are uniquely defined in some open set containing
R1+. 
�

If individual frailties (Z1, Z2) are constructed under assumptions given by

Z1 =Y0 + Y1,

Z2 =αY0 + Y2
(11)

for some positive α, we can weaken the conditions of Proposition 1 and prove the
identifiability of the model in the absence of observed covariates.

Proposition 2 Let the following assumptions be satisfied.

1. Assumption 1. Decomposition (11) holds for independent positive Lévy processes
Y0, Y1, Y2 with zero drift and some α > 0.
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Assumption 2. Baseline hazard functions λ j (.) are integrable on [0, t] with
� j (t) = ∫ t

0 λ j (τ )dτ < ∞ for all t ∈ R+, limt→∞ � j (t) = ∞, and � j (t∗) = 1
for some t∗ > 0, j = 1, 2.
Assumption 3. Jump measures νi satisfy

∫ ∞
0 xνi (dx) < ∞, i = 0, 1, 2.

Assumption 4. Let μi is a probability measure corresponding to the frailty
Yi (1) ∈ R

1+, i = 0, 1, 2. Then,

∫ ∞

0

∫ ∞

0
ebxdμi < ∞ (12)

for some real number b > 0 and i = 0, 1, 2.

Then, the mixed bivariate survival model for time-dependent correlated frailties is
identified from the bivariate distribution of the failure times (T1, T2).

The proof of Proposition 2 is given in “Appendix 3.”

2.2 Model validation

In this section, we will assume that χ(u) = exp(β∗u). To validate the regression
model, we need to estimate the vectors of Cox-regression parameters β1 and β2, vector
parameter defining frailty ζ [in the case of correlated frailty model either (σ 2

1 , σ 2
2 , ρ)

for time-independent gamma-frailty or (γ −1
1 , γ −1

2 , ) for gamma-frailty process given
by the Laplace exponent (6)], and the baseline hazard function λ1(t) and λ2(t). If the
baseline hazard functions followaparametric formsuch as theGompertz or theWeibull
function with vector parameter ξ , we can use the classic maximum likelihood method
to estimate all unknown parameters. The log-likelihood in this case is given by

ln L(Data; θ) = (1 − δi1)(1 − δi2)
∑
i

ln S(ti1, ti2|ui1, ui2)

− δi1(1 − δi2)
∑
i

ln (∂S(ti1, ti2|ui1, ui2)/∂ti1)

− (1 − δi1)δi2
∑
i

ln (∂S(ti1, ti2|ui1, ui2)/∂ti2)

+ δi1δi2
∑
i

ln
(
∂2S(ti1, ti2|ui1, ui2)/∂ti1∂ti2

)
(13)

Here, θ = (β, ζ, ξ) is the vector of unknown parameters, β = (β1, β2) stands for
Cox-regression coefficients, ζ for frailty parameters, and ξ for parameters defining
the baseline hazard functions λ j (t), j = 1, 2. The data include information about life
spans (ti1, ti2), observed covariates (ui1, ui2), and censoring (δi1, δi2) for a twin pair
i , i = 1, . . . , n. The estimate of the vector parameter θ we can find by maximizing
the log-likelihood function (13).

If the form of the baseline hazard functions is not specified, the estimates can be
obtained by the EM algorithm. This algorithm combines the maximum partial like-
lihood estimator of the vector parameter (β, ζ ) with the Breslow estimator (Breslow
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1972) of the cumulative baseline hazard function �(t) = (�1(t),�2(t)). The EM
algorithm is an iterative procedure with two steps—E (expectation) and M (max-
imization) on each iteration. It works as follows: Let f (zi1, zi2|ti1, ti2, ζ ) be the
density function of the random variable (Zi1(ti1), Zi2(ti2)) given parameter vector
ζ , i = 1, . . . , n. Denote the estimates of �(t), ζ , and β on the lth iteration by �̂l(t),
ζ̂l , and β̂l , respectively. Similar to Gorfine and Hsu (2011), we define the failure count-
ing process Ni j = δi j Ind(Ti j � t) and the at-risk process Xi j = Ind(Ti j � t), where
Ti j is the random time to the failure of twin j in twin pair i , i = 1, . . . , n, j = 1, 2.
Define random processes

S(0)
j (β, t) =

n∑
i=1

2∑
j=1

Xi j (t)Zi j (t) exp(β
∗
j ui j ),

S(1)
j (β, t) =

n∑
i=1

2∑
j=1

Xi j (t)Zi j (t)ui j exp(β
∗
j ui j )

and equations

∫ ∞

0

n∑
i=1

(
ui j − Ŝ(1)

j (β, t)

Ŝ(0)
j (β, t)

)
dNi j (t) = 0, (14)

where the symbol ”ˆ” means replacing the unknown frailty Zi j (t) with its conditional
expectation given the observed data and the current estimates of �(t), ζ and β.

To estimate the cumulative baseline hazard functions � j (t), we shall use the fol-
lowing estimator

�̂ j (t) =
∫ t

0

∑n
i=1 dNi j (τ )

Ŝ(0)
j (β, t)

, j = 1, 2. (15)

This estimator is a step function with jumps at the observed failure times of twins.
Using Bayes’ formula, we calculate in the E-step conditional expectation of the

log-density function

n∑
i=1

Ê ln( f (Zi1(.), Zi2(.)|ζ )) (16)

given observed data and the current estimates of �(t), ζ and β. In the M-step, we
update these estimates.

The EM algorithm proceeds as follows:

1. Initialization. Set l = 0. Put ζ̂0 = (0, 0) for any 0 � 0 � 1 in the case of
time-dependent frailty and ζ̂0 = (0, ρ0) for any 0 � ρ0 � 1, otherwise. This
corresponds to Ẑi j (t) = t and Ẑi j = 1, respectively. Calculate β̂1 and �̂1(t)
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from (14) and (15), respectively. Given the estimates β̂1 and �̂1(t), calculate ζ̂1
by maximizing (16). Set l = 1.

2. Given �̂l(t) and ζ̂l , calculate β̂l+1 from (14).
3. Given the estimates ζ̂l and β̂l+1, calculate �̂l+1(t) by using formula (15).
4. Given the estimates β̂l+1, �̂l+1(t), calculate ζ̂l+1 by maximizing (16).
5. Stop if convergence is reached with respect to estimates of β and ζ . Otherwise,

l → l + 1 and repeat steps 2-5.

The convergence of the EM algorithm and the properties of parameter estimates have
been discussed elsewhere (Zeng and Lin 2007). For the correlated frailty model with
time-independent gamma-distributed frailty, the calculation of expression (16) has
been discussed in detail by Iachine (1995). The calculation of this expression in the
case of the gamma-frailty process for the same model can be found in “Appendix 4.”

In the parametric approach, the choice of the appropriate baseline hazard function
plays an important role. The Gompertz function does not guarantee the good fit of the
marginal survival function for real longevity data. The following gamma parameteri-
zation of the univariate survival function gives better results by fitting the real data in
the model with time-independent frailty

S(t) = (1 + s2�̃(t))−1/s2 = (1 + σ 2�(t))−1/σ 2
, (17)

where �̃(t) = (ã/b̃)(exp(b̃t) − 1) is the pseudo-baseline cumulative hazard, t � 30,
s2, ã, b̃ > 0, and σ 2 > 0 is the variance of the time-independent frailty. Given
parameters s2, σ 2, ã, and b̃, it is not difficult to find the true baseline cumulative
hazard �(t) in the form

�(t) = ((1 + s2�̃(t))σ
2/s2 − 1)/σ 2.

In the case of the time-dependent frailty given by aLévy processwithLaplace exponent
�(c), we need to consider the following analog of Eq. (17):

S(t) = (1 + s2�̃(t))−1/s2 = exp

(
−

∫ t

0
�(�(τ, t))dτ

)
. (18)

Unfortunately, Eq. (18) does not have a closed-form solution with respect to �(t). In
experiments with real data, we will find the approximative solution to (18) such that
the function �

dyn
appr(t) is a non-decreasing, nonnegative, piecewise-constant function

satisfying the following conditions:

�
dyn
appr(0) = 0,

(1/s2) ln(1 + s2�̃(ti )) = γ

∫ ti

0
ln

(
1 +

(
�

dyn
appr(ti ) − �

dyn
appr(τ )

)
/γ

)
dτ

(19)

for times-to-event ti , i = 1, . . . , 2n, sorted in non-decreasing order, 0 � t1 � t2 �
· · · � t2n−1 � t2n = max2ni=1 ti (here, n is the number of pairs). The values of�dyn

appr(ti )
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can be calculated recurrently for i = 1, 2, . . . , 2n using a simple bisectional procedure.
Note that the function �

dyn
appr(t) converges pointwise to the solution of (19) as n → ∞

and the distance between neighboring moments ti tends to zero.
To compare two approaches, we assume that in the case of the time-independent

frailty, the cumulative hazard is also a non-decreasing, nonnegative, piecewise-
constant function �stat

appr(t) satisfying the following conditions:

�stat
appr(0) = 0,

�stat
appr(ti ) = ((1 + s2�̃(ti ))

σ 2/s2 − 1)/σ 2.
(20)

3 Results

3.1 Experiments with simulated data

In this subsection, we will discuss the results of the consistency test for the cor-
related frailty models with time-dependent and time-independent frailties (11). It
was assumed that α = 1, VarZ1 = VarZ2 = σ 2, and Corr(Z1, Z2) = ρ in
the case of the time-independent frailty or VarZ1(1) = VarZ2(1) = γ −1 and
Corr(Z1(1), Z2(1)) =  in the case of the time-dependent frailty, baseline haz-
ard functions λ j (t) followed Gompertz (exponential) form λ j (t) = a exp(bt), and
an observed covariate u influenced longevity so that the conditional hazard func-
tion was defined by μ j (t j |Z j , u j ) = Z j exp(βu j )λ j (t), j = 1, 2. The covariates
were randomly generated from the uniform distribution on the interval [0,1] and
were independent for the individuals. The (true) values for data generating are given
in Tables 1 and 2 and have been chosen so that the mean and the standard devia-
tion of the generated times-to-event were equal to approximately 75 and 12 years,
respectively. The bivariate times-to-event have been generated using formula (4) with
σ1 = σ2 = σ in the case of the time-independent frailty and using formula (25) given
in “Appendix 2” in the case of time-dependent frailty. In both cases, it was assumed
that �1(t) = �2(t) = (a/b)(exp(bt) − 1) and χ1(u) = χ2(u) = exp(βu). We
have not truncated or censored the generated data. We estimated unknown parame-
ters and cumulative hazard functions using the classic maximum likelihood estimator
(parametric method) and the EM algorithm (semiparametric method). In all cases, we
simulated 100 datasets for 500 twin pairs.

Table 1 shows the results of simulation study for the time-independent gamma-
frailty model without truncation and censoring. Empirical means and standard
deviations of estimates were calculated using the classic maximum likelihood method
and the EM algorithm, respectively.

Table 2 shows the results of the simulation study for the time-dependent gamma-
frailty model without truncation and censoring. Empirical means and standard
deviations of estimates were also calculated using the classic maximum likelihood
method and the EM algorithm, respectively. Analysis of estimates in both tables does
not indicate the presence of any bias, and estimates calculated using the classic maxi-
mum likelihood estimator are generally more efficient. Furthermore, the estimates of
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Table 1 Estimates of unknown
parameters for the
time-independent frailty model

True Estimator

Classic MLE EM algorithm

Mean SD Mean SD

105 · a 1 1.043 0.369 – –

10 · b 1 1.002 0.049 – –

β 3 3.012 0.231 2.889 0.244

σ 2 1 1.002 0.125 0.890 0.166

ρ 0.5 0.497 0.086 0.543 0.100100 simulated datasets for 500
twin pairs

Table 2 Estimates of unknown
parameters for the
time-dependent frailty model

True Estimator

Classic MLE EM algorithm

Mean SD Mean SD

107 · a 1 1.059 0.464 – –

10 · b 1 1.005 0.052 – –

β 3 3.018 0.221 3.006 0.176

20 · γ 1 1.088 0.579 1.094 0.195

 0.5 0.465 0.240 0.535 0.088100 simulated datasets for 500
twin pairs

Fig. 1 Dependency of ln(�) on age. True trajectory (solid line), the empirical mean trajectory, and its
lower and upper 95% limit trajectories (dashed lines)

the Cox-regression coefficients and parameters characterizing the frailty distribution
are closer to true vales than those for the EM algorithm. One can see in Fig. 1 that in
both cases (the time-dependent and the time-independent frailty), the empirical mean
log baseline cumulative hazard trajectory calculated using the EM algorithm fits the
true log baseline cumulative hazard trajectory very well.
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3.2 Experiments with real data

For experiments with real data, we used the datasets from the Danish Twin Registry
(DTR). This registry was created in the 1950s. It is one of the oldest population-
based registries in the world and contains information about twins born in Denmark
since 1870 and who survived to age 6. Multiple births were manually ascertained in
birth registers from all 2200 parishes in Denmark. As soon as a twin was traced, a
questionnaire was mailed to the twin, to her/his partner or to their closest relatives
if neither of the twin partners were alive. The zygosity of twins was assessed on
the basis of questions about phenotypic similarities. The reliability of the zygosity
diagnosis was validated by comparing laboratory methods based on the blood, serum,
and enzyme group determination. In general, the misclassification rates were less than
5%. Other information includes the data on sex, birth, cause of death, health, and
lifestyle. An important feature of the Danish twin survival data is their right censoring
and left truncation. In our study, we used the longevity data on the like-sex twins with
known zygosity born between 1870 and 1900 and who survived until age 30. This
non-censored data include 470 male monozygotic (MZ) twin pairs, 475 female MZ
twin pairs, 780 male dizygotic (DZ) twin pairs, and 835 male DZ twin pairs. Further
details on the Danish Twin Registry can be found in Hauge (1981).

Since the EM algorithm suffers from its slow convergence, we have estimated
unknown parameters for the time-independent and the time-dependent frailty mod-
els using the classic maximum likelihood method. Table 3 shows these estimates,
the logarithm of the maximum value of the likelihood function, and the value of
the AKAIKE Information Criterion (AIC) for the data from the Danish Twin Reg-
istry described above. The estimates of parameter s2 were very close to zero in all
experiments with real data. We have put this parameter equal to zero to avoid the
efficiency loss of estimates. The AIC values for the model with time-dependent frailty
are slightly smaller than the ones for the model with time-independent frailty. That
is, the model with time-dependent frailty is slightly more informative than the one
with time-independent frailty. Figures 2 and 3 show estimated and empirical bivariate
probability density functions for the time-independent and the time-dependent frailty
models. Note that the shapes of the estimated bivariate probability density functions
are very similar.

4 Discussion

Frailty models are a powerful tool for studying non-observable inhomogeneity in
a population related to time-to-failure (e.g., death or disease). Models with time-
independent frailty have been intensively studied over the last decades and have found
a wide range of applications in survival analysis and in searching for genes influencing
longevity. However, the studies based on the models with time-dependent frailty are
scarce. In this paper, we have attempted to improve the knowledge in this area and
to study some properties of multivariate survival models with time-dependent frailty
components.
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Table 3 Estimates of unknown parameters (standard errors) for the time-independent and †the time-
dependent frailty models

Frailty

Time-independent Time-dependent

Males Females Males Females

105 · ã 7.004 6.735 7.005 6.710

(0.782) (0.743) (0.835) (0.997)

10 · b̃ 0.916 0.887 0.916 0.888

(0.015) (0.014) (0.016) (0.020)

s2 0 0 0 0

– – – –

σ 2 or †102 · γ 1.751 1.166 0.626 1.718

(0.811) (0.853) (1.696) (0.773)

ρMZ or †MZ 0.507 0.538 0.477 0.671

(0.092) (0.132) (0.170) (0.158)

ρDZ or †DZ 0.191 0.318 0.176 0.391

(0.070) (0.111) (0.091) (0.111)

LogLik −9873.705 −10,470.3 −9872.825 −10,470.14

AIC 19,757.41 20,950.6 19,755.65 20,950.28

Classic MLE estimator. Twin data from the Danish Twin Registry

Proposition 1 we have formulated and proved for the bivariate case. It is not diffi-
cult to generalize this result and to prove the identifiability of the frailty model with
observed covariates for any number J of related individuals equal or greater than 1 if
the time-dependent frailty is a multivariate Lévy process. Similarly, we can generalize
Proposition 2 for the case of J � 2. However, the number of frailty components in
the multivariate analog of the decomposition (11) will be equal to 2J − 1. The shared
frailtymodel where all individuals in a family or cluster share the same non-observable
risk of failure does not meet this problem.

In experiments with simulated data, we tested for consistency and used parametric
and semiparametric approaches. In the parametric approach, we assumed that the para-
metric form of the baseline hazard functions is known and follows the Gompertz form.
All unknown parameters characterizing frailty distribution, baseline hazard function,
and Cox-regression parameters were estimated directly by maximizing the likelihood
function. In the semiparametric approach, we used the EM algorithm and estimated
the Cox-regression parameters and the parameters of frailty distribution by maxi-
mizing the partial likelihood function. The cumulative baseline hazard function was
estimated using the Breslow estimator regarding this function as infinite-dimensional
parameters. The EM algorithm suffers from its slow convergence. Moreover, in the
semiparametric approach, the number of calculations increases with the number of
individuals much more rapidly than in the parametric one. It leads to the drastic slow-
ing of the convergence of the EM algorithm and increases substantially the time of
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Fig. 2 Estimated and empirical bivariate probability density functions for the time-dependent (solid line)
frailty and the time-independent (dashed line) frailty. Male twin pairs from the Danish Twin Registry

estimation. It makes implementing the EM algorithm in the case of the time-dependent
frailty for analysis of the real data problematic.

Experiments with real data show that the proposed method and the method with
time-independent frailty produce similar shapes of the estimated bivariate probability
density functions. The baseline cumulative hazard functions have been chosen so that
the estimated marginal survival functions guarantee the best fit to the empirical ones
according to Eqs. (19)–(20). A large degree of similarity of the estimated bivariate
density functions for the models with time-dependent and time-independent frailties
in the range of ages 30–100 years guarantees the similar bivariate fit. The difference
between the two approaches can involve the shape of the baseline hazard functions
and the asymptotic behavior of the bivariate probability density functions. The mod-
els with time-dependent and time-independent frailties are not nested. Therefore, we
cannot compare them using the likelihood ratio test. For this purpose, the AKAIKE
Information Criterion can be used. In accordance with this criterion, the model with
time-dependent frailty is slightly more informative compared to the one with time-
independent frailty for the data we considered.
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Fig. 3 Estimated and empirical bivariate probability density functions for the time-dependent (solid line)
frailty and the time-independent (dashed line) frailty. Female twin pairs from the Danish Twin Registry

Gorfine and Hsu (2011) studied the robustness of the multivariate survival models
with frailty components against the violations of the model assumptions. It was found
that unnecessary modeling of the dependency between the frailty variates can lead to
some efficiency loss of parameter estimates.Misspecification of the frailty distribution
can introduce a bias in estimates. Misspecification of the baseline hazard functions
can lead to severe bias of all estimates if we use the parametric maximum likelihood
estimator, where the baseline hazard functions follow the parametric form. The non-
parametric maximum likelihood estimator does not suffer from this drawback. Note
that in experiments with real data, we have used a flexible parametrization of the base-
line cumulative hazard functions given by formulas (19)–(20). This parameterization
does not presume any knowledge about the form of the baseline hazard function. It is
sufficient to have a good approximation of the marginal survival function.

An extension of the present study can include the investigation of identifiability
of the survival models with competing risks and time-dependent frailty components.
The piecewise-constant approximation of the cumulative hazard function has been
used in experiments with real data [formulas (19)–(20)]. Other approximative func-
tions such as piecewise linear or piecewise exponential can be used to improve the
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bivariate goodness-of-fit. Further, numerical experiments with real data are needed to
understand whether the proposed method improves the goodness-of fit on the method
with time-independent frailty.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Univariate survival function for frailty model based on a
gamma process

Let Z = {Z(t) : t � 0} is a gamma process with Laplace transform given by the
Lévy-Khinchin formula

L(c; t) = Ee−cZ(t) = e−t�G (c),

where�G(c) is the Laplace exponent of the Lévy process Z , the argument for Laplace
transform c � 0 and

�G(c) = h[ln(γ + c) − ln γ ] = h ln(1 + γ −1c).

Here, ht and γ are the shape and the scale parameters, respectively, for gamma-
distributed random variable Z(t). Since Z(t) is a.s. increasing in t , we can consider it
as subordinator. It is easy to check that

EZ(t)e−cZ(t) = t�(1)
G (c)e−t�G (c)

EZ(t)2e−cZ(t) =
(
t2�(1)

G (c)2 − t�(2)
G (c)

)
e−t�G (c)

EZ(t)3e−cZ(t) =
(
t�(3)

G (c) + t3�(1)
G (c)3 − 3t2�(1)

G (c)�(2)
G (c)

)
e−t�G (c),

(21)

where superscript ”(l)” stands for lth-order argument derivative.
In nonhomogeneous population, the process Z (individual for each member of

population) can characterize the individual risk of mortality (frailty). In accordance
with the definition of the frailty model under mixed proportional hazard specification,
we have

μ(t |(Z , u) = Z(t)χ(u)λ(t)

for covariate vector u, parameter vector β, and baseline hazard λ(t). In Gjessing et al.
(2003) (Theorem 1), it was shown that the population survival in this case can be
calculated

S(t |u) = ES(t |Z , u) = exp

(
−

∫ t

0
�G(�(τ, t; u))dτ

)
,
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where

�(τ, t; u) =
∫ t

τ

χ(u)λ(s)ds.

For constant λ(t) = λ0, it holds that �(τ, t; u) = λ0eβ∗u(t − τ),

S(t |u) = exp

(
h

(
t − γ

χ(u)λ0

(
1 + χ(u)λ0t

γ

)
ln

(
1 + χ(u)λ0t

γ

)))
,

and

μ(t |u) = −d ln S(t |u)

dt
= h ln

(
1 + χ(u)λ0t

γ

)
.

Using the following formula for indefinite integral

∫
ln(1 + α(exp(κt) − exp(κτ)))dτ = −κ−1Li2

(
α exp(κτ)

α exp(κt) + 1

)

− τ ln

(
1 − α exp(κt)

1 + α exp(κt)

)

we get for the baseline hazard given by the Gompertz function λ(t) = a exp(bt)

S(t |u)

= exp

(
−h

∫ t

0
ln

(
1 + γ −1�(τ, t; u)

)
dτ

)

= exp

(
−h

∫ t

0
ln

(
1 + aχ(u)

γ b
(exp(bt) − exp(bτ)

)
dτ

)

= exp
(
−h

(
−t ln(1 − f (t, u)ebt ) − b−1Li2( f (t, u)ebt ) + b−1Li2( f (t, u))

))
.

(22)

Here, f (t, u) = (aχ(u)/(bγ (1+aχ(u)ebt/(bγ )) and Li2(z) is the dilogarithm func-
tion defined by

Li2(z) = −
∫ z

0

ln(1 − u)

u
du, z ∈ C\[1,∞).

This function is an analytical extension of the infinite series

Li2 =
∞∑
i=1

zk

k2
, |z| < 1.
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Appendix 2: Bivariate survival function for frailty model based on gamma
processes

Analogously to the univariate case, we can write the bivariate survival function for the
bivariate mixed proportional hazard model for the correlated time-dependent frailties
given by Lévy processes Z1 = {Z1(t) : t � 0} and Z2 = {Z2(t) : t � 0} in the form

S(t1, t2|u1, u2) = Ee−χ1(u1)
∫ t1
0 Z1(τ )λ1(τ )dτ e−χ2(u2)

∫ t2
0 Z2(τ )λ2(τ )dτ

= exp

(
−

∫ t−

0
�biv(χ1(u1)�1(τ, t1), χ2(u2)�2(τ, t2))dτ

)

× exp

(
−

∫ t+

t−
�+

uni(χ+(u1, u2)�+(τ, t+))dτ

)
,

where t− = min(t1, t2), t+ = max(t1, t2), �biv(., .) is the Laplace exponent for the
bivariate frailty process (Z1, Z2),

� j (τ, t) =
∫ t

τ

λ j (s)ds, j = 1, 2,

χ+(u1, u2) =
{

χ2(u2), if t2 > t1,

χ1(u1), if t1 > t2,

�+
uni(.) =

{
�2(.), if t2 > t1,

�1(.), otherwise,

and

�+(τ, t) =
{∫ t

τ
λ2(s)ds, if t2 > t1,∫ t

τ
λ1(s)ds, if t1 > t2.

Assume now that related individuals (e.g., twins) have individual frailty processes
Z1 = {Z1(t) : t � 0} and Z2 = {Z2(t) : t � 0}, respectively, so that

Z1 =Y0 + Y1,

Z2 =Y0 + Y2,
(23)

where Y0 = {Y0(t) : t � 0}, Y1 = {Y1(t) : t � 0}, and Y2 = {Y2(t) : t � 0} are the
gamma processes with Laplace exponents

�G, j (c) = h j [ln(γ + c) − ln γ ], j = 0, 1, 2. (24)

with h1 = h2. Denote  = h0/(h0 + h1). To make the model identifiable, we stan-
dardize the gamma-frailty process putting h = h0 + h1 = γ so that EZ j (1) = 1,
j = 1, 2. It is easy to check that Z1 and Z2 are also gamma processes with Laplace
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exponents

�G, j (c) = h j ln(1 + γ −1c), j = 1, 2.

Assume that conditional hazard functions for twins are given by the model with pro-
portional hazard

μ j (t |(Z j , u j ) = Z j (t)χ j (u j )λ j (t), j = 1, 2.

Then, the bivariate population survival function has the form

S(t1, t2|u1, u2) = exp

(
−

∫ t1

0
�G,1(�(τ, t1; u1))dτ

)

× exp

(
−

∫ t2

0
�G,2(�(τ, t2; u2))dτ

)

× exp

(
−

∫ t−

0
�G,0(�−(τ, t1, t2; u1, u2))dτ

)

× exp

(
−

∫ t+

t−
�G,0(�+(τ, t+; u1, u2))dτ

)

(25)

with

�−(τ, t1, t2; u1, u2) = χ1(u1)�1(τ, t1) + χ2(u2)�2(τ, t2)).

If the baseline hazard function is given by the Gompertz function, we can use formula
(22) to calculate the bivariate population survival.

Appendix 3: The proof of Proposition 2

To prove Proposition 2, we need to check several auxiliary statements.

Lemma 1 Let c1, c2 � 0. Then,

∣∣e−c2 − e−c1
∣∣ � |c2 − c1| . (26)

Proof Assume that c1 � c2 � 0 and set �c = c1 − c2. Then,

∣∣e−c2 − e−c1
∣∣ = e−c2 − e−c1 � e�c−1

ec2+�c � 1 − e−�c.

It is easy to check that

max
�c�0

(1 − e−�c − �c) = 0.
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Therefore,

∣∣e−c2 − e−c1
∣∣ � �c.

Last result holds also in the case of c2 > c1 � 0. 
�
Lemma 2 Let �(c) be a Laplace exponent given by (5), and �(t) is an increasing
continuous function defined in R+. Then,

∫ τ

0
�′(�(τ) − �(s))ds � bτ + τ

∫ ∞

0
xe−�(τ)xν(dx). (27)

Proof The statement of lemma follows directly from formula (5) and monotone
increase of the function �(.). 
�

The bivariate survival function for correlated frailty processes given by (11) is

S(t1, t2) = Ee− ∫ t1
0 Z1(τ )λ1(τ )dτ−∫ t2

0 Z2(τ )λ2(τ )dτ

= e− ∫ t1
0 �1(�1(τ,t1))dτ e− ∫ t2

0 �2(�2(τ,t2))dτ

× e− ∫ t−
0 �0(�1(τ,t1)+α�2(τ,t2))dτ e− ∫ t+

t− �0(�0(τ,t+))dτ
, (28)

where �i (.), i = 0, 1, 2, is the Laplace exponent for the frailty process Yi (t) and

�0(τ, t) =
{

α�2(τ, t), if t2 > t1,

�1(τ, t), otherwise.

Using formula (28) and Assumptions 2-3 of Proposition 2, it can be shown that

∫ t

0
�1(�1(τ, t))dτ = − ln

(
lim
t2↑∞

S(t, t2)

S(0, t2)

)
= g1(t),

∫ t

0
�2(α�2(τ, t))dτ = − ln

(
lim
t1↑∞

S(t1, t)

S(t1, 0)

)
= g2(t),

∫ t−

0
�0(�1(τ, t1) + α�2(τ, t2))dτ +

∫ t+

t−
�0(�0(τ, t+))dτ

= − ln

(
S(t1, t2)

limt1↑∞ S(t1,t2)
S(t1,0)

limt2↑∞ S(t1,t2)
S(0,t2)

)
= g0(t1, t2). (29)

Note that expressions on the left hand of (29) are observable, g1(t) = g0(t, 0) and
g2(t) = g0(0, t).

LetL1 be a set of all continuous increasing functions�(t) onR+ satisfying�(0) =
0 and�(t) → ∞ as t → ∞. GivenLaplace exponent�0, consider themap A1 defined
by

(A1�)(t) := ∫ t
0 �0(�(t) − �(τ))dτ . (30)
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Lemma 3 A1 is a bijective map from L1 to image A1(L1) of L1 under A1.

Proof It is easy to see that (A1�)(t) is a continuousmonotone increasing functionwith
(A1�)(0) = 0 and (A1�)(t) → ∞ as t → ∞ for � ∈ L1. That is, A1(L1) ⊂ L1.
For any 0 < T < ∞, the set LT

1 of all continuous monotone increasing functions on
[0, T ] satisfying �(0) = 0 is a complete metric space with usual supremum distance

dT (�a(.),�b(.)) = sup
t∈[0.T ]

|�a(t) − �b(t)| = || f (.)||T,∞.

Let g(t) = ∫ t
0 �0(�(t) − �(τ))dτ for � ∈ L1. Taking into account that �(t) is

differentiable in t a.e. and �0(0) = 0, we get that

g′(t) = �′(t)
∫ t

0
�′

0(�(t) − �(τ))dτ (31)

and, therefore,

�(t) =
∫ t

0
g′(τ )

(∫ τ

0
�′

0(�(τ) − �(s))ds

)−1

dτ. (32)

In accordance with the mean value theorem applied to the integral on the right hand
of (31), there exists τ ′ ∈ [0, τ ] such that

τ−1g′(τ ) = �′(τ )�′
0(�(τ) − �(τ ′)) � �′(τ )

∫ ∞

0
xν(dx). (33)

Since
∫ ∞
0 xν(dx) is finite, the function on the left hand of (33) is integrable on [0, t],

t < ∞. Assume that two solutions �a,�b of (32) satisfy �a(t) = �b(t) on the
interval [0, t0], t0 � 0. We shall show now that these solutions satisfy this property on
the interval [t0, t0 + tε] for some tε > 0 too. Let the map B1 be given by

(B1�)(t) = �(t0) +
∫ t

t0
g′(τ )

(∫ τ

0
�′

0(�(τ) − �(s))ds

)−1

dτ.

Taking into account g′(τ ) � 0 and inequalities (26) and (27), we get that
∣∣∣�a(t) − �b(t)

∣∣∣ =
∣∣∣(B1�

a)(t) − (B1�
b)(t)

∣∣∣

=
∣∣∣∣∣
∫ t

t0

g′(τ )dτ∫ τ

0 �′
0(�

a(τ ) − �a(s))ds
−

∫ t

t0

g′(τ )dτ∫ τ

0 �′
0(�

b(τ ) − �b(s))ds

∣∣∣∣∣

=
∣∣∣∣∣
∫ t

t0

g′(τ )
(∫ τ

0 �′
0(�

b(τ ) − �b(s))ds − ∫ τ

0 �′
0(�

a(τ ) − �a(s))ds
)
dτ(∫ τ

0 �′
0(�

b(τ ) − �b(s))ds
) (∫ τ

0 �′
0(�

a(τ ) − �a(s))ds
)

∣∣∣∣∣
�

∫ t

t0

g′(τ )
∣∣∫ τ

0 �′
0(�

b(τ ) − �b(s))ds − ∫ τ

0 �′
0(�

a(τ ) − �a(s))ds
∣∣ dτ∣∣∫ τ

0 �′
0(�

b(τ ) − �b(s))ds
∣∣ ∣∣∫ τ

0 �′
0(�

a(τ ) − �a(s))ds
∣∣
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�
∫ t

t0

g′(τ )
(∫ τ

0

∫ ∞
0 x

∣∣exp(−(�b(τ ) − �b(s))x) − exp(−(�a(τ ) + �a(s))x)
∣∣ ν(dx)ds

)
dτ∣∣∫ τ

0 �′
0(�

b(τ ) − �b(s))ds
∣∣ ∣∣∫ τ

0 �′
0(�

a(τ ) − �a(s))ds
∣∣

�
∫ t

t0

g′(τ )
(∫ τ

0

∫ ∞
0 x2||�a(.) − �b(.)||τ,∞ν(dx)ds

)
dτ(

τ
∫ ∞
0 x exp(−x�a(τ ))ν(dx)

) (
τ

∫ ∞
0 x exp(−x�b(τ ))ν(dx)

)

�
C0

(∫ t
t0

τ−1g′(τ )dτ
)

Ca(t)Cb(t)
||�a(.) − �b(.)||t,∞,

where 0 < C0 = ∫ ∞
0 x2ν(dx) < ∞, 0 < Ci (t) = ∫ ∞

0 x exp(−x�i (t))ν(dx) < ∞,
i = a, b.

Let C(t0) = �a(t0) = �b(t0). Taking tε1 > 0 small enough, we can guarantee that
�i (t) = (B1�

i )(t) � 2C(t0), i = a, b, and, therefore, Ca(t)Cb(t) � C3 > 0 for all
t ∈ [t0, t0 + tε1 ]. Now we can find tε, 0 < tε � tε1 , small enough so that

∣∣∣(B1�
a)(t) − (B1�

b)(t)
∣∣∣ � q||�a(.) − �b(.)||t0+tε,∞

for all t ∈ [0, t0 + tε] and some positive q < 1. It means that

||�a(t) − �b(t)||t0+tε,∞ = ||(B1�
a) − (B1�

b)||t0+tε,∞
� q||�a(.) − �b(.)||t0+tε,∞ < ||�a(t) − �b(t)||t0+tε,∞.

From here, it follows that ||�a(t) − �b(t)||t0+tε,∞ = 0. We continue this process
until we get that ||�a(t) − �b(t)||∞,∞ = 0. Hence, the map A1 : L1 → A1(L1) is
injective. Since this map is also surjective, it is bijective 
�

Define the set L2 of all functions �12(t1, t2, α) such that

�12(t1, t2) = �1(t1) + α�2(t2)

for �1,�2 ∈ L1, and α > 0. Given Laplace exponent �0, consider the map A2
defined by

(A2�12)(t1, t2) :=
∫ t−

0
�0(�1(τ, t1) + α�2(τ, t2))dτ +

∫ t+

t−
�0(�0(τ, t+))dτ.

(34)

Lemma 4 A2 is a bijective map from L2 to image A2(L2) of L2 under A2.

Proof Since �(t) = �12(t, t) ∈ L1, �1(t) = �12(t, 0) ∈ L1, and α�2(t) =
�12(0, t) ∈ L1 for t ∈ [0,∞), in accordance with Lemma 3, these functions can be
uniquely defined by their images g0(t, t) = (A2�1,2)(t, t) = (A1�)(t), g0(t, 0) =
(A2�12)(t, 0) = (A1�1)(t), and g0(0, t) = (A2(α�12))(0, t) = (A1(α�2))(t),
respectively. Assume now that t2 > t1 and the solution �12(t1, t) to (34) is uniquely
defined for 0 � t � t0 with t0 � t1. Define the map B2 for t > t0 by

(B2�12)(t1, t) = �12(t1, t0)
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+
∫ t

t0

dg0(t1, τ )∫ t1
0 �′

0(�12(t1, τ ) − �12(s, s))ds + ∫ τ

t1
�′

0(�12(0, τ ) − �12(0, s))ds
.

Similarly to the proof of Lemma 3, it can be shown that the solution to

�12(t1, t) = (B2�12)(t1, t)

is also uniquely defined on the interval [t0, t0 + tε] for some tε > 0 and, therefore,
is uniquely defined for all t � t1. The same result can be checked in the case of
t1 > t2. 
�

For the sake of contradiction, assume now that there are functions �a
0(.), �b

0(.),
�a

1(.), �
b
1(.), �

a
2(.), �

b
2(.), and real positive numbers αa and αb such that

g0(t1, t2) = (Aa
2�

a
12)(t1, t2) = (Ab

2�
b
12)(t1, t2) (35)

holds for all t1, t2 � 0. In accordance with Lemmas 3–4, the maps Aa
i and Ab

i are
invertible on their images of Li , i = 1, 2. Moreover, g0 ∈ Aa

2L2, g0 ∈ Ab
2L2,

gi ∈ Aa
1L1, and gi ∈ Ab

1L1, i = 1, 2. Denote maps (Ab
i )

−1Aa
i and (Aa

i )
−1Ab

i by T ba
i

and T ab
i , i = 1, 2, respectively. It holds that

�b
12(t1, t2) = (T ba

2 �a
12)(t1, t2) = ((Ab

2)
−1g0)(t1, t2),

�a
12(t1, t2) = (T ab

2 �b
12)(t1, t2) = ((Aa

2)
−1g0)(t1, t2),

�a
i (ti ) = (T ab

1 �b
i )(ti ) = ((Aa

1)
−1gi )(ti ), i = 1, 2. (36)

Note that �i
1(t1) = �i

12(t1, 0) and αi�i
2(t2) = �i

12(0, t2), i ∈ {a, b}. Taking into
account that

�b
1(t1) = (T ba

1 �a
1)(t1), αb�b

2(t2) = (T ba
1 (αa�a

2))(t2),

�a
1(t1) = (T ab

1 �b
1)(t1), αa�a

2(t2) = (T ab
1 (αb�b

2))(t2) (37)

we get from (36) that

�b
1(t1) + αb�b

2(t2) = (T ba
1 �a

1)(t1) + (T ba
1 (αa�a

2))(t2)

= (T ba
2 (�a

1 + αa�a
2))(t1, t2),

�a
1(t1) + αa�a

2(t2) = (T ab
1 �b

1)(t1) + (T ab
1 (αb�b

2))(t2),

= (T ab
2 (�b

1 + αb�b
2))(t1, t2).

(38)

Now we will prove that the action of the map T ba
2 (resp. T ab

2 ) on the function �a
12

(resp. �b
12) calculated in the point (t1, t2) depends only on the value of �b

12(t1, t2)
(resp. �a

12(t1, t2)).
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Lemma 5 Given the maps �a
0(.), �

b
0(.), �

a
1(.), �

b
1(.), �

a
2(.), �

b
2(.), and real positive

numbers αa and αb, there exist uniquely defined, monotone increasing, continuous
functions f ab : R

1+ → R
1+ and f ba : R

1+ → R
1+ such that

�a
1(t1) + αa�a

2(t2) = f ab(�b
1(t1) + αb�b

2(t2)),

�b
1(t1) + αb�a

2(t2) = f ba(�a
1(t1) + αa�a

2(t2)).

Proof Put αa
1 = αb

1 = 1. From (33) and Lemma 3, it follows that given the functions
gi (t) the maps ( f ai )−1 : gi (t) → αa

i �
a
i (t) and ( f bi )−1 : gi (t) → αb

i �
b
i (t) are

strictly monotone increasing, continuous, and uniquely defined. It holds that gi (t) =
f ai (αa

i �
a
1(t)) = f bi (αb

i �
b
1(t)). Therefore, the maps f bai = ( f bi )−1 f ai : R

1+ → R
1+

and f abi = ( f ai )−1 f bi : R
1+ → R

1+, i = 1, 2, are also strictly monotone increasing
and continuous. Since (T ba

i (αa
i �

a
i ))(ti ) = f bai (αa

i �
a
i (ti )) and (T ab

i (αb
i �

b
i ))(ti ) =

f abi (αb
i �

b
i (ti )) for i = 1, 2, the middle terms of Eq. (38) depend only on the values

of αb
i �

b
i (ti ) and αa

i �
a
i (ti ) and do not depend on the behavior of the functions �a

i (ti )
and �b

i (ti ) on the intervals [0, ti ). Therefore, we can rewrite equations in (38) as
follows:

�b
1(t1) + αb�b

2(t2) = f ba1 (�a
1(t1)) + f ba2 (αa�a

2(t2))

= f ba(�a
1(t1) + αa�a

2(t2)),

�a
1(t1) + αa�a

2(t2) = f ab1 (�b
1(t1) + f ab2 (αb�b

2(t2)),

= f ab(�b
1(t1) + αb�b

2(t2)).

(39)

for some continuous monotone increasing functions f ba : R
1+ → R

1+ and f ab :
R
1+ → R

1+. Substituting in (39) t2 = 0 or t1 = 0, we get that f ab1 = f ab2 = f ab and
f ba1 = f ba2 = f ba . 
�

Proof of Proposition 2 Note firstly that in accordance with Assumption 4, the func-
tions �i (c), i = 0, 1, 2, are analytic ones on Re(c) > −b. Since f ba(.) and
f ab(.) are defined on R

1+, additive and continuous, they are linear and it holds that
f ab(x) = Cab

1 x + Cab
2 and f ba(x) = Cba

1 x + Cba
2 for some constant Cab

1 , Cab
2 ,

Cba
1 , and Cba

2 . As f ab(0) = f ba(0) = 0, we have that Cab
2 = Cba

2 = 0. More-
over, Cab

1 = Cba
1 = 1 and αa = αb because �a

i (t
∗) = �b

i (t
∗) = 1 for some

t∗ > 0 and i = 1, 2. From here, it follows that f ab(.) and f ba(.) are identity trans-
formations and �a

i (t) = �b
i (t) = �i (t) for all t � 0, i = 1, 2. It holds also that

(Aa
1�i )(t) = (Ab

1�i )(t) for all t � 0, i = 1, 2. To complete the proof of Proposi-
tion 2, we need to show that �a

0(x) = �b
0(x) for any x ∈ R

1+. Indeed, the maps �a
0
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and �b
0 are real analytic functions on R

1+ and, therefore,

(Aa
1�1)(t) =

∫ t

0
�a

0(�1(t) − �1(τ ))dτ

=
∞∑
n=0

(�a
0)

(n)(0)

n!
∫ t

0
(�1(t) − �1(τ ))ndτ

(Ab
1�1)(t) =

∫ t

0
�b

0(�1(t) − �1(τ ))dτ

=
∞∑
n=0

(�b
0)

(n)(0)

n!
∫ t

0
(�1(t) − �1(τ ))ndτ

for small values of �1(t). This holds iff (�a
0)

(n)(0) = (�b
0)

(n)(0) for all nonnegative
integer n and means that �a

0(x) = �b
0(x) = �0(x) in some neighborhood of 0. Since

�0(x) is a real analytic function on R
1+, this function is uniquely defined in this area.

Similarly, it can be proved that the functions�i (x), i = 1, 2, are also uniquely defined
in R

1+. 
�

Appendix 4: Calculation of the conditional expectation of the log-density
function

Case t2 � t1.
Let all failure and censoring times t (k), 0 � t (k) � t2, k = 1, . . . , N2, be arranged in
ascending order so that 0 = t (0) � t (1) � t (2) � · · · � t (N2) = t2 and t1 = t (N1),
N1 � N2. The estimate of the cumulative hazard function �̂(t) is a step function with
�̂(0−) = 0 and jumps (if non-censored) at times t (k), k = 1, . . . , N2. Since Y j (t),
j = 0, 1, 2, are gamma processes, it holds that

Y j (tl) =
Nl j∑
k=1

(
Y j (t

(k)) − Y j (t
(k−1))

)
, j = 0, 1, 2, l0 = l2 = 2, l1 = 1, (40)

where increments �Y (k−1)
j = Y j (t (k)) − Y j (t (k−1)) are independent gamma-

distributed random variables with means h jγ
−1�t (k−1) and the variances h jγ

−2

�t (k−1) for �t (k−1) = t (k) − t (k−1), h1 = h2 = (1 − )γ and h0 = γ , j = 0, 1, 2,
k = 1, . . . , Nl j .
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Using decomposition (23) with independent gamma processes Y j (t), j = 0, 1, 2,
we calculate the log-density function as follows:

ln( f (Z1(.), Z2(.)|t1, t2, ζ ))

= −γ

(
N1−1∑
k=0

�Y (k)
1 +

N2−1∑
k=0

�Y (k)
0 +

N2−1∑
k=0

�Y (k)
2

)

−
N1−1∑
k=0

ln
(
�(γ (1 − )�t (k))

)
−

N2−1∑
k=0

ln
(
�(γ �t (k))�(γ (1 − )�t (k))

)

+ γ (1 − )

(
N1−1∑
k=0

�t (k) ln(�Y (k)
1 ) +

N2−1∑
k=0

�t (k) ln(�Y (k)
2 )

)

+ γ 

N2−1∑
k=0

�t (k) ln(�Y (k)
0 ) −

N1−1∑
k=0

ln(�Y (k)
1 ) −

N2−1∑
k=0

ln(�Y (k)
0 )

−
N2−1∑
k=0

ln(�Y (k)
2 )

(41)

(index i denoting the twin pair is here omitted).
Given current estimates β̂, �̂(t), ζ̂ , and the observed data, the conditional expecta-

tion of the log-density function (41) (taking into account only summands depending
on γ and ) is equal to

E ln( f (Z1(.), Z2(.)|t1, t2, β̂, �̂(t), ζ̂ ))

= −γ

(
N1−1∑
k=0

̂
�Y (k)

1 +
N2−1∑
k=0

̂
�Y (k)

0 +
N2−1∑
k=0

̂
�Y (k)

2

)

−
N1−1∑
k=0

ln
(
�(γ (1 − )�t (k))

)
−

N2−1∑
k=0

ln
(
�(γ �t (k))�(γ (1 − )�t (k))

)

+ γ (1 − )

(
N1−1∑
k=0

�t (k)
̂

ln(�Y (k)
1 ) +

N2−1∑
k=0

�t (k)
̂

ln(�Y (k)
2 )

)

+ γ 

N2−1∑
k=0

�t (k)
̂

ln(�Y (k)
0 ).

(42)

Here, ̂�Y k
i and ̂ln(�Y k

i ) are conditional expectations of �Y k
i and ln(�Y k

i ) given
current estimates β̂, �̂(t), ζ̂ , and the observed data.
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From formulas (21), (23), (24), and (40) after a number of transformations, we get
for χ(u) = eβu that

E exp

(
−

∫ tl j

0
Y j (τ )eβ∗uλ(τ)dτ

)
= e−E0

j

E�Y (k)
j exp

(
−

∫ tl j

0
Y j (τ )eβ∗uλ(τ)dτ

)
= �t (k)E1,k

j e−E0
j

E

(
�Y (k)

j

)2
exp

(
−

∫ tl j

0
Y j (τ )eβ∗uλ(τ)dτ

)

=
((

�t (k)E1,k
j

)2 − �t (k)E2,k
j

)
e−E0

j

E

(
�Y (k)

j

)3
exp

(
−

∫ tl j

0
Y j (τ )eβ∗uλ(τ)dτ

)

=
((

�t (k)E1,k
j

)3 − 3
(
�t (k)

)2
E1,k

j E2,k
j + �t (k)E3,k

j

)
e−E0

j , j = 0, 1, 2,

(43)

where

E0
j =

Nl j −1∑
k=0

�t(k)�(0)
G (0, tl j ;�, β, u)

Em,k
j = �

(m)
G (t(k), tl j ; �, β, u), k = 0, . . . , Nl j − 1,

�
(m)
G (τ, t; �,β, u) = �

(m)
G

(
eβ

∗u�(τ, t)
)

, m = 1, 2, 3,

and incomplete cumulative hazard function �(τ, t) = ∫ t
τ

λ(s)ds is a step function,

and �
(m)
G (.) stands for mth-order argument derivative.

For a gamma-distributed random variable Y with shape parameter h and the scale
parameter γ , it holds that

E ln(Y )e−cY = [
ψ(h) − ln(γ + c)

]
e−�

(0)
G (c)

EY ln(Y )e−cY = [
ψ(h + 1) − ln(γ + c)

]
�

(1)
G (c)e−�

(0)
G (c)

EY 2 ln(Y )e−cY = [
ψ(h + 2) − ln(γ + c)

] [
�

(1)
G (c)2 − �

(2)
G (c)

]
e−�

(0)
G (c),

(44)

where c � 0 and ψ(.) is the digamma function defined by ψ(x) = d ln(�(x))/dx .
Last formulas can be obtained by differentiating the integral representation of the
gamma function and not difficult transformations after that.
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Using formulas (44), we get additionally to formulas (43)

E ln(�Y (k)
j ) exp

(
−

∫ tl j

0
Y j (τ )eβ∗uλ(τ)dτ

)
= F0,k

j e−E0
j

E�Y (k)
j ln(�Y (k)

j ) exp

(
−

∫ tl j

0
Y j (τ )eβ∗uλ(τ)dτ

)
= �t (k)E1,k

j F1,k
j e−E0

j

E

(
�Y (k)

j

)2
ln(�Y (k)

j ) exp

(
−

∫ tl j

0
Y j (τ )eβ∗uλ(τ)dτ

)

=
((

�t (k)E1,k
j

)2 − �t (k)E2,k
j

)
F2,k
j e−E0

j ,

(45)

where

Fm,k
j = ψ

(
h j�t (k) + m

)
− ln

(
γ + eβ∗u�(t (k), t l j )

)

for m = 0, 1, 2, k = 0, . . . , Nl j , and j = 0, 1, 2.
In accordance with Bayes’ theorem, we get for the conditional density function

that

f (Z1(.), Z2(.)|β, u1, u2,�(.), ζ, t1, t2, δ1, δ2)

= g (Z1(.), Z2(.), t1, t2|β, u1, u2,�(.), ζ, δ1, δ2)

Eg (Z1(.), Z2(.), t1, t2|β, u1, u2,�(.), ζ, δ1, δ2)
(46)

with

g (Z1(.).Z2(.)t1, t2|β, u1, u2,�(.), ζ, δ1, δ2)

=
(
Z1(t1)e

β∗u1λ(t1)
)δ1

(
Z2(t2)e

β∗u2λ(t2)
)δ2

f (Z1(.), Z2(.)|ζ )

× exp

(
−

∫ t1

0
Z1(τ )eβ∗u1λ(τ)dτ −

∫ t2

0
Z2(τ )eβ∗u2λ(τ)dτ

)
.

Expression (46) can be calculated using Eq. (43) and the formulas

Z1(t1) =
N1−1∑
k=0

(
Y (k)
0 + Y (k)

1

)
,

Z2(t1) =
N2−1∑
k=0

(
Y (k)
0 + Y (k)

2

)
,

∫ t1

0
Z1(τ )eβ∗u1λ(τ)dτ =

N1−1∑
k=0

eβ∗u1�(t (k), t1)
(
�Y (k)

0 + �Y (k)
1

)
,

∫ t2

0
Z2(τ )eβ∗u2λ(τ)dτ =

N2−1∑
k=0

eβ∗u2�(t (k), t2)
(
�Y (k)

0 + �Y (k)
1

)
,
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f (Z1(.), Z2(.)|ζ ) =
N1−1∏
k=0

f (�Y (k)
1 |ζ )

N2−1∏
k=0

f (�Y (k)
0 |ζ )

N2−1∏
k=0

f (�Y (k)
2 |ζ ).

Finally, we calculate the conditional log-density function (42) using formulas (43),
(45), (46), and replacing β, ζ , and � with their current estimates β̂, ζ̂ , and �̂.
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