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Abstract

Shortcomings of reinforcement learning for robot control include the sparsity of the
environmental reward function, the high number of trials required before reaching
an efficient action policy and the reliance on exploration to gather information about
the environment, potentially resulting in undesired actions. These limits can be
overcome by adding a human in the loop to provide additional information during
the learning phase. In this paper, we propose a novel way to combine human inputs
and reinforcement by following the Supervised Progressively Autonomous Robot
Competencies (SPARC) approach. We compare this method to the principles of
Interactive Reinforcement Learning as proposed by Thomaz and Breazeal. Results
from a study involving 40 participants show that using SPARC increases the
performance of the learning, reduces the time and number of inputs required for
teaching and faces fewer errors during the learning process. These results support
the use of SPARC as an efficient method to teach a robot to interact with humans.

1 Introduction

To be widely used by non-technical people, robots have to be able to learn, in order to adapt their
behaviour to new challenges and tasks. These robots have to acquire knowledge whilst interacting in
an environment which possibly includes other people. Reinforcement Learning [14] is a machine
learning algorithm specifically designed to address the issue of learning how to interact efficiently
based on feedback from the environment. This learning method has already been widely applied to
robots [10], however, as pointed by Knox and Stone in [9], the reward function from the environment
can either not be defined for certain tasks or at least be sparse in its assignation of reward. A solution
is to include a human in the learning process, moving from classical machine learning to interactive
machine learning. In this framework, a human supervisor is fully integrated in the learning process
and can provide additional information to the algorithm to improve the learning [4]. Furthermore,
this approach also provides end users with the ability to steer the learning in the direction they desire,
which can improve the robot’s usability [1].
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Multiple approaches have been proposed to combine human feedback and reinforcement learning. In
[8], Knox et al. present the TAMER framework, designed to teach an action policy in the absence of
any environmental feedback using a human to provide the missing rewards used for the reinforcement
learning. Thomaz and Breazeal [16] propose to combine human and environmental rewards and use
them directly as input for a Q-Learner. During their experiments, they observed that participants
tried to use rewards as a way to guide the robot’s actions. Consequently, they introduced a second
guidance channel to guide the robot action in follow-up studies and observed better learning.

However, we argue that the lack of control over the robot’s action in these methods limits the impact
of the human in the learning loop. By taking inspiration from Learning from Demonstration [2, 3], the
human can provide demonstration of the desired action policy, and at the same time interactively teach
the robot. Following this approach, we have proposed the Supervised Progressively Autonomous
Robot Competencies – SPARC [13]. This is based on the supervised autonomy framework [15]: the
robot can act autonomously, but a human is supervising it to prevent undesirable actions from being
executed if necessary. By adding machine learning (reinforcement learning in this case), in which
the robot can learn from the human corrections and improve its action policy over time whilst only
executing actions deemed appropriate by the supervisor.

This paper presents the combination of SPARC and reinforcement learning and compares it with
a previously applied approach following the principles of Interactive Reinforcement Learning [16]
using four metrics: performance, teaching time, number of inputs and risks taken while teaching.
We show that in each of these metrics, SPARC leads to a significant improvement over Interactive
Reinforcement Learning, supporting its use as a framework to teach robots in an interactive fashion in
sensitive environments, such as those typically encountered in human robot interaction.

2 Methodology

Problem specifications In this paper, we tackle the action selection problem in an environment
modelled as a deterministic Markov Decision Process. An agent can execute actions changing the
current state to a new one according to a fixed deterministic transition function. A limited number of
states provide rewards (positive or negative), and the agent has to maximise the rewards obtained
over time. Additionally, a human supervisor is present and can provide additional information to the
robot to improve the learning (rewards and guidance for IRL or commands for SPARC).

Interactive Reinforcement Learning Due to its clarity, simplicity and aim to be used for human-
robot interaction, the method used as a benchmark in this paper is Interactive Reinforcement Learning
(IRL) following principles proposed in [16]. Thomaz and Breazeal proposed a first example of incor-
porating a human in the learning process by directly combining the reward from the environment with
human rewards: a human supervisor can provide rewards which are combined to the environmental
ones and used with Q-Learning. Following early studies, authors enriched the interaction with three
mechanisms to improve the teaching: a guidance mechanism to direct the robot’s attention to some
actions (without covering the entire action space), a communication of uncertainty and an undo
behaviour executing an action cancelling the previous one after a negative reward. This study uses an
algorithm inspired from the one proposed by Thomaz and Breazeal and implementing these additions.

Supervised Progressively Autonomous Robot Competencies In [12] and [13], we proposed the
Supervised Progressively Autonomous Robot Competencies (SPARC) as an interaction framework
allowing a supervisor (human or other) to teach a robot an action policy. SPARC is centred around
a suggestion/correction mechanism whereby the agent suggests actions to its supervisor which can
either correct the action by selecting another one or let the action be executed after a short delay
by not reacting to the suggestion. This system allows the supervisor to be totally in control of the
actions being executed by the robot. A learning algorithm, here reinforcement learning, learns from
the supervisor decision to improve the suggestions over time, decreasing the necessity of correcting
actions and thus reducing the workload on the supervisor.

As the supervisor only provides commands and no reward to the robot, this approach is initially not
designed to be used with reinforcement learning. However the constant control of the supervisor
on the robot’s action implies that every action executed by the robot has been implicitly or actively
validated by the supervisor, so all these executed actions can receive a positive reward: we reward 0.5
for actions actively selected by the supervisor, and 0.25 for the actions passively accepted.
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Evaluation task To evaluate the efficiency of combining SPARC with reinforcement learning and
to compare the results with IRL, we run a study using Sophie’s kitchen, the initial setup used by
Thomaz and Breazeal in [16]. Participants have to teach a virtual robot how to bake a cake in the
environment presented in Figure 1. The robot can pick-up, drop or use objects and can move left or
right between three locations: the shelf, the table and the oven. Six main steps have to be completed
to bake the cake: placing the bowl on the table, putting a first ingredient in the bowl (flour or eggs),
then the other one, mixing with the spoon, emptying the bowl in the tray and finally putting the tray in
the oven. As shown later, we used these six steps to evaluate participants’ performance. As argued by
Thomaz and Breazeal, this environment is interesting for interactive learning due to the large number
of states (more than 10,000), multiple non-trivial successful action policies (minimum of 28 actions to
achieve the goal) and success and failure states used to provide environmental rewards: for example,
if the spoon is put in the oven, a failure state is reached, providing a negative reward, ending the
current teaching episode and returning the environment to the initial state. More detailed information
can be found in [16]. This environment has been reimplemented to be used in this study, and the two
interaction methods are using strictly the same learning algorithm, only the way to interact changes.

(a) Step 0: Initial state. (b) Step 3: ingredients in the bowl. (c) Step 6: Success.

Figure 1: Sophie’s kitchen, the environment used in the study in three different states.

Study setup The study involves 40 participants (age M=25.6, SD=10.09; 24F/16M) divided into
two groups. The first group interacts with IRL and the second one with SPARC. Participants first
teach the robot how to complete the task and then a testing phase, where participants’ inputs are
disabled, evaluates the robot behaving on its own to assess participants performance in teaching. To
limit the study time, a hard limit of 25 minutes for the teaching phase has been set for both systems,
but participants could move on to the testing whenever they desired.

This paper presents a subset of the results of a larger study having each participant interacting three
times with each system. The full results are currently being analysed.

3 Results

As not all participants reached the goal state (i.e., a cake in the oven) during training, the performance
is expressed on a scale from 0 to 6 representing how many of the 6 main steps presented in section
2 (putting the bowl on table, adding an ingredient...) are autonomously completed by the robot in
the testing phase. Results on four metrics (performance, interaction time, number of failure during
teaching and number of inputs given by the teacher) are presented in Table 1 and Figure 2.
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Figure 2: Comparison of the performance, interaction time, number of failures and number of inputs
for the two conditions. Black horizontal bars represent medians and grey circles raw data points.
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Table 1: Results of evaluation metrics for the two systems (n = 20). Using Wilcoxon rank sum test
(results being non-normal), SPARC is significantly more efficient than IRL on all four metrics.

Metric Median IRL Median SPARC Z-value p-value Effect size

Performance 0 6 −4.2 < .001 −0.67
Time (min) 16.3 8.97 2.53 0.011 0.4
Number of failure 9 3 4.06 < .001 0.641
Number of inputs 248 141 1.98 0.048 0.312

In this study, most of the participants using IRL did not reach a single step toward success (median of
0). This does not mean that this method cannot be used to teach an action policy: some participants
reached the goal state with IRL and an expert would consistently achieve the goal state in this task.
However, due to the more complex reward scheme and other challenges to interpret the trainers’
rewards [5, 6, 11] not tackled by this method, participants need to have more in-depth understanding
of how to interact with the algorithm to achieve success. These results support our thesis that relying
only on feedback and guidance is a suboptimal method to teach a robot: even in this simple scenario,
non-expert participants perform poorly. On the other hand, the median performance of 6 for SPARC
shows that at least half of the participants reached the goal when interacting with SPARC and this in
a shorter time, facing fewer failures during teaching and using fewer input. As such the combination
of reinforcement learning and SPARC seems a more efficient teaching method.

4 Discussion

This study used a relatively simple environment: it has discrete states and a deterministic transition
function. Realistic environments will be more complex and challenging. Furthermore, this simulation
did not contain human interactants, but interacting with people adds two major constraints; unlike
simulation we cannot train the agent for a long time before obtaining a correct action policy. In
addition, as soon as the robot is used with people its behaviour has to be appropriate: suboptimal
actions might have negative consequences. For this reason, the presence of a human supervisor
having control over the robot’s action has many advantages: it ensures that the behaviour expressed is
appropriate and provides robustness against probabilistic environments, sensory errors and imperfect
action policies. Whilst it is being controlled, the robot can progressively learn from the supervisor,
and smoothly become more autonomous over time, reducing the workload on the supervisor. As the
robot is acting in the real world and is executing a correct action policy, the need for exploration is
reduced thus accelerating the learning process.

By relying on human commands and corrections, SPARC changes the teaching paradigm compared
to classical interactive reinforcement learning methods. The human control over the robot’s actions
allows to bypass the need for users to manually assign rewards or evaluations to actions. It also
uses only one-way feedbacks (selection) compared to two-way feedback in classical approaches
(positive or negative reinforcement), thus preventing SPARC to face some of the challenges of human
rewarding practices as described in [5, 11]. For example, a lack of feedback (absence of correction of
an action) can either be direct passive support of the proposed action or if the action should have been
corrected, it can be due to a slow reaction time or a desire not to interact. However, the control over
the robot actions can allow supervisors to correct the trajectory when required and thus assuming a
passive support in all cases where feedback is missing can still lead to efficient learning. SPARC
could be combined with more classical Learning from Demonstration approaches [3] to teach lower
level action policies, such as direct motor control where correct actions cannot be easily selected.

In this study, Interactive Reinforcement Learning achieved a poor performance with only a limited
number of participants succeeding to use it to teach the robot how to bake the cake. On the other
hand, SPARC achieved a high success rate in a shorter time and with fewer failures and lower
teaching effort. This is consistent with [7], where authors argue that feedback channels are not an
efficient method to teach an action policy from scratch, they recommend to start with Learning from
Demonstration and then move to feedbacks for fine tuning. By relying on human intervention to
prevent poor performance before it occurs, this paper has shown how SPARC can be usefully applied
to teach an action policy while maintaining high performance, avoiding dangerous situations, and yet
without overloading the human supervisor.
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