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Abstract. A family of homothets of an o-symmetric convex body K
in d-dimensional Euclidean space is called a Minkowski arrangement if
no homothet contains the center of any other homothet in its interior.
We show that any pairwise intersecting Minkowski arrangement of a d-
dimensional convex body has at most 2 · 3d members. This improves a
result of Polyanskii (Discrete Mathematics 340 (2017), 1950–1956).

Using similar ideas, we also give a proof the following result of Polyan-
skii: Let K1, . . . ,Kn be a sequence of homothets of the o-symmetric
convex body K, such that for any i < j, the center of Kj lies on the
boundary of Ki. Then n = O(3dd).

1. Introduction

We use the notation [n] = {1, 2, . . . , n}. A convex body K in the d-
dimensional Euclidean space Rd is a compact convex set with non-empty
interior, and is o-symmetric if K = −K. A (positive) homothet of K is a
set of the form λK + v := {λk + v : k ∈ K}, where λ > 0 is the homothety
ratio, and v ∈ Rd is a translation vector. If K is o-symmetric, we also call v
the center of the homothet λK+ v. An arrangement of homothets of K is a
collection {λiK+vi : i ∈ [n]}. A Minkowski arrangement of an o-symmetric
convex body K is a family {vi + λiK} of homothets of K such that none of
the homothets contains the center of any other homothet in its interior. This
notion was introduced by L. Fejes Tóth [3] in the context of Minkowski’s
fundamental theorem on the minimal determinant of a packing lattice for
a symmetric convex body, and was further studied by him in [4, 5], by
Böröczky and Szabó in [2], and in connection with the Besicovitch covering
theorem by Füredi and Loeb [6]. Recently, Minkowski arrangements have
been used to study a problem arising in the design of wireless networks [10].
In [9] it was shown that the largest cardinality of a pairwise intersecting
Minkowski arrangement of homothets of an o-symmetric convex body in Rd
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is O(3dd log d). This was improved to 3d+1 by Polyanskii [11]. We make the
following slight improvement.

Theorem 1.1. For any o-symmetric convex body K in Rd, a pairwise in-
tersecting Minkowski arrangement has at most 2 · 3d members.

Note that the d-cube has 3d pairwise intersecting translates that form a
Minkowski arrangement. The proof uses ideas from [8] and [7].

In [9], bounds on pairwise intersecting Minkowski arrangements were used
to give an upper bound of O(6dd2 log d) on the length of a sequence of
homothets vi+λiK of an o-symmetric convex body K such that vj ∈ bd(vi+

λiK) whenever j > i. This bound was improved to O(3dd) by Polyanskii
[11]. We use some similar ideas to the proof of Theorem 1.1 to give a short
proof of this result of Polyanskii.

Theorem 1.2 (Polyanskii [11]). Let K be an o-symmetric convex body,
and v1, v2, . . . , vn ∈ Rd. Let λ1, λ2, . . . , λn−1 > 0, and assume that for any
1 ≤ i < j ≤ n we have vj ∈ bd(vi + λiK). Then n = O(3dd).

Clearly, when K is the cube, n = 2d is attained. It would be interesting to
find better bounds for the maximum size of a family satisfying the conditions
of Theorem 1.2.

The interest in this result is that it gives the upper bound kO(3dd) to the
cardinality of a set in a d-dimensional normed space in which only k non-zero
distances occur between pairs of points. This is currently the best known
upper bound if k = Ω(3dd) (see [12] for a survey of this problem).

2. Proof of Theorem 1.1

Theorem 2.1. Let d ≥ 1. Suppose that there exists an o-symmetric convex
body K in Rd which has a pairwise intersecting Minkowski arrangement of
n homothets. Then there exists a set {x1, . . . , xn} of n points in Rd+1 such
that o /∈ conv{x1, . . . , xn}, and for any distinct i, j ∈ [n], i < j, there exists
a non-zero linear functional fij : Rd+1 → R with

(2.1) |fij(xk)| ≤ |fij(xi)− fij(xj)| for all k ∈ [n].

We remark that the converse of the above theorem does not hold. We
describe a simple counterexample for d = 1. On the one hand, clearly, a
pairwise intersecting Minkowski arrangement of intervals in R has at most
two members. On the other hand, there is a set of 5 points on the plane
satisfying the conclusion of Theorem 2.1. Indeed, let {x1, . . . , x5} be the
vertex set of a regular pentagon, with o just outside the pentagon, close to
the midpoint of an edge. It is easy to see that for any pair xi, xj of vertices,
there is a line through o such that the projections π(xk) of the vertices onto
the line are all within distance |π(xi)− π(xj)| of o.

The above remark is to be contrasted with the equivalence in the following
result, which generalizes part of Theorem 1.4 of [7].
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Theorem 2.2. Given λ ≥ 1, and D ∈ Z, D ≥ 1. Then the following
statements are equivalent.

(i) There exists a set {x1, . . . , xn} of n points in RD, such that o /∈
conv{x1, . . . , xn}, and for any distinct i, j ∈ [n], i < j there exists
a non-zero linear functional fij : RD → R with

(2.2) |fij(xk)| ≤
λ

2
|fij(xi)− fij(xj)| for all k ∈ [n].

(ii) There is an o-symmetric convex set L in RD that has n non-overlapping
translates L + t1, . . . , L + tn, each intersecting (λ − 1)L, with o /∈
conv{t1, . . . , tn}.

We note that the equivalence between (ii) and (iv) of Theorem 1.4 in [7]
is exactly the above theorem in the case λ = 1.

Theorem 2.3. Let K be an o-symmetric convex set in RD with D ≥ 2, and
let αK + t1, . . . , αK + tn be n non-overlapping translates of αK with α > 0
such that each translate intersects K, and o /∈ int(conv{t1, . . . , tn}). Then

(2.3) n ≤ (1 + 2α)D−1(1 + 3α)

2αD
.

This theorem is a slight modification of Theorem 1.5 of [7]. There the
translates of αK touch K, whereas here they may overlap with K. Theo-
rem 2.3 is sharp for α = 1. Indeed, let K be the cube [−1, 1]D, and consider

the 2 · 3D−1 translation vectors {t ∈ {−2, 0, 2}D : t(1) ≥ t(2)}.
Combining Theorems 2.1, 2.2 and 2.3 (with λ = 2, K = (λ − 1)L = L,

α = 1
λ−1 = 1), we immediately obtain Theorem 1.1.

3. Proof of Theorem 2.1

Let the Minkowski arrangement by {vi + λiK : i ∈ [n]}, where λi > 0
and vi ∈ Rd for each i ∈ [n]. Let xi = (λ−1

i vi, λ
−1
i ) ∈ Rd × R, i ∈ [n]. Fix

distinct i, j ∈ {1, . . . , n}. We will find a linear f : Rd ×R→ R that satisfies
(2.1). Let ϕ : Rd → R be a linear functional such that ϕ(x) ≤ ‖x‖K for all

x ∈ Rd and ϕ(vj − vi) = ‖vj − vi‖K . (Thus, ϕ−1(1) is a hyperplane that

supports K at ‖vj − vi‖−1
K (vj − vi).)

Since any two homothets vk +λkK and v`+λ`K intersect, any two of the
compact intervals ϕ(vk + λkK) and ϕ(v` + λ`K) intersect in R. By Helly’s
Theorem in R, there exists α ∈

⋂n
t=1 ϕ(vt + λtK). Since ϕ(vi + λiK) =

[ϕ(vi)− λi, ϕ(vi) + λi] and ϕ(vj + λjK) = [ϕ(vj)− λj , ϕ(vj) + λj ], we have

ϕ(vj)− λj ≤ α ≤ ϕ(vi) + λi.

By the Minkowski property,

ϕ(vj − vi) = ‖vj − vi‖K ≥ max{λi, λj}.
It follows that

(3.1) ϕ(vi) ≤ α ≤ ϕ(vj).
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We set f = (ϕ,−α) ∈ (Rd × R)∗, that is, define f(x) = ϕ(v) − αµ, where
x = (v, µ) ∈ Rd × R. We show that f(xj − xi) ≥ 1, and |f(xk)| ≤ 1 for all
k ∈ {1, . . . , n}. This will show that (2.1) is satisfied, which will finish the
proof.

f(xj − xi) = ϕ(λ−1
j vj − λ−1

i vi)− α(λ−1
j − λ

−1
i )

=
ϕ(vj)− α

λj
+
α− ϕ(vi)

λi
(3.1)

≥ ϕ(vj)− α+ α− ϕ(vi)

max{λi, λj}

=
‖vj − vi‖K
max{λi, λj}

≥ 1.

Since α ∈ ϕ(vk + λkK), there exists x ∈ K such that ϕ(vk + λkx) = α.
Therefore,

|f(xk)| =
∣∣ϕ(λ−1

k vk)− αλ−1
k

∣∣ = |ϕ(x)| ≤ ‖x‖K ≤ 1.

�

4. Proof of Theorem 1.2

The following proof is very similar to the proof of Theorem 2.1.
Without loss of generality, mini λi = 1. Denote the unit ball of ‖·‖ by K.

Let xi = (λ−1
i vi, λ

−1
i ) ∈ Rd × R, i = 1, . . . , n − 1. Let N ≥ 1, to be fixed

later. For each m = 0, . . . , N , let

Xm = {xi : i ∈ [n− 1], bN log2 λic ≡ m (mod N + 1)}.
Then X0, . . . , XN partition {x1, . . . , xn−1} into N+1 parts. Fix xi, xj ∈ Xm

such that 1 ≤ i < j < n. We will find a linear f : Rd × R → R such that
(2.2) is satisfied for all xk ∈ Xm and λ = 2 − 21/N . Let ϕ : Rd → R be a
linear functional such that ϕ(v) ≤ ‖v‖ for all v ∈ Rd and

(4.1) ϕ(vj − vi) = ‖vj − vi‖ = λi.

(Thus, ϕ−1(1) is a hyperplane that supports K at ‖vj − vi‖−1
K (vj − vi).)

Since any two homothets vk+λkK and v`+λ`K intersect in their interiors,
any two of the open intervals ϕ(vk +λk intK) and ϕ(v` +λ` intK) intersect
in R. By Helly’s Theorem in R, there exists α ∈

⋂n
t=1 ϕ(vt + λt intK).

Since ϕ(vi + λi intK) = (ϕ(vi) − λi, ϕ(vi) + λi) and ϕ(vj + λj intK) =
(ϕ(vj)− λj , ϕ(vj) + λj), we have

ϕ(vj)− λj < α < ϕ(vi) + λi.

By (4.1), we can rewrite this as

(4.2) −λi < ϕ(vi)− α < λj − λi.
We set f = (ϕ,−α) ∈ (Rd × R)∗, that is, for x = (v, µ) ∈ Rd × R, we let

f(x) = ϕ(v) − αµ. It remains to show that f(xj − xi) > 2 − 21/N , and
|f(xk)| ≤ 1 for all k ∈ {0, . . . , n}, since this will show that (2.2) is satisfied
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with λ = 2 − 21/N . By applying Theorems 2.2 and 2.3 with λ = 2/(2 −
21/N ) = 2 + log 4

N +O(N−2), K = (λ− 1)L and α = 1/(λ− 1) = 21−1/N − 1,

we obtain |Xm| ≤ (1 + λ/2)(1 + λ)d, and it follows that

n− 1 ≤ (N + 1)(1 + λ/2)(1 + λ)d.

If we choose N = d, we obtain λ = 2+ log 4
d +O(d−2) and n = 3dO(d), which

would finish the proof.
By definition of Xm,

bN log2 λjc − bN log2 λic = kN for some k ∈ Z.

If k ≥ 1, then N log2 λj−N log2 λi > N , hence λj/λi > 2. However, we also
have

λi = ‖vi − vj‖ ≥ ‖vj − vn‖ − ‖vn − vi‖ = λj − λi,
a contradiction. Therefore, k ≤ 0, that is, bN log2 λjc − bN log2 λic ≤ 0.
This gives N log2 λj −N log2 λi < 1 and

(4.3)
λj
λi

< 21/N .

It follows that

f(xj − xi) = ϕ(λ−1
j vj − λ−1

i vi)− α(λ−1
j − λ

−1
i )

=
ϕ(vj)− α

λj
+
α− ϕ(vi)

λi

=
ϕ(vi) + λi − α

λj
+
α− ϕ(vi)

λi

(4.2),(4.3)
>

2−1/N (ϕ(vi) + λi − α) + α− ϕ(vi)

λi

= 2−1/N +
(1− 2−1/N )(α− ϕ(vi))

λi
(4.2)
> 2−1/N +

(1− 2−1/N )(λi − λj)
λi

= 1− (1− 2−1/N )
λj
λi

(4.2)
> 1− (1− 2−1/N )21/N

= 2− 21/N .

Since α ∈ ϕ(vk + λkK), there exists x ∈ K such that ϕ(vk + λkx) = α.
Therefore,

|f(xk)| =
∣∣ϕ(λ−1

k vk)− αλ−1
k

∣∣ = |ϕ(x)| ≤ ‖x‖K ≤ 1.

�
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5. Proof of Theorem 2.2

Assume that (i) holds. Let C :=
⋂
i 6=j Sij be the intersection of the

o-symmetric slabs Sij :=
{
p ∈ RD : |fij(p)| ≤ λ

2 |fij(xi)− fij(xj)|
}

. By as-

sumption, C ⊇ {x1, . . . , xn}. For each i ∈ [n], let Ci := λxi+C
λ+1 be the

homothetic copy of C with center of homothety xi, and of ratio 1
λ+1 . It is

an easy exercise that the Cis are non-overlapping. Moreover, by the symme-
try of C, we have λ−1

λ+1xi ∈ Ci∩
λ−1
λ+1C. Thus, for L := 1

λ+1C, and ti := λ
λ+1xi,

(ii) holds as promised.
Next, assume that (ii) holds. Fix i, j ∈ [n], i 6= j. Since L+ ti and L+ tj

are non-overlapping, there is a linear functional f such that the two real
intervals si := f(L + ti) and sj := f(L + ti) do not overlap. These two
intervals are of equal length, which we denote by w. Thus, we have

(5.1) w ≤ |f(ti)− f(tj)| .
On the other hand, sk := f(L+ tk) is also a real interval of length w for

any k ∈ [n]; and s0 := f((λ − 1)L) is a 0-symmetric real interval of length
(λ− 1)w, which intersects each sk. Thus, for the center f(tk) of sk, we have

|f(tk)| ≤ (λ−1)w
2 + w

2 = λw
2 . Now, (5.1) yields |f(tk)| ≤ λ

2 |f(ti)− f(tj)|.
Thus, we may set fij := f . This argument is valid for any i and j, thus,
with xi := ti, we obtain (i).

6. Proof of Theorem 2.3

The proof is an almost verbatim copy of the proof of Theorem 1.5 of [7].
There are two points of difference, which we will note.

We recall Lemma 3.1. of [7], which is a slightly more general version of
the Lemma of [1].

Lemma 6.1. Let f be a function on [0, 1] with the properties f(0) ≥ 0, f
is positive and monotone increasing on (0, 1], and f(x) = (g(x))k for some
concave function g and k > 0. Then

F (y) :=
1

f(y)

y∫
0

f(x) dx

is strictly increasing on (0, 1].

Proof of Theorem 2.3. Clearly, we may assume that K is bounded, other-
wise, by a projection, we can reduce the dimension. Let αK + t1, αK +
t2, . . . , αK + tn be pairwise non-overlapping translates of αK that intersect
K. By the assumptions of the theorem, there is a non-zero vector v ∈ RD
such that ai := 〈ti, v〉 ≥ 0 for i ∈ [n]. Set h(x) := {p ∈ RD : 〈p, v〉 = x}.
Without loss of generality, we may assume that h(−1) and h(1) are support-
ing hyperplanes of K.

Clearly, αK + ti is between h(−α) and h(1 + 2α), and it is contained in
(1 + 2α)K, for i ∈ [n].
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(6.1)

1+2α∫
−α

VD−1

((
n⋃
i=1

αK + ti

)
∩ h(x)

)
dx = nαD VD(K).

(6.2)

1+2α∫
0

VD−1

((
n⋃
i=1

αK + ti

)
∩ h(x)

)
dx

≤
1+2α∫
0

VD−1 ((1 + 2α)K ∩ h(x)) dx =
(1 + 2α)d

2
VD(K).

We note that this was the first point of difference from the proof in [7]:
here, we do not subtract the contribution of K in the total volume on the
right hand side of the inequality.

Set f(x) := VD−1 (αK ∩ h(x− α)), and observe that the conditions of
Lemma 6.1 are satisfied by f (with k = D − 1, by the Brunn–Minkowski
inequality). We may assume that a1, . . . , am ≤ α < am+1, . . . , an. By
Lemma 6.1,

0∫
−α

VD−1

((
n⋃
i=1

(αK + ti)

)
∩ h(x)

)
dx =

m∑
i=1

α−ai∫
0

f(x) dx

≤
m∑
i=1

α∫
0

f(x) dx
f(α− ai)
f(α)

=
αd VD(K)

2f(α)

m∑
i=1

VD−1 ((αK + ti) ∩ h(0))

=
αd VD(K)

2f(α)
VD−1

((
m⋃
i=1

(αK + ti)

)
∩ h(0)

)

≤ αd VD(K)

2f(α)

[
VD−1 ((1 + 2α)K ∩ h(0))

]
=
α(1 + 2α)D−1

2
VD(K).

We note that this was the second point of difference from the proof in [7]:
again, the contribution of K to the volume is not subtracted.

This inequality, combined with (6.1) and (6.2), yields (2.3). �
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