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Abstract—This paper proposes a novel frequency-based pre-
dictive sequence extractor that allows to isolate the harmonic
components of both voltages and currents needed for the control
of grid-tied converters. The proposed method is based on a
modification of the Sliding Goertzel Transformation (SGT) that
allows to include a predictive behavior with a prediction horizon
equal to the processing window needed for the algorithm. The
technique performance is compared with the well-established
DSOGI alternative, allowing for a higher bandwidth in the
estimation as well as improved immunity to changes in the magni-
tude, frequency and phase of the tracked signals. Additionally, the
impact of the proposed method on the closed-loop performance
of the current controlled converter is proposed as a metric, thus
enabling other researches to have a clear view about the expected
real impact of the different existing methods.

I. INTRODUCTION

Distributed power generation (DPG) is expected to play an
important role in the short and medium term design of the
generation, transport and distribution system. This is due to
the penetration of renewable generation units that allows to
produce power, providing at the same time ancillary services
(harmonic compensation [1], magnitude and frequency restora-
tion [2],...) An engaging characteristic of the DPG systems
based in renewable generation is that they help to decrease
the emissions since the DPG units are placed near the power
is consumed. On the other hand, the use of DPG increases
the complexity of the whole system due to the coexistence of
several systems with different characteristics (nominal power,
output impedance, workload, transient response . . . )

DPG units are usually connected to the utility grid by using
electronic power converters (mainly PWM voltage source
inverters, VSI [3], [4]). VSI control strategies are mainly
composed by an inner current control loop, an outer voltage
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control loop and an external power control loop [5] based,
all of them in general, on proportional-integral (PI [3], [4])
or proportional-resonant (PRES [5]) controllers. To perform
an accurate control of the fundamental component of the
current, voltage or power, the use of PI and PRES controllers
requires to estimate the magnitude, frequency and phase of the
fundamental component of the utility grid. Furthermore, if a
highly harmonic content is present on the grid, the estimation
of frequency, phase and magnitude for additional harmonics
is a desirable feature.

During last decades, several authors have been working on
the development of synchronization techniques able to work
under a wide range of working conditions. In this regard, the
utility grid voltage may be polluted with harmonic components
(due to the use of nonlinear loads) or unbalanced conditions
(due to single-phase loads). At the same time, the utility grid
magnitude and frequency may oscillate between values defined
in the grid codes. Phase jumps could also occur while grid
voltage measurements could be incorrect, especially in terms
of DC components due to the voltage sensors [6]. The VSI
control is required to be fast and accurate under all of these
disturbances, the synchronization technique being a key point
of the DPG control.

Synchronization techniques can be divided in open-loop [7],
[8] or closed-loop [9]–[14]. Open-loop methods estimate the
PCC voltage magnitude, frequency and phase without any
feedback while closed-loop methods are based on locking
one characteristic of the input signal, e.g. the frequency
(frequency-locked-loop, FLL [9]) or phase (phase-locked-loop,
PLL [11]). Nowadays, closed-loop techniques are preferred
due to their better performance, a common concern being
how to deal with grid disturbances that affect to the parameter
estimation. The operation of closed-loop methods makes them
to naturally adapt their magnitude and frequency estimations
when these parameters deviate from their nominal values.
Thus, research efforts have been traditionally focused in the
development of techniques to remove the unwanted effects
of additional harmonic components. One possible solution
is to reduce the controller bandwidth of the closed-loop
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structure. However, this is at the price of a transient response
degradation, which is not an acceptable solution in most cases.
Alternatively, a filtering stage can be implemented, pre-filter
and filter in the loop techniques being the most acceptable
solutions [12].

A pre-filter stage feeds the closed-loop method with a
filtered version of the grid voltage that contains only the
fundamental component. DSOGI-FLL [9], MCCF-PLL [13],
DSOGI-PLL [10], or CCCF-PLL [14] are examples of pre-
filter stage methods. At the same time, filter on the loop tech-
niques ( [12], [15]) remove the unwanted effects of harmonics
and unbalances inside the closed loop. In both cases, filters can
be implemented by using second-order generalized integrators
[9], [10], notch filters [12], complex-coefficient filters [13],
[14], lead compensators [15] or moving average filters [16].

When using filtering stages, some aspects must be carefully
taken into account: filters introduce phase delays that must be
online estimated and compensated [17], transient response is
affected [6], filters need to adapt their central frequency under
frequency deviations [13] and magnitude and phase jumps
affect to the frequency, magnitude and phase estimation [12].

In order to deal with these drawbacks, this paper proposes
the use of the SGT [18] to estimate the fundamental and har-
monic components of the utility grid. Predictive techniques are
proposed to boost the Goertzel transient response while a wide
frequency resolution is used to compute the algorithm, making
the system frequency-adaptive. Experimental verification will
be provided to test the performance of the proposed method
under several grid disturbances such as magnitude, frequency
deviations, harmonic components or phase jumps.

This paper is organized as follows, in section II, the math-
ematical approach based on the sliding Goertzel algorithm
is explained. Following, the proposed predictive algorithm
is detailed, including simulation results to demonstrate its
effectiveness. In II-A, the use of a fusion method for an
estimation based both on the sliding implementation and on
the predictive proposal is included. Section II-B describes the
proposed method for the frequency estimation and the impact
of frequency variation over the voltage magnitude and phase
estimated values. In section III, the evaluation of the method
using a programmable voltage supply is included. Finally,
in IV, the obtained experimental results are included, thus
validating the approach of the proposed method.

II. IMPLEMENTATION

The basics of the proposed method rely on an efficient
implementation of the Discrete Fourier Transform (DFT) by
using the recursive Goertzel implementation [19], valid for the
extraction of harmonic components in real-time applications.
The implementation has a lower computational burden when
compared with traditional FFT-based approach for a low num-
ber of harmonics. Specifically, for calculating M harmonics
from an input data vector of length N , the associated cost
of the Goertzel algorithm can be expressed as O(N,M),
whereas for the FFT is O(N, log2N). Obviously, when the
number of calculated harmonics meets M ≤ log2N , then the
Goertzel approximation is the preferred choice. In this paper,

TABLE I
CONSIDERED HARMONICS.

Harmonic Order Mag (p.u.)
1 1
-5 0.2
7 0.2

x x

Fig. 1. IIR implementation of the Goertzel algorithm. Black traces are for
the recursive part implementation. Blue traces represent the operations to be
done at the last step (k = N ).

one fundamental cycle, assuming a 50Hz nominal frequency,
is considered at 10kHz sample rate, leading to a time window
of 20ms and 200 samples. With the proposed parameters, the
calculations using the Goertzel approach are faster than the
FFT alternative when the calculated number of harmonics is
M ≤ 8. For the final paper, an study on the appropriated values
for the number of samples and sample rate with both 50 and
60Hz grid frequencies will be carried out. For the validation
of the system, the harmonics detailed in Table I are used. The
implementation is detailed in pseudo-code in Algorithm 1 and
the corresponding block diagram is shown in Fig. 1. At the
implementation, the h input variable contains the harmonic
order of the sequences being analyzed.

Algorithm 1 Sequence extractor using Goertzel algorithm.
1: fbin ← 2πh/N
2: af ← 2 cos(fbin)
3: bf ← e−jfbin

4: sk ← Initialize to zero
5: k ← 1, k1← 2, k2← 3
6: for hh← 1,number of elements in fbin (harmonics) do
7: for n← 1, N − 1 do
8: sk(hh, k) = x(n) + af (hh) ∗ sk(hh, k1) −
sk(hh, k2)

9: sk(hh, k2) = sk(hh, k1)
10: sk(hh, k1) = sk(hh, k)
11: end for
12: sk(hh, k) = af (hh) ∗ sk(hh, k1)− sk(hh, k2)
13: y(hh,N) = (sk(hh, k)− sk(hh, k1) ∗ bf (hh))/N
14: end for

An example of the evolution in time domain of the recursive
Goertzel estimation, compared to the actual magnitudes of
the harmonics is shown in Fig. 2. As it can be seen, when
the input signal is at steady state during the 20ms needed
for the completion of the algorithm, the estimation converges
to the desired values. By looking at the represented graphs,
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Fig. 2. Recursive Goertzel estimation for a three phase system with the
harmonic contents shown in Table I. The dotted lines correspond to the real
value of each of the harmonics. The square dots represent the estimated value
at the end of each block. a) waveforms, b) and c) recursive Goertzel estimation
with 0 and N-1 overlap, d) phase error.

two important conclusions can be obtained: 1) The estimation
procedure is discontinuous, being the computed harmonic
values restarted at each processing window. Obviously, this
must be addressed for the use of the method for the converter
control application proposed in this paper. Often, overlapping
is used for improving the situation (see Fig. 2c)). However
this comes with an additional cost due to the number of
operations required at each sample being multiplied by the
number of overlapping samples. Alternatively, an efficient
sliding approach of the algorithm (SGT) has been proposed
for real-time signal processing applications, being the selected
choice for our investigations [18]. 2) The estimated magnitude
needs the total number of samples and time, N = 200, t =
20ms, to converge to the correct value. This would raise an
unacceptable delay when the estimation is used as a feedback
signal. However, it can be also seen that the evolution of the
fundamental component (1st harmonic) estimation is linear
during the estimation window and barely affected by the
harmonic content.

According to 2), this paper proposes to incorporate a
predictive SGT implementation (P-SGT) that improves the
convergence speed and, at the same time, avoids the extra
calculations of the overlapping. The predictive behavior is im-
plemented by a two-step algorithm. Firstly, a linear recursive
least squares estimation (LSE) is run over the output of each
sample of the SGT. This will lead to a linear representation
of the corresponding datapoints. It must be remarked that
being the output values of the SGT complex, two different
least squares estimation are needed: one for the module and
another one for the phase. Considering an unwrapped phase,
both signals follow a linear trend during one estimation cycle
and, thus, the LSE approximation is a natural choice. Secondly,
the module value at the end of each of the estimation windows

N [n]2N

prediction horizon n=1 prediction horizon n=N

[n]

least squares
estimation

prediction

Fig. 3. Graphical representation of the proposed predictive algorithm. The
slope at each of the points is filtered by a moving average filter for reducing
the derivative noise.
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Fig. 4. Proposed P-SGT implementation. a) evolution of the magnitude.
Actual samples are represented by blue dots, the output of the SGT by the
red line and the prediction by the purple line. b) evolution of the predicted
slope, c) evolution of the predicted offset. A window of N = 50 have been
used for demonstration purposes.

is predicted. This last step is implemented at each step by again
considering the linear evolution (1)

ŷ[N ] = y[n] +mle[n] · [N − n] (1)

, where mle[n] is the moving average slope estimated by the
LSE approach, N the window size and n the actual sample.
A graphical description for the algorithm is shown in Fig. 3.

The simulation results with the proposed methods is shown
in Fig. 4. As it can be seen, the results obtained by the P-SGT
approximations notably improves the convergence speed of the
estimation. However, even with the averaged slope calculation,
some peak transients can be observed at the beginning of each
processing window. This behavior is inherent to the involved
derivative process. By comparing the smooth transitions using
the SGT, is is clear that both estimations can work in a
complementary approach. For that reason, the final proposal
for the estimation method will use a combination of both
alternatives. The combined estimation will be based on the
rate of change in the SGT estimation. As previously discussed,
during the convergence time for the SGT, the estimation will
exhibit a mostly linear change. On the contrary, once the
estimation has reached the final value it will have a mostly zero
variation. Based on that, the P-SGT will be favored during the
transients, whereas the classical SGT will be mostly used at the
steady state. Next section shows the mathematical formulation
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of the fusion algorithm as well as a numerical evaluation about
the method performance.

A. Combined SGT and P-SGT estimation

Considering the performance of both the SGT and P-SGT
strategies shown in Fig. 4,it is proposed to combine both
methods, leading to the so called PF-SGT, for getting the final
expression. For the fusion rule, an equation on the form (2) is
proposed, where the value of the fusion gain (kfhωe

) is given
by (3).

Xpf−sgt
hωe

= Xp−sgt
hωe

· (1− kfhωe
) +Xsgt

hωe
· (kfhωe

) (2)

kfhωe
= exp

(
−abs

(
mavg(4X

sgt
hωe)

max(4X
sgt
hωe)

))
·ghωe

(3)

Where the presented variables are defined as follows:
• Xpf−sgt

hωe
. Estimation of harmonic component h at fun-

damental frequency ωe for variable X using the PF-SGT
method.

• Xp−sgt
hωe

. Estimation of harmonic component h at funda-
mental frequency ωe for variable X using the P-SGT
method.

• Xsgt
hωe

. Estimation of harmonic component h at fundamen-
tal frequency ωe for variable X using the SGT method.

• 4Xsgt
hωe

is the rate of change of the module of the
estimated harmonic components by the SGT algorithm.

• mavg. Moving average function.
• max. Maximum variation function.
• ghωe

. Gain of the exponential function used for tuning
the fusion system.

Evolution of the estimation and the adaptive gain is shown in
Fig. 5. As clearly shown, the fusion helps on removing the
transient at the beginning of each of the processing windows.
Even if the results are promising, for the final paper, a detailed
analysis on the sensitivity of the fusion gain, as well as
alternative signal processing methods to the fusion will be
considered.

B. Frequency estimation

When the proposed PF-SGT method is applied for the
estimation of grid voltages and currents, variations at the

frequency must be considered. As known, frequency domain
methods based on the DFT assume the periodicity of the
signal and by the discrete resolution. However, when used
for the analysis of signals coming from a real application,
this assumption is not longer valid. The effect of the signal
being not periodic, together with the discrete resolution, will
cause spectral leakage, affecting both the phase and magnitude
of the estimated components. Often, windowing techniques
(both in time and frequency domain) are applied in order to
reduce the impact. Unfortunately, the procedure also affects
the magnitude and the phase of the extracted components and
additional compensation is needed. A different approach is to
optimize the parameters for the calculation by adjusting the
number of needed samples (200 by default in our implemen-
tation) depending on the fundamental frequency, so a complete
number of cycles is acquired at each processing window.
For this paper, and considering that only the harmonics of
the fundamental frequency needs to be isolated, an even
simpler approach has been used by selecting a coarse spectral
resolution of 50Hz. This avoids the spectral leakage when
deviations from the fundamental frequency appears, at the
cost of any other disturbance signal falling within the band of
[25−75]Hz to be affecting the estimation. For the final paper,
a method based on an adaptation of the number of samples
by using an external frequency estimation will be considered
[20].

III. SYSTEM EVALUATION

The initial evaluation of the proposed sequence estimator is
done using a programmable voltage source (2210 TC-ACS-50-
480-400 from Regatron) to create the different grid conditions.
Different steps at the magnitude, phase and frequency of the
signal are considered as well as the behavior with and without
additional harmonic content. The data is acquired by an scope
at 1Ms/s and later down-sampled to 10kHz. The down-
sampled signal is processed in Matlab/Simulink using a real-
time implementation.

The results for the tracked grid voltage’s magnitude and
phase using the PF-SGT are shown in Fig 6 and 7. The
different events at the source signal are repeated twice. During
the first interval (t = 0− 1.2s), no harmonics were included.
At the second part, the harmonics indicated at Table I are
considered. Moreover, starting at t = 1.5s, a dc offset is
included at the output of the voltage sensors. Dc-offset values
are Vu = 10V, Vv = 5V, Vw = −5V . The events are scheduled
as follows: 1) Magnitude. At t = 0.8s and t = 0.9s it
changes to 0.8 and 1.2 p.u. The same change is observed
at t = 1.98s and t = 2.08s. 2) Frequency. At t = 0.2s
and t = 0.3s, the rated 50Hz frequency is changed to 49
and 51Hz respectively. The same is done t = 1.38s and
t = 1.48s. 3) Phase. At t = 0.5, t = 0.6, t = 0.7s
phase jumps of 30,−60, 30deg. are induced. Same pattern is
observed at t = 1.68, 1.78, 1.88s. At the graph, the behavior
of the proposed method is tested compared to the DSOGI
implementation. The tuning of the DSOGI has been done
according to the optimal parameters indicated by its authors
[9]. As it can be seen, the proposed method shows a better
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immunity to harmonics and faster response to the considered
changes with the exception of the phase change at t = 0.6 and
1.78s. Reasons for that behavior and possible solutions will
be addressed at the final paper. It is special remarkable the
improvement of the proposed method when DC components
are considered. Finally, the compared experimental results
for the dynamics of the closed-loop current control using the
DSOGI and the proposed PF-SGT method are shown in Fig.
8. For the initial evaluation of the method, the closed-loop
current control of a three phase power converter connected
to the grid has been used. The current control has been
implemented at the synchronous reference frame and different
current references, both at the d and q axis were commanded.
The grid voltage was acquired as previously explained and the
downsampled voltage data was used in a real-time Simulink
simulation. The same sequence than for the open-loop results
shown in Fig. 6 has been used. The relevant parameters for
the setup are: filter values: L = 5mH,R = 0.2Ω, switching
frequency fsw = 10kHz, current control bandwidth 20Hz. As
clearly shown, the proposed method shows a better transient
response and harmonic rejection capabilities than the DSOGI
alternative. Moreover, the bandwidth was set to such a low
value in order to keep stable the DSOGI-based current control.
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Fig. 8. Experimental results. Close loop comparison between the DSOGI and
the proposed PF-SGT methods. a) grid voltages, b) grid currents, c) adaptive
fusion gain for the PF-SGT method.

Fig. 9. Setup used for the experimental validation. Two converters are coupled
together, PM90F60C unit is used to create the vayring grid conditions and
PM15F42C runs the proposed estimation method.

IV. EXPERIMENTAL RESULTS

For this paper, the evaluation of the proposed sequence esti-
mator is done using the experimental grid shown in Fig. 9. The
setup is composed by Triphase power modules PM15F42C
and PM90F60C, and a set of passive loads. The module
PM90F60C is used as a grid voltage emulator. It creates
the different grid scenarios, modifying the magnitude, phase,
frequency and harmonic content of the voltage signal. The
module PM15F42C is integrated in the system operating as a
constant power controlled battery energy storage system. The
proposed algorithms are processed online in the PM15F42C
control unit using the voltage measurements at the point of
common coupling (PCC). The experimental results use the
DSOGI algorithm as the base case for the comparison.

A. Variation of grid voltage magnitude

Variations of grid voltage magnitude from 1 to 0.8 p.u. at
t = 0.1s and from 0.8 to 1.15 p.u. at t = 0.2 are considered.
Results both with not additional harmonics and with h5 = 5%
and h7 = 5% are shown in Fig. 10 and Fig. 11 respectively. As
shown, the proposed method have a faster dynamic response
as well as higher harmonic robustness, both for the magnitude
and the phase estimation.

B. Variation of grid voltage frequency

Variations of grid voltage frequency from 50 to 49 Hz. at
t = 0.1s and from 49 to 51 Hz. at t = 0.2 are considered.
Results both with not additional harmonics and with h5 = 5%
and h7 = 5% are shown in Fig. 10 and Fig. 11 respectively. As
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shown, the proposed method have a better magnitude response.
However, an steady state error in the phase appears with
the proposed method. The reason is the considered frequency
resolution. As explained before, a frequency resolution of 50
Hz. has been selected for this work. This implies that any
deviation smaller than 50Hz can not be measured and the
difference between the real grid frequency and the fundamental
harmonic is directly coupled to a phase error. However, the
maximum possible error under the maximum considered fre-
quency deviation is bounded and given by the expression (4).
Where max (ωerr) is the maximum frequency error and fe the
grid frequency in Hz. The maximum frequency error depends
on the frequency resolution and the maximum admissible grid
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Fig. 12. Experimental results. Comparison between the DSOGI and the
proposed PF-SGT methods for a frequency step change. No harmonics are
injected. From top to bottom: a) grid voltages, b) grid voltage magnitude, c)
grid voltage phase error.
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frequency deviation. For the values considered at this paper,
the error is bounded to a maximum of 3.6deg.

max θerr =
max (ωerr)2π

fe
· 180

2π
(4)

C. Variation of grid voltage phase

Variations of grid voltage phase from 0 to 30 deg. at
t = 0.05s, from 30 to −30 deg. at t = 0.1 and from −30 to 0
at t = 0.15s are considered. Results both with not additional
harmonics and with h5 = 5% and h7 = 5% are shown in
Fig. 14 and Fig. 15 respectively. As shown, the proposed
method have a similar results compared to DSOGI when no
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proposed PF-SGT methods for a phase step change. No harmonics are
injected. From top to bottom: a) grid voltages, b) grid voltage magnitude,
c) grid voltage phase error.
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Fig. 15. Experimental results. Comparison between the DSOGI and the
proposed PF-SGT methods for a phase step change. Harmonics as listed in
Table I are injected. From top to bottom: a) grid voltages, b) grid voltage
magnitude, c) grid voltage phase error.

additional harmonics are considered and a clearly improve
response under harmonic conditions.

V. CONCLUSION

This paper has introduced a new predictive estimation
technique for grid-tied converters based on a frequency-based
method. To the author’s best knowledge, the proposed method
using a modification of the Sliding Goertzel Transformation
(SGT) which includes a predictive modification has not been
used before for grid phase tracking in power converters. The
proposed PF-SGT method has been evaluated with respect to
a consolidated alternative, the DSOGI, showing a superior
performance in terms of dynamic response and disturbance

rejection. It is particular remarkable the immunity to DC
offsets as well as to changes at the grid frequency. The
proposed algorithm has been validated by both simulation and
experimental results, which are in close agreement. The impact
of the phase estimation and harmonic decoupling in a closed-
loop current control implementation has also been evaluated,
being the proposed PF-SGT an important improvement over
the DSOGI method.
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