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Highlights

• Tree-child phylogenetic networks are characterised by their embedded spanning
trees.
• A new model of evolution on a phylogenetic network is introduced.
• Tree-child phylogenetic networks are shown to be identifiable under this model.
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IDENTIFIABILITY OF TREE-CHILD PHYLOGENETIC NETWORKS
UNDER A PROBABILISTIC RECOMBINATION-MUTATION MODEL

OF EVOLUTION

ANDREW FRANCIS AND VINCENT MOULTON

Abstract. Phylogenetic networks are an extension of phylogenetic trees which are
used to represent evolutionary histories in which reticulation events (such as recom-
bination and hybridization) have occurred. A central question for such networks is
that of identifiability, which essentially asks under what circumstances can we reliably
identify the phylogenetic network that gave rise to the observed data? Recently, iden-
tifiability results have appeared for networks relative to a model of sequence evolution
that generalizes the standard Markov models used for phylogenetic trees. However,
these results are quite limited in terms of the complexity of the networks that are con-
sidered. In this paper, by introducing an alternative probabilistic model for evolution
along a network that is based on some ground-breaking work by Thatte for pedigrees,
we are able to obtain an identifiability result for a much larger class of phylogenetic
networks (essentially the class of so-called tree-child networks). To prove our main
theorem, we derive some new results for identifying tree-child networks combinatori-
ally, and then adapt some techniques developed by Thatte for pedigrees to show that
our combinatorial results imply identifiability in the probabilistic setting. We hope
that the introduction of our new model for networks could lead to new approaches to
reliably construct phylogenetic networks.

1. Introduction

Recently, there has been growing interest in the construction of phylogenetic networks
in order to represent the evolutionary history of a given set of species or taxa [1].
Phylogenetic networks are a generalization of phylogenetic trees, and they have the
advantage of being able to represent evolutionary events such as recombination and
hybridization that is not possible within a single tree. Various approaches have been
developed for constructing networks [7, 9], and more recently the use of probabilistic
approaches for this purpose has started to gain momentum.

One of the key issues that arises when applying probabilistic models in phylogenetics
is that of identifiability: under what circumstances can we reliably identify the phylo-
genetic tree or network that gave rise to the observed data? Typically, as is the case in
this paper, the observed data is a multiple alignment of sequences across a set of taxa,
which correspond to the leaves of the tree or network. This identifiability problem has
been extensively studied for phylogenetic trees where identifiability has been proven for
simple models some time ago (see e.g. [4, 13] as well as [11] for an overview of some
more recent developments), but relatively little is known for more general networks.

Identifiability results for phylogenetic networks come with two riders: the model
of evolution considered on the network; and the class of networks considered. Most
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studies use a model of evolution on a rooted binary phylogenetic network, in which
characters evolve along arcs, copy themselves at tree vertices, and make a random
choice at reticulation vertices [10]. Under this model of evolution, identifiability results
are known for a limited set of families of networks. For instance [6] have shown that
under such a model, networks with a single cycle of length greater than or equal to 4 are
identifiable. Related network-based models consider evolution along the trees that are
contained within a network and take into account processes such as incomplete lineage
sorting [16], but identifiability of these models is complicated by the fact that the trees
displayed in a network do not necessarily identify the network.

In this paper we consider a different evolutionary model, which we adapt from the
world of pedigree reconstruction [15]. In this model, which we illustrate in Figure 1,
first a tree is selected at random from the set of trees displayed by a network, and a
standard model of evolution on that tree (see e.g. [5, Chapter 13]) is used to generate
character values at sites until the tree changes. At each site and for each reticulation
vertex there is a fixed (small) probability p that the parent of the vertex will switch.
For networks whose displayed trees have leaf-set equal to that of the network, this gen-
erates a Markov process whose state space is the set of displayed trees of the network,
and means that an alignment will have blocks of sites generated under a common tree,
before a change produces another block of sites generated under a new tree. Related
approaches have been considered in the literature for constructing networks (known as
ancestral recombination graphs) from an alignment of recombining sequences [12], and
also for inferring break-points in such alignments using the so-called multiple change-
point model [14].

Under our model of evolution along a phylogenetic network, we are able to obtain an
identifiability result for a much larger class of networks than has been possible before.
In particular, in our main result, Corollary 6.3, we show that it is possible identify
any network within the class of tree-child networks, all of which have same number of
reticulation vertices, and such that none of them has a reticulation vertex adjacent to
the root (see Section 1 for the definition of these terms). Whereas for the model used
in [6] network identifiability has only been shown to hold for the case where there is a
single reticulation, the networks that we consider can have any number of reticulations
(if the number of leaves is allowed to grow).

We now summarize the rest of the paper. We begin with a section defining the key
terms that will be used throughout the paper (Section 2). Section 3 provides key results
on tree-child networks that we will need, some of them new. In particular we prove that
the number of non-isomorphic “embedded spanning trees” in a tree-child network is 2
raised to power of the number of reticulation vertices in the network (Theorem 3.3), and
that if two tree-child networks have the same set of embedded spanning trees, then they
are isomorphic (Theorem 3.5). In Section 4 we introduce the model of evolution that
we will study on a network, based on that of [15] for pedigrees, and we adapt the key
results of [15] for the setting of rooted binary phylogenetic networks. Our main result is
contained in Section 6, and it is based on a result which states that if the distributions
of the characters arising on certain networks are the same then, for sufficiently long
alignments and a certain choice of model parameter, the networks must contain the
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r3r2
r1 r4

x y z w

(a) (b)

x y z w

TR1
: R1 = {r2, r3}.

x z y w

TR2
: R2 = {r1, r4}.

x y z w

TR3
: R2 = {r2, r4}.

x y z w

TR4
: R4 = {r1, r3}.

(c)

T1 T2

T3 T4

(d) T1 T1 T1 T2 T2 T2 T3 T3 T3

x A A C T G T G T G
y A A · · · C A A · · · A G T · · · G
z T G A T G T G T G
w T G A A A A A C C

Figure 1. (a) A phylogenetic network with two reticulations and reticu-
lation arcs labelled ri (Section 2.2). All arcs are directed downwards and
away from the root. (b) The four rooted trees TRi

in the network cor-
responding to choices of sets of reticulation arcs Ri (Section 3). (c) The
Markov model on the four trees allows movement between any pair of
trees by changing choice of Ri (abbreviating TRi

to Ti). This is intro-
duced in Section 4.1. (d) An alignment generated by the sequence of trees
T1 → T1 → · · · → T1 → T2 → T2 → · · · → T2 → T3 → T3 → · · · → T3

(Section 4.1).

same set of embedded spanning trees (Corollary 6.2). This, in turn, is a direct corollary
of a technical result (Theorem 6.1) whose proof employs a similar strategy to that used
in the proof of [15, Theorem 2]. We conclude with a short discussion on possible future
directions.

2. Preliminaries/Definitions

2.1. Trees and forests. In what follows X is a finite set (corresponding to a set of
taxa).

A forest is a graph with no cycles; a tree is a forest with one connected component.
A leaf in a forest is a degree 1 vertex. A rooted tree is a tree with one vertex identified
called the root, and all arcs directed away from the root towards the leaves. Note that
if the root has out-degree 1, then we do not regard it as being a leaf of the tree.

Following [15, Definitions 4 and 6], we define an X-forest to be a forest with leaf-set
X, and say that two X-forests F1 and F2 are isomorphic if there is a graph isomorphism
between F1 and F2 which is the identity on X. An X-tree T is an X-forest with one
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component such that all internal vertices of T have degree either 2 or 3. Note, that
X-forests are unrooted. Moreover, it is important to note that an X-forest (or X-tree)
may contain vertices of degree 2 that are not contained in X, and so the term is used
in a slightly different way from that commonly used in the phylogenetics literature.

2.2. Phylogenetic networks. For networks we follow the definitions presented in [2].
A phylogenetic network N on X is a directed acyclic graph with the following prop-

erties: (i) it has a unique vertex of in-degree zero called the root, which has out-degree
two (except in the case |X| = 1), (ii) the set X labels the set of vertices of out-degree
zero, each of which has in-degree one, and (iii) every other vertex either has in-degree
one and out-degree two, or in-degree two and out-degree one. For technical reasons, in
case |X| = 1, then N consists of the single vertex in X.

We denote the set of arcs in a phylogenetic network N by A(N). The vertices of
out-degree zero are called leaves, while the vertices of in-degree one and out-degree two
are called tree vertices and the vertices of in-degree two and out-degree one are called
reticulations. The arcs directed into a reticulation are called reticulation arcs ; all other
arcs are called tree arcs. We let r(N) denote the number of reticulations in N . We
say that two phylogenetic networks N1 and N2 are isomorphic if there exists a directed
graph isomorphism between N1 and N2 which is the identity when restricted to X.

For any two vertices u and v in N that are joined by an arc (u, v), we say u is a
parent (or parent vertex) of v and, conversely, v is a child (or child vertex ) of u. We
say that N is a tree-child network if every non-leaf vertex has a child which is either a
tree vertex or a leaf [3].

3. Tree child networks and embedded spanning trees

Given a phylogenetic network N , we can obtain a rooted tree from N by removing
one of the two reticulation arcs incident to each one of the reticulations in N . If R
denotes a set of reticulation arcs removed in this way, then we let TR denote this tree.
We let RN denote the set of all possible such sets R (so that |RN | = 2r(N)). Note that
the vertex set of TR contains X and it may potentially contain degree two vertices, as
well as leaves that are not contained in X.

Given a network N , we say that a tree whose vertex set contains X is an embedded
spanning tree in N if it is isomorphic to the (unrooted) tree which is obtained from TR
for some R ∈ RN , by ignoring directions on arcs, via an isomorphism of trees which
is the identity on X. We denote the set of all possible embedded spanning trees in N
(up to isomorphism) by S(N). Clearly 1 ≤ |S(N)| ≤ 2r(N). An example is shown in
Figure 2.

Later, we shall focus on tree-child networks. Note that an embedded spanning tree
in a tree-child network N on X may not necessarily be an X-tree. We now characterize
those tree-child networks for which every embedded spanning tree is an X-tree.

Lemma 3.1. Suppose that N is a tree-child network. Then every element in S(N) is
an X-tree if and only if there does not exist an arc (ρ, v) in N with ρ the root of N and
v a reticulation of N .
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x
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z

w

S1 (R1 = {r2, r3}).

x

z

y

w

S2 (R2 = {r1, r4}).

x

y

z

wS3 (R3 = {r2, r4}).

x

y

z

w

S4 (R4 = {r1, r3}).

Figure 2. The set of embedded spanning trees S(N) = {S1, S2, S3, S4}
for the network shown in Figure 1, and corresponding to the rooted ana-
logues TR1 , . . . , TR4 .

Proof. Suppose that every element in S(N) is an X-tree. Suppose N contains an arc
(ρ, v) with ρ the root of N and v a reticulation of N . If R ∈ RN with (ρ, v) ∈ R, the
underlying (undirected) tree of TR is a tree whose vertex set contains X with a leaf
(corresponding to ρ) that is not in X, a contradiction.

Conversely, suppose there does not exist an arc (ρ, v) in N with ρ the root of N and
v a reticulation of N . Let R ∈ RN , and suppose that the embedded spanning tree
arising from TR contains a leaf w that is not in X.

Note first that w is not the root of N , since otherwise there would be an arc (w, v)
in N with v a reticulation of N , which is contradiction. So, as w is not in X, it
therefore follows that w is either a reticulation or a tree-vertex. But w cannot be a
reticulation since then there would have to be a reticulation v with (w, v) an arc in N ,
which contradicts N being tree-child. Similarly, w cannot be a tree-vertex, as then to
have w being a leaf in TR, both of the children of w in N would have to be reticulation
vertices, which again contradicts N being tree-child. This final contradiction completes
the proof of the lemma. �

In the following we will use two operations on phylogenetic networks as defined in
[2]. Let N be a phylogenetic network on X. A 2-element subset {x, y} of X is a cherry
in N if the parents of x and y are the same. A cherry reduction on a cherry {x, y}
in N is the operation of deleting x and y, and their incident arcs, and labelling their
common parent (now itself a leaf) with a new element not in X. Note that after a
cherry reduction the number of leaves in the resulting network is reduced by one, but
the number of reticulations is unchanged.

A two-element subset {x, y} of X is called a reticulated cherry in N if there is an
undirected path, say x, v1, v2, y, between x and y in N with one of v1 and v2 a tree vertex
and the other a reticulation vertex. A reticulated cherry reduction on a reticulated
cherry {x, y} in N is the operation of deleting the reticulation arc of the reticulated
cherry and suppressing the degree-two vertices resulting from the deletion. Note that
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after a reticulated cherry reduction, the number of reticulations in the resulting network
is reduced by one, but the leaf set is unchanged.

The following result, that will be key to us, is shown in [2].

Theorem 3.2 ([2]). If N is tree-child network on X, then the following hold:

(i) If |X| ≥ 2, then N contains either a cherry or a reticulated cherry.
(ii) If N ′ is obtained from N by reducing either a cherry or a reticulated cherry,

then N ′ is a tree-child network.

Note that using this theorem it is straight-forward to check that in case |X| = 2,
then if X = {x, y} a tree-child network on X must be isomorphic to one of the two
networks in Figure 3.

x y

ρ

x y

v
w

ρ

Figure 3. The two tree-child networks with two leaves.

We now prove that if N is tree-child then S(N) must be as large as is possible for a
network.

Theorem 3.3. Suppose that N is a tree-child network. Then |S(N)| = 2r(N).

Proof. We will show that if R 6= R′ ∈ RN , then the embedded spanning trees in S(N)
arising for TR and TR′ (which we denote by SR and SR′ , respectively) are not isomorphic
via an isomorphism of trees which is the identity on X.

Suppose this is not the case. Let X be of minimal size such that there is a tree-child
network N on X with R 6= R′ ∈ RN , but SR is isomorphic to SR′ . Moreover, out of all
such networks on X, pick N which has a minimal number of arcs. It is straight-forward
to check using the above observation for tree-child networks with two leaves that |X|
must be greater than 2.

Since N is tree-child, it must contain a cherry or reticulate cherry (Theorem 3.2(i)).
If it contains a cherry, then perform a cherry reduction on N to obtain a tree-child
network M . This reduction does not affect any reticulation arcs, and so R and R′ are
both subsets of the arcs of M . Moreover, as SR is isomorphic to SR′ , this also holds for
the reduced versions of SR and SR′ . But this contradicts the fact that X was chosen to
be minimal, since M has a smaller leaf-set than N .

If N contains a reticulate cherry, then perform a reticulate cherry reduction on N to
obtain a tree-child network M (by Theorem 3.2(ii)). Let r be the reticulation arc which
is removed in the reduction, and r′ 6= r be the reticulation arc that is incident with r.
Note that we must have either r ∈ R∩R′ or r′ ∈ R∩R′, or else it is straight-forward to
check that SR is not isomorphic to SR′ , a contradiction. So, suppose p is equal to r or
r′ and p ∈ R∩R′. Then as R 6= R′ and |R| = |R′|, R−{p} and R′−{p} must both be
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non-empty, and R− {p} 6= R′ − {p}. Moreover, we can consider R− {p} and R′ − {p}
as being contained in the set of reticulation arcs in M . But the reduced versions of SR

and SR′ in M must be isomorphic, which contradicts the choice of N , since M has less
arcs than N . �

We now show that if two tree-child networks have the same set of embedded spanning
trees, then they must be isomorphic. We begin with a useful observation:

Lemma 3.4. Suppose that N and N ′ are tree-child networks on X. If, for x, y ∈ X,
either of the following hold:

(i) N contains a cherry {x, y} and N ′ does not; or
(ii) N contains a reticulate cherry {x, y} with y the leaf below the reticulation and

N ′ does not,

then S(N) 6= S(N ′).

Proof. (i) Suppose N contains a cherry {x, y} and N ′ does not. Then in the underlying
graph for N there is a path of length 2 between x and y, whereas in the underlying
graph for N ′ there is no such path. It easily follows that S(N) 6= S(N ′).

(ii) Suppose N contains a reticulate cherry {x, y} with y the reticulation leaf, and
N ′ does not, but that S(N) = S(N ′). Note that every tree in S(N) contains either

(a) a path x, u, v, y of length 3 between x and y with v degree 2, or
(b) two paths of length 2 of the form x, u′, v′ where u′ is a degree 2 vertex and

y, u′′, v′′ where u′′ has degree 2, and no path between x and y of length less than
4,

(see Figure 4). Moreover, there exists at least one tree in S(N) which contains (a) and
at least one that contains (b).

x
y

u

v

x
y

u′

u′′

v′
v′′

Figure 4

Since S(N) = S(N ′), and since they are non-empty, there must be some tree in
S(N ′) which has a path of length 3 between x and y. Let x, a, b, y be this path. Then
in the network N ′ it is straight-forward to check that we must have one of the following
possible cases: (1) a is a tree vertex and b is a reticulation, (2) b is a tree vertex and a
is a reticulation, or (3) a and b are both tree vertices, or (4) one of a, b is a tree vertex
and the other the root vertex.

First, note that (1) is not possible as then N ′ contains a reticulate cherry {x, y} with
y the reticulation leaf. In case (2) it follows that N ′ contains a reticulate cherry {x, y}
with x the reticulation leaf. But then there is no tree in S(N ′) which contains structure
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(a), which contradicts S(N) = S(N ′). In cases (3) and (4), there is no tree in S(N ′)
which contains structure (b), again a contradiction. �

We are now able to prove the main result of this section, namely that sets of embedded
spanning trees characterise tree-child networks.

Theorem 3.5. Suppose that N and N ′ are tree-child networks on X. Then S(N) =
S(N ′) if and only if N is isomorphic to N ′.

Proof. The reverse direction is immediate: networks that are isomorphic will have the
same set of embedded spanning trees. It remains to show that if S(N) = S(N ′) then
N and N ′ are isomorphic.

For the purposes of obtaining a contradiction, suppose that there exists a pair N,N ′

of non-isomorphic tree-child networks on some set X, with S(N) = S(N ′). It is straight-
forward to check that |X| > 2 using the observation made after Theorem 3.2 concerning
tree-child networks with two leaves. Take |X| minimal for which there exists such a
pair, and out of all these pairs on X, take a pair which minimizes min{|A(N)|, |A(N ′)|}
(without loss of generality suppose that this minimum is obtained for N).

Consider the chosen minimal pair N,N ′. Since N is tree-child, it must contain either
a cherry or a reticulated cherry, by Theorem 3.2. Moreover, it follows by Lemma 3.4
that if N contains a cherry {x, y} then so must N ′ (otherwise S(N) 6= S(N ′)), and that
if N contains a reticulate cherry {x, y} with y the reticulation leaf, then so must N ′.

Now, note that if N and N ′ are not isomorphic and both have a cherry {x, y} (re-
spectively both have a reticulated cherry {x, y} with y the reticulation leaf), then the
tree-child networks M and M ′ obtained by performing a cherry reduction on {x, y} for
N and N ′ (respectively a reticulated cherry reduction on {x, y} for N and N ′) are not
isomorphic. To see this, note that if M and M ′ are isomorphic, then we can extend the
isomorphism to N and N ′.

Putting this together, if N and N ′ both contain a cherry {x, y}, then perform a
cherry reduction on both, to obtain two necessarily non-isomorphic tree-child networks
M and M ′ with S(M) = S(M ′) (the last equality follows from S(N) = S(N ′)). But
this contradicts the choice of N and N ′ since the leaf-sets of M and M ′ are the same
and this leaf-set is smaller than X. And, if N and N ′ both contain a reticulate cherry
{x, y} with y the leaf below the reticulation, then perform a reticulate cherry reduction
on both, to obtain two necessarily non-isomorphic tree-child networks M and M ′ with
S(M) = S(M ′). But this again contradicts the choice of N and N ′ since M has a
smaller number of arcs than N . �

4. The tree model

4.1. Evolution along a tree. We will consider the model M = M(µ), µ ∈ [0, 1], of
evolution of characters along branches of a rooted tree with leaf-set X as described
by [15, p49].

A character is a map from X into an alphabet Σ, which for simplicity one can assume
to be the set of nucleotides {A,C,G, T}. An alignment is an L-tuple of characters on
X, or a map X → ΣL. If characters are considered as column vectors indexed by the
leaf-set X, an alignment is an |X| × L array. The columns of this array are called
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sites. Thus an alignment is an array with rows labelled by elements of X and columns
labelled by the sites in the sequence, whose content at each site is the character value at
the site. Alignments can be considered elements of (ΣL)|X|, which we abbreviate ΣXL,
following [15].

Evolution of states on a tree under the model M = M(µ) requires setting an initial
state for the root, and a rule for assigning states on vertices given the state of their
parent vertex. The root is assigned a state from Σ uniformly at random with probability
1
|Σ| . Along an edge (v, w), if v is in state x, then there is probability µ that w has state

y ∈ Σ \ {x}. Thus the probability of a change on a given edge is (|Σ| − 1)µ, and the
probability of no change is 1− (|Σ| − 1)µ.

As explained in [15, p.50], model M on a rooted X-tree is equivalent to a similarly
formulated model on the (undirected) tree T that underlies it (that is, the (unrooted)
tree with the same vertex set, and directions on all arcs ignored). More specifically,
suppose a root vertex is chosen arbitrarily in T , a letter from Σ is assigned to it uniformly
at random, and the state is then evolved along the edges away from the root. Then,
since the mutation model M is reversible, the same distribution on the site patterns
is observed on X in the tree T as in the rooted tree for a given µ (independent of the
choice of root). In consequence, if we try to construct the rooted tree from the character
distribution on its leaves, we can at best construct the underlying tree. Hence, in what
follows we will not differentiate between a rooted X-tree and the tree that underlies it
when referring to model M .

4.2. Identifiability for X-trees. Let pi = pi(T, µ) be the probability of observing the
character Ci given the tree T and the mutation model M(µ), that is,

pi = Pr{Ci | T,M(µ)}.
Then let p(T, µ) be the vector of probabilities of all possible characters in an alignment,
so that

p(T, µ) = (p1, . . . , pn),

with n := |Σ||X| the number of possible characters. This represents the theoretical
distribution of character values predicted from the model.

In [15], a key identifiability result concerning collections of X-trees is presented which
we now recall. Given an alignment A ∈ ΣXL, let f(A) := (f1, f2, . . . , fn), where fi is
the proportion of columns of A of type Ci (the relative frequency of the character Ci

in A). This is thus the observed distribution of character values in the alignment. In
addition, let ρ(s, r) denote the ball of radius r around the point s in Rn, with distance
defined by the L1 (“taxicab”) metric.

Fix U to be a finite set of X-trees, and r0 to be half the smallest L1 distance between
frequencies predicted on distinct trees, that is,

r0 =
1

2
min {d(p(T, µ), p(T ′, µ)) | T, T ′ ∈ U , T 6= T ′} .

For T an X-tree in U , define

(1) AT = {A ∈ ΣXL | f(A) ∈ ρ(p(T, µ), r0)}.
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The set AT , which depends on r0, is the set of alignments for which the distribution of
frequencies of characters is close to (within r0 of) that of the theoretical prediction of
evolution on tree T .

Now, for each T ∈ U , let

εT = 1− Pr{AT | T,M(µ)},
and put εmax = maxT∈U{εT}. The probability Pr{AT | T,M(µ)} is the probability of
observing alignments in the set AT , given the tree T and model M(µ). That is, the
probability of observing an alignment containing characters of frequencies close to those
predicted theoretically.

The following theorem shows that for sufficiently low mutation probability µ, there is
an alignment length L that makes the probability of observing a member of AT from the
process on T higher than 1− εmax and, at the same time, the probability of observing
an element of AT for the process on a tree T ′ that is not isomorphic to T is smaller
than εmax. For its proof see [15, page 59].

Theorem 4.1. Let U be a finite set of X-trees, let T ∈ U , and let µ ∈ (0, 1
|Σ|). Then

there is an L = L(T ) such that

1− Pr{AT | T,M(µ)} < εmax,

and

Pr{AT | T ′,M(µ)} < εmax

for all T ′ ∈ U \ {T}.

5. Evolution along a network

5.1. Description of the model. In the previous section, we described the evolution-
ary model M for evolution along a tree; we now extend this model to networks, adapting
the model for pedigrees in [15]. Our model will be defined for networks N such that
every tree in S(N) is an X-tree and |S(N)| = 2ω, for ω = |R(N)|, holds.

We first define a Markov process on the set of rooted trees T (N) = {TR : R ∈ RN}.
Given an element TR ∈ T (N), for each vertex w ∈ R(N) we assign a fixed probability
p to make a change of vertex w’s parent to give another tree in T (N). This describes a
Markov chain on T (N): the initial state given by taking a random choice of parent for
each reticulation vertex in N (probability 0.5 assigned to each), and the probability of
being in any particular state (a tree in T (N)), at any point in the process, is uniform
and equal to 1

2ω
.

The Markov process that moves between trees in T (N), together with the evolution-
ary model M(µ) for each tree now defines a network model under which characters
evolve, which we denote RM(µ, p). Note that in this model, it is straight-forward to
show using a similar argument to that used in the proof of [15, Proposition 2], that the
probability of observing a character C at the kth site of an alignment under RM(µ, p)
is just the probability of observing a given tree (which is 1

2ω
since we are assuming

|S(N)| = 2ω), times the probability of observing the character on that tree (which, for
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T ∈ S(N), is Pr{C | T,M(µ)} since we are assuming every T ∈ S(N) is an X-tree),
summed over all possible trees. That is,

Pr{C | N,RM(µ, p)} =
1

2ω

∑

T∈S(N)

Pr{C | T,M(µ)}.

Note that in particular, that this expression does not depend on k.

5.2. Alignments arising from a network. This section adapts the approach to
pedigrees used in [15], in order to derive similar results for networks.

The Markov process described in Section 5.1 moves around the set of X-trees T (N)
displayed by the network N . By considering a sequence of characters generated on
trees in this Markov chain, we are able to generate an alignment from N . Such an
alignment will be partitioned into a set of blocks, each of which arose from a particular
tree. The following lemma describes how the probability of observing an alignment,
given a rooted binary phylogenetic network N and the model, can be computed. It
sums over cases according to the number of trees in the partition.

A given sequence of trees T = (T1, . . . , Tk) obtained from the Markov process has a
sequence of transitions, each transition involving a certain number of changes of parent
at reticulation vertices (this number of changes will be ≥ 1, since adjacent trees in the
sequence are distinct). The total number r(T) of changes in the sequence of trees is
given by

r(T) =
k−1∑

i=1

1

2
|E(Ti+1)4E(Ti)|,

where E(T ) is the number of “reticulation edges” in T , namely edges that correspond
to reticulation arcs in N , and 4 denotes the symmetric difference. Likewise, the total
number of reticulation edges that are unchanged in transitions in the sequence, s(T),
is given by

s(T) =
k−1∑

i=1

|E(Ti+1) ∩ E(Ti)|.

A composition λ of an integer n is a sequence of positive integers that add to n, and
is denoted λ � n.

The following Lemma 5.1 is a direct analogue of [15, Lemma 6]. Schematically, it
computes the probability of an alignment by going from the network N to the sequence
of trees T (via the Markov process changing reticulation arcs), and from the sequence
of trees to the alignment A.

Lemma 5.1. The probability of observing an alignment A of length L via the model
RM(µ, p) on a network N for which |S(N)| = 2ω, is given by

Pr{A | N,RM(µ, p)} =

L∑

k=1




∑

T=(T1,...,Tk)
Ti 6=Ti+1


p

r(T)(1− p)s(T)+ω(L−k)

2ω

∑

(`1,...,`k)�L

(
k∏

i=1

Pr (A[Li−1 + 1, Li] | Ti,M(µ))

)



 .
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Proof. The alignment could be observed under any sequence of trees T, and so we first
break the problem into cases according to the length k of this sequence, which can only
be between 1 and L. For each length of sequence k, we then sum over all possible
sequences T.

The probability of observing the alignment on a particular sequence of trees T de-
pends on the probability of observing the sequence T, and the probability of the align-
ment given the particular trees in the sequence.

The probability of observing the sequence T is the probability of first observing the
initial tree, 1

2ω
, times the probability of observing the numbers of recombinations and

non-recombinations along the sequence, namely pr(T)(1− p)s(T)+ω(L−k).
Finally, the probability of observing the alignment given the sequence of trees T

depends on the lengths of the sub-alignments of A that evolved on each tree (under
M(µ)). The possible lengths of the sub-alignments are given by the compositions
of L into k parts, one for each tree in T. For a composition (`1, . . . , `k) � L, set
Li = Li−1 + `i, with L0 = 0, to give the recombination sites (so that sites Li−1 + 1
to Li evolved on tree Ti). Denote the sub-alignment of A restricted to these sites
by A[Li−1 + 1, Li]. The probability of observing that sub-alignment on Ti is then
Pr (A[Li−1 + 1, Li] | Ti,M), and the probability of observing the whole of A given that
sequence of trees T = (T1, . . . , Tk) and that composition (`1, . . . , `k) is the product of
these over i from 1 to k. �

Lemma 5.1 shows how to compute a probability for each alignment A of length L,
given the network N and model RM(µ, p), and so defines an alignment distribution
DN = DN(L,RM(µ, p)) which is given by the map

DN : ΣXL → [0, 1]

where
A 7→ Pr{A | N,RM(µ, p)}.

Two phylogenetic networks N,N ′ in a class C are said to be distinguished from one
another under model RM(µ, p) if D(ΣXL |N,RM(µ, p)) 6= D(ΣXL |N ′, RM(µ, p)) for
some L. That is, if there is some alignment A ⊆ ΣXL such that Pr{A |N,RM(µ, p)} 6=
Pr{A |N ′, RM(µ, p)}.

6. Main results

We now state and prove our main theorem, an analogue of [15, Theorem 2]. This
theorem states that for sufficiently large alignments, and a probability p, if the distri-
butions of characters from two networks are the same, then any embedded spanning
tree of one is also an embedded spanning tree of the other. This will then imply that
the sets of embedded spanning trees for the two networks are the same (Corollary 6.2).

Theorem 6.1. Suppose N and N ′ are phylogenetic networks on X, both with ω reticula-
tions, such that every tree in S(N) and S(N ′) is an X-tree and |S(N)| = |S(N ′)| = 2ω.
Let µ ∈ (0, 1

|Σ|). If T ∈ S(N), then there exists L = L(T ) ≥ 1 and p = p(T ) ∈ (0, 1)

such that if
D(ΣXL | N,RM(µ, p)) = D(ΣXL | N ′, RM(µ, p))
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then T ∈ S(N ′).

Proof. The proof of the theorem is by contradiction, and because it is a complicated
statement we first briefly review the logical structure, which is as follows:

if “A”, then there are L and p such that “B” implies “C”.

Here “A” is T ∈ S(N), “B” is D(N) = D(N ′), and “C” is T ∈ S(N ′), where D(N) is
short for D(ΣXL | N,RM(µ, p)).

To argue by contradiction, we assume the negation of “there are L, p such that B
implies C”, that is, we assume “for all L, p, we have B and not C”. In other words, we
assume that T ∈ S(N), and for all L ≥ 1 and p ∈ (0, 1) we have D(N) = D(N ′) but
T 6∈ S(N ′).

We will show that for some choice of L (depending on T ) and p (depending on L and
therefore on T ), we obtain a contradiction.

If the distributions are the same, then by definition the probabilities are the same
for each alignment A, or set of alignments A ⊆ ΣXL. That is,

Pr{A | N,RM(µ, p)} = Pr{A | N ′, RM(µ, p)},
for each A ⊆ ΣXL. These probabilities are decomposed in Lemma 5.1 for each network,
based on the number of trees in the sequence that generates the alignment. We now
break this decomposition into components according to whether there is a single tree in
the sequence, so that T = (T1), or whether there is more than one tree in the sequence.
Furthermore, if there is one tree in the sequence T = (T1), we consider two cases:
whether T1 = T or not. Thus, we write this decomposition

Pr{A | N,RM(µ, p)} = P0,T (N) + P0,T̄ (N) + P>0(N),

indexing by the number of recombinations (0 or more): P0,T (N) gives the component
for T = (T ); P0,T̄ (N) gives the component for T = (T1) but T1 6= T ; and P>0(N) gives
the component for all sequences T consisting of more than one tree.

A similar decomposition may be written for the network N ′. In the rest of the proof,
we find expressions for these components for each of N and N ′, and use Theorem 4.1
to obtain upper and lower bounds for them, eventually choosing a value of p that forces
a contradiction.

The first case, that T = (T ), gives contribution

(2) P0,T (N) =
(1− p)ω(L−1)

2ω
Pr{A | T,M(µ)},

obtained by putting k = 1 and T = (T ) in the statement of Lemma 5.1. Note that
the coefficient here is the probability that T is chosen as the first tree in the sequence
(namely 1

2ω
, since |S(N)| = 2ω) and subsequently no further trees are added through

the Markov process ((1− p)ω(L−1)). It follows that if T is not displayed by the network
N ′ (as we have assumed), this term is zero:

(3) P0,T (N ′) = 0.
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Likewise, the case of the sequence containing a single tree T ′ 6= T is obtained by
putting k = 1 and summing over T = (T ′) for T ′ 6= T :

(4) P0,T̄ (N) =
∑

T ′ 6=T

(1− p)ω(L−1)

2ω
Pr{A | T ′,M(µ)}.

The component for the remaining cases, in which the sequence T has more than one
tree, is given by

P>0(N) =

(5)

L∑

k>1




∑

T=(T1,...,Tk)
Ti 6=Ti+1


p

r(T)(1− p)s(T)+ω(L−k)

2ω

∑

(`1,...,`k)�L

(
k∏

i=1

Pr (A[Li−1 + 1, Li] | Ti,M(µ))

)



 .

We now use Theorem 4.1 to obtain bounds for each of these probabilities on N and
N ′, for the particular set of alignments AT whose character distribution is close to that
predicted on T (see Eq (1)). We find that the first, P0,T (N), can be bounded from
below, and the others bounded above, for suitable choice of L (depending on T ).

Let U = S(N) ∪ S(N ′). For L sufficiently large and εmax = maxT∈U{εT} as defined
in Section 4.2,

P0,T (N) =
1

2ω
(1− p)ω(L−1)Pr{AT | T,M(µ)} by Eq. (2)

>
1

2ω
(1− p)ω(L−1)(1− εmax) by Theorem 4.1.

We have already noted in Eq. (3) that the corresponding term for N ′ is zero: P0,T (N ′) =
0. For the second component, we have

P0,T̄ (N) =
∑

T ′ 6=T

1

2ω
(1− p)ω(L−1)Pr{AT | T ′,M(µ)} by Eq. (4)

< (1− p)ω(L−1)εmax by Theorem 4.1,

noting that there are 2ω − 1 trees other than T . The critical point here is that this
inequality also holds for the network N ′. This holds firstly because the decomposition
in Eq. (4) is independent of the network, and secondly, the same inequality given in
Theorem 4.1 with respect to the set of alignments AT holds for each of the trees T ′ 6= T ,
and |S(N ′)| = 2ω. That is,

P0,T̄ (N ′) < (1− p)ω(L−1)εmax.

Finally, since each choice of recombination event is an instance of a binomially dis-
tributed random variable, in which there are ω(L−1) possible instances of events, each
with probability p (and noting the probability of any alignment on one of these trees is
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less than 1), we have

P>0(N), P>0(N ′) ≤ ω(L− 1)p.

This uses the fact that if X ∼ Bin(n, p), then Pr{X ≥ k} ≤
(
n
k

)
pk (for us, k = 1).

Now the assumption of the Theorem statement, that the distributions of alignments
are the same from each network, implies Pr{A | N,RM(µ, p)} = Pr{A | N ′, RM(µ, p)}
for each set of alignments A, and in particular for AT . Thus,

P0,T (N) + P0,T̄ (N) + P>0(N) = P0,T (N ′) + P0,T̄ (N ′) + P>0(N ′),

and since P0,T (N ′) = 0 (with T 6∈ S(N ′)), we have

P0,T (N) = (P0,T̄ (N ′) + P>0(N ′))− (P0,T̄ (N) + P>0(N))

< P0,T̄ (N ′) + P>0(N ′)(6)

since the term subtracted is strictly positive.
Recall the bounds we have established above:

P0,T (N) >
(1− p)ω(L−1)

2ω
(1− εmax)(7)

P0,T̄ (N ′) < (1− p)ω(L−1)εmax

P>0(N ′) ≤ ω(L− 1)p.

Taking logs of both sides of the inequalities in Eq. (7), we obtain

log(P0,T (N)) > ω(L− 1) log(1− p)− ω log 2 + log(1− εmax)(8)

and

log(P0,T̄ (N ′) + P>0(N ′)) < log(P0,T̄ (N ′)) + log(P>0(N ′))

< ω(L− 1) log(1− p) + log εmax + log(ω(L− 1)p).(9)

Combining inequality (6) with inequalities (8) and (9), we have

ω(L−1) log(1−p)−ω log 2+log(1−εmax) < ω(L−1) log(1−p)+log εmax+log(ω(L−1)p),

which simplifies to

(10) log(1− εmax) < ω log 2 + log εmax + log(ω(L− 1)p).

Of the terms in these expressions, ω (the number of reticulations) is fixed by N and
N ′, εmax is fixed, and L = L(T ) is a fixed value dependent on T . However, if p is chosen
to satisfy

p <
1− εmax

2ωεmaxω(L− 1)
,

(noting that this value allows a choice of p between 0 and 1, as required by the theorem
statement), then

log(ω(L− 1)p) < log

(
1− εmax

2ωεmax

)
= log(1− εmax)− ω log 2− log εmax.
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This contradicts Inequality (10), and therefore our initial assumption that T 6∈ S(N ′)
must be false, proving the claim in the theorem. Note also that this choice of p de-
pends on L, which we have chosen to satisfy Theorem 4.1, and so is dependent on T .
Consequently p = p(T ) is a function of T , also, as claimed. �
Corollary 6.2. Suppose N and N ′ are phylogenetic networks on X with ω reticulation
vertices, such that every tree in S(N) and S(N ′) is an X-tree and |S(N)| = |S(N ′)| =
2ω. Then there exists L ≥ 1 and p ∈ (0, 1) such that if

D(ΣXL | N,RM(µ, p)) = D(ΣXL | N ′, RM(µ, p))

then S(N) = S(N ′).

Proof. By Theorem 6.1, there is an L1 ≥ 1 and a p1 ∈ (0, 1) such that if

D(ΣXL1 | N,RM(µ, p1)) = D(ΣXL1 | N ′, RM(µ, p1))

then S(N) ⊆ S(N ′) (take L1 to be the maximum over all L(T ), T ∈ S(N) and p1 to
be the minimum pT with T ∈ S(N)).

Likewise, there is an L2 ≥ 1 and p2 ∈ (0, 1) such that if

D(ΣXL2 | N,RM(µ, p2)) = D(ΣXL2 | N ′, RM(µ, p2))

then S(N ′) ⊆ S(N). The result therefore follows by taking L = max{L1, L2} and
p = min{p1, p2}. �

We now state the main result of the paper. We say that networks in a class C of
phylogenetic networks are identifiable under model RM(µ, p) if all pairs of networks in
C are distinguished from each other under model RM(µ, p).

Corollary 6.3. The class of tree-child networks on X for which the root does not form
an arc with a reticulation vertex in the network, and such that every network in the class
has the same number of reticulation vertices, is identifiable under model RM(µ, p).

Proof. We need to show that if N and N ′ are in the given class with N not isomorphic
to N ′, then D(ΣXL |N,RM(p, µ)) 6= D(ΣXL |N ′, RM(p, µ)) for some L ≥ 1.

Suppose that N and N ′ are networks in the given class. As in both N,N ′ the
root does not form an arc with a reticulation vertex in the network, by Lemma 3.1
it follows that every tree in S(N) and S(N ′) is an X-tree. Moreover, by Theo-
rem 3.3 we have |S(N)| = |S(N ′)| = 2ω, where ω is the number of reticulation
vertices in both N and N ′. Hence, by Corollary 6.2 there exists some L′ such that
if D(ΣXL′ |N,RM(µ, p)) = D(ΣXL′ |N ′, RM(µ, p)) then S(N) = S(N ′), which also
implies that N and N ′ are isomorphic by Theorem 3.5. Hence if N and N ′ are not iso-
morphic, then D(ΣXL′ |N,RM(µ, p)) 6= D(ΣXL′ |N ′, RM(µ, p)) for L′, as required. �

7. Discussion

In this paper, we have shown that we can identify a certain subclass of tree-child
networks under the model RM(µ, p). It would be interesting to see if this could be
extended to the class of all tree-child networks, or to other classes of networks. We
note that our model was defined for networks all of whose embedded spanning trees are
X-trees; for more general networks this may not be the case, but this can probably be
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adjusted for using techniques developed for pedigrees in [15] (although probably at the
expense of requiring more technical arguments). In another direction, it could be worth
investigating what happens when the model RM(µ, p) is extended to allow independent
probabilities at each recombination vertex (instead of setting them all equal to p).

Many of the questions raised in [15, Section 6] for pedigrees have natural analogues
for networks. For example, Corollary 6.2 tells us that if N and N ′ are phylogenetic
networks on the same leaf-set that satisfy certain conditions and induce the same dis-
tributions, then S(N) = S(N ′). But is it possible to prove some type of converse for this
statement? Moreover, in practice it could be computationally expensive to check the
condition S(N) = S(N ′), and so the question arises as whether or not there are there
are possibly more tractable combinatorial conditions for checking when two networks
can be distinguished relative to model RM(µ, p)?

Finally, it would be interesting to see if model RM(µ, p) might provide useful in-
formation in addition to purely combinatorial invariants for identifying networks. For
example, in [8] it is shown that certain pairs of phylogenetic networks cannot be distin-
guished from one another even by comparing all of the possible subtrees and networks
that they display. It would be interesting to know if they can however be distinguished
under model RM(µ, p).
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